
Authenticated Aggregate Queries with Boolean Range Predicates
on Blockchains

Weijie Sun

HKUST

Hong Kong SAR, China

wsunan@cse.ust.hk

Zihuan Xu
∗

Shenzhen Institute of Computing

Sciences

Shenzhen, China

xuzihuan@sics.ac.cn

Wangze Ni
†

Zhejiang University

Hangzhou, China

niwangze@zju.edu.cn

Lei Chen

HKUST(GZ) & HKUST

Guangzhou & Hong Kong SAR, China

leichen@cse.ust.hk

Peng Cheng

Tongji University

Shanghai, China

cspcheng@tongji.edu.cn

Chen Jason Zhang

The Hong Kong Polytechnic

University

Hong Kong SAR, China

jason-c.zhang@polyu.edu.hk

ABSTRACT
Blockchains have gained wide adoption for secure data processing.

As blockchain data volumes grow, the demand for efficient data

analysis, especially aggregate queries, becomes increasingly criti-

cal. However, current blockchains lack native support for efficient

analytical query processing, forcing users to either maintain full

replicas or rely on third-party services without integrity guarantees.

In this paper, we propose an efficient framework, Merkle Bloom

Filter Tree (MBFT), for authenticated aggregate queries that com-

bine boolean keywords and range predicates on blockchains. At

its core is a Bloom filter-based authenticated data structure that

supports both types of predicates, constructed per block for efficient

transaction indexing. For temporal predicates, we optimize time

window queries through value pruning and block consolidation.

We design a novel Merge Bloom Filter (MBF) for space-efficient

handling of dynamic sets during query authentication. We provide

a theoretical analysis of the storage overhead caused by the Bloom

filter’s false positive rates. Our framework employs data sketches

to support various aggregate operations. Extensive experiments

demonstrate that MBFT has improved the query speed by up to

286× compared to state-of-the-art authenticated query solutions.

PVLDB Reference Format:
Weijie Sun, Zihuan Xu, Wangze Ni, Lei Chen, Peng Cheng, and Chen Jason

Zhang. Authenticated Aggregate Queries with Boolean Range Predicates

on Blockchains. PVLDB, 18(10): 3615-3627, 2025.

doi:10.14778/3748191.3748219

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/SwJay/mbft.

∗
Zihuan Xu is the corresponding author.

†
Wangze Ni is also with The State Key Laboratory of Blockchain and Data Security;

Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.

doi:10.14778/3748191.3748219

1 INTRODUCTION
With the popularity of Bitcoin [26], the decentralized and im-

mutable nature of blockchains over fault-tolerant protocols [4] has

revolutionized various domains like finance [33], supply chains [20]

and crowdsourcing [18], etc.. As these blockchain-based applica-

tions thrive, massive volumes of valuable data are being generated,

increasing user demands for querying and analyzing data managed

in blockchains. In particular, the aggregate query, widely applied in

database systems [8, 16], can provide users with valuable insights by

efficiently summarizing massive blockchain data into meaningful

statistics. Consider the following example:

Example 1.1. Fig. 1 shows three example aggregate queries with

keyword and range predicates in blockchain-based applications:

(1) In crowdsourcing,𝑄1 highlights how a contributor with address

"0x0af8" tracks their highest single-task reward within a week.

(2) In finance, 𝑄2 demonstrates how a client estimates the total

transferred amount of major transactions (value >100) from their

address "0x1b3e" within a month.

(3) In supply chains, 𝑄3 describes how a retailer with address

"0x2ce7" counts purchase transactions (value between 1000 and

5000) with a supplier at address "0x3db6" within a year. □

Figure 1: Example Aggregate Queries on Blockchains.

Despite the importance of predicated aggregated query process-

ing, native blockchains still lack efficient support for such queries.

Consequently, users can either (1) run a full node with an exter-

nal query engine to maintain complete blockchain data, which

incurs significant storage (e.g., over 600 GB for Bitcoin [40] and

1 TB for Ethereum [41]) and computation overhead; or (2) resort

to centralized third-party blockchain databases (e.g., BigQuery [6],

BigchainDB [15]) whose query execution must be trusted. It con-

tradicts blockchain’s Byzantine setting, as results cannot be inde-

pendently verified to guarantee integrity [35, 39].

3615

https://doi.org/10.14778/3748191.3748219
https://github.com/SwJay/mbft
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748219
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Authenticated query, as a practical solution, balances space effi-

ciency and data integrity. Fig. 2 illustrates the authenticated query
processing in blockchains, where full nodes store complete blocks,

and light nodes maintain only block headers. Each block stores a

Merkle Hash Tree (MHT) as its authenticated data structure (ADS),
with the root hash embedded in the block header. The full node

executes queries and returns the result with a verification object
(VO) from the ADS for the light node to verify result integrity.

Figure 2: Authenticated Query Architecture.

Researchers have proposed several solutions for authenticated

queries on blockchains, yet they still face three limitations.

(1) Dependence on trusted infrastructure. Approaches like

vChain [39] and GCA
2
-tree [44] use asymmetric accumulators [43]

to verify query results via (non-)membership witnesses. However,

managing public keys is impractical as their size scales with the

maximum attribute value (e.g., 2256 for 256-bit hashes). Alterna-

tives, such as trusted oracles or specialized hardware, compromise

blockchain decentralization and pose deployment challenges [35].

(2) Lack of aggregation support in predicate query solutions.
Many frameworks, such as vChain [39], vChain+[35], MELTree[23],

and SEBDB [45], support filtering data based on specific predicates

(e.g., boolean, range, etc.) but lack aggregation capabilities.

(3) Limited predicate support in aggregation query solutions.
Solutions focused on aggregation provide limited predicate han-

dling. For example, the sliding-window scheme [31] supports only

temporal predicates at the block level, while GCA
2
-tree [44] handles

numerical predicates but not boolean queries on textual data.

In summary, authenticated aggregate queries with boolean and

range predicates on blockchains face three fundamental challenges:

(1) Trustless Architecture: Preserving blockchain’s trustless na-

ture is challenging, as it requires eliminating reliance on trusted

intermediaries without compromising efficiency or integrity.

(2) Comprehensive Aggregation: Supporting diverse aggrega-

tions of distributed blockchain data is costly, requiring significant

computation and resources to process global summaries efficiently.

(3) Flexible Predicates: Providing boolean and numerical range

predicates in queries requires efficient data indexing and filtering.

In this paper, we propose a trustless scheme for authenticated

aggregate queries with boolean range predicates.

To address the challenge (1), we designMerge Bloom Filter (MBF),
a symmetric accumulator based on Bloom filters, which (a) elimi-

nates the trusted oracle in asymmetric accumulators, and (b) bounds

the VO space overhead caused by false positive memberships.

To address the challenge (2), we develop an authenticated frame-

work for aggregate queries, starting with MAX/MIN operations

and extending to COUNT, COUNT DISTINCT, SUM,MEAN, and
Top-k queries via sketch techniques.

To address the challenge (3), we propose the Merkle Bloom Filter
Tree (MBFT), an ADS combining MHT and Bloom filter to support

boolean keyword and range predicates over both numerical and

set-valued attributes. Additionally, we introduce two optimizations

to handle temporal predicates in time-window queries efficiently.

Our main contributions are summarized as follows:

◦ Wedesign theMerge Bloom Filter (MBF), an efficient accumulator

for authenticated queries that reduces the space overhead in the

construction of ADS and the verification of results.

◦ We propose theMerkle Bloom Filter Tree (MBFT), an ADS scheme

supporting various aggregate operations over time windows

with boolean keyword and range predicates.

◦ We conduct experiments to validate the efficiency and effective-

ness of our solution, demonstrating up to 286× acceleration in

query time compared to state-of-the-art authenticated solutions.

The paper is organized as follows. Sec. 2 reviews relatedwork and

preliminaries. Sec. 3 defines the problem. Sec. 4 presentsMBFT and

MBF. We demonstrate the authenticated MAX query in Sec. 5 and

extend to other aggregations in Sec. 6. Sec. 7 provides security anayl-

sis, and Sec. 8 reports experimental results. We conclude in Sec. 9.

2 RELATEDWORK AND PRELIMINARIES
This section reviews related works on blockchain queries and cryp-

tographic accumulators, followed by necessary preliminaries.

2.1 Blockchain Query

Hybrid Blockchain Database Queries. Existing blockchains lack
native query support, leading to solutions incorporating external

databases to build hybrid query engines [14]. BigchainDB [15]

uses MongoDB for storage and Tendermint for consensus, while

EtherQL [24] adds a query layer on top of Ethereumwith MongoDB

as data storage as well. When external users query these solutions,

however, they have to fully trust the service provider to return

correct results in the absence of independent verification, and thus

unable to ensure integrity [35, 39].

Authenticated Queries on Blockchains. Another class of work
enables authenticated queries directly on blockchains using authen-

ticated data structures (ADS), enabling verifiable query execution.

Predicate Queries. Several solutions focus on authenticated predi-

cate queries. SEBDB [45] employs the Merkle B-tree [21] for select-

project-join queries, while vChain [39] and vChain+ [35] use mul-

tiset accumulators for boolean range queries. MELTree [23] and

MP-DAG [22] support authenticated graph queries. However, these

solutions lack comprehensive support for aggregation queries.

Aggregate Queries. Other approaches focus on authenticated aggre-

gate queries. The Aggregate B-tree [31] supports sliding-window

aggregation, while GCA
2
-tree [44] provides generic aggregation

capabilities. However, both systems have limited predicate support,

i.e., the Aggregate B-tree only supports block-level time predicates,

and the GCA
2
-tree only supports numerical range predicates.

Additionally, ADS solutions often rely on trusted oracles or hard-

ware. For instance, vChain [39] and GCA
2
-tree [44] require trusted

oracles for public key generation and management, while multi-

chain solutions like V
2
FS [34] depend on trusted hardware (e.g.,

Intel SGX) through DCert [19] for data certification.

3616

2.2 Cryptographic Accumulator

Merkle Hash Tree (MHT) and Variants. MHT is widely used

in blockchains as the membership verification ADS [26, 37]. As

shown in Fig. 3, each MHT leaf node corresponds to a transaction

hash, and internal nodes are created by hashing the concatenation

of child nodes. The root hash (i.e., ℎ1) is stored in the block header.

For example, to verify the membership of a transaction 𝑡𝑥1, the VO

{ℎ5, ℎ3} is returned as a proof. Then, the correctness can be verified

by reconstructing the root hash ℎ′
1
and comparing it with ℎ1.

Moreover, there are various MHT variants. Merkle Patricia Trie

(MPT), used in Ethereum [37], efficientlymanages theworld state by

prefix matching, while SEBDB [21] uses the Merkle B-tree for index

authentication. Some systems combine MHTwith asymmetric cryp-

tographic accumulators to enable more expressive queries [39, 44],

though these require trusted oracles for key management.

Figure 3: Merkle Hash Tree in Block.
Bloom Filter and Variants. Bloom filter (BF) [7], a space-efficient

probabilistic symmetric accumulator, can also perform membership

testing in static datasets with an acceptable rate of false positives

(see Sec. 2.3). To support dynamic datasets, BF variants are pro-

posed. The Dynamic Bloom Filter (DBF) [17] consists of multiple

homogeneous Bloom filters, where one active filter inserts new ele-

ments, and once full, another empty filter is activated. The Scalable

Bloom Filter (SBF) [2] consists of multiple heterogeneous Bloom

filters, while the Dynamic Bloom Filter Array (DBA) [36] organizes

Bloom filters into groups. These variants aim to handle dynamic

sets and increase the capacity of the Bloom filter structure.

2.3 Preliminaries

Collision-resistant Hash Functions. A hash function 𝐻 takes

a variable-length input 𝑥 and generates a fixed-length output

𝑦 = 𝐻 (𝑥). 𝐻 is collision-resistant if the probability of finding two

distinct inputs 𝑥1 and 𝑥2 such that 𝐻 (𝑥1) = 𝐻 (𝑥2) is negligible.
Typical collision-resistant examples are MurmurHash and SHA.

BloomFilter.ABloomfilter (BF) uses an𝑚-length bit vector, initial-

ized to all 0, to represent a set 𝑋 of 𝑛 items. To insert an item 𝑥 ∈ 𝑋 ,

it maps 𝑥 to 𝑘 random positions {ℎ1 (𝑥), . . . , ℎ𝑘 (𝑥)} where ℎ𝑖 (𝑥)
= (𝐻𝑖 (𝑥) mod𝑚) via 𝑘 independent hash functions and set these

positions to 1. To check 𝑥 ’s membership in𝑋 , BF computes 𝑘 hashes

ℎ𝑖 (𝑥) and returns true if all ℎ𝑖 (𝑥) bits are set to 1, false, otherwise.
Note that BF has a false positive rate 𝜖 due to hash collisions,

which can be quantized as follows. Assume each ℎ𝑖 (𝑥) is evenly
distributed over [0,𝑚 − 1] with the probability

1

𝑚 in each position.

Given an𝑚-bits BF with 𝑛 items inside, the probability that one bit

remains 0 is (1 − 1

𝑚)
𝑛𝑘

. Thus, the false positive rate 𝜖 follows:

𝜖 = [1 − (1 − 1

𝑚
)𝑛𝑘]𝑘 ≈ (1 − 𝑒−𝑘𝑛/𝑚)𝑘 . (1)

According to Eq. (1), when 𝑘 = 𝑚
𝑛 ln 2, 𝜖 reaches the minimum.

Thus, the optimal𝑚 is derived as𝑚 = − ln𝜖
(ln 2)2𝑛.

3 PROBLEM FORMULATION
This section formulates the problem by introducing the system and

data models as well as the targeted queries and security goals.

Figure 4: System Model.

System Model. We define our system model with two roles: (1)

the service provider (SP), which stores the outsourced data and

maintains the ADS to respond to user queries, and (2) the user, who

requests aggregate queries from the SP. Specifically, we consider

the following scenario: (1) The SP is untrusted, where the query

result may be incorrect; (2) The user is resource-limited, retaining

only the ADS digest and corresponding VO for query result veri-

fication. Typical applications are outsourced database [42], cloud

services [38], edge computing [12], and blockchain [39].

This work focuses on the blockchain scenario. As illustrated in

Fig. 4, the full node serves as the SP, maintaining blockchain data

and the ADS, while the light node acts as the user, querying the

full node and storing block headers for validation. Additionally, we

aim to design an ADS that can be integrated into existing systems

like Bitcoin and Ethereum by either replacing the native MHT root

or appending the digest of our proposed ADS to the block header.

Data Model. We model the data as a sequence of append-only

blocks, where each block 𝑏𝑖 contains a list of transactions, i.e., 𝑏𝑖 =
(𝑡𝑥1, . . . , 𝑡𝑥𝑛). Each transaction 𝑡𝑥 𝑗 is modeled as 𝑡𝑥 𝑗 = ⟨𝑡 𝑗 , 𝑣 𝑗 ,𝑊𝑗 ⟩
where 𝑡 𝑗 , 𝑣 𝑗 , and𝑊𝑗 represent the timestamp, the numerical value,

and the keyword set involved in this transaction, respectively.

Specifically, this data model applies to both UTXO-based and

account-based blockchains, where 𝑣 𝑗 and𝑊𝑗 represent the transfer

amount and textual properties (e.g., user address) in a transaction,

respectively. Moreover, smart contract transactions in the account-

based blockchain may involve multiple numerical attributes. Fol-

lowing [39], we convert each numerical value into a binary prefix

set and represent them in𝑊𝑗 . The range predicate on the numerical

attribute 𝑣 𝑗 can be viewed as the minimum set of binary prefixes

covering the range, and thus converted to Boolean keyword predi-

cates on𝑊𝑗 . For instance, {1∗, 10∗, 100} is the binary prefix set for

the integer 4 (100 in binary), and the range predicate [0, 4] can be

transformed to the boolean predicate as 0 ∗ ∨100 (details see [39]).
QueryDefinition.We target on the aggregate query defined as𝑄 =

{aggr, [𝑡𝑠 , 𝑡𝑒], [𝛼, 𝛽], Υ}, where (1) aggr is the aggregation operator

including MAX, MIN, COUNT, COUNT DISTINCT, SUM, Top-k
andMEAN (i.e., SUM

COUNT); (2) [𝑡𝑠 , 𝑡𝑒] is the temporal range predicate;

(3) [𝛼, 𝛽] is the numerical range predicate; and (4) Υ is the boolean

function over the keyword set.

For example, 𝑄3 in Example 1.1 is represented as 𝑄3={COUNT,
[2023-01-01, 2023-12-31], [1000, 5000], sender : 0x2ce7 ∧ receiver :
0x3db6}, counting the retailer (0x2ce7) purchase records (value

between 1000 and 5000) with the supplier (0x3db6) in year 2023.

3617

Figure 5: Example of Merkle Bloom Filter Tree.
Threat Model and Security Goal. We assume full nodes may be

untrustworthy and could return tampered or incomplete VO and

result, e.g., a malicious attacker might exploit BF’s false positives

to produce fraudulent results that incorrectly match BF’s keyword

predicates. Meanwhile, we presume light nodes correctly follow

the query scheme and maintain authentic block headers from the

blockchain. To ensure data integrity, the full node generates the

VO alongside the query result, and the light node can then verify

both the soundness and completeness of the query result.

◦ Soundness. The returned query result is correct and not tam-

pered with. It should satisfy all the selection predicates.

◦ Completeness. All qualified transactions are contained in the

returned query result, and no valid data is missing.

4 BASIC SOLUTION
This section first introduces Merkle Bloom Filter Tree (MBFT), a
novel ADS scheme, and its construction method (Sec. 4.1). Then,

we propose an accumulator, Merge Bloom Filter (MBF), to optimize

the verification object (VO) size of MBFT (Sec. 4.2).

4.1 MBFT Construction
Merkle Bloom Filter Tree. MBFT is built on the transaction list

sorted by the numerical attribute. Fig. 5 illustrates an exampleMBFT
with four transactions. Each tree node 𝑛𝑖 contains a Bloom filter

𝐵𝐹𝑖 that accumulates keywords appearing in its subtree to support

efficient tree-based index querying. Notably, the query complexity

in Bloom filters is constant in 𝑘 hash operations. It also provides

a controllable false positive rate and accurate non-membership

verification, ensuring the completeness of query results.

MBFT node. Each node 𝑛𝑖 inMBFT consists of four components:

(1) hash value ℎ𝑖 , an identifier of the node, where the tree root

hash is stored in the block header, (2) keyword set𝑊𝑖 , containing

keywords involved in the sub-tree rooted at node 𝑛𝑖 , (3) Bloom

filter 𝐵𝐹𝑖 , serving as an accumulator of the keyword set𝑊𝑖 , and

(4) value range [𝑙𝑖 , 𝑢𝑖], representing the lower (𝑙𝑖) and upper (𝑢𝑖)

bounds of the transaction numerical value attribute involved in the

sub-tree rooted at node 𝑛𝑖 . TheMBFT node is formally defined as:

Definition 4.1 (MBFT Node). Given anMBFT node 𝑛𝑖 , we denote

its left and right child as 𝑛𝑙 and 𝑛𝑟 , respectively. 𝑛𝑖 contains the

following four components, which can be computed as:

(1) ℎ𝑖 = 𝐻 (ℎ𝑙 ∥ℎ𝑟 ∥𝐵𝐹𝑖 ∥𝑙𝑖 ∥𝑢𝑖), where ∥ compute the concatenation

(2)𝑊𝑖 =𝑊𝑙 ∪𝑊𝑟

(3) 𝐵𝐹𝑖 = 𝑏𝑓 (𝑊𝑖) where 𝑏𝑓 (·) constructs a Bloom filter

(4) [𝑙𝑖 , 𝑢𝑖] where 𝑙𝑖 = min(𝑙𝑙 , 𝑙𝑟) and 𝑢𝑖 = max(𝑢𝑙 , 𝑢𝑟)

Algorithm 1: MBFT Construction.

1 Function MBFTConstruction(𝑏):
Input: Block 𝑏
Output: MBFT root node

2 Initialize an empty node array Leaves and sort 𝑏 into 𝑏′;
3 for each transaction 𝑡𝑥𝑖 = ⟨𝑡𝑖 , 𝑣𝑖 ,𝑊𝑖 ⟩ ∈ 𝑏′ do
4 Compute 𝐵𝐹𝑖 , 𝑙𝑖 , 𝑢𝑖 and ℎ𝑖 ;

5 Leaves.push(node(ℎ𝑖 ,𝑊𝑖 , 𝐵𝐹𝑖 , 𝑙𝑖 , 𝑟𝑖));

6 return MBFTMerge(Leaves);
7 Function MBFTMerge(Child):

Input: Child node array Child
Output: Parent node array Parent

8 if Child.size() is 1 then return Child;
9 if Child.size() is odd then Child.push(Child.tail());

10 for 𝑖 ← 0 to Child.size()/2 do
11 ⟨ℎ𝑙 ,𝑊𝑙 , 𝐵𝐹𝑙 , 𝑙𝑙 , 𝑟𝑙 ⟩ ← Child [2 ∗ 𝑖];
12 ⟨ℎ𝑟 ,𝑊𝑟 , 𝐵𝐹𝑟 , 𝑙𝑟 , 𝑟𝑟 ⟩ ← Child [2 ∗ 𝑖 + 1];
13 Compute𝑊𝑖 , 𝐵𝐹𝑖 , 𝑙𝑖 , 𝑢𝑖 and ℎ𝑖 ;

14 Parent [𝑖] = node(ℎ𝑖 ,𝑊𝑖 , 𝐵𝐹𝑖 , 𝑙𝑖 , 𝑟𝑖);

15 return MBFTMerge(Parents);

TheMBFT construction algorithm is shown in Algo. 1. First, a

sorted list𝑏′ is constructed according to the numerical value (line 2).

For each transaction 𝑡𝑥𝑖 ∈ 𝑏′, we create a corresponding leaf node

in MBFT (lines 3-5). Then we generate the MBFT in a bottom-up

fashion until reaching the root node (line 8). Since theMBFT is a

binary tree, the tail node should be computed twice for the odd

number of nodes (line 9). Finally, parent nodes are generated by

recursively merging each pair of child nodes (lines 10-15).

4.2 Merge Bloom Filter
Storage Optimization with Variable-Size Bloom Filters. We

have derived the optimal size for the BF inMBFT root with 𝑛 trans-

actions as − ln𝜖
(ln 2)2𝑛 in Sec. 2.3. However, this size is redundant for

internal and leaf filters, which only store subsets of the transactions,

leading to wasted storage. Consider the following example.

Example 4.2. Given a block with 100 transactions, each contain-

ing 2 addresses as keywords, and a target false positive rate 𝜖 = 1%,

the optimal BF size in the MBFT root node is − 2·100·ln𝜖
(ln 2)2 ≈ 240B.

However, the leaf node, which stores only 2 transactions with 4

keywords, requires only 4B of storage. Thus, using the same size

for all BF in the MBFT leads to significant storage waste. □

A natural way to optimize storage is to use BFs of varying sizes

in different nodes. However, this complicates merging child BFs to

construct a parent BF, as merging BFs with different sizes requires

rebuilding from scratch by reinserting all involved keywords. Al-

though full nodes can handle this during ADS construction, a light

node cannot reconstruct such a structure during VO verification,

as they lack access to the underlying keyword set.

Merge Bloom Filter. To strike a balance, we propose the Merge
Bloom Filter (MBF), a novel accumulator that allows merging two

MBFs without knowledge of the underlying data items. This prop-

erty of MBF enables efficient space utilization in MBFT formation,

as it allows eachMBF to dynamically adjust its size based on the

number of accumulated elements, such that theMBF at deeper tree

3618

levels has substantially smaller sizes. Specifically, there are three

key components in the MBF: dynamic hash, 2-bit opcode, and hint.
(1) Dynamic Hash. To support dynamic scaling, the positions of

each item in the BF are adjusted when merging two MBFs. Recall
that 𝑘 hash functions determine an item’s 𝑘 positions, each com-

puted as a hash value modulo the bit array size. When merging two

BFs from child MBFT nodes, the parent node’s attribute set and BF

size approximately double. Based on this, we apply the dynamic

hash technique to adjust item positions during construction.

Specifically, each MBFT node 𝑛𝑖 with the set 𝑊𝑖 stores each

keyword 𝑥 ’s overall position in binary form, i.e., ℎ𝑥=𝐻 (𝑥) mod
𝑚root, where𝐻 (𝑥) is the hash of 𝑥 and𝑚root is the root BF size. The

position of 𝑥 in 𝐵𝐹𝑖 is set by the last 𝑙𝑒𝑛𝑖 = log

(
− ln𝜖
(ln 2)2 |𝑊𝑖 |

)
bits of

ℎ𝑥 , where 𝐵𝐹𝑖 has 2
𝑙𝑒𝑛𝑖

positions, scaling linearly with |𝑊𝑖 | rather
than the total keyword count across all transactions in the block.

(2) 2-bit Opcode. When users receive the VO, i.e., MBFT branches

withMBFs in each node, they cannot directly reconstruct the parent
BF for verification without access to the complete keyword set.

Therefore, we introduce 2-bit opcodes inMBF to facilitate merging.

Specifically,MBF employs 2 bits to represent four possible states

for each position: empty (00), occupy and stay (01), occupy and move
(10), and occupy and overlap (11) constructed as follows:

◦ Empty (00): The position is unoccupied.

◦ Occupy and stay (01): The position is occupied by at least one

item 𝑥 , and the (𝑙𝑒𝑛𝑖 + 1)-th bit of ℎ𝑥 is 0.

◦ Occupy and move (10): The position is occupied by at least

one item 𝑥 , and the (𝑙𝑒𝑛𝑖 + 1)-th bit of ℎ𝑥 is 1.

◦ Occupy and overlap (11): The position is occupied by at least

two items 𝑥1, 𝑥2, where the (𝑙𝑒𝑛𝑖 + 1)-th bits of their ℎ𝑥1 and ℎ𝑥2
are 0 and 1, respectively.

The merging of two MBFs is first performed by the bitwise

OR operation on the two childMBFs opcodes. As each opcode at

position 𝑝 ∈ [0, 𝑙𝑒𝑛𝑖) indicates the bit state in the parent BF, then

we transform it to a standard BF where 00 sets corresponding bits

to 0, 01 (resp. 10) sets the 𝑝-th (resp. (𝑙𝑒𝑛𝑖 + 𝑝)-th) to 1, and 11 sets

both 𝑝-th and (𝑙𝑒𝑛𝑖 + 𝑝)-th bits to 1.

(3) Hint. After merging two MBFs, the resulting BF is a standard

Bloom filter and lacks the 2-bit opcode information from the MBF
at each position. Therefore, a hint is embedded in the VO to enable

the transformation of the merged BF into anMBF. Specifically, each
MBF node 𝑛𝑖 involved in theMBFT VO path is accompanied by a

hint, which is generated by observing the (𝑙𝑒𝑛𝑖+2)-th bit of theℎ𝑥 in

eachMBF where 0 (resp. 1) indicates the hint is 01 (resp. 10). Then
replace each non-zero bit in the merged BF with the corresponding

2-bit hint and each zero bit with 00 to obtain a valid MBF.
Algo. 2 illustrates theMBF reconstruction (i.e., merging) process.

First, two child MBFs are merged using a bitwise OR operation,

creating a temporary MBF in the parent node that contains data

from both child branches (line 2). Next, the 2-bit opcodes in the tem-

poraryMBF are converted into standard bits in the parent node’s

Bloom filter, which has the same size but twice the position capac-

ity (lines 4-7). Finally, the parent node’sMBF is reconstructed by

traversing the parent BF’s non-zero bits and assigning the corre-

sponding opcodes from the hint at the same positions (lines 8-12).

The following example illustrates MBF and its merging process.

Algorithm 2: MBF Reconstruction.

1 Function MBFReconstruction(MBF𝑙 , MBF𝑟 , 𝐻𝑖𝑛𝑡):
Input: Two child MBFs: MBF𝑙 ,MBF𝑟 , and hint 𝐻𝑖𝑛𝑡

Output: parent MBF MBF𝑝
2 MBF𝑐 ← bitwiseOR(MBF𝑙 ,MBF𝑟);
3 𝐵𝐹𝑝←zeros(MBF𝑐 .size()); MBF𝑝←zeros(MBF𝑐 .size()∗2);
4 for 𝑖 ← 0 to MBF𝑐 .size()/2 do
5 𝑂𝑃 ← ⟨MBF𝑐 [2 ∗ 𝑖],MBF𝑐 [2 ∗ 𝑖 + 1]⟩;
6 if 𝑂𝑃 [1] is 1 then 𝐵𝐹 [𝑖] ← 1;

7 if 𝑂𝑃 [0] is 1 then 𝐵𝐹 [𝑖 +MBF𝑐 .size()/2] ← 1;

8 for 𝑖 ← 0 to 𝐵𝐹𝑝 .size() do
9 if 𝐵𝐹𝑝 [𝑖] is 1 then
10 𝑂𝑃 ← 𝐻𝑖𝑛𝑡 .pop();

11 MBF𝑝 [2 ∗ 𝑖]←𝑂𝑃 [1]; MBF𝑝 [2 ∗ 𝑖 + 1]←𝑂𝑃 [0];
12 return MBF𝑝 ;

Example 4.3. Suppose an MBFT accumulates |𝑊 | = 8 keywords

with an error rate 𝜖 = 0.38, resulting in an optimal root BF size of

𝑚root = − ln𝜖
(ln 2)2 |𝑊 | = 16 positions. Consider leaf nodes MBF𝑙 and

MBF𝑟 , containing keywords𝑊𝑙 = {𝑤1,𝑤2} and𝑊𝑟 = {𝑤3,𝑤4},
respectively, with optimal BF sizes 𝑚𝑙 = 𝑚𝑟 = − ln𝜖

(ln 2)2 |𝑊𝑙 | = 4

positions. Their hash valuesℎ𝑥 = 𝐻 (𝑥) mod 𝑚root are {6, 10, 13, 3}
in decimal form, with the binary representations shown in Fig. 6.

For keywords in𝑊𝑙 and𝑊𝑟 , we (a) determine their positions

in MBF𝑙 and MBF𝑟 using the dynamic hash with 𝑙𝑒𝑛𝑙 = 𝑙𝑒𝑛𝑟 =

log𝑚𝑙 = 2, i.e., the last 2 bits ofℎ𝑥 , yielding positions {10, 10, 01, 11}
for𝑤1 ∼ 𝑤4 and {2, 2, 1, 3} in decimal; and (b) convert each position

into a 2-bit opcode. In MBF𝑙 , both 𝑤1 and 𝑤2 occupy position 2,

with the 𝑙𝑒𝑛𝑙 + 1 = 3rd bit of ℎ𝑥1 and ℎ𝑥2 being 1 and 0, respec-

tively, yielding opcode 11 at position 2. InMBF𝑟 ,𝑤3 and𝑤4 occupy

positions 1 and 3, with the 3rd bit of ℎ𝑥3 and ℎ𝑥4 being 1 and 0,

respectively, yielding opcodes 10 and 01 for positions 1 and 3.

To merge MBF𝑙 and MBF𝑟 , we (a) compute the bitwise OR

of the opcodes in MBF𝑙 and MBF𝑟 ; (b) transfer the resulting

opcodes to positions in the standard BF, with the optimal size

𝑚 = − ln𝜖
(ln 2)2 (|𝑊𝑙 | + |𝑊𝑟 |) = 8, i.e., opcode 10 at position 1 sets

the 𝑙𝑒𝑛𝑖 + 1 = 5th bit to 1, 11 at position 2 sets bits at 2nd and

𝑙𝑒𝑛𝑙 + 2 = 6th to 1, and 01 at position 3 sets the 3rd bit to 1; and (c)

convert the 8 positions into the 2-bit representation by replacing 0

with 00 and 1 with the corresponding hint, which is identified as

{01, 10, 10, 01} based on the last 𝑙𝑒𝑛𝑖 + 2 = 4th bit of each ℎ𝑥 . □

Figure 6: Example of Merge Bloom Filter.
Correctness Proof. Now we give the correctness proof of Algo. 2.

Theorem 4.4. Algo. 2 can correctly reproduce the parent MBF.

Proof. For each item 𝑥 , (1) in child MBF𝑐 (size 2
𝑙𝑒𝑛𝑐

), 𝑥 has

position 𝑝𝑜𝑠𝑥𝑐 = ℎ(𝑥) mod 2
𝑙𝑒𝑛𝑐

and opcode 𝑜𝑝𝑥𝑐 =01 (resp. 10) if
ℎ(𝑥)’s 𝑙𝑒𝑛𝑐+1-th bit is 0 (resp. 1); (2) in parentMBF𝑝 (size 2

𝑙𝑒𝑛𝑝 =

3619

2
𝑙𝑒𝑛𝑐+1

), similarly, 𝑥 has position 𝑝𝑜𝑠𝑥𝑝 = ℎ(𝑥) mod 2
𝑙𝑒𝑛𝑝

with

opcode𝑜𝑝𝑥𝑝 dependent on 𝑙𝑒𝑛𝑝+1-th bit; (3) hintℎ𝑖𝑛𝑡𝑥𝑐 dependent on

ℎ(𝑥)’s 𝑙𝑒𝑛𝑐+2-th bit.We prove that Algo. 2 outputs𝑥 ’s reconstructed

𝑝𝑜𝑠′𝑥𝑝 and 𝑜𝑝′𝑥𝑝 in MBF𝑝 equal to 𝑝𝑜𝑠𝑥𝑝 and 𝑜𝑝𝑥𝑝 from three phases:

(1) Merge. After bitwise OR merging child MBFs, 𝑝𝑜𝑠𝑥𝑐 remains

unchanged, while the opcode at 𝑝𝑜𝑠𝑥𝑐 may become 11 due to over-

laps. However, as 11 covers operations from both 01 and 10, 𝑜𝑝𝑥𝑐 ’s
operation information is preserved intact.

(2) Transform to BF. (a) If 𝑜𝑝𝑥𝑐 =01 (𝑙𝑒𝑛𝑐+1-th bit is 0), 𝑝𝑜𝑠′𝑥𝑝 remains

at 𝑝𝑜𝑠𝑥𝑐 =ℎ(𝑥) mod 2
𝑙𝑒𝑛𝑐

=ℎ(𝑥) mod 2
𝑙𝑒𝑛𝑐+1

, thus 𝑝𝑜𝑠′𝑥𝑝 = 𝑝𝑜𝑠𝑥𝑝 . (b) If

𝑜𝑝𝑥𝑐 =10 (𝑙𝑒𝑛𝑐+1-th bit is 1), 𝑝𝑜𝑠′𝑥𝑝 moves to 2
𝑙𝑒𝑛𝑐

+𝑝𝑜𝑠𝑥𝑐 =2
𝑙𝑒𝑛𝑐 +(ℎ(𝑥)

mod 2
𝑙𝑒𝑛𝑐)=ℎ(𝑥) mod 2

𝑙𝑒𝑛𝑐+1
, thus 𝑝𝑜𝑠′𝑥𝑝 = 𝑝𝑜𝑠𝑥𝑝 .

(3) Refill to MBF. Refill ℎ𝑖𝑛𝑡𝑥 to reconstruct 𝑜𝑝′𝑥𝑝 , which depends

on 𝑙𝑒𝑛𝑐 + 2 = 𝑙𝑒𝑛𝑝 + 1-th bit, thus 𝑜𝑝′𝑥𝑝 = 𝑜𝑝𝑥𝑝 .

Thus, Algo. 2 correctly reconstructs each item in MBF𝑝 . □

Complexity Analysis. Finally, we analyze the time complexity

for Algo. 2 and the storage cost for MBFT equipped with MBF.
Merge time complexity. Given two MBFs with 𝑛 items in each,

Algo. 2 consists of three steps: (1) computing bitwise OR on two

MBFs vectors in 𝑂 (𝑛) time; (2) converting 2-bit opcodes to stan-

dard one-bit BF position in 𝑂 (𝑛) time; (3) refilling each one-bit

position to a 2-bitMBF opcode via the hint in𝑂 (𝑛) time. The worst

case occurs when all opcodes are 11 in step 2, which doubles the

conversion time compared with opcodes 01 and 10. Nevertheless,
the overall time complexity remains 𝑂 (𝑛).

Additionally, as the algorithm involves only linear scans and bit-

wise operations, it is well-suited for multithreading parallelization.

By splitting theMBF into 𝑘 chunks, each performing bit operations

independently, the merge time complexity is reduced to 𝑂 (𝑛/𝑘).
Storage complexity. Given 𝑛 items, the MBFT with standard BFs

requires𝑂 (𝑛2 +𝑛 log𝑛) space for BF vectors and keyword sets. Our
proposed MBF reduces the MBFT storage cost to 𝑂 (𝑛 + 𝑛 log𝑛).
Moreover, the rootMBF can be replaced with standard BF to further
save space, as it doesn’t need to carry extra opcode information.

5 AUTHENTICATED QUERY PROCESSING
This section explains how to process the authenticated MAX query

in a single block using MBFT (Sec. 5.1). Due to the false positive

rate in MBF, the search path may encounter an astray, thus we
analyse the additional cost caused by astray (Sec. 5.2). Finally, we

extend the method to support time window queries (Sec. 5.3).

5.1 Single Block Query
For the authenticated MAX query 𝑄 = {𝑀𝐴𝑋, [𝑡, 𝑡], [𝛼, 𝛽], Υ} over
the block 𝑏 timestamped at 𝑡 with 𝑛 transactions, its result is (1)

processed by the full node and (2) verified by the light node. Specif-

ically, the full node first utilizes the index in ADS to search for the

target result and constructs the VO accordingly. Then, the light

node verifies the result by reconstructing theMBFT root hash from

the VO and comparing it with the one stored in the block header.

The detailed procedure is illustrated below.

Authenticated Query Processing. The full node performs the

query by traversing the MBFT from the root to the leaf containing

the qualified transactions. For each node 𝑛𝑖 on the search path, the

full node accesses itsMBF and value range [𝑙𝑖 , 𝑢𝑖] to filter both the

keywords and numerical attributes of the transactions.

◦ For a single keyword query 𝑤 ∈ Υ over the node’s keyword

set𝑊𝑖 , it takes constant time to process on MBF𝑖 with 𝑘 hash

operations and array indexing, regardless of |𝑊𝑖 |.
◦ For the boolean keyword predicate Υ, set operations in Υ are

directly applicable to theMBF. For example, Υ = 𝑤1 ∧𝑤2 passes

if MBF𝑖 contains both𝑤1 and𝑤2.

◦ For the value predicate [𝛼, 𝛽], it is checked against the range

[𝑙𝑖 , 𝑢𝑖] in node 𝑛𝑖 , where overlap indicates qualification.

Once both the boolean keyword and numerical predicates are

satisfied, the full node continues along the search path, passing

node 𝑛𝑖 . For theMAX query, the full node visits the right child first,

as it holds a larger value attribute; for the MIN query, it visits the

left child first. Moreover, if node 𝑛𝑖 fails to satisfy the selection

predicates, the full node adds its hash value ℎ𝑖 , MBF MBF𝑖 , and
value range [𝑙𝑖 , 𝑢𝑖] to the VO for non-membership proof, ensuring

the integrity of the query result.

The detailed process of the single block query is illustrated in

Algo. 3. The full node performs theMAX query with a depth-first

tree search, using a stack maintaining unvisited nodes, and a flag

indicating when the maximum node is reached (line 2). If the maxi-

mum result is found at a node, traversal stops for that branch, and

its data is added to the VO for Merkle proof (line 5). As the search

continues, we obtain the final result when a qualified leaf node is

reached, then append the VO and mark the flag as true (lines 6-9).

For internal nodes, theMBF hint is added to the VO, and its child

nodes are pushed onto the stack (lines 10-13). For unqualified nodes,

their data is added to the VO for non-membership proof (line 14).

Algorithm 3: Max Query Processing on Single Block.

1 Function MaxQuery(𝑏, 𝑄):
Input: Block 𝑏,MAX query 𝑄 = {𝑀𝐴𝑋, [𝑡, 𝑡], [𝛼, 𝛽], Υ}
Output: Result 𝑅, verifiable object 𝑉𝑂

2 stack.push(𝑏’sMBFT root); find← 𝑓 𝑎𝑙𝑠𝑒;

3 while stack not empty do
4 𝑛𝑖 ← stack.pop();
5 if find then 𝑉𝑂 .push(⟨ℎ𝑖 , 𝐵𝐹𝑖 , 𝑙𝑖 , 𝑟𝑖 ⟩);
6 else if 𝑛𝑖 matches 𝑄 then
7 if 𝑛𝑖 is leaf then
8 𝑉𝑂 .push(⟨ℎ𝑖 , 𝐵𝐹𝑖 , 𝑙𝑖 , 𝑟𝑖 ⟩);
9 𝑅 ← 𝑛𝑖 ’s transaction; find← 𝑡𝑟𝑢𝑒;

10 else
11 𝑉𝑂 .push(𝑛𝑖 .hint());

12 𝑠𝑡𝑎𝑐𝑘 .push(𝑛𝑖 .leftChild);

13 𝑠𝑡𝑎𝑐𝑘 .push(𝑛𝑖 .rightChild);

14 else 𝑉𝑂 .push(⟨ℎ𝑖 , 𝐵𝐹𝑖 , 𝑙𝑖 , 𝑟𝑖 ⟩);
15 return ⟨𝑅,𝑉𝑂⟩;

We use the following example to explain the process.

Example 5.1. Consider the query𝑄 = {𝑀𝐴𝑋, [𝑡𝑖 , 𝑡𝑖], [1, 5], 𝑎∨𝑒}
on the block 𝑏𝑖 shown in Fig. 7. The full node searches 𝑛1, 𝑛2 and

𝑛5 to get the result 𝑅 = 𝑡𝑥2, and generate the verifiable object𝑉𝑂 =

{⟨hint1⟩, ⟨ℎ3,MBF3, 7, 9⟩, ⟨hint2⟩, ⟨ℎ5,MBF5, 4, 4⟩, ⟨ℎ4,MBF4, 1, 1⟩}.

3620

Figure 7: Example of Single Block Query.

Complexity analysis. The query processing detailed in Algo. 3 on

a block with 𝑛 transactions has a time complexity of 𝑂 (𝑛). The
tree search over the binaryMBFT takes log𝑛 steps, with the hint

generation cost at each step being linear in the size of the MBF.

Thus, the overall time cost is 𝑡 =
∑log𝑛

𝑖=0
𝑂 (2𝑖) = 𝑂 (𝑛). Notably, for

each node in the VO, the keyword set is not used; only the MBF is

returned due to its space efficiency and non-membership proof.

Result Verification. To ensure the data integrity of the result, the

light node must verify both soundness and completeness with the

help of the VO provided by the full node.

◦ Soundness. The light node reconstructs the MBFT root hash

using the Merkle path in the VO and Algo. 2. Then compare the

root with the one in the block header.

◦ Completeness. It verifies that objects larger than the result do

not meet the predicates by ensuring that all right branches prove

disqualification using the MBF and value range in the VO.

Algorithm 4: Max Query Verification on Single Block.

1 Function MaxVerify(𝑄 , 𝑅, 𝑉𝑂 , ℎ𝑟𝑜𝑜𝑡):
Input: MAX query 𝑄 = {MAX, [𝑡, 𝑡], [𝛼, 𝛽], Υ}, result 𝑅,

verification object 𝑉𝑂 , root hash ℎ𝑟𝑜𝑜𝑡
2 while 𝑉𝑂 not empty do
3 𝜋 ← 𝑉𝑂 .pop();

4 if 𝜋 is 𝑅’s node then Check 𝑅 and 𝜋 ’s validity;

5 else if 𝜋 is right branch then
6 Check non-membership of Υ in 𝐵𝐹𝑠𝑖𝑏 ;

7 Or check [𝛼, 𝛽] ∩ [𝑙𝑠𝑖𝑏 , 𝑢𝑠𝑖𝑏] = ∅;
8 else if 𝜋 is ℎ𝑖𝑛𝑡 then
9 𝑛𝑟 ← 𝑠𝑡𝑎𝑐𝑘 .pop(); 𝑛𝑙 ← 𝑠𝑡𝑎𝑐𝑘 .pop();

10 𝜋 ← reconstruct(𝑛𝑙 , 𝑛𝑟 , ℎ𝑖𝑛𝑡);

11 𝑠𝑡𝑎𝑐𝑘 .push(𝜋);

12 Compare ℎ𝜋 and ℎ𝑟𝑜𝑜𝑡 ;

The verification is illustrated in Algo. 4. The light node recon-

structs the root hash bottom-up from each object 𝜋 in the VO (lines

2-3). If 𝜋 is the corresponding node of 𝑅, the light node verifies

that 𝑅 and 𝜋 are qualified (line 4). Else, if it’s on the right branch,

the light node checks its failure to meet the predicates to ensure

completeness (lines 5-7). Otherwise, if it’s a hint, the light node

reconstructs the parent node 𝜋 from two child nodes poped from

the stack(lines 8-10). In all cases, 𝜋 is pushed to the stack (line 11)

for MBF reconstruction later when hint occurs. Finally, the light

node compares the reconstructed hash with the root hash in the

header to complete the verification (line 12).

We use the following example to explain the process.

Example 5.2. Given 𝑅 and 𝑉𝑂 from Example 5.1 in Fig. 7, the

light node first verify 𝑅’s keywords {𝑎, 𝑏} and value 4 matches

predicates. Then, to reconstruct theMBFT root,𝑛2’sMBF′
2
is rebuilt

usingMBF4,MBF5, and hint2 by Algo. 2, its value range is updated
to [1, 4], and ℎ′

2
= 𝐻 (ℎ4∥ℎ5∥MBF′

2
∥1∥4) is computed. Similarly, ℎ′

1

is reconstructed and compared with ℎ1 in the header.

To verify that items larger than 4 (right branch) don’t satisfy the

predicates, the non-membership proof of 𝑎 ∨ 𝑒 inMBF3 is checked,
and the empty intersection between [1, 4] and [7, 9] is confirmed.

Complexity analysis. The result verification in Algo. 4 has a time

complexity of𝑂 (𝑛). The reconstruction cost of eachMBF is linear to

its length, leading to an overall time cost of 𝑡 =
∑log𝑛

𝑖=0
𝑂 (2𝑖) = 𝑂 (𝑛).

Its bottom-up fashion restricts multithread acceleration, yet the

parallel merge for eachMBF reconstruction is compatible (Sec. 4.2)

and can reduce the overall complexity to 𝑂 (𝑛/𝑘) as well. Similarly,

the storage cost of the VO is also 𝑂 (𝑛).
Remark. While Algo. 4 effectively verifies query results, we can fur-

ther impose punishments for invalid results from malicious nodes.

As it’s orthogonal to our query scheme, various existing punishment

mechanisms on blockchains can be integrated, such as stake slash-

ing [30], reputation penalties [10], or economic sanctions through

smart contracts [11]. These mechanisms can be implemented as

modular extensions to our query scheme without compromising

the protocol’s overall security guarantees.

5.2 Astray Tree Analysis
An astray tree is a partial MBFT in which nodes incorrectly pass

the BF query, while transactions in this branch fail to meet the

keyword predicate, causing the query to follow an incorrect path.

The existence of an astray tree is caused by two main issues: (1)

the inherent false positive rate in Bloom filters (and MBF), and (2)

mismatches in conjunctive boolean predicates over accumulated

keywords. For example, given the boolean predicate Υ = 𝑤1 ∧𝑤2, a

parent node with keyword set𝑊𝑝 = {𝑤1,𝑤2} passes the predicate.
However, neither of its child nodes 𝑛𝑙 and 𝑛𝑟 with keyword sets

𝑊𝑙 = {𝑤1} and𝑊𝑟 = {𝑤2}, satisfies Υ. As a result, the astray tree

increases the VO size by introducing unnecessary branches.

We now analyze the extra storage cost introduced by astray trees

and provide a theoretical proof. Let 𝑛 denote the number of internal

nodes and 𝐴𝑛 represent the set of all astray trees with exactly 𝑛

internal nodes. The size of 𝐴𝑛 , denoted 𝑓𝑛 = |𝐴𝑛 |, represents the
frequency of all astray trees with 𝑛 internal nodes. For example,

Fig. 8 shows astray trees for 𝑛 ≤ 3, where 𝑓0 = 𝑓1 = 1, 𝑓2 = 2, and

𝑓3 = 5. The frequency 𝑓𝑛 of astray trees has the following property.

Theorem 5.3. Astray tree frequency 𝑓𝑛 is a Catalan number 𝐶𝑛 .

Proof sketch. We prove the thereom by showing that (1) the

frequency 𝑓𝑛 for an astray tree with 𝑛 > 0 internal nodes is de-

termined by the combination of its child branches recursively as

𝑓𝑛+1 =
∑𝑛
𝑖=0 𝑓𝑖 · 𝑓𝑛−𝑖 ; (2) when 𝑛 = 0, it’s a single node with

𝑓0 = 1. Since these two conditions satisfy the recurrence relation

of Catalan numbers, we can compute the frequency number 𝑓𝑛 as

𝑓𝑛 = 𝐶𝑛 =
(2𝑛)!

𝑛!(𝑛+1)! . For a detailed proof, see [32]. □

With the formula for 𝑓𝑛 , we now calculate the size of astray trees.

Since the Bloom Filter dominates the VO space, we use the size of

3621

the MBFs and corresponding hints to represent the storage cost of

astray trees. On average, the hint is half the size of its corresponding

MBF under optimal parameters. However, even for a fixed-shape

astray tree, its size varies depending on the depth of its root node

within the originalMBFT. To isolate the impact of the astray tree

structure, we analyze the ratio between the size of the astray tree

and the size of its root node. For the 𝑗-th astray tree in 𝐴𝑛 , we

define its relative size as 𝑟𝑛,𝑗 . The total relative size of all astray

trees in 𝐴𝑛 is given by 𝑟𝑛 =
∑𝑓𝑛
𝑖=1

𝑟𝑛,𝑗 , which we illustrate through

the following example.

Figure 8: Example of Astray Trees.

Example 5.4. Fig. 8 illustrates relative sizes of astray trees with

𝑛 ≤ 3. When 𝑛 = 0, the astray tree is a normal node in VO with

𝑟0 = 𝑟0,1 = 1. When 𝑛 = 1, its root hint, left child MBF and right

child MBF are all half the size of its root MBF, thus 𝑟1 = 𝑟1,1 = 3

2
.

When 𝑛 = 2, two astray trees in 𝐴2 have same relative size 𝑟2,1 =

𝑟2,2 =
7

4
, and the sum 𝑟2 is

7

2
. When𝑛 = 3, similarly, we can compute

𝑟3,𝑖 =
15

8
for 𝑖 ∈ {1, 2, 3, 4} and 𝑟3,5 = 2, thus the sum 𝑟3 =

19

2
.

Then we prove how to compute the sum of relative size 𝑟𝑛 , with

the formal definition given below.

Theorem 5.5. The sum of relative size is 𝑟𝑛 =
𝐶𝑛+𝐶𝑛+1

2
.

Proof sketch. We brief the proof through following steps: (1)

for astray trees with 𝑛 > 0 internal nodes, the sum of relatize size

𝑟𝑛 is the sum of all combinations among its child branches, which

can be summarized as 𝑟𝑛+1 = 1

2
𝑓𝑛+1 +

∑𝑛
𝑖=0 𝑟𝑖 𝑓𝑛−𝑖 ; (2) since 𝑓𝑛 = 𝐶𝑛

from Theorem 5.3, we have 𝑓𝑛+2 =
∑𝑛
𝑖=0 (𝑓𝑖 + 𝑓𝑖+1) 𝑓𝑛−𝑖 ; (3) then

we can write
𝑓𝑛+1+𝑓𝑛+2

2
= 1

2
𝑓𝑛+1 +

∑𝑛
𝑖=0

𝑓𝑖+𝑓𝑖+1
2

𝑓𝑛−𝑖 , with the same

expression pattern as 𝑟𝑛+1 in step (1). Finally we conclude that

𝑟𝑛 =
𝐶𝑛+𝐶𝑛+1

2
. For a detailed proof, see [32]. □

Given an MBF of size𝑚, now we can compute its expected size

𝑚′ with the extra space introduced by astray trees due to:

(1) The false positive rate 𝜖𝑏 from the Bloom filter. Since MBF can

dynamically grow to maintain corresponding transactions at each

node, a stable false positive rate is guaranteed as well. Therefore, we

assume the MBF in each node has the same false positive rate 𝜖𝑏 .

(2) Mismatches in conjunctive predicates 𝜖𝑐 . For a predicate Υ =

𝑤1 ∧ · · · ∧ 𝑤𝑘 with 𝑘 ≥ 2 keywords chosen from the keyword

space S𝑤 of size |S𝑤 | = 𝑁 , consider two child nodes 𝑛𝑙 and 𝑛𝑟 each

containing 𝑛 keywords. Their parent node 𝑛𝑝 contains (2 − 𝑓𝑜)𝑛
keywords, where 𝑓𝑜 is the overlap ratio of keywords. We define an

indicator function ∞𝑘≤ 𝑓𝑜𝑛 to check whether the required 𝑘 con-

junctive keywords fit within the overlap. The false positive rate for

the parent node is then computed as: 𝜖𝑐 = 1 −
2𝐶𝑘

𝑛−𝐶𝑘
𝑓𝑜𝑛

𝐶𝑘
(2−𝑓𝑜)𝑛

, and its

limit value is: 𝜖𝑐 = 1 − 2
(

1

2−𝑓𝑜

)𝑘
+
(

𝑓𝑜
2−𝑓𝑜

)𝑘
, which depends on the

predicate and keyword distribution.

Thus, the number of internal nodes 𝑛 follows a Binomial distri-

bution with probability 𝜖 . We can now compute the expected size

𝑚′ of the MBF as below.

𝑚′ =𝑚

∞∑︁
𝑖=0

𝑟𝑖𝜖
𝑖 (1 − 𝜖)𝑖+1 =𝑚

2 − 𝜖
2 − 2𝜖 (2)

For instance, with a false positive rate of 𝜖 = 5%, the extra storage

cost introduced by astray trees is only 2.6% of the original MBF,
which has a limited impact on our proposed ADS scheme.

In addition, to securely verify the queried result against the VO

containing astray trees, both the query and verification algorithms

must be augmented:

◦ For query processing in Algo. 3. If all reached children fail

the query, we mark them as astray (lines 17-18) and stop the

search on this branch.

◦ For result verification in Algo. 4. When we encounter a

marked astray node, we perform an additional non-membership

verification to ensure the correctness of the result.

5.3 Time Window Query
We then extend the single-blockMAX query withMBFT to support

the time windowMAX query𝑄 = {MAX, [𝑡𝑖 , 𝑡𝑖+𝑘], [𝛼, 𝛽], Υ} across
different blocks.

A naive approach is to traverse all blocks within the time period

[𝑡𝑖 , 𝑡𝑖+𝑘] and query each block. Although eachMBFT node contains

a value range and MBF, allowing pruning of unnecessary queries

without descending to the leaf level, in the worst case, where all

blocks have qualified transactions, the time complexity for querying

and validation is 𝑂 (𝑘 log𝑛), and the VO size is 𝑂 (𝑘 (2 − 1

𝑛)𝑚
′).

To improve the performance of time window queries, we propose

two optimizations: (1) value pruning, which dynamically adjusts the

query plan to reduce the search space, and (2) multi-combination,
where multiple MBFTs are merged into one to reduce query time.

Value Pruning. We optimize the query plan by updating the range

predicate [𝛼, 𝛽] as the maximal result changes across blocks, and

pruning nodes with smaller values for theMAX query ahead of time.

For example, after querying block 𝑏 𝑗 with timestamp 𝑡 𝑗 ∈
[𝑡𝑖 , 𝑡𝑖+𝑘] and obtaining a maximal result 𝑟 𝑗 in 𝑏 𝑗 , we update the

query range predicate from [𝛼, 𝛽] to [𝑟 𝑗 , 𝛽]. Consequently, the next
query on block 𝑏 𝑗+1 is less likely to satisfy the predicates, allowing

an early stop and saving both query time and VO size.

For validation, light nodes can synchronize this update by fol-

lowing the temporal order of blocks. Assuming the maximal result

is uniformly distributed over [𝑡𝑖 , 𝑡𝑖+𝑘], on average, blocks within

[𝑡
𝑖+ 𝑘

2

, 𝑡𝑖+𝑘] will encounter an early stop to reduce the query cost.

Multi-combination. Furthermore, we propose the optimization,

which periodically merges theMBFTs of multiple blocks into one

larger MBFT, enabling the full node to query transactions across

multiple blocks with a single tree search. This also improves verifi-

cation performance by verifying non-membership in one step.

Specifically, the full node combines MBFTs from every 𝜏 blocks

and appends the root hash of the combinedMBFT to the last block in
the cycle. It also maintains a sorted list of all transactions involved.

3622

When a new block 𝑏 𝑗 within the combination cycle [𝑡𝑖 , 𝑡𝜏] is mined,

the sorted list is updated by merging it with the new block’s sorted

list, which takes𝑂 ((𝑗−𝑖)𝑛) time, negligible compared to𝑂 (𝑛 log𝑛)
for sorting a single block.

Therefore, when the light node requests a time window query,

it can be divided according to the combination cycle. If the window

is too short to contain a full cycle, the query can be handled by

traversing individual blocks with the query plan optimized by value

pruning. For larger windows containing complete cycles, the full

node can apply the multi-combination solution to blocks within

the cycles and use the traversal solution for the remaining blocks.

6 EXTENSION TO OTHER AGGREGATIONS
In this section, we extend our authenticatedMAX query to support

other aggregate queries, including COUNT, COUNT DISTINCT,
SUM,MEAN, and Top-k-related queries, noting that theMIN query

is processed in a similar way toMAX, differing only in comparison.

Inspired by sketch techniques widely used in streaming databases

and sensor networks, we leverage different sketches to answer

aggregate queries with guaranteed approximation and constrained

space cost [9, 13, 28]. By sacrificing some accuracy, we can avoid

the high cost of asymmetric cryptographic accumulators [43] and

provide more efficient aggregate sketches to light nodes based

on the MAX query solution proposed earlier. We summarize the

extended aggregations with supporting mechanisms in Table 1.

Aggregate Supporting Mechanism
COUNT (DISTINCT) AMS/Uniform Sketch, seeded with 𝑡𝑥 ’s

unique hash (target attribute).

SUM, MEAN Construct 𝑣 multiple COUNT sketches

and reserve the max one.

Top-k related Invoke MAX query 𝑘 times and update

query predicate.

Table 1: Aggregate Extension Summary.
COUNT and COUNT DISTINCT Query. Given a COUNT query

𝑄 = {COUNT, [𝑡𝑠 , 𝑡𝑒], [𝛼, 𝛽], Υ}, the full node returns the number

of transactions that satisfy the given predicates.We extend ourMAX
query solution to securely answer COUNT queries by leveraging

existing count sketches and approximate algorithms [28].

COUNT Query Using AMS Sketch. One way to achieve the authen-

ticated COUNT query is to use the AMS sketch [3]. For each trans-

action 𝑡𝑥𝑖 , its sketch 𝑠𝑖 is a random integer 𝑥 ∈ N+ drawn with the

probability of 2
−𝑥

. By finding the maximal sketch value 𝑠𝑚 among

all qualified transactions, we can estimate the count as 2
𝑠𝑚

.

To ensure correctness, the sketch 𝑠𝑖 is generated by a pseudo-

random number generator with a publicly-verifiable seed (e.g., the
transaction hash) [29] such that both full and light nodes can verify

the validity of each sketch. With each transaction attached by a

verifiable sketch, the full node can sort transactions by their sketch

values and construct theMBFT as the ADS for the COUNT query.

To process a COUNT query on a single block, the full node

traverses the MBFT and checks if the nodes satisfy the predicates.

By first visiting the right child nodes, the search ensures obtaining

the maximal sketch value 𝑠𝑚 of the qualified transactions, and all

transactions on its right fail the predicates. The COUNT is then

estimated as 2
𝑠𝑚

, and the full node returns the result, along with

the VO introduced in Sec. 5.1, which is verified by the light node.

To optimize with value pruning (Sec. 5.3), we attach an additional

data field containing the maximum sketch value of the subtree

rooted at each node. This is necessary because the numerical range

does not align with the ascending order of sketch values. Moreover,

the time window COUNT query can be optimized by the multi-

combination MBFT in (Sec. 5.3) as well.

COUNT Query Using Uniform Sketch. Another way to achieve the

COUNT query is to use the uniform sketch, where the sketch 𝑠𝑖
for each transaction 𝑡𝑥𝑖 follows the uniform distribution 𝑈 ([0, 1]).
Similar to the AMS sketch, we apply the MAX query on the sketch

to identify the transaction with the maximal sketch value 𝑠𝑚 and

estimate the count as
1

1−𝑠𝑚 . Additionally, it enables improving

the estimation accuracy by finding the top-𝑘 maximal sketch and

estimating the count as
𝑘

1−𝑠𝑘 , where 𝑠𝑘 is the 𝑘-th largest value [5].

A detailed discussion of the top-𝑘 query will be provided later.

COUNT DISTINCT Query. Once the authenticated COUNT query

is established, it can be easily extended to the COUNT DISTINCT
query, which counts the number of unique values for a specific

transaction attribute, such as the transaction amount or receiver

address. To achieve this, we modify the random number generator’s

seed from the transaction hash to the selected attribute (e.g.,
amount or receiver address), ensuring that transactions with the

same attribute value share the same sketch value. Thus, theCOUNT
sketches can be directly used for distinct count aggregation.

SUM andMEAN Query. To extend the COUNT query to the SUM
query, we treat each transaction 𝑡𝑥𝑖 with the numerical value 𝑣𝑖
(assumed to be an integer) as a set of 𝑣𝑖 distinct transactions, each

with a unit value of 1. Consequently, summing the transaction val-

ues becomes counting the total number of such unit transactions.

Specifically, for each unit transaction in the set of value 𝑣𝑖 , we

associate it with a count sketch 𝑠𝑖, 𝑗 for 𝑗 ≤ 𝑣𝑖 . By merging these

sketches, we estimate the sum of transaction 𝑡𝑥𝑖 as max𝑗≤𝑣𝑖 𝑠𝑖, 𝑗 .
Note that blockchain transaction values are typically integers, as

they correspond to the smallest unit of the cryptocurrency. More-

over, we can generate multiple sketches in one step to improve

the efficiency [9, 27]. Finally, the MEAN query can be derived by

dividing the SUM query result by the COUNT query result.

Top-k Related Query. To answer the Top-k query with value pred-

icates [𝛼, 𝛽], we can invoke the MAX query 𝑘 times sequentially.

After each MAX query, the maximum result 𝑣𝑚 from the previous

round is excluded by updating the upper bound of the value range

to [𝛼, 𝑣𝑚) for the next query.
For time window Top-k queries, the combination solution allows

the full node to perform a single Top-k search over the combined

MBFT, instead of querying each block individually. When the query

spans multiple combination windows, we find the top 𝑘 values

{𝑣1, . . . , 𝑣𝑘 } in descending order from the first window and update

the value predicates into (𝑣𝑘 , 𝛽] for subsequentMBFTs to reduce
the search space. This refinement consistently updates the top 𝑘

values and triggers more early stops, improving query efficiency.

Other Top-k-related queries can be supported by extending the

Top-k query [28]. For example, in the Uniform Sample query, the

full node generates a uniform sketch in (0, 1) for each transaction

and retrieves the top 𝑘 sketches [27]. Based on this, the full node can

compute the Median, Quantile, and 𝑘-th statistical moments [27].

3623

7 SECURITY ANALYSIS
In this section, we perform a comprehensive security analysis.

False Positive Issue. In our threat model (see Sec. 3), a malicious

full node might manipulate the VO and the result, particularly by

exploiting the flaw of BF’s false positives, i.e., the BF incorrectly

reports the set membership of an item 𝑥 , while 𝑥 is not a valid

member. This enables the malicious node to produce a result falsely

claiming that 𝑥 passes the keyword query predicate.

Note that even if an attacker injects BF collision data to forge an

invalid VO or result, the integrity checks (i.e., root hash or transac-

tion signature) will still fail. While the false positive might increase

the VO size by involving mismatches ofMBFT nodes with incorrect

keywords, it does not compromise the soundness or completeness

of the query result verification. We analyze as follows.

(1) BF false positive doesn’t compromise completeness. False posi-

tives only result in incorrect membership proofs, not non-

membership proofs. Therefore, the adversary cannot generate in-

complete results by forging non-membership proofs.

(2) Soundness is ensured through secondary checks. Even if an incor-

rectMBFT leaf node passes the BF membership check, the user can

perform a secondary predicate check on the returned query result.

Thus, BF false positives only impact the VO size, which is bounded

(see Sec. 5.2), and do not introduce security issues.

Overall Security. Next, we formally define our security goal and

prove that our scheme is secure against any malicious attacks.

Definition 7.1. (Secure) Our query and verification algorithms

are secure if for all probabilistic polynomial time adversaries, their

probability to succeed in the following experiment is negligible:

◦ Construct an MBFT on the dataset 𝐷 according to the construc-

tion algorithm Algo. 1 and send 𝐷 to the adversary.

◦ Adversary outputs an aggregate query with boolean range pred-

icates 𝑄 , a forged result 𝑅′, and a forged proof 𝑉𝑂 ′.

The adversary succeeds if the forged 𝑉𝑂 ′ and 𝑅′ pass the verifica-
tion while 𝑅′ is different from the actual query result 𝑅.

The above definition demonstrates that the probability for a

malicious full node to convince the light node with a fraud result is

negligible. Below, we prove that our proposed verification algorithm

satisfies such requirements.

Theorem 7.2. Our query and verification algorithms are secure
as defined in Def. 7.1, if the cryptographic hash function is collision-
resistant, and the blockchain data is secure.

Proof. We establish the proof in the following three steps.

(1) The adversary returns a forged 𝑅′ ∉ 𝐷 . The integrity of the

result can be verified by (a) checking 𝑅′’s transaction hash and

signature; (b) reconstructing the root hash based on the forged 𝑅′

and𝑉𝑂 , and comparing it with the root hash of dataset 𝐷 from the

blockchain header. If they match, it contradicts the statement that

the hash function is collision-resistant.

(2) The adversary returns a result 𝑅′ doesn’t satisfy the boolean

range predicate. It can be easily checked since the light node can

check the qualification of the forged result by verifying the raw

transaction’s value and keywords.

(3) The adversary ignores the actual result 𝑅. In this case, the light

node can verify the returned 𝑉𝑂 ′ by checking if each leaf node

contains a non-membership proof, which is impossible for the actual

𝑉𝑂 with qualified transactions involved. The integrity of 𝑉𝑂 can

be checked by reconstructing the root hash and compare against

the on-chain hash. □

8 EXPERIMENTS
In this section, we evaluate the performance of MBFT with MBF
for aggregate queries with boolean range predicates.

8.1 Experiment Setting
Real Dataset. We conduct experiments on the real dataset [35]

extracted from Ethereum [37], containing around 680,000 transac-

tions in 20,000 blocks. We represent each transaction in the form of

⟨𝑖𝑑, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑎𝑚𝑜𝑢𝑛𝑡, {𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠}⟩, where id also serves as the

seed forCOUNT sketch verification (see Sec. 6), {addresses} contains
the addresses of the sender and receiver.

Baselines and Metrics. We implemented following baseslines.

◦ MHT, the de facto ADS widely adopted in blockchains.

◦ MongoDB [25], the database utilized by BigchainDB [15] and

EtherQL [24] for queries on full nodes.

◦ BigQuery [6], Google Cloud’s serverless data warehouse, sup-

porting third-party queries over the Ethereum dataset.

◦ vChain+ [35], a state-of-the-art authenticated query solution

for boolean range predicates, accelerated by multithread. We

manually aggregate matching transactions at the user side.

◦ GCA2-tree [44], a verifiable aggregate query solution over nu-

merical range predicates. It cannot support keyword predicates.

◦ MBFT under different modifications: (1)MBFT-BF, using stan-
dard BF instead of MBF; (2) MBFT-nil, using vanilla MBF; (3)
MBFT-vp, enabling value pruning optimization (see Sec. 5.3);

(4) MBFT-mc, enabling multi-combination optimization (see

Sec. 5.3); (5)MBFT-all, enabling both value pruning and multi-

combination optimizations.

We evaluate the ADS setup cost by measuring the construction

time and ADS size per block. We evaluate the query performance

by measuring the following three metrics: (1) the CPU time of the

full node for query processing; (2) the CPU time of the light node

for result verification; (3) the size of VO for transmission.

Parameters Settings

False positive rate 𝜖 0.01, 0.03, 0.05, 0.07, 0.09
Time window 400, 800, 1200, 1600, 2000
Block size 32, 64, 128, 256, 512

Multi-combination cycle 1, 2, 4, 8, 16
Aggregate types MAX, COUNT (DISTINCT), SUM

Numerical selectivity 10%, 30%, 50%, 70%, 90%
Number of keywords 1, 2, 4, 8, 16

Table 2: Parameter Setting
Workloads and Settings. For each experiment, we generate 100

queries under the parameter settings in Table 2 where default

values are in bold. Specifically, we focus on the query template

𝑄 = {𝑎𝑔𝑔𝑟, [𝑡𝑠 , 𝑡𝑒], [𝛼, 𝛽], Υ} defined in Sec. 3 by varying: (1) the

false positive rate to test its impact on the VO size of MBFT

equipped; (2) the block size to compare ADS construction cost;

3624

(3) the length of time windows to test the performance under two

different boolean function: ∧- and ∨-connected boolean range pred-

icates; (4) the number of keywords and the selectivity of numerical

range to test the impact of query predicate selectivity; (5) the aggre-

gate functions to measure their performance; (6) the combination

cycle and block size to compare the scalability of different ADS.

Experimental Environment.We conduct experiments on a server

with 96-core Intel(R) Xeon(R) Gold 6240R CPU, running on CentOS

7. The experiments are implemented in C++ with Murmurhash3 [1]

as the hash function. All tests onMBFT are performed in a single

thread and run 100 times, where the average results are reported.

8.2 Experimental Results

0.01 0.03 0.05 0.07 0.09
False Postive Rate

250
300
350
400
450
500

VO
 S

ize
 (K

B)

MBFT-BF MBFT-nil

Figure 9: Varying 𝜖

25 26 27 28 29

Block Size

10−1

100

101

102

103

Ti
m

e
(m

s)

MHT
MBFT-BF
MBFT-nil

MBFT-mc
vChain+
GCA^2

25 26 27 28 29

Block Size

100

101

102

103

104

Si
ze

 (K
B)

MHT
MBFT-BF
MBFT-nil

MBFT-mc
vChain+
GCA^2

Figure 10: ADS Construction Cost

8.2.1 False Positive Rate. We first evaluate the impact of the false

positive rate 𝜖 on the VO size.

Vary 𝜖 . As shown in Fig. 9, MBFT-nil reduces MBFT-BF’s VO size

by 32% on average. Increasing the false positive rate 𝜖 reduces

the VO size by 26% for MBFT-nil and 42% for MBFT-BF. With

MBF dynamically adjusting its size, MBFT-nil’s child nodes can

be smaller than those in MBFT-BF, resulting in a more compact

VO. As 𝜖 increases, BF/MBF requires less space to represent the

original set, further reducing VO size. Thus, although a larger 𝜖

may theoretically introduce more astray trees and incur additional

space costs, this effect is bounded (see Sec. 5.2) and is empirically

outweighed by the size savings from smaller BF/MBF structures.

8.2.2 ADS Setup Cost. We then compare the construction time

and space cost of ADS across different schemes.

Vary Block Size. As shown in Fig. 10,MBFT-nil achieves up to 209×
and 199× reductions in construction time and space cost compared

to vChain+ andGCA2-tree. Specifically,GCA2-tree requires 140ms

for time and 919 KB for space to compute an expressive accumulator

digest over the sorted transaction list. vChain+ takes 282ms and

0.98MB to construct ADSs for each sliding window and maintain

the object registration index for transaction IDs. In contrast,MBFT
only sorts the transactions and performs hash operations for each

MBF, requiring 1.7ms for time and 7.97 KB for space.

Furthermore, by employing the space-efficient MBF, MBFT
achieves a 7× space reduction compared to MBFT-BF. While

MBFT-mc with 8 combined blocks incurs a slightly higher setup

time and space than MBFT-nil, averaging 3.7ms and 11.85 KB, it is

still significantly lower than vChain+ and GCA2-tree. Finally, all
methods incur the same storage overhead on light nodes.

8.2.3 Time Window Query Performance. Next, we evaluate the

time window query performance under varying the time window

size, predicate selectivity, and aggregate types.

Varying time window size.As shown in Fig. 11 and Fig. 12,MBFT (1)
achieves query performance on par with BigQuery and MongoDB,
and (2) significantly outperforms vChain+ and GCA2-tree, with up

to 286 × and 17,000× faster query time, respectively.

400 800 1200 1600 2000
Time Window

100
101
102
103
104
105

Qu
er

y
Ti

m
e

(m
s)

MHT
MBFT-nil
MBFT-vp
MBFT-mc
MBFT-all

vChain+
GCA^2
MongoDB
BigQuery

400 800 1200 1600 2000
Time Window

102

103

104

VO
 S

ize
 (K

B)

MHT
MBFT-nil
MBFT-vp
MBFT-mc

MBFT-all
vChain+
GCA^2

400 800 1200 1600 2000
Time Window

101

102

103

104

Ve
rif

y
Ti

m
e

(m
s)

MHT
MBFT-nil
MBFT-vp
MBFT-mc

MBFT-all
vChain+
GCA^2

Figure 11: ∧-Connected Boolean Range Predicate Performance

400 800 1200 1600 2000
Time Window

101
102
103
104
105

Qu
er

y
Ti

m
e

(m
s)

MHT
MBFT-nil
MBFT-vp
MBFT-mc
MBFT-all

vChain+
GCA^2
MongoDB
BigQuery

400 800 1200 1600 2000
Time Window

102

103

104

VO
 S

ize
 (K

B)

MHT
MBFT-nil
MBFT-vp
MBFT-mc

MBFT-all
vChain+
GCA^2

400 800 1200 1600 2000
Time Window

101

102

103

104

Ve
rif

y
Ti

m
e

(m
s)

MHT
MBFT-nil
MBFT-vp
MBFT-mc

MBFT-all
vChain+
GCA^2

Figure 12: ∨-Connected Boolean Range Predicate Performance

Comparing with non-authenticated solutions. Under the ∨
boolean predicate, MongoDB achieves the fastest query time at

2.95ms, due to advanced database features such as efficient index-

ing, outperformingMHT′s 399ms on full nodes. BigQuery also per-
forms efficiently at 9.78ms, slightly slower than MongoDB due to

the need to collect all transactions before filtering. Despite the over-

head of proof generation, MBFT also serves as an efficient boolean

range index using lightweight hash operations, achieving 10.28ms

query time which is comparable to non-authenticated solutions.

Comparing with authenticated solutions. vChain+ and

GCA2-tree incur significantly higher query times of 1.33 s and

161 s, and verification times of 0.98 s and 3.95 s, respectively, due

to the expensive bilinear pairing computations. vChain+ outper-
forms GCA2-tree by leveraging a multi-window index design and

enabling multithreading across all 96 CPU cores.MHT yields the

largest VO size, as it must return each individual transaction for ver-

ification. In contrast,MBFT achieves the best performance by using

simple BF queries to eliminate unqualified blocks and relying solely

on hash operations for reconstruction. Furthermore, bothMBFT-vp
and MBFT-mc enhance query efficiency under both boolean pred-

icates. However, MBFT-mc incurs longer verification time and a

larger VO size thanMBFT-nil, as it reconstructs a combinedMBFT.
Varying predicate selectivity. As shown in Fig. 13 and Fig. 14,

MBFT consistently outperforms MHT, vChain+, and GCA2-tree.
WhileMongoDB and BigQuery maintain stable performance due

to database-level optimizations, vChain+’s query and verification

times degrade by 1,800× and 54×, respectively, as the boolean func-

tion size increases, due to costly cryptographic intersection opera-

tions over high-dimensional keyword sets. In contrast,MBFT-nil
exhibits a stable linear growth, i.e., 8× in query time and 6.9× in

verification time, since it only incurs lightweight bit operations.

Varying aggregate types. As shown in Fig. 15, all aggregate func-

tions exhibit similar performance.MongoDB and BigQuery lever-

age database-level aggregation features, resulting in stable query

3625

0.1 0.3 0.5 0.7 0.9
Value Selectivity

101
102
103
104
105

Qu
er

y
Ti

m
e

(m
s)

MHT
MBFT-nil
MBFT-vp
MBFT-mc
MBFT-all

vChain+
GCA^2
MongoDB
BigQuery

0.1 0.3 0.5 0.7 0.9
Value Selectivity

103

104

VO
 S

ize
 (K

B)

MHT
MBFT-nil
MBFT-vp
MBFT-mc

MBFT-all
vChain+
GCA^2

0.1 0.3 0.5 0.7 0.9
Value Selectivity

102

103

Ve
rif

y
Ti

m
e

(m
s)

MHT
MBFT-nil
MBFT-vp
MBFT-mc

MBFT-all
vChain+
GCA^2

Figure 13: Impact of Numerical Range Selectivity

20 21 22 23 24

Number of Keywords

101
102
103
104
105

Qu
er

y
Ti

m
e

(m
s)

MHT
MBFT-nil
MBFT-vp
MBFT-mc
MBFT-all

vChain+
GCA^2
MongoDB
BigQuery

20 21 22 23 24

Number of Keywords

103

104

VO
 S

ize
 (K

B)

MHT
MBFT-nil
MBFT-vp
MBFT-mc

MBFT-all
vChain+
GCA^2

20 21 22 23 24

Number of Keywords
101

102

103

104
Ve

rif
y

Ti
m

e
(m

s)

MHT
MBFT-nil
MBFT-vp
MBFT-mc

MBFT-all
vChain+
GCA^2

Figure 14: Impact of Boolean Function Size

MAX CNT SUM CNT-DIST
Aggregate Function

100
101
102
103
104
105

Qu
er

y
Ti

m
e

(m
s)

MHT
MBFT-nil
MBFT-vp
MBFT-mc
MBFT-all

vChain+
GCA^2
MongoDB
BigQuery

MAX CNT SUM CNT-DIST
Aggregate Function

103

104

VO
 S

ize
 (K

B)

MHT
MBFT-nil
MBFT-vp
MBFT-mc

MBFT-all
vChain+
GCA^2

MAX CNT SUM CNT-DIST
Aggregate Function

101

102

103

Ve
rif

y
Ti

m
e

(m
s)

MHT
MBFT-nil
MBFT-vp
MBFT-mc

MBFT-all
vChain+
GCA^2

Figure 15: Impact of Aggregation Type

times. SinceMHT and vChain+ do not support aggregation natively,
aggregation is performed locally over the qualified transactions,

where predicate query and verification dominate the overall per-

formance rather than the aggregation computation. In contrast,

GCA2-tree applies expressive set accumulators for aggregation,

achieving comparable results. MBFT utilizes sketches generated

during ADS construction, which introduces no additional cost for

query or verification. As all aggregate types follow the same execu-

tion workflow (see Sec. 6), they exhibit consistently stable perfor-

mance. Compared toGCA2-tree,MBFT-all has 59,341× faster query
speed andMBFT-vp has 336× faster verification time on average.

8.2.4 Scalability. Finally, we evaluate the scalability of MBFT.
Varying block size. As shown in Fig. 16, MBFT’s VO size and ver-

ification time grow linearly, consistent with its space and time

complexity (see Sec. 5.1). Even at large scales, MBFT remains up

to 26× faster than vChain+ and GCA2-tree, as its MBF merge re-

lies on efficient bit operations rather than costly cryptographic set

operations. Moreover, it shows that the MBFT merge process does

not become a performance bottleneck when scaling.

Varying combine cycle. As in Fig. 17, MBFT-mc and MBFT-all im-

prove query performance for the ∧ boolean function by up to 1.6×
with a large combination cycle. Compared to MBFT-nil, MBFT-mc
achieves a 3.24× speedup, resulting in lower query time from the full

node as the SP. While more combinations lead to longer verification

times, the cost is still within acceptable limits

8.2.5 Summary of Experimental Results. We observe that (1)

MBFT-nil reducesMBFT-BF’s VO size by 32% on average and the

increased false positive rate 𝜖 reduces VO size for bothMBFT-nil
and MBFT-BF; (2) MBFT-nil achieves the lowest ADS setup cost,

25 26 27 28 29

Block Size

101
102
103
104
105
106

Qu
er

y
Ti

m
e

(m
s)

MHT
MBFT-nil
MBFT-vp
MBFT-mc
MBFT-all

vChain+
GCA^2
MongoDB
BigQuery

25 26 27 28 29

Block Size

102

103

104

VO
 S

ize
 (K

B)

MHT
MBFT-nil
MBFT-vp
MBFT-mc

MBFT-all
vChain+
GCA^2

25 26 27 28 29

Block Size

101

102

103

Ve
rif

y
Ti

m
e

(m
s)

MHT
MBFT-nil
MBFT-vp
MBFT-mc

MBFT-all
vChain+
GCA^2

Figure 16: Impact of Block Size

20 21 22 23 24

Combine Cycle

3
4
5
6
7
8

Qu
er

y
Ti

m
e

(m
s)

MBFT-mc OR
MBFT-all OR

MBFT-mc AND
MBFT-all AND

20 21 22 23 24

Combine Cycle

200
300
400
500
600

VO
 S

ize
 (K

B)

MBFT-mc OR
MBFT-all OR

MBFT-mc AND
MBFT-all AND

20 21 22 23 24

Combine Cycle

20
40
60
80

100

Ve
rif

y
Ti

m
e

(m
s)

MBFT-mc OR
MBFT-all OR

MBFT-mc AND
MBFT-all AND

Figure 17: Impact of Combination Cycle

requiring only 1.7ms and 7.97 KB, offering up to 209× and 199×
reductions in time and space compared to vChain+ and GCA2-tree;
(3) MBFT matches non-authenticated databases in query speed

(10.28ms vs. 9.78ms in BigQuery), while outperforming state-of-

the-art authenticated solutions with up to 286× faster queries; and

(4)MBFT maintains stable performance in varying block size, pred-

icate selectivity, and aggregate types, and benefits further from

combination and value pruning with moderate reconstruction cost.

9 CONCLUSION
In this paper, we propose Merkle Bloom Filter Tree (MBFT), an
authenticated data structure for efficient aggregate queries un-

der boolean and range predicates on blockchain. MBFT integrates

Bloom filters and value ranges for flexible indexing. To further

improve performance, we propose a space-efficient Merge Bloom

Filter (MBF) to adapt to dynamic data volumes with value pruning

and block combination optimizations. We use data sketches to sup-

port diverse aggregate operations. Experimental results confirm

that our approach significantly reduces query time, proof size, and

verification cost compared to existing solutions.

ACKNOWLEDGMENTS
This research is supported by the Research Grants Council (RGC)

of Hong Kong under the Early Career Scheme (ECS) Project Num-

ber 25600624. Lei Chen’s work is partially supported by National

Key Research and Development Program of China Grant No.

2023YFF0725100, National Science Foundation of China (NSFC)

under Grant No. U22B2060, Guangdong-Hong Kong Technology

Innovation Joint Funding Scheme Project No. 2024A0505040012,

the Hong Kong RGC GRF Project 16213620, RIF Project R6020-19,

AOE Project AoE/E-603/18, Theme-based project TRS T41-603/20R,

CRF Project C2004-21G, Key Areas Special Project of Guangdong

Provincial Universities 2024ZDZX1006, Guangdong Province Sci-

ence and Technology Plan Project 2023A0505030011, Guangzhou

municipality big data intelligence key lab, 2023A03J0012, Hong

Kong ITC ITF grants MHX/078/21 and PRP/004/22FX, Zhujiang

scholar program 2021JC02X170, Microsoft Research Asia Collabo-

rative Research Grant, HKUST-Webank joint research lab and 2023

HKUST Shenzhen-Hong Kong Collaborative Innovation Institute

Green Sustainability Special Fund, from Shui On Xintiandi and the

InnoSpace GBA.

3626

REFERENCES
[1] aappleby. 2025. Murmurhash3. https://github.com/aappleby/smhasher.

[2] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and David Hutchison.

2007. Scalable bloom filters. Inform. Process. Lett. 101, 6 (2007), 255–261.
[3] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The space complexity of

approximating the frequency moments. Journal of Computer and system sciences
58, 1 (1999), 137–147.

[4] Mohammad Javad Amiri, Chenyuan Wu, Divyakant Agrawal, Amr El Abbadi,

Boon Thau Loo, and Mohammad Sadoghi. 2024. The bedrock of byzantine fault

tolerance: A unified platform for {BFT} protocols analysis, implementation, and

experimentation. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). 371–400.

[5] Ziv Bar-Yossef, T S Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. 2002.

Counting distinct elements in a data stream. In International Workshop on Ran-
domization and Approximation Techniques in Computer Science. Springer, 1–10.

[6] BigQuery. 2025. BigQuery official website. https://cloud.google.com/bigquery.

[7] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.

[8] Luca Cabibbo and Riccardo Torlone. 1999. A framework for the investigation of

aggregate functions in database queries. In International Conference on Database
Theory. Springer, 383–397.

[9] Jeffrey Considine, Feifei Li, George Kollios, and John Byers. 2004. Approximate

aggregation techniques for sensor databases. In Proceedings. 20th International
Conference on Data Engineering. IEEE, 449–460.

[10] Marcela T de Oliveira, Lúcio HA Reis, Dianne SV Medeiros, Ricardo C Carrano,

Sílvia D Olabarriaga, and Diogo MF Mattos. 2020. Blockchain reputation-based

consensus: A scalable and resilient mechanism for distributed mistrusting appli-

cations. Computer Networks 179 (2020), 107367.
[11] Harsh Desai, Kevin Liu, Murat Kantarcioglu, and Lalana Kagal. 2018. Adjudicat-

ing violations in data sharing agreements using smart contracts. In 2018 IEEE
International Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData). IEEE, 1553–1560.

[12] Chaosheng Feng, Keping Yu, Moayad Aloqaily, Mamoun Alazab, Zhihan Lv,

and Shahid Mumtaz. 2020. Attribute-based encryption with parallel outsourced

decryption for edge intelligent IoV. IEEE Transactions on Vehicular Technology
69, 11 (2020), 13784–13795.

[13] Philippe Flajolet and G Nigel Martin. 1985. Probabilistic counting algorithms

for data base applications. Journal of computer and system sciences 31, 2 (1985),
182–209.

[14] Zerui Ge, Dumitrel Loghin, Beng Chin Ooi, Pingcheng Ruan, and TianwenWang.

2022. Hybrid Blockchain Database Systems: Design and Performance. VLDB
Endowment 15, 5 (2022), 1092–1104.

[15] BigchainDB GmbH. 2018. BigchainDB 2.0: the blockchain database.

[16] Stephane Grumbach, Maurizio Rafanelli, and Leonardo Tininini. 1999. Querying

aggregate data. In Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. 174–184.

[17] Deke Guo, Jie Wu, Honghui Chen, Ye Yuan, and Xueshan Luo. 2009. The dynamic

bloom filters. IEEE Transactions on Knowledge and Data Engineering 22, 1 (2009),

120–133.

[18] Siyuan Han, Zihuan Xu, Yuxiang Zeng, and Lei Chen. 2019. Fluid: A blockchain

based framework for crowdsourcing. In Proceedings of the 2019 international
conference on management of data. 1921–1924.

[19] Yang Ji, Cheng Xu, Ce Zhang, and Jianliang Xu. 2022. DCert: towards secure,

efficient, and versatile blockchain light clients. In Proceedings of the 23rd ACM/IFIP
International Middleware Conference. 269–280.

[20] Kari Korpela, Jukka Hallikas, and Tomi Dahlberg. 2017. Digital supply chain

transformation toward blockchain integration. In proceedings of the 50th Hawaii
international conference on system sciences.

[21] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. 2006.

Dynamic authenticated index structures for outsourced databases. In Proceedings
of the 2006 ACM SIGMOD international conference on Management of data. 121–
132.

[22] Siyu Li, Zhiwei Zhang, Jiang Xiao, Meihui Zhang, Ye Yuan, and Guoren Wang.

2024. Authenticated Keyword Search on Large-Scale Graphs in Hybrid-Storage

Blockchains. In 2024 IEEE 40th International Conference on Data Engineering
(ICDE). IEEE, 1958–1971.

[23] Siyu Li, Zhiwei Zhang, Meihui Zhang, Ye Yuan, and Guoren Wang. 2024. Au-

thenticated Subgraph Matching in Hybrid-Storage Blockchains. In 2024 IEEE
40th International Conference on Data Engineering (ICDE). IEEE, 1986–1998.

[24] Yang Li, Kai Zheng, Ying Yan, Qi Liu, and Xiaofang Zhou. 2017. EtherQL: a query

layer for blockchain system. In International Conference on Database Systems for
Advanced Applications. Springer, 556–567.

[25] MongoDB. [n.d.]. MongoDB official website. https://www.mongodb.com.

[26] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[27] Suman Nath, Phillip B Gibbons, Srinivasan Seshan, and Zachary Anderson. 2008.

Synopsis diffusion for robust aggregation in sensor networks. ACM Transactions
on Sensor Networks (TOSN) 4, 2 (2008), 1–40.

[28] Suman Nath, Haifeng Yu, and Haowen Chan. 2009. Secure outsourced aggrega-

tion via one-way chains. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data. 31–44.

[29] Bartosz Przydatek, Dawn Song, and Adrian Perrig. 2003. SIA: Secure information

aggregation in sensor networks. In Proceedings of the 1st international conference
on Embedded networked sensor systems. 255–265.

[30] Tim Roughgarden. 2024. Keynote: Provable Slashing Guarantees. In Proceedings
of the 43rd ACM Symposium on Principles of Distributed Computing. 2–2.

[31] Qifeng Shao, Zhao Zhang, Cheqing Jin, and Aoying Zhou. 2021. Trusted sliding-

window aggregation over blockchains. In 2021 IEEE 27th International Conference
on Parallel and Distributed Systems (ICPADS). IEEE, 257–265.

[32] Weijie Sun, Zihuan Xu, Wangze Ni, Lei Chen, Peng Cheng, and Chen Jason

Zhang. 2025. https://github.com/SwJay/mbft.

[33] Philip Treleaven, Richard Gendal Brown, and Danny Yang. 2017. Blockchain

technology in finance. Computer 50, 9 (2017), 14–17.
[34] Haixin Wang, Cheng Xu, Xiaojie Chen, Ce Zhang, Haibo Hu, Shikun Tian, Ying

Yan, and Jianliang Xu. 2024. V2FS: A Verifiable Virtual Filesystem for Multi-

Chain Query Authentication. In 2024 IEEE 40th International Conference on Data
Engineering (ICDE). IEEE, 1999–2011.

[35] Haixin Wang, Cheng Xu, Ce Zhang, Jianliang Xu, Zhe Peng, and Jian Pei. 2022.

vChain+: Optimizing verifiable blockchain boolean range queries. In 2022 IEEE
38th International Conference on Data Engineering (ICDE). IEEE, 1927–1940.

[36] Jiansheng Wei, Hong Jiang, Ke Zhou, and Dan Feng. 2011. DBA: A dynamic

Bloom filter array for scalable membership representation of variable large data

sets. In 2011 IEEE 19th Annual International Symposium on Modelling, Analysis,
and Simulation of Computer and Telecommunication Systems. IEEE, 466–468.

[37] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.
[38] Zhiqiang Wu and Kenli Li. 2019. VBTree: forward secure conjunctive queries

over encrypted data for cloud computing. The VLDB journal 28, 1 (2019), 25–46.
[39] Cheng Xu, Ce Zhang, and Jianliang Xu. 2019. vchain: Enabling verifiable boolean

range queries over blockchain databases. In Proceedings of the 2019 international
conference on management of data. 141–158.

[40] YCharts. 2025. Bitcoin Blockchain Size. https://ycharts.com/indicators/bitcoin_

blockchain_size.

[41] YCharts. 2025. Ethereum Blockchain Size. https://ycharts.com/indicators/

ethereum_chain_full_sync_data_size.

[42] Meihui Zhang, Zhongle Xie, Cong Yue, and Ziyue Zhong. 2020. Spitz: a verifiable

database system. Proc. VLDB Endow. 13, 12 (Aug. 2020), 3449–3460. https:

//doi.org/10.14778/3415478.3415567

[43] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2017. An ex-

pressive (zero-knowledge) set accumulator. In 2017 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 158–173.

[44] Yanchao Zhu, Zhao Zhang, Cheqing Jin, and Aoying Zhou. 2020. Enabling generic

verifiable aggregate query on blockchain systems. In 2020 IEEE 26th International
Conference on Parallel and Distributed Systems (ICPADS). IEEE, 456–465.

[45] Yanchao Zhu, Zhao Zhang, Cheqing Jin, Aoying Zhou, and Ying Yan. 2019.

SEBDB: semantics empowered blockchain database. In 2019 IEEE 35th interna-
tional conference on data engineering (ICDE). IEEE, 1820–1831.

3627

https://github.com/aappleby/smhasher
https://cloud.google.com/bigquery
https://www.mongodb.com
https://github.com/SwJay/mbft
https://ycharts.com/indicators/bitcoin_blockchain_size
https://ycharts.com/indicators/bitcoin_blockchain_size
https://ycharts.com/indicators/ethereum_chain_full_sync_data_size
https://ycharts.com/indicators/ethereum_chain_full_sync_data_size
https://doi.org/10.14778/3415478.3415567
https://doi.org/10.14778/3415478.3415567

	Abstract
	1 Introduction
	2 Related Work And Preliminaries
	2.1 Blockchain Query
	2.2 Cryptographic Accumulator
	2.3 Preliminaries

	3 Problem Formulation
	4 Basic Solution
	4.1 MBFT Construction
	4.2 Merge Bloom Filter

	5 Authenticated Query Processing
	5.1 Single Block Query
	5.2 Astray Tree Analysis
	5.3 Time Window Query

	6 Extension to Other Aggregations
	7 Security Analysis
	8 Experiments
	8.1 Experiment Setting
	8.2 Experimental Results

	9 Conclusion
	Acknowledgments
	References

