
Towards Pattern-aware Data Augmentation for Temporal
Knowledge Graph Completion

Jiasheng Zhang
Xidian University

Xi’an, China
zjss12358@gmail.com

Deqiang Ouyang∗
Chongqing University
Chongqing, China

deqiangouyang@cqu.edu.cn

Shuang Liang
Jie Shao

University of Electronic Science and
Technology of China
Chengdu, China

{shuangliang,shaojie}@uestc.edu.cn

ABSTRACT
Predicting missing facts for temporal knowledge graphs (TKGs) is
a fundamental task, called temporal knowledge graph completion
(TKGC). One key challenge in this task is the imbalance in data
distribution, where facts are unevenly spread across entities and
timestamps. This imbalance can lead to poor completion perfor-
mance for long-tail entities and timestamps, and unstable training
due to the introduction of false negative samples. Unfortunately,
few previous studies have investigated how to mitigate these effects.
Moreover, for the first time, we found that existing methods suffer
from model preferences, revealing that entities with specific prop-
erties (e.g., recently active) are favored by different models. Such
preferences will lead to error accumulation and further exacerbate
the effects of imbalanced data distribution. To alleviate the impacts
of imbalanced data andmodel preferences, we introduce Booster, the
first data augmentation strategy for TKGs. The unique requirements
here lie in generating new samples that fit the complex semantic
and temporal patterns within TKGs, and identifying hard-learning
samples specific to models. Therefore, we propose a hierarchical
scoring algorithm based on triadic closures within TKGs. By in-
corporating both global semantic patterns and local time-aware
structures, the algorithm enables pattern-aware validation for new
samples. Meanwhile, we propose a two-stage training approach to
identify samples that deviate from the model’s preferred patterns.
With a frequency-based filtering strategy, this approach also helps
to avoid the misleading of false negatives. Experiments justify that
Booster can seamlessly adapt to existing TKGC models and achieve
on average 4.5% performance improvement.

PVLDB Reference Format:
Jiasheng Zhang, Deqiang Ouyang, Shuang Liang, and Jie Shao. Towards
Pattern-aware Data Augmentation for Temporal Knowledge Graph
Completion. PVLDB, 18(10): 3573 - 3586, 2025.
doi:10.14778/3748191.3748216

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/zjs123/Booster.

∗Corresponding author: Deqiang Ouyang.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.
doi:10.14778/3748191.3748216

Leave from

Transfer to
Tran

sfe
r to

Transfer to

Make a visit

Win

2021/11/08

2017/08/04

2013/05/26

2021/08/06 2023/06/10

2015/06/07

Figure 1: An illustration of temporal knowledge graph.

1 INTRODUCTION
Temporal knowledge graphs (TKGs) structure dynamic human
knowledge and are widely used in applications such as event predic-
tion [44] and recommendation systems [70]. As shown in Figure 1, a
TKG is a dynamic directed graph where nodes represent real-world
entities and labeled edges denote temporal relations. Each edge
forms a fact (𝑠, 𝑟, 𝑜, 𝑡), such as (Messi,Transfer to, PSG, 2021/11/8).

However, due to update delays and extraction limitations [37, 43,
71], TKGs are often incomplete, missing real-world facts. Tempo-
ral knowledge graph completion (TKGC) [50] addresses this issue
by predicting missing facts to enhance TKG quality and support
downstream tasks [17]. Existing TKGC methods fall into two main
categories: timestamp embedding models [9, 25, 58], which encode
each timestamp, and dynamic embedding models [15, 52, 57], which
learn evolving representations for entities and relations over time.

Despite their effectiveness, recent studies have shown that TKGs
suffer from imbalanced data distribution [52], which may seriously
impair the performance of TKG completion. Unfortunately, most ex-
isting methods overlook this aspect. They only report performance
improvement on several metrics (e.g., mean reciprocal rank (MRR))
without thoroughly analyzing how the imbalanced data impacts
their performance and how to alleviate such impacts, leading to
less convincing and unsatisfactory results.

Previous limitations. The number of facts in TKGs varies
greatly across entities and timestamps. While a few have rich fact
descriptions, most contain only limited information, leading to a
highly imbalanced data distribution. Revisiting the performance of
existing completion methods, we identify two major issues caused
by this imbalance: 1) Unstable training.Most methods adopt con-
trastive training [53], treating observed facts as positives and all
others as negatives. However, many valid facts are missing and
wrongly labeled as negatives (i.e., false negatives), which misleads

3573

https://doi.org/10.14778/3748191.3748216
https://github.com/zjs123/Booster
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748216
https://www.acm.org/publications/policies/artifact-review-and-badging-current

training and degrades performance, especially for sparsely repre-
sented entities. 2) Imbalanced performance. The uneven distri-
bution across timestamps leads to significant performance fluctua-
tions, even between adjacent timestamps. Ignoring this imbalance
further amplifies the inconsistency during training (Section 3.3).

While addressing the above issues, we discovered a previously
overlooked problem: the model preference issue, which can ex-
acerbate the effects of data imbalance. During completion, different
models inherently favor entities with certain properties due to their
architectural biases (Section 3.4). For instance, tensor factorization
models [25] favor frequently interacted entities, while recurrent
neural network-based models [52] prioritize recently active ones.
These preferences hinder the models’ ability to learn TKG patterns
that diverge from their biases, especially when valid instances are
mistakenly treated as false negatives. These limitations can severely
impact downstream applications. For instance, in recommendation
systems, ignoring the skewed distribution of item interactions of-
ten leads to overexposure of popular items and neglect of long-tail
ones, resulting in suboptimal matches. In question answering, over-
looking model preferences may cause consistent favoritism toward
entities with certain attributes, compromising fairness. Such issues
reveal these limitations as key bottlenecks in real-world use.

Technical challenges. Although several data augmentation
methods have been proposed to address data imbalance issues in
general graphs and static knowledge graphs [10, 36, 45], they face
key challenges when applied to TKGs: 1) False negative filtering.
Some of them simply filter neighboring nodes as false negatives
[69], failing to consider various components (i.e., entities, relations,
and timestamps) and their temporal distributions within TKGs’
complex graph structure. 2) New sample generation. They gener-
ate new samples solely based on node connectivity. However, TKGs
have intricate semantic and temporal patterns brought by diverse
relations and time-evolving topology. New samples must therefore
fit with these patterns. 3) Computational cost. Most methods
depend on resource-intensive techniques such as path searching,
which become impractical with the long temporal sequences in
TKGs. 4) Model preference. They often train models directly on
the augmented data without addressing model preferences, result-
ing in poor generalization to diverse temporal patterns.

The proposedwork.We present Booster, the first pattern-aware
data augmentation strategy specialized to TKGs to tackle the imbal-
anced data and model preference issues. For false negative filtering,
Booster employs a frequency-based filtering strategy that is cus-
tomized for different components of TKGs, effectively capturing
both intra- and inter-component interactions as well as their tempo-
ral frequency distributions. For new sample generation, it utilizes a
hierarchical scoring algorithm that jointly considers global semantic
patterns shared across the TKG and temporal dynamics within local
subgraphs. Moreover, to reduce the computational overhead caused
by long historical contexts, we propose the use of a time-irrelevant
graph and a decoupled triangle counting mechanism to accelerate
the scoring. In addition, a novel time-aware perturbation strategy
is developed to produce more robust augmented samples. Finally,
Booster adopts a two-stage training paradigm: it first pre-trains the
model to detect preference-deviated facts and then fine-tunes it on
these identified facts, effectively enhancing the model’s ability to
generalize across different patterns while mitigating the effects of

data imbalance. Experiments on five real-world TKGs demonstrate
that Booster consistently improves performance by an average of
4.5% across 25 scenarios (5 backbones × 5 datasets), showcasing its
generalization, while reducing the standard deviation across times-
tamps by 18.5%, indicating better balance over skewed temporal
distribution. It also lowers performance variance across training
runs by 18.8% on average, highlighting its robustness against false
negatives and its effectiveness in stabilizing the training of existing
models. Our main contributions are as follows:

• We make the first attempt to investigate the imbalanced
data and model preference issues of TKG completions.

• We propose Booster, the first pattern-aware data augmen-
tation strategy tailored to TKGs, which can generate new
samples fitting TKG patterns and enhance the model’s gen-
eralization ability and performance balance.

• Experimental results show that Booster can effectively im-
prove the performance of existing TKGC models.

2 RELATEDWORK
2.1 Temporal Knowledge Graph Completion
Temporal knowledge graph completion (TKGC) aims to predict
missing facts based on observed ones. Existing approaches can be
broadly categorized into two types: Timestamp embedding methods
[25, 60, 64], which learn separate embeddings for entities, relations,
and timestamps. For instance, HyTE [9] incorporates learnable
timestamp embeddings into the TransE model’s translation func-
tion [1]. TNT [25] employs 4-way tensor factorization, extended by
Timeplex [22] to capture recurrent relational patterns, and TELM
[56] to learn multi-vector representations via canonical decomposi-
tion. More recently, QDN [48] introduces a quadruplet distributor
network to enhance factorization, while MADE [49] explores multi-
curvature embeddings. Dynamic embedding methods [9, 20, 58, 65]
learn time-evolving representations to capture semantic drift. DE
[15] applies nonlinear operations to model diverse temporal trends.
TA [13] leverages sequence models for time-specific relation em-
beddings. CENET [59] uses historical contrastive learning for tem-
poral dependency modeling. Additionally, recent work incorporates
graph neural networks [14] to exploit structural patterns in TKGs.
TEMP [52] applies self-attention to capture spatio-temporal local-
ity, RE-GCN [29] models temporal sequences autoregressively, and
LogCL [6] learns both local and global historical structures.

Despite their progress, most methods overlook the problem of
imbalanced data distribution [52]. They neither analyze its impact
nor propose remedies, which may compromise result reliability. Al-
though TILP [55] claims robustness via logic rule-based reasoning,
it lacks generalizability across different TKGC models.

2.2 Graph Data Augmentation
Recent studies have proposed diverse data augmentation strategies
to improve graph data quality and alleviate issues such as imbal-
anced distributions and degree bias [8, 19, 33, 36, 66]. For instance,
AIA [41] applies adversarial masking to address distribution shifts,
while GraphPatcher [23] introduces virtual nodes to mitigate de-
gree bias. Some works extend augmentation to temporal graphs:
MeTA [51] modifies temporal structures and features for robustness,
TGEditor [68] performs task-guided editing, TagRec [38] perturbs

3574

temporal information adaptively, and TTDA [32] maximizes mutual
information between original and augmented embeddings. How-
ever, these methods largely ignore the rich semantics introduced
by heterogeneous relations, limiting their ability to generate tem-
porally and semantically coherent samples for TKGs.

Imbalanced data has also drawn attention in static knowledge
graphs [24, 35, 62]. Methods such as NSCaching [69] and DeMix
[7] aim to reduce false negatives through importance sampling and
self-supervised selection, respectively. Yet, they struggle with TKGs
due to their neglect of temporal dynamics and reliance on com-
putationally expensive techniques like adversarial training. Other
efforts generate synthetic facts to enrich data [3, 36, 45, 63], such
as KG-Mixup [39], but they fail to capture the temporal patterns of
TKGs and do not address the model preferences.

In summary, while data augmentation has been explored for both
dynamic and static graphs, existing approaches are either inefficient
for long temporal sequences or lack the capacity to handle com-
plex semantics in TKGs—highlighting the need for augmentation
techniques specifically tailored to TKGs.

2.3 Spatial-temporal Graphs
A closely related area to TKGs is spatial-temporal graphs. They
are graphs with evolutionary attributes, and many methods have
been proposed to model their spatial-temporal dependencies for
prediction and reasoning [11, 16, 18]. For instance, TiTConv [67]
enhances sequence uniformity via temporal graph contrastive learn-
ing, RESTC [47] aligns spatial and temporal representations at the
sequence level, and TF-GCL [42] improves robustness through
augmented dynamic graph views. Conda [46] further adopts diffu-
sion models to generate augmented neighborhood representations.
However, they generally lack semantic annotations, thus less suit-
able for the rich relations in TKGs. Some studies explore spatial-
temporal knowledge graphs [4, 5, 28]. SSTKG [61] uses a three-step
embedding method for spatial recommendation. STKG-PLM [4]
prompts the pre-trained language model to enhance the next point-
of-interest recommendation. Yet, they mainly capture geographical
correlations rather than conceptual entity interactions in TKGs.

3 PRELIMINARY STUDY
3.1 Temporal Knowledge Graph
A temporal knowledge graph is denoted as G = (E,R,T , F). E and
R are entity set and relation set. T is the set of observed timestamps
and F is the set of facts. Each tuple (𝑠, 𝑟, 𝑜, 𝑡) ∈ F connects the
subject and object entities 𝑠, 𝑜 ∈ E via a relation 𝑟 ∈ R in timestamp
𝑡 ∈ T , which means a unit knowledge (i.e., a fact).

3.2 Temporal Knowledge Graph Completion
Given an incomplete fact (𝑠, 𝑟, ?, 𝑡), the temporal knowledge graph
completion task identifies the most likely object entity 𝑜𝑐 from the
candidate set E. Each candidate fact (𝑠, 𝑟, 𝑜𝑐 , 𝑡) is ranked by confi-
dence score, and the highest-ranking candidate is chosen as the new
fact. The rank of the true object entity, denoted as 𝑟𝑎𝑛𝑘 (𝑠, 𝑟, 𝑜, 𝑡),
is the basic metric of this task (lower is better). It indicates the
position of the correct object entity 𝑜 among all candidate entities
𝑜𝑐 ∈ E. Building on this, mean reciprocal rank (MRR) is calcu-
lated as the average reciprocal rank across all facts, defined as

𝑀𝑅𝑅 = 1
|𝑇𝑒𝑠𝑡 |

∑︁
(𝑠,𝑟,𝑜,𝑡) ∈𝑇𝑒𝑠𝑡

1
𝑟𝑎𝑛𝑘 (𝑠,𝑟,𝑜,𝑡) . A higher MRR value indi-

cates better model performance.
We use this task to empirically examine the limitations of exist-

ingmodels, as it underpins many knowledge-enhanced applications,
such as recommendation, question answering, and multi-hop rea-
soning, all of which can be reformulated as temporal knowledge
graph completion. For example, recommendation can be cast as pre-
dicting themissing item in a quadruple like (𝑢𝑠𝑒𝑟, 𝑏𝑢𝑦, ?, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝),
while multi-hop reasoning involves a sequence of such predictions.
Our experiments thus directly highlight how issues such as data
imbalance and model preferences affect real-world performance.

3.3 Imbalanced Data Distribution
We evaluate three representative TKGC methods (i.e., DE [15], TNT
[25], and TEMP [52]) on the widely used ICEWS14 dataset [2]. Our
findings reveal two major limitations of existing methods: unstable
training and imbalanced performance, both of which stem from the
inherent data imbalance in TKGs.

3.3.1 Unstable Training. As shown in Figure 2(a), existing methods
exhibit unstable training in two key aspects:

• Unstable across samples: The training effect varies signifi-
cantly between samples. For example, in the TNT model,
the 𝑟𝑎𝑛𝑘 metric of sample 1 increases over time, suggesting
that training may harm its performance. Similarly, the 𝑟𝑎𝑛𝑘
metric of sample 2 in the DE model fluctuates around a
high value, indicating limited optimization.

• Unstable across runs: The performance exhibits significant
variability across different training runs. For example, in the
DE model, sample 1 shows an increasing variance in 𝑟𝑎𝑛𝑘

over four runs, indicating that the training effect becomes
more inconsistent as training progresses.

To investigate the cause of unstable training, we group facts
based on the fluctuation range of the 𝑟𝑎𝑛𝑘 metric across four inde-
pendent runs and compute the average degree of entities in each
group. As shown in Figure 2(b), lower average degrees correlate
with larger fluctuations and higher average 𝑟𝑎𝑛𝑘 , indicating that
instability is more common for entities with sparse local structures.
This is because existing methods typically treat observed facts as
positives and all others as negatives, leading to numerous false
negatives for sparsely connected entities due to missing but valid
facts, which misguides the training process [69].

3.3.2 Imbalanced Performance. As shown in Figure 2(c), existing
methods suffer from imbalanced performance in two key aspects:

• MRR fluctuates greatly across timestamps, with large gaps
even between adjacent ones and notably poor results at
certain timestamps.

• As training progresses, the standard deviation ofMRR across
timestamps increases, indicating that this imbalance tends
to worsen over training.

To understand the cause of performance imbalance, we analyze
the average degree and MRR at each timestamp (Figure 2(d)). Their
fluctuation trends are synchronized—peaks and troughs align, with
some displacement and scaling. This suggests that uneven data
distribution over time contributes to the performance imbalance
observed in existing TKGC methods.

3575

0 10 20

60

R
an
k

50

100

Epochs

150 sample1 + DE

1000

R
an
k

40

20

100

50

Epochs
0 10 20 20100

0 10 20

2000

3000

sample1 + TNT

sample2 + TNT

sample2 + DE

(a)

[0:5] [5:10] [10:100] [100:1000] [1000:]
Fluctuation Range of Rank Metric

1400 70
64.6%

5.7%

15.4%

8.3%
6.0%

Average rank

Proportions in dataset

1200

1000

800

600

400

200

0

60

50

40

30

20

10

0

Average degree

(b)

D
en

si
ty 0.8

0.5

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Epoch = 100 | SD = 0.0963
Epoch = 10 | SD = 0.0781
Epoch = 3 | SD = 0.0381

M
R

R

0.0

0.2

0.4

0.8

0 50 100 150 200 250 300 350
Timestamps

0.6

(c)

0 20 40 60 80
Timestamps

0.0

0.2

0.4

0.6

0.8

1.0
Average MRR
Average degree

(d)

0.29

0.43

YAGO 11k

1.0

0
HyTE

Wikidata 12k

Models
DE TA TEMP TNT

0.8

0.6

0.4

0.2 0.18

0.41

0.19

0.40

0.32

0.54 0.54

0.30

(e)

E-E Time span E-R

30

4.13

32.07

1.52
5.06

13.03

7.69

1.71

24.97

2.12

TNT
TEMP
DE

20

10

 0

Fr
eq

ue
nc

y

L
en
gt
h

30

20

10

 0

(f)

Figure 2: (a) Evolution of the 𝑟𝑎𝑛𝑘 metric during training, repeated independently four times. The shaded area indicates
the fluctuation range across runs. (b) Average degree of samples grouped by 𝑟𝑎𝑛𝑘 fluctuation range. (c) TEMP’s MRR over
timestamps. The top plot shows the density distribution of MRR across epochs. SD denotes standard deviation. (d) MRR and
average entity degree at different timestamps. (e) Proportion of positive samples among the top-10 candidates for various
models. (f) Statistical characteristics of top-ranked entities across models.

3.4 Model Preference
Some studies tackle data imbalance via self-training, selecting high-
scoring unlabeled samples as pseudo-positives for training [31].
However, does this approach work for TKGC models? As shown
in Figure 2(e), top-ranked samples from existing TKGC models are
often inaccurate, e.g., only 30% of the top-10 predictions by TNT are
truly positive, suggesting self-training may introduce significant
noise. While reducing the number of pseudo-positives can alleviate
this to some extent, model preference remains a core challenge for
self-training in TKGC, yet it has been overlooked in prior work.

We analyze the data characteristics of top-ranked entities identi-
fied by different models. Three key properties are considered:

• Entity-entity interaction frequency (E-E): The number of
times a candidate entity interacts with other entities.

• Time span: The time gap between the test timestamp and
the candidate entity’s most recent activity.

• Entity-relation interaction frequency (E-R): The frequency
of interaction between the candidate entity and the relation
specified in the query.

In Figure 2(f), we observe that top-ranked entities vary significantly
across models due to their different preferences. TNT favors fre-
quently interacted entities, while TEMP prefers recently active ones
or those linked to the query relation. This highlights a common
issue: model preference toward entities with specific properties. Al-
though facts in TKGs follow diverse patterns [54], such preference
hinders the models from effectively learning facts that diverge from

their preferred patterns. The problem worsens during self-training,
where the model repeatedly selects similarly patterned samples,
further reducing generalization to other patterns.

4 METHOD
4.1 Overall Architecture
The above discussions emphasize the urgent need for a data aug-
mentation strategy tailored to TKGs, enriching imbalanced data,
and alleviating misleading from false negatives and model prefer-
ences. Therefore, we propose Booster, a plug-and-play framework
that generates pattern-aware samples to enhance TKG structure and
alleviate misleading supervision via a two-stage training process.

As shown in Figure 3, Booster takes a TKG G and an untrained
TKGC model𝑀 (0) as input. In the first stage, it uses a frequency-
based filtering strategy to filter out potential false negatives, and
then pre-trains𝑀 (0) on the remaining data. This protects the model
from noisy supervision and helps identify preference-deviated sam-
ples (i.e., positive samples that the model struggles to learn).

In the second stage, a hierarchical scoring algorithm is used to
further separate potential false negatives into real false negatives
and hard negatives. The pre-trained model𝑀 (1) is then fine-tuned
on these identified samples, along with preference-deviated facts,
to produce the final model𝑀 (2) . This not only enriches sparse data
but also targets model-specific weaknesses, reducing the impact of
distribution imbalance and inherent model preferences.

3576

�1

�2

�3

�4

�5

�6

Input

TKG �

�(0)

Untrained model

Output

�(2)

Fine-tuned model

�(1)

Pre-trained model

Frequency-based
filtering

�1

�2

�3

�4

�5
Potential false negatives

�1

�2

�3

�4

�5

�6

Pre-train

Ranking
results

Rank-based
selection

Hierarchical
scoring

Identified
false negatives

Soft-label
fine-tune

�1 �4
�3 �2
Pos Neg

�2
�1 �5
�4

Pos

�6 �4
�1 �3

Booster

Remaining graph

Identified
hard negatives

Model-specific
hard samples

Figure 3: The conceptual illustration of Booster, where black
solid lines represent observed facts in the TKG, and gray
dashed lines denote non-existent ones. Time annotations
and relations are omitted for clarity.

4.2 Frequency-based Filtering
Compared with general graph data, filtering false negatives in TKGs
poses unique challenges: 1) TKGs consist of entities, relations, and
timestamps, whose co-occurrence patterns span both intra- and
inter-component interactions, requiring a holistic consideration in
the filtering process; 2) Time annotations introduce long historical
sequences and multiple temporal edges between nodes, demanding
attention to their temporal distribution. To this end, we propose a
frequency-based filtering method that adopts component-specific
strategies to effectively identify potential false negatives.

Relation-based filtering. Relations in TKGs have significant
co-occurring patterns [70]. For example, "economic sanctions" and
"export restriction" are a pair of relations that often co-occur be-
tween two hostile countries. After the relation "transfer to" occurs
between a player and a football club, the relation "play for" will sub-
sequently occur between them. This inspires us that edges missing
in a TKG but fitting these relation patterns are likely to be false neg-
atives, and we can detect them by identifying these patterns. There-
fore, for each relation 𝑟 we construct its co-occurred relation set
as 𝑅(𝑟) = {𝑟𝑖 | (𝑠 𝑗 , 𝑟 , 𝑜 𝑗 , 𝑡 𝑗) ∈ G, (𝑠 𝑗 , 𝑟𝑖 , 𝑜 𝑗 , 𝑡 ′𝑗) ∈ G, |𝑡 𝑗 − 𝑡 ′𝑗 | < 𝐿𝑟 }. In-
spired by the temporal locality of facts [21, 26] where co-occurring
events within short timespans are more likely to be related, we set
the hyper-parameter 𝐿𝑟 to a small value to filter highly entangled
relation pairs. We provide the analysis of 𝐿𝑟 in Section 5. Then, for
each observed fact (𝑠, 𝑟, 𝑜, 𝑡) ∈ G we can filter its corresponding po-
tential false negatives as (𝑠, 𝑟𝑖 , 𝑜, 𝑡) ∉ G where 𝑟𝑖 ∈ 𝑅(𝑟). We further
refine the filtering by considering the inter-component patterns
and pattern frequencies. First, entities have preferences to interact
with a specific set of relations (e.g., athletes1 are more likely to have
relation "play for"), so recognizing these entity-relation interaction
patterns helps exclude unrealistic combinations. Second, the higher
frequency of relations within 𝑅(𝑟) indicates a more important pat-
tern. By retaining only the top-𝑚 most frequently co-occurring
relations in 𝑅(𝑟), we can filter out low-confidence patterns, reduce

1Mentions of types such as "athlete" and "football club" are illustrative only, intended
to clarify the intuition behind our filtering strategy, not features used by our method.

potential false negatives, and thus lower the time required for scor-
ing in the next step. Therefore, we filter out the relation-based false
negatives for each fact (𝑠, 𝑟, 𝑜, 𝑡) ∈ G as:

𝑅𝑁 (𝑠,𝑟 ,𝑜,𝑡) = { (𝑠, 𝑟 ′, 𝑜, 𝑡) |𝑟 ′ ∈ ˜︁𝑅 (𝑟) ∩ ˜︁𝑅 (𝑠), (𝑠, 𝑟 ′, 𝑜, 𝑡) ∉ G}, (1)

where ˜︁𝑅(𝑟) is the subset of 𝑅(𝑟) which only preserves top-𝑚 most
frequent relations. Similarly, ˜︁𝑅(𝑠) is the frequency filtered sub-
set of 𝑅(𝑠) = {𝑟𝑘 | (𝑠, 𝑟𝑘 , 𝑜𝑘 , 𝑡𝑘) ∈ G}, which preserves top-𝑚 fre-
quently interacted relations of entity 𝑠 . For example, given an
observed fact (𝑃𝑢𝑡𝑖𝑛,𝐶𝑜𝑛𝑠𝑢𝑙𝑡,𝐶ℎ𝑖𝑛𝑎, 2024/05/16), both relations
"Visit" and "Attack" are in ˜︁𝑅(𝐶𝑜𝑛𝑠𝑢𝑙𝑡) and tend to co-occur with
relation "Consult", but since entity "Putin" is more likely to inter-
act with entities through relation "Visit" (i.e., "Visit" in ˜︁𝑅(𝑃𝑢𝑡𝑖𝑛)),
(𝑃𝑢𝑡𝑖𝑛,𝑉 𝑖𝑠𝑖𝑡,𝐶ℎ𝑖𝑛𝑎, 2024/05/16) is more likely to be valid.

Entity-based filtering. While the above strategy filters false
negatives based on relation semantics, the connectivity among
entities also provides insights into the occurrence of facts. Entities
often have preferences to interact with a specific set of entities (e.g.,
"Israel" and "Houthis in Yemen" frequently interact due to ongoing
conflict), inspiring us that facts fitting entity co-occurring patterns
but missing in G are likely to be false negatives. Therefore, for
each entity 𝑒 we construct its co-occurring entity set as 𝑁 (𝑒) =

{𝑒𝑖 | (𝑒, 𝑟𝑖 , 𝑒𝑖 , 𝑡𝑖) ∈ G}, and filter the corresponding top-𝑚 frequency
entities as ˜︁𝑁 (𝑒). Subsequently, we filter out the entity-based false
negatives for each fact (𝑠, 𝑟, 𝑜, 𝑡) ∈ G as:

𝐸𝑁 (𝑠,𝑟 ,𝑜,𝑡) = { (𝑠, 𝑟, 𝑜 ′, 𝑡) |𝑜 ′ ∈ ˜︁𝑁 (𝑠), 𝑟 ∈ ˜︁𝑅 (𝑜 ′), (𝑠, 𝑟, 𝑜 ′, 𝑡) ∉ G}, (2)

indicating entity pairs that are likely to connect through the re-
lation 𝑟 but are missing in TKG. For example, given an observed
fact (𝐼𝑠𝑟𝑎𝑒𝑙, 𝐴𝑡𝑡𝑎𝑐𝑘, 𝐿𝑒𝑏𝑎𝑛𝑜𝑛, 2024/09/30), both entity "Netanyahu"
and "Hizbullah" are in ˜︁𝑁 (𝐼𝑠𝑟𝑎𝑒𝑙) and likely to connect with "Israel".
However, "Hizbullah" is more likely to interact with relation "at-
tacks" (i.e., "attacks" in ˜︁𝑅(𝐻𝑖𝑧𝑏𝑢𝑙𝑙𝑎ℎ)), and thus (𝐼𝑠𝑟𝑎𝑒𝑙, 𝐴𝑡𝑡𝑎𝑐𝑘, 𝐻𝑖𝑧
𝑏𝑢𝑙𝑙𝑎ℎ, 2024/09/30) is more likely to be a missing fact.

Time-based filtering. Some facts may be repeated many times
over a short period, such as (𝑅𝑒𝑔𝑖𝑜𝑛𝐴,𝐴𝑡𝑡𝑎𝑐𝑘, 𝑅𝑒𝑔𝑖𝑜𝑛𝐵). Due to the
limitation of the update frequency of TKGs, repeated facts may
be missing in some timestamps. We can detect false negatives by
finding the omissive timestamp within the time interval where the
fact repeats. Specifically, we filter out the time-based false negatives
for each fact (𝑠, 𝑟, 𝑜, 𝑡) ∈ G as:
𝑇𝑁 (𝑠,𝑟 ,𝑜,𝑡) = { (𝑠, 𝑟, 𝑜, 𝑡 ′) |𝑡 ′ ∈ [𝑥, 𝑡], (𝑠, 𝑟, 𝑜, 𝑥) ∈ G, (𝑠, 𝑟, 𝑜, 𝑡 ′) ∉ G} .

(3)
Notably, we restrict that 𝑡 − 𝑥 < 𝐿𝑡 to ensure only focus on short-
period repetitions, where 𝑡 − 𝑥 indicates the fact repetition period
and 𝐿𝑡 is a hyper-parameter with a small value.

To evaluate the effectiveness of our filtering strategies, we ran-
domly remove 20% of the facts from G and measure how many
can be recovered. As shown in Figures 4(a) and (b), over 90% of the
removed facts are successfully detected. Figures 4(c) and (d) further
show strong performance on long-tail entities (i.e., 𝑁 (𝑠) ≤ 5), with
up to 85% detection coverage, demonstrating the robustness of our
strategy under long-tail distributions. This resilience stems from
the complementary nature of our three strategies: when one is less
effective due to data sparsity, others can compensate. For instance,
the fact (𝑃𝑢𝑡𝑖𝑛,𝐶𝑜𝑛𝑠𝑢𝑙𝑡,𝐶ℎ𝑖𝑛𝑎, 2024/05/16) may be identified via
relation-based co-occurrencewith (𝑃𝑢𝑡𝑖𝑛,𝑉 𝑖𝑠𝑖𝑡,𝐶ℎ𝑖𝑛𝑎, 2024/05/16)

3577

Relation-based

35.1%
Not detected

10.7%

Time-based

31.2%

23.0%

Entity-based

(a) ICEWS 14

Relation-based
28.2%

 Not detected

7.9%

Time-based

39.3%

24.6%

Entity-based

(b) ICEWS 05-15

Relation-based
39.8%

Not detected
12.8%

16.5%

Entity-based Time-based

32.9%

(c) YAGO 11k

Relation-based
37.8% Not detected

15.3%

14.3%

Entity-based Time-based

32.6%

(d) Wikidata 12k

Figure 4: The proportion of false negative samples detected
by the frequency-based filtering strategy.

or through repeated facts such as (𝑃𝑢𝑡𝑖𝑛,𝐶𝑜𝑛𝑠𝑢𝑙𝑡,𝐶ℎ𝑖𝑛𝑎, 2024/05/15)
and (𝑃𝑢𝑡𝑖𝑛,𝐶𝑜𝑛𝑠𝑢𝑙𝑡,𝐶ℎ𝑖𝑛𝑎, 2024/05/17). Since facts involving en-
tities with rich local structures tend to yield fewer false negatives
[30, 72], and our strategies show robustness to long-tail distribu-
tions, we apply filtering only to entities with sparse neighborhoods
(i.e., 𝑁 (𝑠) ≤ 𝑘 or 𝑁 (𝑜) ≤ 𝑘) to reduce computational cost.

Filtering out potential false negatives prevents the model from
being misled and enriches the structure by further identifying real
false negatives. Moreover, since these strategies consider intrinsic
patterns of TKG, the filtered samples provide fine-grained informa-
tion that improves the model’s performance during fine-tuning.

4.3 Hierarchical Scoring Algorithm
Identifying real false negatives in TKGs is challenging for two
main reasons: (1) TKGs exhibit complex semantic and temporal
patterns due to diverse relations, as well as evolving topologies,
which must be properly captured for accurate recognition. (2) TKGs
are often incomplete and noisy, making misidentification inevitable.
Therefore, estimating the confidence of each fact is essential to
avoid misleading the model with low-confidence false negatives.

In this part, we propose a novel hierarchical scoring algorithm
to estimate the likelihood that potential false negatives are indeed
mislabeled. To capture both global patterns and local structures
in TKGs while mitigating skewed data distribution, the scoring
process is divided into two stages: global pattern counting and
local structure aggregation. As illustrated in Figure 5, the global
stage computes scores by counting triangles in the time-irrelevant
graph, while the local stage refines these scores based on each
sample’s temporal neighborhoods. A hierarchical design is proposed
to control the complexity explosion of entity-relation combinations.
To further enhance robustness, we introduce a perturbation-based
technique to assess score stability and reduce noise sensitivity.

Global pattern counting.We represent semantic patterns in
TKGs as triangle closures involving entities and relations. By iden-
tifying frequent triangles and estimating their intensity (i.e., the

� − 1 � � + 1

�1 �3

�5 �4

�2�1

�2

�3

�4

�1 �3

�5 �4

�2�4

�3 �2
�4

�1 �3

�5 �4

�2
�3

�4

�3

�1

�1 �3

�5 �4

�2�1

�2

�3

�4 �1
�2

�3�4

�3

TKG Time-irrelevant graph

Local structure aggregation

Global pattern
counting

Entity triangles Count Score

< �1, �2, �3 > 2 1
< �1, �3, �5 > 2 1
< �3, �4, �5 > 1 0.5

Relation triangles Connected entities Count Score

< �1, �2, �3 > < �1, �2, �3 >
< �1, �3, �5 >
< �3, �4, �5 >

3 1

< �1, �2, �4 > < �1, �3, �5 > 1 0.3
< �2, �3, �4 > < �1, �2, �3 > 1 0.3

�4�5 �3

�1 �4

 (�2, �3) (�2, �4) (�2, �3)

Entity
scores

Relation
scores

 �(�5, �4, �3)

Figure 5: An example of the hierarchical scoring algorithm,
where the red dashed line denotes the potential false negative
fact that needs identification.

likelihood of a third edge forming given two), we capture and quan-
tify these patterns. However, direct triangle counting in TKGs yields
an overwhelming number of distinct triangles due to diverse enti-
ties, relations, and temporal orders, resulting in high computational
cost and sparse, uninformative counts. To overcome this, we decom-
pose entities and relations within triangles to reduce complexity
and construct a time-irrelevant graph to mitigate temporal noise.

The time-irrelevant graph contains all the entity-relation-entity
combinations observed in TKG, represented as G′

= {(𝑠, 𝑟, 𝑜) |{(𝑠, 𝑟,
𝑜, 𝑡) ∈ G}. By abstracting away from the non-uniform tempo-
ral distribution of facts and alleviating the burden of long his-
torical sequences, this approach effectively captures the prefer-
ences among entities and relations while enabling efficient com-
putation. Although temporal information is not directly consid-
ered here, the global pattern counting focuses on time-invariant
conceptual patterns, while temporal dynamics are fully addressed
through the local structure aggregation process. To further alleviate
the complexity explosion brought by the combination of entities
and relations, we first anonymize the relations in G′ to count en-
tity triangles. We define the number of edges between entities as
𝑁 (𝑒1, 𝑒2) = |{(𝑒1, 𝑟 , 𝑒2) | (𝑒1, 𝑟 , 𝑒2) ∈ G′ }| where | · | means the size
of the set. The number of triangles among entities can be defined
as:

𝐶𝑒 (𝑒1, 𝑒2, 𝑒3) =𝑚𝑖𝑛 (𝑁 (𝑒1, 𝑒2), 𝑁 (𝑒2, 𝑒3), 𝑁 (𝑒1, 𝑒3)), (4)

which counts for the number of edges existing among three entities.
Since the anonymization of relations highlights the connectivity
of the graph, 𝐶𝑒 can accurately reflect the connection preference
among entities, e.g., China and Japan have more connections with
South Korea than the Vatican. Finally, we obtain the entity score
by normalization as:

𝑆𝑒 (𝑒1, 𝑒2, 𝑒3) =
𝐶𝑒 (𝑒1, 𝑒2, 𝑒3) −𝑚𝑖𝑛 (𝐶𝑒) + 1
𝑚𝑎𝑥 (𝐶𝑒) −𝑚𝑖𝑛 (𝐶𝑒) + 1

, (5)

where𝑚𝑎𝑥 (𝐶𝑒) and𝑚𝑖𝑛(𝐶𝑒) are respectively themaximum number
and minimum number of entity triangles in G′ .

The relation triangles indicate the interaction rules among enti-
ties (e.g., the combination of relations "launching an attack", "call
for support", and "impose sanctions" describes the hostile behav-
ior among three countries), and thus are important to identify the

3578

missing valid facts. This motivates us to anonymize the entities in
G′ to find relation triangles. Specifically, a relation triangle consists
of three relations that connect the entities within an entity triangle.
We define the count of each relation triangle as how many different
entity triangles are connected by it, which is formally defined as:

𝐶𝑟 (𝑟1, 𝑟2, 𝑟3) = | { (𝑒𝑖 , 𝑒 𝑗 , 𝑒𝑘) | (𝑒𝑖 , 𝑟1, 𝑒 𝑗), (𝑒 𝑗 , 𝑟2, 𝑒𝑘), (𝑒𝑖 , 𝑟3, 𝑒𝑘) ∈ G′ } | .
(6)

The same normalization is then employed on 𝐶𝑟 to obtain the rela-
tion score 𝑆𝑟 . A high entity score suggests that three entities are
more likely to form a triangle, while a high relation score indicates
a stronger connection among the entities through three specific
relations. This effectively quantifies the patterns within TKG.

Local structure aggregation. The validity of a fact depends not
only on global semantic patterns but also on its temporal dynamics.
While global scores capture overall conceptual patterns in TKGs,
we propose aggregating them based on the fact’s local temporal
context to consider its evolving nature. As shown in Figure 5, we
reformulate the local structure of each potential false negative fact
(𝑠, 𝑟, 𝑜, 𝑡) into an entity layer and a relation layer, aligning with the
design of global scores. The entity layer contains all entities that
have interactions with both 𝑠 and 𝑜 within the time window 𝐿𝑒 ,
denoted as 𝑙𝑒 (𝑠, 𝑜, 𝑡). Therefore, each entity 𝑒 in the entity layer can
form a triangle with 𝑠 and 𝑜 , allowing us to estimate the validity
of (𝑠, 𝑟, 𝑜, 𝑡) based on intensities of entity triangles (i.e., the like-
lihood that 𝑠 − 𝑜 will exist when 𝑠 − 𝑒 and 𝑜 − 𝑒 are present). To
integrate relation scores, for each entity 𝑒 ∈ 𝑙𝑒 (𝑠, 𝑜, 𝑡), we construct
its corresponding relation layer 𝑙𝑟 (𝑠, 𝑜, 𝑡, 𝑒). Each item in relation
layer is represented as (𝑟𝑖 , 𝑟 𝑗), where 𝑟𝑖 represents relations exist-
ing between 𝑠 and 𝑒 , and 𝑟 𝑗 represents those existing between 𝑜

and 𝑒 , both within 𝐿𝑒 . Therefore, each item (𝑟𝑖 , 𝑟 𝑗) in the relation
layer can form a triangle with 𝑟 , allowing us to estimate the valid-
ity of (𝑠, 𝑟, 𝑜, 𝑡) based on intensities of relations triangles (i.e., the
probability that 𝑠 and 𝑜 are connected by 𝑟 given that 𝑠 and 𝑜 have
connected with 𝑒 through 𝑟𝑖 and 𝑟 𝑗). Afterward, we aggregate the
relation layer as:

𝑚𝑒𝑖 =
∑︂

(𝑟𝑖 ,𝑟 𝑗) ∈𝑙𝑟 (𝑠,𝑜,𝑡,𝑒𝑖)
𝛼𝑖,𝑗 · 𝑆𝑟 (𝑟𝑖 , 𝑟 𝑗 , 𝑟), (7)

where 𝑒𝑖 ∈ 𝐸 (𝑠, 𝑜, 𝑡) represents each node in the entity layer of
(𝑠, 𝑟, 𝑜, 𝑡). We use 𝛼 as a time-aware weight to emphasize facts that
occurred more recently, which is defined as:

𝛼𝑖,𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (− |𝑡𝑖 − 𝑡 𝑗 |), (8)

where 𝑡𝑖 and 𝑡 𝑗 are respectively the occurring time of facts (𝑠, 𝑟𝑖 , 𝑒)
and (𝑒, 𝑟 𝑗 , 𝑜). We then aggregate the entity layer as:

𝑚 (𝑠,𝑟 ,𝑜,𝑡) =
∑︂

𝑒𝑖 ∈𝐸 (𝑠,𝑜,𝑡)
𝑚𝑒𝑖 · (1 + 𝑆𝑒 (𝑠, 𝑜, 𝑒𝑖)), (9)

where𝑚 (𝑠,𝑟,𝑜,𝑡) is the confidence score of (𝑠, 𝑟, 𝑜, 𝑡).
Score perturbation. Each potential false negative fact origi-

nates from an observed fact (see Section 4.2), sharing a similar
local structure. Therefore, we can achieve the adaptive threshold
by comparing their scores. A potential false negative 𝑓 ′ will be
identified as a real false negative if𝑚𝑓 ′ > 𝑚𝑓 where 𝑓 is its cor-
responding observed fact. To address the noise introduced by the
randomness of temporal dynamics, we extend our algorithm with
the perturbation technique and smooth labels. For each potential

false negative 𝑓 ′, we first slightly perturb its corresponding tempo-
ral local structure (e.g., randomly repeat or remove items within
layers or perturb the time-aware weights), and then calculate a set
of scores𝑀𝑓 ′ = {𝑚1

𝑓 ′ ,𝑚
2
𝑓 ′ , ...,𝑚

𝑘
𝑓 ′ } based on these perturbed struc-

tures. If𝑚𝑒𝑎𝑛(𝑀𝑓 ′) > 𝑚𝑓 , we will set𝑚𝑒𝑎𝑛(𝑀𝑓 ′) as a smooth label
for 𝑓 ′, which emphasizes the samples with more robust patterns.
The remaining facts are regarded as hard negative samples.

While data-driven methods such as HyTE [9] and DE [15] can
identify false negatives and better fit data-specific properties, they
have notable limitations. First, their black-box nature leads to less
reliable predictions, while our method offers human-interpretable
hierarchical scoring. Second, their reliance on training reduces
efficiency, whereas our method is training-free. Third, they of-
ten struggle to capture diverse knowledge patterns. In contrast,
Booster addresses this issue with built-in inductive biases through
frequency-based filtering and hierarchical scoring. Although some
data-driven methods also consider patterns [6, 59], they typically
involve complex architectures that demand extensive training time.

4.4 Two-Stage Training
In this part, we propose a two-stage training approach to shield the
model from imbalanced data and alleviate the model preferences.

Pre-training. Our filtering strategies have identified potential
false negatives. To avoidmisleading, we exclude them from negative
samples during contrastive training. Formally, given an untrained
TKGC model𝑀 (0) , we pre-train it as

𝐿𝑝 =
∑︂

(𝑠,𝑟 ,𝑜,𝑡) ∈G
−𝑙𝑜𝑔 (𝑒𝑥𝑝 (𝑝 (𝑠, 𝑟, 𝑜, 𝑡))∑︁

𝑁𝑒𝑔 (𝑠,𝑟 ,𝑜,𝑡) 𝑒𝑥𝑝 (𝑝 (𝑠, 𝑟, 𝑒, 𝑡))
) + 𝜆, (10)

where 𝑁𝑒𝑔(𝑠, 𝑟, 𝑜, 𝑡) = {(𝑠, 𝑟, 𝑒, 𝑡) |𝑒 ∈ E, (𝑠, 𝑟, 𝑒, 𝑡) ∉ 𝐸𝑁 (𝑠,𝑟,𝑜,𝑡) ∪
𝑅𝑁 (𝑠,𝑟,𝑜,𝑡)∪𝑇𝑁 (𝑠,𝑟,𝑜,𝑡) } is filtered negative facts specific to ((𝑠, 𝑟, 𝑜, 𝑡)).
𝜆 is a regularization term and 𝑝 (·) is the prediction score obtained
by model𝑀 (0) . The pre-trained model is denoted as𝑀 (1) .

Since the pre-training process avoids the misleading effects of
false negatives, positive samples that are ranked lower than the
corresponding negative samples reflect facts that the model strug-
gles to learn, and thus indicate its implicit preferences. Formally,
for each positive sample (𝑠, 𝑟, 𝑜, 𝑡) ∈ G with negatives (𝑠, 𝑟, 𝑒, 𝑡) ∈
𝑁𝑒𝑔(𝑠, 𝑟, 𝑜, 𝑡), we include (𝑠, 𝑟, 𝑜, 𝑡) in the model-specific hard sam-
ple set F𝑚 if it is not ranked above all (𝑠, 𝑟, 𝑒, 𝑡) by 𝑀 (1) . We em-
phasize F𝑚 during fine-tuning to correct for such preferences.

Fine-tuning.We further fine-tune the pre-trained model𝑀 (1)

using a curated set of samples, including real false negatives, hard
negatives, and model-specific hard samples, to obtain the final
model 𝑀 (2) . This serves three key purposes: 1) Real false nega-
tives are re-labeled as positives, enriching data for entities and
timestamps in sparse regions. This mitigates performance imbal-
ance from uneven data distribution. Additionally, smooth labels
generated via the perturbation strategy highlight robust and sta-
ble patterns, offering finer-grained supervision for TKGC models.
2) Hard negatives closely resemble positives in structure but are
invalid. Training on them improves the model’s ability to distin-
guish subtle differences. 3) Model-specific hard samples capture
patterns that the model struggles with. Fine-tuning on these forces
the model to adapt, improving generalization across diverse TKG

3579

patterns. We fine-tune the pre-trained model𝑀 (1) as

𝐿𝑓 =
∑︂
𝑓 ∈G𝑝

−𝑙𝑓 𝑙𝑜𝑔𝜎 (𝑝 (𝑓)) +
∑︂

𝑓 ′∈G𝑛

−𝑙𝑜𝑔𝜎 (𝑝 (𝑓 ′)), (11)

where G𝑝 contains real false negatives and model-specific hard
samples. G𝑛 contains hard negative samples. 𝜎 (·) is the sigmoid
function and 𝑙𝑓 =𝑚𝑒𝑎𝑛(𝑀𝑓) is the smooth label of fact 𝑓 .

4.5 Complexity Analysis
The additional time complexity introduced by Booster primarily
stems from two components: the filtering strategy and the hierarchi-
cal scoring mechanism, both of which are applied to each observed
fact in TKG. Suppose the TKG contains |𝐸 | entities (nodes), |𝑅 |
relations (types of edges), |𝐹 | edges and |T | timestamps. For the
filtering phase, Booster applies three types of filters for each fact
(𝑠, 𝑟, 𝑜, 𝑡). The relation-based filter inspects the set of relations that
co-occur with relation 𝑟 , which has a worst-case size of Δ𝑅 ≪ |𝑅 |,
the maximum relation co-occurrence degree. The entity-based filter
considers all entities that have interacted with 𝑠 or 𝑜 , whose neigh-
borhoods can be bounded by the maximum entity degree Δ𝐸 ≪ |𝐸 |.
The time-based filter scans a fixed temporal window of length
𝐿𝑡 ≪ |T |. Thus, the per-fact cost of filtering is 𝑂 (Δ𝑅 + Δ𝐸 + |𝐿𝑡 |).

In the hierarchical scoring phase, Booster first computes global
scores for all entity and relation triangles. Both of them need to
first traverse all the edges in the time-irrelevant graph, which has a
size of |𝐹 ′ | ≪ |𝐹 |. The entity counting finds the co-neighborhoods
of 𝑠 or 𝑜 for each edge, bounded by Δ𝐸 ≪ |𝐸 |. The relation counting
traverses the combinations of the interacted relations of 𝑠 and 𝑜 ,
bounded by Δ𝐸

2. Therefore, the overall complexity of global scores
calculation is𝑂 (|𝐹 ′ |Δ𝐸

2). Subsequently, local structure aggregation
is performed for each fact. For each fact, this process involves
identifying shared neighboring entities of 𝑠 and 𝑜 , bounded by Δ𝐸 ,
and aggregating over the relations connecting 𝑠 and 𝑜 to those
neighbors, with up to Δ𝑅 relations per edge. This results in a per-
fact complexity of 𝑂 (Δ𝐸Δ

2
𝑅
). Δ𝐸 and Δ𝑅 are mostly very small in

real-world TKGs, making the complexity of Booster acceptable.

5 EXPERIMENTS
We conduct experiments on 5 datasets to answer the following
research questions: RQ1: Can Booster improve the performance
of existing models? RQ2: How does each component of Booster
contribute to performance improvement? RQ3: Is Booster efficient?
RQ4: Can Booster improves the balance and stabilization of the
performance?

Datasets.We evaluate Booster on five benchmark datasets drawn
from ICEWS [2], YAGO [40],Wikidata [12], andGDELT [27]. ICEWS
captures time-stamped interactions between political entities; we
use two subsets: ICEWS 14 (events in 2014) and ICEWS 05-15 (events
from 2005 to 2015). YAGO is a commonsense knowledge base, and
YAGO 11k is a subset focusing on the top-10 most frequent time-
sensitive relations. Wikidata, a collaboratively curated knowledge
base derived from Wikipedia, is represented by the Wikidata 12k
subset. GDELT, a large-scale political knowledge base, is also in-
cluded. Each dataset is split into training, validation, and test sets
with an 8:1:1 ratio. Detailed statistics are provided in Table 1.

Baselinemodels.As there are no established data augmentation
baselines specifically for TKGs, we select representative methods

Table 1: Statistics of datasets.

Dataset | E | | R | | T | | F |
ICEWS 14 7,128 230 365 90,730
ICEWS 05-15 10,488 251 4,017 461,329
YAGO 11k 10,623 10 2,801 20,507
Wikidata 12k 12,554 24 2,270 40,621
GDELT 500 20 366 3,419,607

from two closely related areas. From temporal graph augmentation,
we include MeTA [51], TagRec [38], and TTDA [32], which capture
the dynamic aspects of TKGs. From knowledge graph augmenta-
tion, we consider DeMix [7], NSCaching [69], and KG-Mixup [39],
which focus on semantic information. These two categories pro-
vide complementary baselines for comparison. To evaluate their
effectiveness, we use 5 widely adopted TKGC models as backbones:
HyTE [9], TA [13], DE [15], TNT [25], and TEMP [52].

Implementation details. We adopt the official implementa-
tions of existing TKGC models as backbones. For each model, we
perform grid search to tune hyper-parameters, selecting the best
settings based on validation MRR. Training is conducted over 1000
epochs with 100 mini-batches per epoch. Models are pre-trained
for the first 20 epochs, and then fine-tuned with early stopping.
The learning rate is set to 0.001. For all models, we set the repre-
sentation dimension 𝑑 as 200, the size of negative sampling as 50,
and the data pre-processing is unified as in TNT [25] to achieve
fair comparison. The time windows 𝐿𝑟 , 𝐿𝑒 , and 𝐿𝑡 are selected from
{1, 3, 5, 10, 20}. We use Adagrad [34] for optimization and all ex-
periments are conducted on a 64-bit machine with Nvidia TITAN
RTX. Besides MRR, we also use Hits@k as the metric which is
defined as 𝐻𝑖𝑡𝑠@𝑘 = 1

|𝑇𝑒𝑠𝑡 |
∑︁

(𝑠,𝑟,𝑜,𝑡) ∈𝑇𝑒𝑠𝑡 𝑖𝑛𝑑 (𝑟𝑎𝑛𝑘 (𝑠, 𝑟, 𝑜, 𝑡) ≤ 𝑘),
where 𝑖𝑛𝑑 () is 1 if the inequality holds and 0 otherwise. Our source
code is available at https://github.com/zjs123/Booster.

5.1 Overall Evaluation (RQ1)
Accuracy. Table 2 reports the performance of existing TKGC mod-
els under various data augmentation strategies. We observe that:
(1) Booster consistently improves all backbone models, with an
average gain of 4.5% and a maximum of 8.7%, both statistically
significant. Notably, HyTE sees the largest boost (8.7% MRR on
ICEWS 14 and 7.9% on ICEWS 05-15), likely because its timestamp-
specific representation learning makes it more sensitive to data
sparsity. Booster can enrich the sparse structure by identifying false
negatives and thus achieve improvement. (2) Compared with prior
graph-based augmentation methods, Booster achieves superior im-
provements across most models, outperforming strong baselines
like KG-Mixup and NSCaching. Interestingly, some methods (e.g.,
MeTA, NSCaching) may even hurt performance due to their limited
consideration of temporal semantics, introducing noise during sam-
ple generation. (3) Booster brings consistent gains across all datasets,
confirming its adaptability to heterogeneous temporal knowledge.
The gains vary with dataset sparsity: average improvements are
3.9% on YAGO 11k and 2.4% on Wikidata 12k. Figure 6(a) further
shows that Booster remains effective on large-scale graphs.

Hyper-parameter sensitivity. In Figures 6(b) and (c), Ω4, Δ2,
𝑠𝑖𝑛, 𝑟𝑒𝑙𝑢, and temporal features are hyper-parameters of TNT and
DE.We can see that Booster can achieve improvement with different
hyper-parameters of the original model. Figure 7(a) shows how the

3580

https://github.com/zjs123/Booster

Table 2: Performance comparison of baseline models. The best results are boldfaced and "DA" means data augmentation.

Dataset ICEWS 14 ICEWS 05-15 YAGO 11k Wikidata 12k
TKGC models DA strategies MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

Without DA 0.297 0.108 0.416 0.316 0.116 0.445 0.134 0.032 0.181 0.191 0.107 0.208
MeTA 0.293 0.105 0.410 0.319 0.117 0.449 0.132 0.031 0.178 0.186 0.105 0.201
TagRec 0.295 0.110 0.402 0.320 0.121 0.441 0.130 0.029 0.180 0.190 0.105 0.213
TTDA 0.306 0.115 0.416 0.325 0.139 0.437 0.128 0.026 0.182 0.194 0.109 0.212
DeMix 0.301 0.113 0.412 0.323 0.126 0.447 0.136 0.035 0.182 0.193 0.108 0.211

HyTE NSCaching 0.295 0.107 0.414 0.320 0.124 0.445 0.130 0.029 0.179 0.188 0.105 0.206
KG-Mixup 0.308 0.133 0.420 0.325 0.145 0.446 0.136 0.037 0.175 0.192 0.107 0.210
Booster 0.323 0.176 0.417 0.341 0.223 0.450 0.142 0.051 0.182 0.199 0.112 0.219

Improve: 8.7% P-value: 0.0114 Improve: 7.9% P-value: 0.0101 Improve: 5.9% P-value: 0.0225 Improve: 4.1% P-value: 0.0217
Without DA 0.501 0.392 0.569 0.484 0.366 0.546 0.119 0.084 0.117 0.212 0.123 0.242

MeTA 0.496 0.388 0.565 0.486 0.367 0.544 0.112 0.078 0.113 0.209 0.119 0.246
TagRec 0.493 0.386 0.553 0.485 0.367 0.540 0.118 0.082 0.116 0.211 0.121 0.249
TTDA 0.506 0.398 0.558 0.493 0.371 0.548 0.116 0.081 0.120 0.208 0.117 0.251
DeMix 0.508 0.397 0.573 0.491 0.370 0.545 0.116 0.081 0.118 0.214 0.124 0.246

DE NSCaching 0.503 0.394 0.570 0.482 0.365 0.541 0.115 0.080 0.116 0.217 0.125 0.248
KG-Mixup 0.507 0.398 0.565 0.492 0.372 0.545 0.117 0.082 0.115 0.215 0.122 0.244
Booster 0.521 0.410 0.578 0.510 0.388 0.548 0.124 0.086 0.118 0.221 0.126 0.252

Improve: 3.9% P-value: 0.0170 Improve: 3.5% P-value: 0.0217 Improve: 4.2% P-value: 0.0233 Improve: 4.2% P-value: 0.0213
Without DA 0.409 0.295 0.466 0.492 0.376 0.544 0.110 0.072 0.108 0.188 0.109 0.210

MeTA 0.405 0.293 0.460 0.493 0.377 0.542 0.112 0.078 0.104 0.186 0.107 0.208
TagRec 0.412 0.294 0.465 0.505 0.383 0.551 0.110 0.073 0.106 0.192 0.111 0.214
TTDA 0.407 0.291 0.462 0.498 0.378 0.553 0.105 0.068 0.104 0.189 0.109 0.212
DeMix 0.411 0.292 0.473 0.498 0.380 0.545 0.106 0.071 0.103 0.184 0.106 0.210

TA NSCaching 0.401 0.289 0.460 0.493 0.375 0.550 0.110 0.077 0.112 0.180 0.103 0.211
KG-Mixup 0.412 0.290 0.475 0.502 0.381 0.544 0.113 0.075 0.110 0.191 0.110 0.210
Booster 0.421 0.298 0.484 0.513 0.387 0.566 0.123 0.081 0.115 0.205 0.113 0.214

Improve: 2.9% P-value: 0.0156 Improve: 4.2% P-value: 0.0139 Improve: 6.9% P-value: 0.0218 Improve: 3.5% P-value: 0.0185
Without DA 0.601 0.478 0.681 0.680 0.553 0.769 0.186 0.126 0.189 0.330 0.227 0.359

MeTA 0.602 0.479 0.682 0.676 0.548 0.766 0.184 0.125 0.184 0.327 0.225 0.358
TagRec 0.611 0.482 0.685 0.683 0.555 0.771 0.184 0.126 0.182 0.328 0.227 0.358
TTDA 0.604 0.480 0.682 0.681 0.553 0.771 0.190 0.127 0.192 0.325 0.221 0.354
DeMix 0.606 0.479 0.684 0.682 0.555 0.769 0.188 0.124 0.189 0.331 0.229 0.360

TEMP NSCaching 0.598 0.476 0.677 0.678 0.550 0.764 0.180 0.121 0.187 0.325 0.220 0.356
KG-Mixup 0.603 0.480 0.676 0.684 0.552 0.770 0.186 0.124 0.190 0.332 0.228 0.360
Booster 0.623 0.485 0.690 0.697 0.559 0.779 0.194 0.130 0.195 0.340 0.237 0.362

Improve: 3.6% P-value: 0.0151 Improve: 2.5% P-value: 0.0219 Improve: 4.3% P-value: 0.0197 Improve: 3.3% P-value: 0.0189
Without DA 0.614 0.532 0.656 0.658 0.588 0.712 0.185 0.127 0.183 0.331 0.233 0.357

MeTA 0.608 0.529 0.649 0.650 0.582 0.706 0.183 0.127 0.175 0.332 0.234 0.355
TagRec 0.617 0.535 0.655 0.662 0.590 0.717 0.183 0.126 0.178 0.333 0.234 0.358
TTDA 0.612 0.532 0.650 0.660 0.588 0.720 0.189 0.129 0.191 0.328 0.230 0.356
DeMix 0.615 0.530 0.660 0.661 0.590 0.714 0.188 0.129 0.185 0.331 0.231 0.360

TNT NSCaching 0.605 0.526 0.649 0.652 0.584 0.709 0.180 0.123 0.176 0.327 0.228 0.355
KG-Mixup 0.619 0.537 0.661 0.663 0.591 0.710 0.187 0.126 0.188 0.335 0.234 0.359
Booster 0.636 0.557 0.678 0.679 0.602 0.728 0.195 0.131 0.201 0.342 0.239 0.367

Improve: 3.5% P-value: 0.0145 Improve: 3.2% P-value: 0.0123 Improve: 5.4% P-value: 0.0119 Improve: 3.3% P-value: 0.0168

HyTE TA DE TEMP TNT
Models

0.00

0.05

0.10

0.15

0.20

0.25

M
R

R

0.206 0.213
0.232

0.118 0.124

0.217 0.226
0.244 0.237

w/o Booster
with Booster 0.245

(a)

Regularization weight

M
R

R

Ω4

∆2

TNT

TNTBooster

10-5 10-4 10-3
0.61

0.62

0.63

0.64

0.65

(b)

0.00
Temporal features

0.55

M
R

R

relu

sin

DE
DEBooster

0.50

0.45

0.40
0.25 0.50 0.75 1.00

(c)

Figure 6: (a) Performance on the GDELT dataset. (b) Booster performance with varying hyper-parameters of the TNT model on
the ICEWS 14 dataset. (c) Booster performance with varying hyper-parameters of the DE model on the ICEWS 14 dataset.

hyper-parameters of Booster affect its effectiveness. We can see that
when 𝐿𝑒 increases,𝑀𝑅𝑅 keeps increasing at first because the larger
𝐿𝑒 helps to achieve more accurate scoring of facts. However,𝑀𝑅𝑅

drops when 𝐿𝑡 and 𝐿𝑟 are large. This is because the large 𝐿𝑡 and
𝐿𝑟 will extensively increase the number of filtered potential false
negatives and thus bring more noise. Finally, Figures 7(b) and (c)
show how the number of identified real false negatives changes

with hyper-parameters. When 𝐿𝑟 and 𝐿𝑡 are large, the number of
identified real false negatives increases, but when 𝐿𝑟 = 𝐿𝑡 = 1, its
number gradually decreases when 𝐿𝑒 increases, which meets our
conjecture that large 𝐿𝑡 and 𝐿𝑟 will bring more noise.

Comparison with spatial-temporal models. As shown in Ta-
ble 3, typical spatial-temporal graph and knowledge graph models
fall short of Booster, mainly because spatial-temporal graph models

3581

M
R
R

1 3 5 10 20
Le

0.65

0.66

0.67

0.68

Lr = Lt = 1
Lr = Lt = 3
Lr = Lt = 5

Lr = Lt = 10
Lr = Lt = 20

(a)

1N
um

be
r

of
 F

al
se

 N
eg

at
iv

es

Lr = 1
Lr = 3
Lr = 5

Lr = 10
Lr = 20

3 5 10 20
Le

6000

8000

10000

10100

10200

10300

10400

(b)

Lt = 1
Lt = 3
Lt = 5
Lt = 10
Lt = 20

1 3 5 10 20
Le

N
um

be
r

of
 F

al
se

 N
eg

at
iv

es

6000

7000

8000

9000

10000

11000

(c)

Figure 7: (a) Performance of TNTBooster with varying hyper-parameters on the ICEWS 05-15 dataset. (b) The number of identified
false negatives with different 𝐿𝑒 and 𝐿𝑟 . (c) The number of identified false negatives with different 𝐿𝑒 and 𝐿𝑡 .

Table 3: Comparison with spatial-temporal models.

Dataset ICEWS 14 Wikidata 12k
Models Hit@1 Hit@10 Hit@1 Hit@10
TiTConv 0.408 0.563 0.210 0.412
TF-GCL 0.446 0.584 0.259 0.406
Conda 0.473 0.619 0.255 0.437
SSTKG 0.519 0.693 0.282 0.486

TNTBooster 0.557 0.781 0.342 0.547

Table 4: Results of ablation study.

Dataset ICEWS 14 Wikidata 12k
Variants Hit@1 Hit@10 Hit@1 Hit@10

w/o identified false negatives 0.545 0.774 0.334 0.541
w/o identified hard negatives 0.544 0.772 0.332 0.538

w/o model-specific hard samples 0.544 0.772 0.332 0.538
w/o entity scores 0.548 0.775 0.330 0.539
w/o relation scores 0.543 0.771 0.329 0.537
w/o smooth labels 0.533 0.768 0.331 0.537

w/o smooth labels + entity scores 0.523 0.760 0.324 0.534
w/o smooth labels + relation scores 0.521 0.757 0.322 0.530

TNTBooster 0.557 0.781 0.342 0.547

like TF-GCL and Conda fail to incorporate the rich semantics of re-
lations, while models like SSTKG lack tailored designs for capturing
complex conceptual patterns within TKGs.

5.2 Effect of Each Component (RQ2)
Ablation study. Table 4 presents the ablation results of Booster.
Incorporating identified false negatives, hard negatives, and model-
specific challenging samples during fine-tuning consistently im-
proves performance. Removing the smooth label leads to perfor-
mance drops, as low-confidence false negatives may mislead the
model. Eliminating either entity or relation scores alone causes only
minor degradation, highlighting the smooth label’s robustness to
noise. However, when the smooth label is removed, discarding the
scores severely hurts performance, underscoring their importance
in accurate identification. Figure 8(a) further illustrates that without
the smooth label, performance becomes less stable and generally
worse. As shown in Figure 8(b), fine-tuning is essential due to two
reasons: (1) Pre-training only captures partial graph structure and
lacks full TKG semantics; (2) Fine-tuning samples are enriched by
pattern-aware heuristics, enhancing generalization to diverse TKG
patterns. Additionally, identified false negatives help densify the
sparse graph, benefiting long-tail entities and timestamps.

Table 5: Performance comparison of variants.

Dataset ICEWS 05-15 Wikidata 12k
Variants Hit@1 Hit@10 Hit@1 Hit@10

Identifying with DE 0.595 0.814 0.234 0.548
Identifying with TEMP 0.596 0.816 0.235 0.545
Identifying with HyTE 0.576 0.778 0.219 0.519
Identifying with TNT 0.592 0.811 0.228 0.537

Self-training 0.582 0.791 0.230 0.539
Neighbor filtering 0.587 0.797 0.230 0.540

Recent active filtering 0.581 0.790 0.228 0.538
TNTBooster 0.602 0.823 0.239 0.547

Comparison with variants. Table 5 reports the performance of
Booster variants. To assess the effectiveness of our hierarchical scor-
ing algorithm, we replace it with several pre-trained sophisticated
models for identifying false negatives. However, these alternatives
fail to surpass the original framework. As shown in Figures 8(c) and
(d), retraining such models is time-consuming, further demonstrat-
ing the advantage of our design. Additionally, directly applying
self-training to the TNT model leads to significant performance
drops, highlighting the importance of addressing model preferences.
Lastly, we evaluate our filtering strategy against commonly used
ones, such as selecting neighbor entities from sparse local struc-
tures or recent active entities. None of them outperforms TNTBooster,
validating the effectiveness of our approach.

5.3 Efficiency (RQ3)
Comparison with baselines. Figures 8(c) and (d) report the train-
ing time of baseline models under the Booster framework. For TNT
and TEMP on the Wikidata 12k dataset, training time increases
only by 1/10 and 1/5, respectively, as they avoid negative sampling,
with overhead mainly from filtering and scoring. Although HyTE
and DE require negative sampling, the size of hard negatives grows
sub-linearly with the TKG size, so the time overhead remains mod-
est even on large datasets like ICEWS 05-15. These results show
that Booster enhances performance with acceptable additional cost.

Throughput w.r.t. hyper-parameters. Figure 9 shows the
throughput of filtering strategies and the hierarchical scoring algo-
rithmwith varying hyper-parameters. First, our proposed strategies
achieve high throughput to all the hyper-parameters. The average
processing time is nearly 0.5 ms per sample. Second, the throughput
of our proposed strategies decreases sub-linearly when the span of
the time window increases. This is because of the locality of TKGs

3582

1000 90003000 5000 7000
Number of False Negatives

0.60

0.62

0.64

0.66

0.68

0.70
M

R
R

ICEWS 05-15
ICEWS 14

with smooth label
w/o smooth label

(a)

0.0

0.2

0.4

0.6

M
R
R

0.605
0.655

0.180

0.322

0.224

0.636
0.679

0.195

0.342

0.245

w/o fine-tune
with fine-tune

ICEWS 14 ICEWS 05-15 YAGO 11k Wikidata 12k GDELT

Datasets

(b)

0

10

20

40

60

TEMP DE TNT HyTE
Models

T
ra

in
in

g
T

im
e

(m
in

)

Booster
Original model

(c)

T
ra

in
in

g
T

im
e

(m
in

)

0

100

200

300

TEMP DE TNT HyTE

Booster
Original model

Models

(d)

Figure 8: (a) Performance sensitivity to the identified false negatives. (b) TNT performance with and without fine-tuning. (c)
Training time on the ICEWS 14 dataset. (d) Training time on the ICEWS 05-15 dataset.

1 3 5 10 20
Le

10000

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

) ICEWS 14
ICEWS 05-15
YAGO 11k
Wikidata 12k

20000

30000

40000

(a)

1 3 5 10 20
Lr

5000

10000

15000

ICEWS 14
ICEWS 05-15
YAGO 11k
Wikidata 12k

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

(b)

1 3 5 10 20
Lt

ICEWS 14
ICEWS 05-15
YAGO 11k
Wikidata 12k

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

10000

12000

14000

16000

18000

(c)

Figure 9: (a) Throughput of the Booster framework with varying 𝐿𝑒 . (b) Throughput of the Booster framework with varying
𝐿𝑟 .(c) Throughput of the Booster framework with varying 𝐿𝑡 .

800

Training Time (s)

0.622

M
R
R

Lr = Lt = 1

Le = 1

Lr = Lt = 3
Lr = Lt = 5

Le = 3
Le = 5
Le = 10
Le = 20

1000 1200 1400 1600

0.624

0.626

0.628

0.630

0.632

0.634

0.636

(a)

10e3 10e4 10e5 10e6 10e7 10e8
0

5

10

15

20

M
em

or
y
U

sa
ge

 (G
B

)

0

500

1000

1500

2000

Pr
oc

es
si

ng
 T

im
e

(s
)Memory usage

Processing time

(b)

0

100

200

300
315.76

234.59
256.12

178.67

211.37

378.94

313.97
297.85

258.12 245.54

 S
ta

nd
ar

d
D

ev
ia

tio
n

YAGO 11k

Datasets
GDELT Wikidata 12k ICEWS 14 ICEWS 05-15

with Booster
w/o Booster

(c)

302.69

237.19 240.94

153.14
185.43

346.08

293.11
263.67

197.08

237.89

0

100

200

300
 S

ta
nd

ar
d

D
ev

ia
tio

n

YAGO 11k

Datasets
GDELT Wikidata 12k ICEWS 14 ICEWS 05-15

With Booster
Without Booster

(d)

Figure 10: (a) MRR w.r.t. training time on the ICEWS 14 dataset. (b) Scalability of our proposed algorithm. (c) MRR variance on
timestamps obtained by the TEMP model. (d) MRR variance on timestamps obtained by the TNT model.

that facts are mostly short-term related. Our strategies meet this
property and thus can effectively filter out useless samples.

Tradeoff between MRR and training time.We conduct ex-
periments to investigate the tradeoff between 𝑀𝑅𝑅 and training
time. Specifically, we set 𝐿𝑟 and 𝐿𝑡 as 1, 3, and 5. By varying 𝐿𝑒 , we
report the tradeoff between𝑀𝑅𝑅 and training time in Figure 10(a).
We observe that when 𝐿𝑟 and 𝐿𝑡 are small, the MRR result increases
as the training time increases. When 𝐿𝑟 = 𝐿𝑡 = 5 and 𝐿𝑒 reaches 10,
the training time keeps increasing but MRR degrades drastically.

Memory, CPU, and GPU usages. We use Psutil2 to monitor
memory and CPU usage, and GPUtil3 to track GPU utilization.

2https://pypi.org/project/psutil/
3https://pypi.org/project/GPUtil/

Booster consumes amaximum of 14.51 GBmemory, with a total CPU
utilization of 425% (on a 10-core CPU, where 1000% indicates full
usage) and a GPU utilization rate of 34%. As shown in Figure 10(b),
both memory usage and processing time grow sub-linearly.

5.4 Balance and Stability (RQ4)
Balance. Table 6 presents the performance gains of Booster across
test samples with varying degrees of sparsity. We categorize the
samples by time sparsity (i.e., the number of facts per timestamp)
and entity sparsity (i.e., the number of interacted entities), and then
compute the average𝑀𝑅𝑅 within each group. Booster consistently
improves performance across all sparsity levels, with more signifi-
cant gains observed for sparser samples. For instance, on samples

3583

0
Epochs

20
R

an
k

Original model
Booster

15

10

5

10 20

(a)

0
Epochs

Original model
Booster

40

R
an
k 30

20

10

0
10 20

(b)

Original model
Booster

0
Epochs

10 20

1500

R
an
k

1000

500

0

(c)

Original model
Booster125

R
an

k 100

75

50

25

0
0

Epochs
10 20

(d)

Figure 11: Change of 𝑟𝑎𝑛𝑘 of four test samples that are hard to be optimized by the TEMP model.

Table 6: Performance comparison on the ICEWS 14 dataset
with different sparsities of timestamps and entities.

Models HyTE HyTEBooster TA TABooster TNT TNTBooster
Scope MRR MRR MRR MRR MRR MRR
[0:100] 0.255 0.291 0.421 0.447 0.598 0.621

Time [100:250] 0.276 0.315 0.388 0.398 0.601 0.602
[300:] 0.306 0.309 0.387 0.388 0.623 0.640
[0:10] 0.149 0.198 0.324 0.361 0.403 0.421

Entity [10:50] 0.287 0.306 0.378 0.383 0.585 0.598
[100:] 0.343 0.357 0.411 0.428 0.634 0.639

YAGO 11k

Datasets

0

25

50

75

100

125

150

 S
ta

nd
ar

d
D

ev
ia

tio
n

107.72

69.90

53.06

34.12 33.51

146.24

80.98

64.10

44.09 40.19

with Booster
w/o Booster

GDELT Wikidata 12k ICEWS 14 ICEWS 05-15

(a)

YAGO 11k GDELT Wikidata 12k ICEWS 14 ICEWS 05-15

Datasets

0

20

40

60

80

100

120

 S
ta

nd
ar

d
D

ev
ia

tio
n 109.81

66.87

54.18

33.06 31.41

132.73

78.01

61.34

45.17
39.86

with Booster
w/o Booster

(b)

Figure 12: Variance reduction of TEMP (a) and TNT (b).

with 0–10 interacted entities, Booster boosts TA performance by
11.7%, compared with a 4.1% gain for those with over 100 entities.
These results demonstrate that Booster effectively enriches sparse
graph structures, leading to more balanced performance across
timestamps and entities. Figures 10(c) and (d) further confirm its
ability to reduce temporal performance imbalance. Given the foun-
dational role of TKGC in real-world knowledge-enhanced applica-
tions, Booster’s balancing effect highlights its potential to improve
the exposure of long-tail items and enhance recommendations.

Stability. To evaluate the effectiveness of Booster in stabilizing
model performance, we randomly select four test samples whose
𝑟𝑎𝑛𝑘 metrics deteriorate over time during training with the TEMP
model. As shown in Figure 11, these samples exhibit improved per-
formance and reduced fluctuations when trained with the Booster
framework. This improvement stems from Booster’s ability to miti-
gate model preference bias and reduce false negatives.

Furthermore, Figure 12 presents the standard deviation of 𝑟𝑎𝑛𝑘
across four independent training runs. Across all datasets, Booster
consistently lowers variance for different baseline models, confirm-
ing its stabilizing effect. This enhanced stability not only reduces

E-E Time span E-R
0

5

10

15

20

25

30

35
TNT
TEMP
DE
With Booster

3.47

25.79

6.47
4.02

20.31

7.02

3.26

22.52

6.69

(a)

E-E Time span E-R
0

20

40

60

80
TNT
TEMP
DE
With Booster

5.69

83.46

14.74

7.03

77.93

20.66

5.27

72.09

18.25

(b)

Figure 13: Characteristics of top-ranked entities on the
ICEWS 14 (a) and Wikidata (b) datasets.

model inconsistency but also improves the reliability of the system
in real-world applications, where robustness and consistent output
quality are critical for user adoption.

Model preference. To assess Booster’s effectiveness in address-
ing model preference, we follow the strategy in Figure 2(f) to ana-
lyze the top-ranked entities selected by each model and its Booster-
enhanced variant. As shown in Figure 13, Booster helps balance
entities with different characteristics, leading to fairer and more
diverse recommendations in real-world scenarios.

6 CONCLUSION
In this paper, we make the first attempt to address the challenges
of imbalanced data and model preference in temporal knowledge
graph completion. We first reveal the limitations of existing meth-
ods through empirical analysis, and then propose Booster, the first
pattern-aware data augmentation framework specifically designed
for TKGs, to alleviate these issues. Extensive experiments on five
benchmarks show that Booster consistently improves model per-
formance while enhancing prediction balance. In future work, we
plan to further explore the robustness of TKGC methods.

ACKNOWLEDGMENTS
This work was supported by the Natural Science Foundation of
Chongqing (No. CSTB2023NSCQ-MSX1020), Guangxi Key Research
and Development Program (No. Guike AB24010112) and National
Natural Science Foundation of China (No. 62406057).

3584

REFERENCES
[1] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and

Oksana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In NIPS. 2787–2795.

[2] Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James
Starz, and Michael Ward. 2015. ICEWS Coded Event Data. Harvard Dataverse.

[3] Heng Chang, Jie Cai, and Jia Li. 2023. Knowledge Graph Completion with
Counterfactual Augmentation. In The Web Conference. 2611–2620.

[4] Wei Chen, Haoyu Huang, Zhiyu Zhang, Tianyi Wang, Youfang Lin, and Liang
Chang. 2025. Next-POI Recommendation via Spatial-Temporal Knowledge Graph
Contrastive Learning and Trajectory Prompt. IEEE Trans. Knowl. Data Eng. (2025).
https://doi.org/10.1109/TKDE.2025.3545958

[5] Wei Chen, Huaiyu Wan, Shengnan Guo, Haoyu Huang, Shaojie Zheng, Jiamu Li,
Shuohao Lin, and Youfang Lin. 2022. Building and exploiting spatial-temporal
knowledge graph for next POI recommendation. Knowl. Based Syst. 258 (2022),
109951.

[6] Wei Chen, Huaiyu Wan, Yuting Wu, Shuyuan Zhao, Jiayaqi Cheng, Yuxin Li,
and Youfang Lin. 2024. Local-Global History-Aware Contrastive Learning for
Temporal Knowledge Graph Reasoning. In ICDE. 733–746.

[7] Xiangnan Chen, Wen Zhang, Zhen Yao, Mingyang Chen, and Siliang Tang.
2023. Negative Sampling with Adaptive Denoising Mixup for Knowledge Graph
Embedding. In ISWC. 253–270.

[8] Jinhao Cui, Heyan Chai, Xu Yang, Ye Ding, Binxing Fang, and Qing Liao. 2024.
SGCL: Semantic-aware Graph Contrastive Learning with Lipschitz Graph Aug-
mentation. In ICDE. 3028–3041.

[9] Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha P. Talukdar. 2018.
HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding. In
EMNLP. 2001–2011.

[10] Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. 2022. Data Augmentation
for Deep Graph Learning: A Survey. SIGKDD Explor. 24, 2 (2022), 61–77.

[11] Wenying Duan, Xiaoxi He, Zimu Zhou, Lothar Thiele, and Hong Rao. 2023.
Localised Adaptive Spatial-Temporal Graph Neural Network. In KDD. 448–458.

[12] Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian Mendez, and Denny
Vrandecic. 2014. Introducing Wikidata to the Linked Data Web. In ISWC. 50–65.

[13] Alberto García-Durán, Sebastijan Dumancic, andMathias Niepert. 2018. Learning
Sequence Encoders for Temporal Knowledge Graph Completion. In EMNLP.
4816–4821.

[14] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In ICML. 1263–
1272.

[15] Rishab Goel, Seyed Mehran Kazemi, Marcus A. Brubaker, and Pascal Poupart.
2020. Diachronic Embedding for Temporal Knowledge Graph Completion. In
AAAI. 3988–3995.

[16] Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. 2022.
Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for
Traffic Forecasting. IEEE Trans. Knowl. Data Eng. 34, 11 (2022), 5415–5428.

[17] Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva Gurumurthy, Volodymyr
Zhabiuk, Quannan Li, and Jimmy Lin. 2014. Real-Time Twitter Recommen-
dation: Online Motif Detection in Large Dynamic Graphs. Proc. VLDB Endow. 7,
13 (2014), 1379–1380.

[18] Jindong Han, Weijia Zhang, Hao Liu, Tao Tao, Naiqiang Tan, and Hui Xiong.
2024. BigST: Linear Complexity Spatio-Temporal Graph Neural Network for
Traffic Forecasting on Large-Scale Road Networks. Proc. VLDB Endow. 17, 5
(2024), 1081–1090.

[19] Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. 2022. G-Mixup: Graph
Data Augmentation for Graph Classification. In ICML, Vol. 162. 8230–8248.

[20] Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. 2021. Explainable Subgraph
Reasoning for Forecasting on Temporal Knowledge Graphs. In ICLR.

[21] Rikui Huang, Wei Wei, Xiaoye Qu, Shengzhe Zhang, Dangyang Chen, and Yu
Cheng. 2024. Confidence is not Timeless: Modeling Temporal Validity for Rule-
based Temporal Knowledge Graph Forecasting. In ACL. 10783–10794.

[22] Prachi Jain, Sushant Rathi, Mausam, and Soumen Chakrabarti. 2020. Temporal
Knowledge Base Completion: New Algorithms and Evaluation Protocols. In
EMNLP. 3733–3747.

[23] Mingxuan Ju, Tong Zhao, Wenhao Yu, Neil Shah, and Yanfang Ye. 2023. Graph-
Patcher: Mitigating Degree Bias for Graph Neural Networks via Test-time Aug-
mentation. In NeurIPS.

[24] Hidetaka Kamigaito and Katsuhiko Hayashi. 2022. Comprehensive Analysis
of Negative Sampling in Knowledge Graph Representation Learning. In ICML,
Vol. 162. 10661–10675.

[25] Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. 2020. Tensor
Decompositions for Temporal Knowledge Base Completion. In ICLR.

[26] Dongjin Lee, Kijung Shin, and Christos Faloutsos. 2020. Temporal locality-aware
sampling for accurate triangle counting in real graph streams. VLDB J. 29, 6
(2020), 1501–1525.

[27] Kalev Leetaru and Philip A. Schrodt. 2013. Global Database of Events, Language
and Tone. In ISA.

[28] Youru Li, Zhenfeng Zhu, Xiaobo Guo, Linxun Chen, Zhouyin Wang, Yinmeng
Wang, Bing Han, and Yao Zhao. 2023. Learning Joint Relational Co-evolution in
Spatial-Temporal Knowledge Graph for SMEs Supply Chain Prediction. In KDD.
4426–4436.

[29] Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen,
Yuanzhuo Wang, and Xueqi Cheng. 2021. Temporal Knowledge Graph Rea-
soning Based on Evolutional Representation Learning. In SIGIR. 408–417.

[30] Weibin Liao, Yifan Zhu, Yanyan Li, Qi Zhang, Zhonghong Ou, and Xuesong
Li. 2025. RevGNN: Negative Sampling Enhanced Contrastive Graph Learning
for Academic Reviewer Recommendation. ACM Trans. Inf. Syst. 43, 1 (2025),
1:1–1:26.

[31] Hongrui Liu, Binbin Hu, Xiao Wang, Chuan Shi, Zhiqiang Zhang, and Jun Zhou.
2022. Confidence May Cheat: Self-Training on Graph Neural Networks under
Distribution Shift. In WWW. 1248–1258.

[32] Haoran Liu, Jianling Wang, Kaize Ding, and James Caverlee. 2023. Topological
and Temporal Data Augmentation for Temporal Graph Networks. In Temporal
Graph Learning Workshop @ NeurIPS 2023.

[33] Bin Lu, Ze Zhao, Xiaoying Gan, Shiyu Liang, Luoyi Fu, Xinbing Wang, and
Chenghu Zhou. 2024. Graph Out-of-Distribution Generalization With Control-
lable Data Augmentation. IEEE Trans. Knowl. Data Eng. 36, 11 (2024), 6317–6329.

[34] A. Agnes Lydia and F. Sagayaraj Francis. 2019. Adagrad - An optimizer for
stochastic gradient descent. Int. J. Inf. Comput. Sci. 6, 5 (2019), 566–568.

[35] Tiroshan Madushanka and Ryutaro Ichise. 2024. Negative Sampling in Knowl-
edge Graph Representation Learning: A Review. CoRR abs/2402.19195 (2024).

[36] Saurav Manchanda. 2023. Metapath-Guided Data-Augmentation For Knowledge
Graphs. In CIKM. 4175–4179.

[37] Zara Nasar, Syed Waqar Jaffry, and Muhammad Kamran Malik. 2022. Named
Entity Recognition and Relation Extraction: State-of-the-Art. ACM Comput. Surv.
54, 1 (2022), 20:1–20:39.

[38] Tianhao Peng, Haitao Yuan, Yongqi Zhang, Yuchen Li, Peihong Dai, Qunbo
Wang, Senzhang Wang, and Wenjun Wu. 2025. TagRec: Temporal-Aware Graph
Contrastive Learning With Theoretical Augmentation for Sequential Recommen-
dation. IEEE Trans. Knowl. Data Eng. 37, 5 (2025), 3015–3029.

[39] Harry Shomer, Wei Jin, Wentao Wang, and Jiliang Tang. 2023. Toward Degree
Bias in Embedding-Based Knowledge Graph Completion. In WWW. 705–715.

[40] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core
of semantic knowledge. InWWW. 697–706.

[41] Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui, Longfei Li, Jun Zhou, Xiang
Wang, and Xiangnan He. 2023. Unleashing the Power of Graph Data Augmenta-
tion on Covariate Distribution Shift. In NeurIPS.

[42] Shiyin Tan, Jingyi You, and Dongyuan Li. 2022. Temporality- and Frequency-
aware Graph Contrastive Learning for Temporal Network. In CIKM. 1878–1888.

[43] Jizhi Tang, Yansong Feng, and Dongyan Zhao. 2019. Learning to Update Knowl-
edge Graphs by Reading News. In EMNLP-IJCNLP. 2632–2641.

[44] Xing Tang, Ling Chen, Hongyu Shi, and Dandan Lyu. 2024. DHyper: A Recurrent
Dual Hypergraph Neural Network for Event Prediction in Temporal Knowledge
Graphs. ACM Trans. Inf. Syst. 42, 5 (2024), 129:1–129:23.

[45] Zhenwei Tang, Shichao Pei, Zhao Zhang, Yongchun Zhu, Fuzhen Zhuang, Robert
Hoehndorf, and Xiangliang Zhang. 2022. Positive-Unlabeled Learning with
Adversarial Data Augmentation for Knowledge Graph Completion. In IJCAI.
2248–2254.

[46] Yuxing Tian, Aiwen Jiang, Qi Huang, Jian Guo, and Yiyan Qi. 2024. Latent
Diffusion-based Data Augmentation for Continuous-TimeDynamic GraphModel.
In KDD. 2900–2911.

[47] Zhongwei Wan, Xin Liu, Benyou Wang, Jiezhong Qiu, Boyu Li, Ting Guo,
Guangyong Chen, and Yang Wang. 2024. Spatio-temporal Contrastive Learning-
enhanced GNNs for Session-based Recommendation. ACM Trans. Inf. Syst. 42, 2
(2024), 58:1–58:26.

[48] Jiapu Wang, Boyue Wang, Junbin Gao, Xiaoyan Li, Yongli Hu, and Baocai Yin.
2024. QDN: A Quadruplet Distributor Network for Temporal Knowledge Graph
Completion. IEEE Trans. Neural Networks Learn. Syst. 35, 10 (2024), 14018–14030.

[49] Jiapu Wang, Boyue Wang, Junbin Gao, Shirui Pan, Tengfei Liu, Baocai Yin, and
Wen Gao. 2024. MADE: Multicurvature Adaptive Embedding for Temporal
Knowledge Graph Completion. IEEE Trans. Cybern. 54, 10 (2024), 5818–5831.

[50] Jiapu Wang, Boyue Wang, Meikang Qiu, Shirui Pan, Bo Xiong, Heng Liu, Linhao
Luo, Tengfei Liu, Yongli Hu, Baocai Yin, and Wen Gao. 2023. A Survey on
Temporal Knowledge Graph Completion: Taxonomy, Progress, and Prospects.
CoRR abs/2308.02457 (2023).

[51] Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, ChanghuWang, Siddharth
Bhatia, and Bryan Hooi. 2021. Adaptive Data Augmentation on Temporal Graphs.
In NeurIPS. 1440–1452.

[52] Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and William L. Hamilton. 2020.
TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion.
In EMNLP. 5730–5746.

[53] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. 2023.
Self-Supervised Learning of Graph Neural Networks: A Unified Review. IEEE
Trans. Pattern Anal. Mach. Intell. 45, 2 (2023), 2412–2429.

3585

https://doi.org/10.1109/TKDE.2025.3545958

[54] Hao Xin and Lei Chen. 2024. KartGPS: Knowledge Base Update with Temporal
Graph Pattern-based Semantic Rules. In ICDE. 5075–5087.

[55] Siheng Xiong, Yuan Yang, Faramarz Fekri, and James Clayton Kerce. 2023. TILP:
Differentiable Learning of Temporal Logical Rules on Knowledge Graphs. In
ICLR.

[56] Chengjin Xu, Yung-Yu Chen, Mojtaba Nayyeri, and Jens Lehmann. 2021. Tem-
poral Knowledge Graph Completion using a Linear Temporal Regularizer and
Multivector Embeddings. In NAACL-HLT. 2569–2578.

[57] Chenjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Shariat Yazdi, and Jens
Lehmann. 2020. Temporal Knowledge Graph Completion Based on Time Series
Gaussian Embedding. In ISWC. 654–671.

[58] Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Shariat Yazdi, and Jens
Lehmann. 2020. TeRo: A Time-aware Knowledge Graph Embedding via Temporal
Rotation. In COLING. 1583–1593.

[59] Yi Xu, Junjie Ou, Hui Xu, and Luoyi Fu. 2023. Temporal Knowledge Graph
Reasoning with Historical Contrastive Learning. In AAAI. 4765–4773.

[60] Jinfa Yang, Xianghua Ying, Yongjie Shi, and Bowei Xing. 2024. Tensor decompo-
sitions for temporal knowledge graph completion with time perspective. Expert
Syst. Appl. 237, Part A (2024), 121267.

[61] Ruiyi Yang, Flora D. Salim, and Hao Xue. 2024. SSTKG: Simple Spatio-Temporal
Knowledge Graph for Intepretable and Versatile Dynamic Information Embed-
ding. InWWW. 551–559.

[62] Naimeng Yao, Qing Liu, Yi Yang, Weihua Li, and Quan Bai. 2023. Entity-Relation
Distribution-Aware Negative Sampling for Knowledge Graph Embedding. In
ISWC. 234–252.

[63] Yuanzhou Yao, Zhao Zhang, Yongjun Xu, and Chao Li. 2022. Data Augmentation
for Few-Shot Knowledge Graph Completion from Hierarchical Perspective. In

COLING. 2494–2503.
[64] Fu Zhang, Hongzhi Chen, Yuzhe Shi, Jingwei Cheng, and Jinghao Lin. 2024.

Joint framework for tensor decomposition-based temporal knowledge graph
completion. Inf. Sci. 654 (2024), 119853.

[65] Mengqi Zhang, Yuwei Xia, Qiang Liu, Shu Wu, and Liang Wang. 2023. Learning
Long- and Short-term Representations for Temporal Knowledge Graph Reason-
ing. InWWW. 2412–2422.

[66] Qianru Zhang, Lianghao Xia, Xuheng Cai, Siu-Ming Yiu, Chao Huang, and
Christian S. Jensen. 2024. Graph Augmentation for Recommendation. In ICDE.
557–569.

[67] Shengzhe Zhang, Liyi Chen, Chao Wang, Shuangli Li, and Hui Xiong. 2024.
Temporal Graph Contrastive Learning for Sequential Recommendation. In AAAI.
9359–9367.

[68] Shuaicheng Zhang, Yada Zhu, and Dawei Zhou. 2023. TGEditor: Task-Guided
Graph Editing for Augmenting Temporal Financial Transaction Networks. In
ICAIF. 219–226.

[69] Yongqi Zhang, Quanming Yao, and Lei Chen. 2021. Simple and automated
negative sampling for knowledge graph embedding. VLDB J. 30, 2 (2021), 259–
285.

[70] Yuyue Zhao, Xiang Wang, Jiawei Chen, Yashen Wang, Wei Tang, Xiangnan He,
and Haiyong Xie. 2023. Time-aware Path Reasoning on Knowledge Graph for
Recommendation. ACM Trans. Inf. Syst. 41, 2 (2023), 26:1–26:26.

[71] Xinyi Zhu, Liping Wang, Hao Xin, Xiaohan Wang, Zhifeng Jia, Jiyao Wang,
Chunming Ma, and Yuxiang Zengt. 2023. T-FinKB: A Platform of Temporal
Financial Knowledge Base Construction. In ICDE. 3671–3674.

[72] Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. 2021. An Empirical Study of
Graph Contrastive Learning. In NeurIPS Datasets and Benchmarks.

3586

	Abstract
	1 Introduction
	2 Related Work
	2.1 Temporal Knowledge Graph Completion
	2.2 Graph Data Augmentation
	2.3 Spatial-temporal Graphs

	3 Preliminary Study
	3.1 Temporal Knowledge Graph
	3.2 Temporal Knowledge Graph Completion
	3.3 Imbalanced Data Distribution
	3.4 Model Preference

	4 Method
	4.1 Overall Architecture
	4.2 Frequency-based Filtering
	4.3 Hierarchical Scoring Algorithm
	4.4 Two-Stage Training
	4.5 Complexity Analysis

	5 Experiments
	5.1 Overall Evaluation (RQ1)
	5.2 Effect of Each Component (RQ2)
	5.3 Efficiency (RQ3)
	5.4 Balance and Stability (RQ4)

	6 Conclusion
	Acknowledgments
	References

