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ABSTRACT
Data discovery from data lakes is an essential application in modern

data science. While many previous studies focused on improving

the efficiency and effectiveness of data discovery, little attention

has been paid to the usability of such applications. In particular,

exploring data discovery results can be cumbersome due to the

cognitive load involved in understanding raw tabular results and

identifying insights to draw conclusions. To address this challenge,

we introduce a new problem: visualization recommendation for

data discovery over data lakes, which aims to automatically identify

visualizations that highlight relevant or desired trends in the results

returned by data discovery engines. We propose LakeVisage, an
end-to-end framework as the first solution to this problem. Given a

data lake, a data discovery engine, and a user-specified query table,

LakeVisage intelligently explores the space of visualizations and

recommends the most useful and “interesting” visualization plans.

To this end, we developed (i) approaches to smartly construct the

candidate visualization plans from the results of the data discovery

engine and (ii) effective pruning strategies to filter out less inter-

esting plans so as to accelerate the visual analysis. Experimental

results on real data lakes demonstrate that our proposed techniques

can achieve an order-of-magnitude speedup in visualization rec-

ommendation. We also conduct a comprehensive user study to

demonstrate that LakeVisage offers convenience to users in real

data analysis applications by enabling them seamlessly get started

with the tasks and performing explorations flexibly.
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1 INTRODUCTION
Over the past few decades, there has been a significant growth in the

number of open and shared datasets from governments, academic

institutions, and enterprises. These massive collections of datasets,

known as data lakes, open up new opportunities for innovation,

economic growth, and social benefits [13, 32].Data discovery, which
aims to help users find and access specific data they need, is an

essential operation for integrating and analyzing datasets from data

lakes that are useful for various downstream tasks. Data discovery

has become an important topic in the data management community

with a specific focus on topics such as data exploration [15, 16, 43],

table union search [14, 24, 36], joinable table discovery [9, 11, 58],

and domain discovery [37, 59].

Figure 1:Motivation Example: analyzing EV sales trends from
a data lake. (A) Given a query table, a data discovery engine
returns top-𝑘 relevant result tables. (B) Visualizations rec-
ommended by LakeVisage help an analyst quickly discover
the marketing potential of economical EV brands in Maine.
(C) Manual inspection in computational notebooks puts the
onus on the analyst to reach the same conclusion.

While many previous studies focus on improving the efficiency

and effectiveness of data discovery, little attention is paid to its

usability. Since the objective of data discovery is to provide richer

data to boost data analysis tasks, it is essential to make the dis-

covery results easily accessible and usable. In practical scenarios,

the data discovery outcomes are always collections of tables with

heterogeneous schema, wherein a subset of columns or rows of

different tables are related [5, 17, 29, 46, 54]. These relations often
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represent semantic relatedness obtained via approximations. Exist-

ing studies on data discovery place the onus on the user to analyze

and make sense of such results, as the raw tables are simply re-

turned for a given query. Therefore, exploring a collection of tables

returned as data discovery results can be even more challenging.

Although there have been some efforts in easing the exploration

of data lakes [15, 35, 38], they target improving the usability of

browsing the whole data lake instead of the data discovery results.

Therefore, they cannot be utilized to resolve the above challenges.

To address this issue, a natural approach is to provide visualiza-

tions, which is often the first step in data analysis [10, 28, 49, 52], as

affordances to interactively explore data discovery results. With the

help of visualization, it would be much easier for users to analyze

the data discovery results. A typical example is shown in Figure 1:

Example 1.1. Suppose Aluko, a data scientist working for an EV

company, has a repository of data about national electric vehicle

registration andwants to gain more insights for potential marketing

opportunities. To this end, she begins with a small table of sample

data and identifies a collection of relevant result tables using data

discovery engines, which are then further analyzed for business

insights. Suppose the schema of the query table includes columns

such as location, date, model, make, and retail price, among others,

and each result table has a similar but not identical schema. While it

is natural to first explore the average price of EVs for different states

to identify potential markets, this would require manual efforts to

collect metadata and write programs to perform the designated

analysis task. As depicted in Figure 1C, when relying on manual

browsing, it can potentially require significant coding and inspec-

tion efforts, especially when the data size is huge. Moreover, the

iterative nature of exploratory analysis may require Aluko to repeat

the above workflow several times before deriving insights, making

it a cumbersome experience.

Meanwhile, LakeVisage alleviates the burden via taking all tables
returned by the search engine, strategically resolving column align-

ments, and recommending interesting visualizations to Aluko as

shown in Figure 1B. The first visualization shows that the average

price of electric vehicles (EVs) in Maine is significantly lower than

that in California, and the rate of price growth is also slower. The

second visualization explains one potential reason: Toyota, an eco-

nomic EV, has a significant market share in Maine, whereas Tesla,

a high-end EV, dominates in California. Based on this observation,

instead of spending a long time preparing data for analysis, Aluko

can quickly conclude that Maine and California are suitable target

markets for economic and luxury electric vehicles, respectively.

Many previous works provide scalable and interactive visual-

ization recommendations for structured queries over relational

data [21, 25, 28, 47, 49]. Given a structured query such as SQL, they

can automatically identify the most interesting visualizations for

analytical tasks. However, it is non-trivial to extend these tech-

niques to the scenario of data discovery tasks over data lakes due

to the following reasons: Firstly, since data discovery tasks aim at

finding related tables from the data lake, it is essential to reflect the

relationship between the query and result tables in the visualiza-

tion. In addition, visualizations of multiple related columns among

the data discovery results can introduce perceptual scalability chal-

lenges for the users, which exists when analyzing even a single

table, i.e., viewing and exploring the information in such tables puts

the cognitive burden on users [10, 41, 55]. Unlike previous work for

relational databases, the visualization needs to present information

from multiple tables in data discovery scenarios. Moreover, while

the results of SQL queries are always a set of tuples, those of data

discovery tasks are collections of tables. As a result, the search

space of the visualization recommendation for data lakes would be

much larger than that of relational databases.

In this paper, we study how visualization recommendation can

help ease the exploration of the data discovery results from data

lakes. To this end, we propose an end-to-end framework (LakeVisage1)
that recommends visualizations as affordances to assist users in

seamlessly exploring the results returned by a data discovery en-

gine. Since there is no previous study on this problem, we first

come up with a formal definition for it to illustrate how to build

visualization over results across multiple tables. To illustrate the

relatedness between tables in the results and the given query, we

need to allocate result tables of data discovery into a certain number

of series in the visualization, which could also help improve per-

ceptual scalability. We provide a data-driven solution to efficiently

generate high-quality results based on the data distribution of in-

volved columns and develop effective pruning techniques to reduce

the cost of handling unpromising visualization plans and accelerate

the overall query processing time. These techniques could result in

up to 30X of performance gain in total. In addition, we demonstrate

the reliability of LakeVisage by conducting a comprehensive user

study and showing that LakeVisage could result in high accuracy

and shorter answer time for data science tasks compared with a

literate programming tool without visualizations.

Our contributions in this paper are summarized as follows:

• We study the new research problem of visualization rec-

ommendation for data discovery over data lakes, providing

the first formal definition.

• We design and implement LakeVisage, an end-to-end frame-

work, as the solution to the problem and use table union

search as a use case to illustrate our proposed techniques.

Specifically, we develop novel techniques to construct visu-

alizations over multiple result tables and propose a suite of

pruning techniques to reduce execution time.

• We conduct comprehensive experiments over three public

datasets for data discovery, demonstrating that our opti-

mizations reduce execution time by an order of magnitude.

• We present the results of a systematic user study evaluat-

ing the usability and reliability of LakeVisage compared

to Jupyter Notebooks, a widely used literate programming

tool for exploring data discovery results among practition-

ers. The outcome of the user study further justifies that

LakeVisage significantly eases the data analysis of data

lake-related tasks.

The rest of this paper is organized as follows: Section 2 intro-

duces the necessary background knowledge and formally defines

the problem. Section 3 presents our proposed framework with tech-

nical details. Section 4 discusses some essential topics regarding

1
LakeVisage is a portmanteau of the words lake (from data lakes) and envisage, thereby

representing the goal of helping users comprehend data discovery results visually.
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our proposed framework’s flexibility and potential extensions. Sec-

tion 5 illustrates the experimental results over real benchmarking

datasets. Section 6 introduces the design and results of the user

study. Section 7 surveys the related work, and Section 8 contains

concluding remarks.

2 PRELIMINARY
2.1 Data Discovery
The core task of data discovery is to find related tables [46] in data

lakes for a given query table. There are many definitions of table

relatedness, and in this paper, we use Table Union Search [36] to

illustrate our proposed techniques, which can be easily extended

to support other data discovery tasks. Suppose the data lake is a

collection of tables T , and each table𝑇 ∈ T consists of one or more

columns. To determine if two tables𝑇1,𝑇2 have enough similar con-

tent to be “unioned“ together, a table union search engine generally

computes a table unionability score 𝑈 in two steps: (1) compute

a column unionability score for each of all pairs of columns 𝑡𝑖 , 𝑡 𝑗
where 𝑡𝑖 ∈ 𝑇1, 𝑡 𝑗 ∈ 𝑇2 as 𝐹 (𝑀 (𝑡𝑖 ), 𝑀 (𝑡 𝑗 )), where 𝐹 is a similarity

score function and 𝑀 is a column encoder [3, 12, 14, 24, 36], (2)

use an aggregate mechanism 𝐴 to compute the table unionability

score by considering all previously computed column unionability

scores. For a simple example, for any two tables with textual data

in all columns, 𝑀 can be the bag of tokens in a column, 𝐹 can be

the Jaccard similarity between the two bags, and 𝐴 can be the sum

of all column unionability scores. A general definition of the Table

Union Search problem is then the following:

Definition 2.1 (Table Union Search). Given a collection of data

lake tables T and a query table 𝑆 , top-k table union search aims at

finding a subset S ⊆ T where |S| = 𝑘 and ∀𝑇 ∈ S and𝑇 ′ ∈ T −S,
we have𝑈 (𝑆,𝑇 ) ≥ 𝑈 (𝑆,𝑇 ′).

2.2 Visualization Recommendation
We now introduce the essential terminologies of visualization rec-

ommendation. A representative work in this field is SeeDB [49],

which focuses on visualization recommendations for a relational

database 𝐷 with a snowflake schema. In visualization recommen-

dation literatures, the setting is assumed to be database 𝐷 with

a snowflake schema. Within such a setting, there are three key

aspects for visualization generation: dimension attributes A are

the attributes to group-by in a visualization; measure attributesM
are the attributes to perform aggregate on in the visualizations;

and aggregate functions F (such as SUM, COUNT, and AVG) over

measure attributes. Therefore, a visualization plan 𝑃 is a function

represented by a triple ⟨𝐴,𝑀, 𝐹 ⟩, where 𝐴 ∈ A,𝑀 ∈ M, 𝐹 ∈ F . In-
tuitively, 𝑃 can be regarded as a two-column table ⟨𝐴, 𝐹 (𝑀)⟩, which
can be displayed via standard visualization mechanisms, such as bar

charts or trend lines. The visualization recommendation approaches

typically focus on such visualization plans due to their reported

popularity among users of visualization tools [34, 49]. Given a user

query 𝑄 that aims to explore a subset of table 𝐷 and results in a

visualization 𝑃𝑄 , the goal of visualization recommendation is to

identify other visualizations that are interesting with respect to

𝑃𝑄 on a predefined utility function. Examples of interestingness

include larger deviation from the distribution underlying 𝑃𝑄 , which

Figure 2: Illustration of Terminologies for Visualization

can be measured via utility functions such as Earth Mover’s Dis-

tance (EMD), Euclidean Distance, Kullback-Leibler Divergence (K-L

divergence), and Jenson-Shannon Distance [27, 49].

2.3 Problem Definition
Next, we will explain the formal definition of the problem visualiza-

tion recommendation for data discovery using the aforementioned

terminologies. Let 𝑄 denote the query table and S = {𝑆1, 𝑆2, ..., 𝑆𝑘 }
denote the set of 𝑘 result tables of the Table Union Search problem,

respectively. Suppose 𝑄 has 𝑢 columns where the 𝑖𝑡ℎ column is de-

noted as 𝑞𝑖 , and the 𝑥
𝑡ℎ

column of the 𝑦𝑡ℎ result table 𝑆𝑦 is denoted

as 𝑠𝑥𝑦 . Based on the definition of data discovery, each column 𝑞 ∈ 𝑄
is aligned with a set of columns in the result tables denoted as𝐶 (𝑞).
For each 𝐶 (𝑞), we have |𝐶 (𝑞) | ≤ 𝑘 since each column 𝑞 ∈ 𝑄 will

align with at most one column in each result table 𝑆 ∈ S.
Recall that in the example introduced in Figure 1, the system can

identify important visualizations for data science tasks by summa-

rizing the information from multiple tables in the results of data

discovery. To this end, we need to revise the definition of a visualiza-

tion plan. We still follow the idea of related work introduced earlier

by denoting a visualization plan using the triplet 𝑃 = ⟨𝐴,𝑀, 𝐹 ⟩ to de-
fine visualization plans. While the visualization plans for relational

databases in previous studies introduced above are two-column

tables ⟨𝐴, 𝐹 (𝑀)⟩, in the scenario of data discovery, the visualiza-

tion needs to display results from multiple tables, specifically 𝑘 .

Additionally, since data discovery tasks aim at identifying tables

relevant to the given query, it is essential to illustrate such related-

ness in visualization plans. To satisfy this requirement, we propose

the new concept of series that can be formally described as follows:

given a query column 𝑞 and the set of its aligned columns 𝐶 (𝑞), a
series 𝛾 is the ordered vertical concatenation of𝑤 aligned columns

that are related with each other in 𝐶 (𝑞) where𝑤 ∈ [1, |𝐶 (𝑞) |]. We

denote the set of series corresponding to 𝐶 (𝑞) is as Γ(𝑞), where
1 < |Γ(𝑞) | ≤ |𝐶 (𝑞) |. And the set of all series for the query table

𝑄 is denoted as Γ𝑄 = ∪𝑞∈𝑄Γ(𝑞). In the visualization plan for data

discovery, the bars under a value of dimension attribute 𝐴 should

correspond to a series 𝛾 ∈ Γ𝑄 , while the values of 𝐴 should come

from the union of all columns in 𝐶 (𝑞) and 𝑞 ∈ 𝑄 . In this way, we

also improve perceptual scalability, as the number of series is no

larger than that of aligned columns in the result tables. The defini-

tions of the measurement attribute𝑀 and aggregate 𝐹 are similar

to previous work, and 𝐹 (𝑀) returns a single real number. Here,

we assume that 𝐹 includes only one aggregation operation on one

column for ease of presentation.
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Example 2.2. We show a running example to illustrate the above

terminologies. In the upper left part of Figure 2, it shows an example

of a query table and its result tables, where the aligned columns

are in the same color. For example, for the query column 𝑞 of

MSRP (i.e., manufacturer-suggested retail price), the set of aligned

columns 𝐶 (𝑞) is {𝑀𝑆𝑅𝑃, 𝑃𝑟𝑖𝑐𝑒, 𝑅𝑒𝑡𝑎𝑖𝑙_𝑃𝑟𝑖𝑐𝑒, 𝑃𝑟𝑖𝑐𝑒}. The right part
of Figure 2 presents an expanded version of the first visualization

shown in Figure 1, and the series “Texas” is added as more result

tables are returned (i.e., ev_tx_1 and ev_tx_2). Here the dimension

attribute 𝐴 is Year and there are 5 values. The set of series for

above 𝐶 (𝑞) is Γ = {𝑒𝑣_𝑐𝑎, 𝑒𝑣_𝑡𝑥, 𝑒𝑣_𝑚𝑒} as shown in bottom left

of the figure, where CA is the union of column MSRP from table

ev_ca_1 and ev_ca_2. Similarly, TX is the union of column price
from both ev_tx_1 and ev_tx_2, and ME is the column Retail_Price
from table ev_me. The measure attribute𝑀 is the count of all rows

(or equivalently, ID) and the aggregate 𝐹 is COUNT.

Following the practice of previous studies [27, 49], we also use

Earth Mover’s Distance (EMD) as the utility functionD to evaluate

whether a visualization plan is interesting. Note that, in keeping

with the classical visualization recommendation literature, the focus

of this work is to provide a framework that facilitates the integration

of any suitable metric, rather than finding the best utility metric.

Suppose there are 𝑣 series in Γ, the utility score of a visualization
plan 𝑃 can be calculated with Equation (1):

D(𝑃) = 2

𝑣 ∗ (𝑣 − 1)
∑︁

𝑖, 𝑗∈[1,𝑣 ],𝑖≠𝑗
𝐸𝑀𝐷 (𝛾𝑖 , 𝛾 𝑗 ) (1)

Here we use 𝛾𝑖 interchangeably to denote the associated numerical

vector of a series; the vector dimension equals the number of unique

values in𝐴, and the value in each dimension is the result of 𝐹 (𝑀) for
each value in 𝐴. Finally, we have our formal problem definition of

visualization recommendation for data discovery as Definition 2.3:

Definition 2.3. Given a query table 𝑄 and its set of result tables

S, the visualization recommendation for data discovery problems

aims at finding top-𝑛 most interesting visualization plans P where

∀𝑃 ∈ P, 𝑃 ′ ∉ P we have D(𝑃) ≥ D(𝑃 ′)

3 METHODOLOGY
3.1 System Overview
We first introduce the front-end of LakeVisage as shown in Figure 3.

It provides an interactive user interface that allows users to specify

the visualizations and returns the top-ranked visualization plans

recommended by our proposed algorithms. The web-based front

end consists of five components: (A) a query builder where the user

specifies the query table and path to the data lake storage; (B) a

schema viewer which displays the schema information of query

and result tables; (C) a recommendations panel which displays

the recommended visualization plans, (D) a detailed view which

highlights the plan a user selected from the recommendations; and

(E) a plan builder for users to specify customized visualization plans.

LakeVisage supports an end-to-end pipeline that can be built on

top of any data discovery engine. The overall workflow is shown

in Figure 4. Given the input table, the data discovery framework

first retrieves the top-𝑘 relevant result tables from the data lake.

Then there are three major steps for the visualization recommen-

dation process: Series Creation, Candidate Generation and Results
Ranking. The Series Creation step creates the series that serves as

the bars denoting the 𝐹 (𝑀) values in the visualization chart for

each dimension attribute value. The Candidate Generation step

identifies promising visualization plans from the large search space,

reducing the computational overhead of evaluating utility scores.

The Results Ranking step verifies the utility score for all candidate

plans and returns the top-𝑛 ones as the recommendation results.

One important issue to be addressed in data lake scenarios is han-

dling heterogeneous data formats. LakeVisage supports three data
types: categorical, numerical, and textual. Based on the definition

of visualization plans, we only consider categorical and numerical

columns as the candidates for measuring attributes (𝑀) in a plan.

When a column appears as a dimension attribute (𝐴), we transform

its entries, i.e., cells in the table column, to categorical values when

they are not. We discretize the column values into several bins for

numerical columns and map each entry to the respective bins. Each

bin corresponds to a value of the dimension attribute. For textual

columns, we transform each entry into a low-dimensional embed-

ding vector. Then we perform a clustering over the embedding

of all cells and treat each cluster as a dimension attribute value.

Similar discretization approaches have been employed by tools for

interactive analytics on textual data [42, 56].

3.2 Series Creation for Visualization
In order to satisfy the requirements of showing the relatedness

between tables in data discovery results, we need to construct

high-quality series collection Γ(𝑞) for each 𝑞 ∈ 𝑄 from its aligned

columns 𝐶 (𝑞) introduced before to serve as the bars for each at-

tribute dimension value in the visualization chart. Three general

principles guides the series creation: (i) the data semantics of the

columns belonging to the same series should be similar; (ii) the

overall utility score of the series over different attribute dimension

values should be large to make more contributions to the interest-

ingness of the plan; and (iii) there should not be too many series to

ensure the perceptual scalability.

Among the above, the Series Creation step takes care of the

first principle while the Result Ranking step covers the second

and the third. In the simplest scenario, each column 𝑠𝑥𝑦 ∈ 𝐶 (𝑞)
is regarded as a series. However, such a case may lead to a loss

of context regarding the relatedness of columns. Moreover, as the

number of series increases, users are overloaded with information,

leading to perceptual scalability challenges. To acquire high-quality

series with relevant columns, we need to define a mechanism for

evaluating their relatedness. We start from a heuristic method based

on syntactic similarity as the baseline: we consider columns with

similarity scores larger than a pre-defined threshold as related ones.

Specifically, we consider the criteria of columns with different data

formats as follows:

• Categorical: Regard two columns as two sets and consider

the syntactic similarity between them.

• Numerical: Identify the range of two columns and consider

their overlaps.

• Textual: Regard two columns as two bags of words and

consider syntactic similarity between them.
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Figure 3: The Front-end of LakeVisage. Figure 4: The Overall Architecture.

We use Jaccard similarity as a representative of syntactic similar-

ity metrics in our current implementation and experiments since

different metrics tend to have similar results in this step.

Nevertheless, the above syntactic similarity may not be an ideal

solution due to two concerns: on one hand, the simple similarity

scores fail to convey enough semantic information across multi-

ple columns within a series. On the other hand, traversing two

columns is required to compute the similarity score. Thus, the time

complexity is related to the size of tables the columns belong to,

which is expensive considering the large size of data lake tables. To

address these issues, we introduce a data-driven approach utilizing

statistical tools. The high-level idea is to treat each column as a ran-

dom variable with values for each entry drawn from a distribution.

Then we can determine whether two columns should be grouped

together based on their distributions. Given two columns
2
If their

distributions are close enough, they will be considered as belong-

ing to one series and thus merged into one series. To reach this

goal, we employ Pearson’s chi-square test [18], which measures

whether the observed frequency distribution of a random variable

is significantly different from its expected frequency distribution.

The statistic is calculated by Equation (2):

𝜒2 =

𝑁∑︁
𝑖=1

(𝑂𝑖 − 𝐸𝑖 )2
𝐸𝑖

(2)

where 𝑁 is the number of categories,𝑂𝑖 and 𝐸𝑖 is the observed and

expected frequency of each category.

In our scenario, we can regard the two columns as the observed

and expected distributions, respectively, and apply this tool. For the

column regarded as observed one, we conduct random sampling to

obtain𝑊 samples to serve as the observations 𝑂𝑖 ; For the column

regarded as the expected one, we need to estimate its statistics to

2
The comparison can also happen between two series where each series is a com-

bination of multiple columns. We will only mention columns when introducing the

techniques for the ease of presentation.

decide the above value of 𝐸𝑖 . We assume that the expected column

follows the exponential distribution family
3
, which covers most

common distributions such as Bernoulli, normal, and gamma distri-

butions. The statistics can then be estimated by randomly selecting

𝑊 samples from the column and then conducting Maximum Likeli-

hood Estimation. We empirically observed that setting𝑊 to 500,

which is less than 1% of most tables, yielded very promising re-

sults. After obtaining values of𝑂𝑖 and 𝐸𝑖 using the above sampling

and estimation approach, we can then calculate the 𝜒2 test statis-

tic and decide whether to reject the null hypothesis, i.e., the two

data distributions are similar, accordingly. Note that the overhead

of estimating 𝐸𝑖 values would be trivial. Once we decide which

columns belong to the same series, we can decide the statistics of

the newly formed series based on those of the two columns. For

instance, suppose two columns 𝑐1 and 𝑐2 follow Gaussian distribu-

tions 𝑁 (𝜇1, 𝜎2
1
) and 𝑁 (𝜇2, 𝜎2

2
), respectively, then the series consists

of them will follow the Gaussian distributions 𝑁 (𝜇1 + 𝜇2, 𝜎2
1
+ 𝜎2

2
).

Thus, the required number of estimations for a given column 𝑞 ∈ 𝑄
is no more than the cardinality of its aligned columns |𝐶 (𝑞) |.

Another issue to be resolved in series creation is the large search

space. Given the column 𝑞 ∈ 𝑄 , the number of potential candidates

for series collection is O(2𝑛), where 𝑛 is the number of aligned

columns in result tables (|𝐶 (𝑞) |). To reduce computational over-

head, we propose an iterative process for finding promising series

collections without traversing the entire search space. The high-

level idea is that we sort all columns in 𝐶 (𝑞) in ascending order

of cardinality and initialize each series with one single column.

Then, we start from the smallest columns and conduct the above

statistical tests on a pair of columns. If they pass the test, they will

be merged into one new series and proceed to the next round. In

each round, we will only merge one series pair. The whole process

will end if there are only two series left or no pair of series can be

further merged. This process can be efficiently implemented with

3
https://en.wikipedia.org/wiki/Exponential_family
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Algorithm 1: Series Creation
Input: The Query table𝑄 ; The set of result tables S
Output: The Series Collection Γ𝑄

1 Initialize Γ𝑄 = ∅;
2 foreach 𝑞 ∈ 𝑄 do
3 Initial Γ (𝑞) = ∅;
4 Obtain𝐶 (𝑞) from result tables S;
5 Sort𝐶 (𝑞) in ascending order of cardinality;

6 for 𝑐 𝑗 ∈ 𝐶 (𝑞) do
7 Γ (𝑞) ← Γ (𝑞) ∪ 𝑐 𝑗 ;
8 Initialize cursor 𝑗 = 0;

9 while |Γ (𝑞) | > 2 and 𝑗 < |Γ (𝑞) | do
10 Conduct statistic test on Γ (𝑞) [ 𝑗 ] and Γ (𝑞) [ 𝑗 + 1];
11 if Test pass then
12 Merge them into a new series, update Γ (𝑞) ;
13 Reset 𝑗 = 0;

14 else
15 𝑗+ = 1;

16 Γ𝑄 ← Γ𝑄 ∪ Γ (𝑞) ;
17 return Γ𝑄 ;

data structures like Union Find. Based on the above discussion, we

propose the solution for series creation as shown in Algorithm 1.

Based on the above discussion, we propose the solution for series

creation as shown in Algorithm 1. The complexity is analyzed as

follows: First, ∀𝑞 ∈ 𝑄 the cardinality of |𝐶 (𝑞) | is O(𝑘) based on the

problem setting where 𝑘 is the number of result tables. The time to

sort each 𝐶 (𝑞) is O(𝑘 log𝑘). Given two columns in 𝐶 (𝑞), the time

to perform chi-square test is O(𝑊 ) where𝑊 is the sample size; and

the number of test is O(𝑘). Thus the time complexity for handling

each 𝐶 (𝑞) is O(𝑘 log𝑘 + 𝑘 ∗𝑊 ), while the overall time complexity

of the 𝑢 columns in the query table would be O(𝑢 ∗𝑘 ∗ (log𝑘 +𝑊 )).
The overall computation overhead would be trivial since𝑊 and 𝑘

will be relatively small numbers.

3.3 Efficient Candidate Generation
After creating the series for query and result tables, we can con-

struct the visualization plans accordingly. As discussed before in

Section 2.3, each plan is a triplet 𝑃 = ⟨𝐴,𝑀, 𝐹 ⟩. Here, the potential
candidate of dimension attributes 𝐴 is all query columns 𝑞 ∈ 𝑄
since a column from result tables might not have aligned columns

in the query table; Meanwhile, the measurement attributes𝑀 are

all the categorical and numerical columns in the query and result ta-

bles. A valid visualization plan should satisfy two requirements: (i)

There should be no overlap between dimension and measurement

attributes, i.e., 𝐴 ≠ 𝑀 and 𝑀 ∉ 𝐶 (𝐴); (ii) The result of grouping
values in 𝐴 by 𝑀 should not be empty. For the aggregates 𝐹 , we

consider the common ones such as COUNT, MIN, MAX, AVG, and

SUM, among others. Following this route, a straightforward solu-

tion is to enumerate all plans and compute each plan’s utility score.

Then, the result will be plans with top-𝑛 highest utility scores.

3.3.1 Avoid Redundant Computation. However, such a linear scan

is rather expensive due to the overhead of group-by operations for

each plan. Since a group-by operation is required to traverse the

tables associated with columns in𝐴 and𝑀 , its cost is directly related

to the table size, which can be very large in the data lake scenario.

To address this issue, we need to avoid redundant computation in

computing group-by. We observe that when grouping by a given

dimension attribute𝐴, the result of COUNT aggregation is the same

for all measurement attributes 𝑀 . Thus, when enumerating the

plans, if the COUNT aggregation is already calculated for a previous

plan group by 𝐴, we can share the results for all𝑀 . The results of

AVG aggregation can be obtained from those of SUM and COUNT

for the same 𝐴 and𝑀 , requiring no redundant computation.

3.3.2 Bound Estimation with Sampling. We can optimize further by

reducing the volume of data accessed during the candidate genera-

tion process. To reach this goal, we borrow the idea from previous

works in Approximate Query Processing (AQP) [1]. The high-level

idea of AQP is to first execute queries on a small, sampled subset

of the entire dataset and obtain an initial answer quickly. Then, the

size of the sampled dataset grows gradually, and the query results

become increasingly accurate. The entire process will terminate

when the budget for accessing data is exhausted or a certain accu-

racy guarantee is met. In our problem setting, when computing the

group-by and utility scores, we can gradually examine a subset of

the table instead of using the entire table for computation at once.

In this process, the temporary utility score computed from a subset

of data can also serve as a lower bound for the top-𝑛 results: if the

utility score of a plan is already lower than this lower bound, the

plan can be pruned without computing it over the full tables. To

reach this goal, we employ the Hoeffding-Serfling inequality [51]

from the domain of statistics to deduce such a bound, which is

formally stated in Theorem 3.1:

Theorem 3.1. Let Y = 𝑦1, 𝑦2, ..., 𝑦𝑁 be a set of values in range
[0, 1] with a mean value 𝜇; Let 𝑌1, 𝑌2, ..., 𝑌𝑚 be a sequence of random
variables drawn from Y without replacement. For every 𝑘 ∈ [1, 𝑁 )
and a probability 𝛿 > 0:

𝑃𝑟 [ max

𝑘≤𝑚<𝑁
| 1
𝑚

𝑚∑︁
𝑖=1

𝑌𝑖 − 𝜇 | ≥ 𝜖𝑚] ≤ 𝛿 (3)

where 𝜖 =

√︂
(1−𝑚−1

𝑁
) (2 log log𝑚+log 𝜋2

3𝛿
)

2𝑚

The core idea of this theorem is that the bias between results

computed over data samples and the true result is within a given

interval with size 𝜖 , which is related to the number of samples (𝑚

in the theorem). The more samples there are, the smaller the value

𝜖 will be, which means the results will be more accurate. Following

the practice of hypothesis testing, the value of 𝛿 is set as 0.05. In

our problem setting, each 𝑌𝑖 above is regarded as an estimate of

the utility score for a given visualization plan 𝑃 . Then the value of

𝜖 can be computed based on Theorem 3.1. Suppose the estimated

score is 𝐷 , then the lower (upper) bound would be 𝐷 − 𝜖 (𝐷 + 𝜖).

3.3.3 The Pruning Algorithm. Although the high-level idea of The-

orem 3.1 has been employed in previous studies about scalable

data visualization [25, 30, 40, 49], their solutions cannot be directly

applied to our problem. To realize the above idea in our problem

setting, we propose an effective pruning strategy as shown in Al-

gorithm 2. For each column in the query table, it first splits itself

and all its associated tables into batches with random shuffles (line
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1) and applies one batch in the computation at a time (line 4). Since

the results between batches might change drastically, it restarts the

ranking at the beginning of each batch by clearing the heap (line

5). To facilitate the pruning, a global lower bound is maintained for

the top-𝑛′ plans in the heap (line 6). For each plan in P, the new
utility score is calculated by taking the average of all past scores

plus the current one for this plan. It then computes the interval 𝜖

and deduces the lower and upper bounds in the plan. If the heap

size has not yet reached 𝑛′, it simply adds the plan and updates the

global lower bound (lines 13-15). Otherwise, depending on whether

the upper bound of 𝑃 is smaller than the lower bound of the top

𝑛′ in the heap, it decides to discard 𝑃 (lines 17-18) or add it to the

heap (line 20). If 𝑃 has a score that gets it into the top 𝑛′ in the heap,

we need to consider updating the global lower bound (lines 16-22).

Finally, after looping through all plans in P, if there are exactly 𝑛′
plans left in the heap, the process is terminated (lines 23-24).

Algorithm 2: Candidate Generation
Input: Query column 𝑞; Result tables S; Number of results 𝑛′

Output: The set of candidate plans H
1 Split 𝑞 and tables S into several batches B;
2 Identify the potential set of visualization plans P;
3 Initialize H = ∅;
4 foreach 𝐵 ∈ B do
5 H = ∅;
6 𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ← the min lower bound of top 𝑛′ plans in H,

initialize to inf;

7 foreach 𝑃 ∈ P do
8 Compute 𝑃.𝐹 over 𝑃.𝐴 and 𝑃.𝑀 over 𝐵, reuse the COUNT

results when necessary;

9 𝑃.𝑠𝑐𝑜𝑟𝑒 ← D(𝑃𝐵 ) ; // D(𝑃𝐵 ) is the partial results
computed on 𝐵

10 Compute the interval size 𝜖 ;

11 𝑃.𝐿 = D(𝑃𝐵 ) − 𝜖 ;
12 𝑃.𝑈 = D(𝑃𝐵 ) + 𝜖 ;
13 if |H | < 𝑛′ then
14 Add 𝑃 into H;

15 𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =𝑚𝑖𝑛 (𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , 𝑃 .𝐿) ;
16 else
17 if 𝑃.𝑈 < 𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 then
18 P .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑃 ) ;
19 else
20 Add 𝑃 into H;

21 if 𝑃 is in the top 𝑛′ then
22 𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =𝑚𝑖𝑛 (𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , 𝑃 .𝐿) ;

23 if |H | = 𝑛′ then
24 return H;

25 return H;

The pruning methods introduced in Algorithm 2 might involve

false negatives because (i) the estimation is with a probability 𝛿 ;

(ii) the batch shuffling process involves randomness that might

discard promising plans with low utility score in earlier batches.

While trading quality for faster execution, we will later show in

Section 5.2 that the proposed solution can achieve a reasonable

trade-off between quality and execution time. Here, the hyperpa-

rameter 𝑛′ decides the number of candidates to be verified. We set

it as 𝑛 empirically in our implementation. We will apply the above

approach on all the 𝑢 query columns in the query table and obtain

𝑞 ∗ 𝑛′ candidates in the candidate generation step. Finally, in the

Result Ranking step, we will verify each candidate’s true value and

select the top-𝑛 highest results.

Figure 5: A Running Example of Pruning Process

Example 3.2. We provide a running example in Figure 5 to il-

lustrate how Algorithm 2 works. Suppose there are 4 plans in the

second batch ranked in descending order of estimated scores, and

their scores and intervals are shown on the left side. After batch

processing, their scores and intervals are updated, and their rank-

ings are also updated accordingly. If we would like to look for the

top 2 plans, then plans 2 and 1 are under consideration. Plan 4 is

still kept because its upper bound (0.54) overlaps with the lower

bound of plan 1 (0.45). However, Plan 3 can be pruned because its

upper bound of 0.23 does not overlap with that of Plan 1.

4 DISCUSSION
In this section, we discuss the potential opportunities of expanding

the functionalities of our proposed framework.

We begin with the discussion about limitations of our work.

Firstly, as our main contribution lies in the definition and proposal

of a general framework for implementing visualization recommen-

dation in data discovery, the current version of LakeVisage may

not perform well under certain circumstances or real world data

lakes in larger scales. However, given specific assumptions, one can

always easily adjust some of the building blocks of LakeVisage to
suit their need. For example, the utility metric EMD can be replaced

with Kurtosis
4
[39] if users specifically look for non-Gaussian or

Gaussian distributions instead of the differences between distri-

butions. Due to the inherent characteristics of a data lake, such

as the lack of high-quality metadata and inconsistent schema, it

is possible for LakeVisage to produce false positives (i.e., merging

two irrelevant columns into one series). Should additional metadata

or external knowledge be provided, LakeVisage would generate

accurate series with much fewer errors. For instance, if we know

that each result table pertains to the records of a city for a given

year, we can group tables about the same city into a single series.

Then the visualization will present the results of each city from

4
A metric that measures how “Gaussian” a distribution is.
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multiple years, aggregated from several result tables. Our proposed

data-driven approach can serve as a reasonable solution in general

scenarios. In summary, LakeVisage is flexible and easy to integrate

user-defined approaches to accommodate different assumptions.

Finally, although the current LakeVisage only supports Table

Union Search as the representative of data discovery task, it can

be extended to other column-align-based tasks. We would like to

illustrate this point with a discussion of the Joinable Table Discovery

task [9, 58, 59]. Given a query table and a collection of tables, it

aims to find all tables that can be joined with the query table. The

output of this task is similar to table union search, i.e., a set of result

tables where the potential joinable columns are highlighted in the

search result. Thus LakeVisage can be directly applied to support

joinable table discovery. One additional requirement of this task

is to provide some insights for the pairs of joinable columns. We

can build a hierarchical visualization mechanism for columns and

tables following the practice of previous work [41]. For tasks based

on row alignment, we would need to define new mechanisms of

series creation and candidate pruning.

5 EVALUATION
5.1 Experiment Setup

Table 1: The statistics of datasets
Dataset # Query Table # Data Lake Table Avg # Row per Table Size (GB)

TUS 100 5,044 2,346 1.5

SANTOS 80 11,086 7,706 11

LakeBench 3,171 4,028 119,281 21

5.1.1 Datasets. We conducted experiments on three public datasets

that have been widely evaluated in previous studies on data dis-

covery. TUS [36] is the first benchmarking datasets for table union

search. SANTOS [24] is created from Open Data and simulates the

real data lake scenarios. LakeBench [7] is so far the largest bench-

marking dataset for unionable and joinable table related tasks with

rich manually created ground truth. Here we use its sub-task of

OpenData Large. The detailed information can be found in Ta-

ble 1. For each dataset, we ran each query with the Starmie [14]

framework and obtained the top-ranked result tables. Note that

our proposed techniques are not limited to a specific definition of

unionability and could also be easily applied to other data discovery

engines proposed in previous studies such as [24, 36].

5.1.2 Compared methods. Since there is no previous study on the

problem of visualization recommendation for data discovery from

data lakes, and as illustrated in Section 2, it is non-trivial to ex-

tend existing data visualization approaches to our problem. Here,

we present the performance of each proposed technique in Sec-

tion 3. Therefore, we include the following methods for comparison:

NoMerge is the method that treats each column in the result table

as a series, i.e., there is no series creation process. Overlap is the

baseline method of series creation based on syntactic similarity in-

troduced in Section 3.2; Stats is the data-driven approach for series

creation introduced in Section 3.2; Prune is the method of applying

the pruning techniques in Section 3.3 on the basis of Stats.

5.1.3 Evaluation metrics. We consider both the efficiency and ef-

fectiveness of each compared method introduced above. We use

average execution time per query as the metric for efficiency. For

effectiveness, we evaluated our approach based on the practice of

a previous study [49]: we compute the average utility score of the

top-𝑛 results for all queries in a dataset. The higher the average

utility score, the more effective the compared method is. For the

general usability of our solution, we will further illustrate in the

user study later in Section 6.

5.1.4 Environment. We implemented all algorithms with Python.

The experiments were run on a server with 1 AMD EPYC 7R32

48-core processor and 192GB RAM. We ran all experiments 5 times

and reported the average performance. We will fix the number of

returned visualization plans 𝑛 as 10 by default.

5.2 Results
First, we report the results of the execution time of all proposed

methods in Figure 6. In this experiment, we vary the number of

result tables 𝑘 in data discovery from 10 to 50 and observe the per-

formance of each method. And we have the following observations:

Firstly, Stats and Prune achieve better overall performance under

all settings, which illustrates the necessity of techniques in the

process of series creation and candidate generation. Specifically,

Prune outperforms other compared methods by up to 30 times.

For instance, in the LakeBench dataset when 𝑘 = 40, the average

execution time per query of Prune is 9.59 seconds, and while that

for Stats, Overlap and NoMerge is 33.98, 277.09 and 95.64 seconds,

respectively. Secondly, Overlap always performs the worst among

all methods. The reason is that it takes a very long time to traverse

the columns to compute the syntactic similarity, while Stats only
need to estimate and check some statistics. Besides, the execution

time of Overlap increases sharply along with the number of result

tables, which is also due to the need to traverse columns. Thirdly,

the gap in performance between different methods on TUS is rel-
atively small, while that on the LakeBench is more obvious. As

shown in the analysis in Section 3.3, this is due to the performance

of algorithms being closely related to the average number of rows

in the query and result tables. Since the tables in TUS are generally

not so large as illustrated in Table 1, the bottleneck in efficiency is

not as obvious as the other two datasets. Lastly, the execution time

is relatively constant for all methods but Overlap. This is because
NoMerge does not involve computation of series creation, while the

complexity of Stats and Prune is independent of the total number

of rows of all result tables.

Then we show the effectiveness of all proposed methods. As

discussed in Section 3, it is not realistic to obtain the optimal overall

utility score due to the exponential search space. Thus, instead of

computing the recall or accuracy, we evaluate the quality of top-

𝑛 results by looking at the average utility score of them. Since

both Stats and Prune relied on statistical methods that involve

randomness, we also include the error bars of these methods to

denote the lower and upper bounds of them in multiple runs. The

results are shown in Figure 7. We can see that, generally speaking,

Stats has the overall best results in effectiveness, which achieves

the highest scores under all settings. For example, on the SANTOS
dataset when 𝑘 = 30, the average utility score ofNoMerge,Overlap,
Stats, and Prune is 0.4, 0.3, 0.53 and 0.42 respectively. Note that

since NoMerge always has a larger number of bars than Stats and
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Figure 6: Results of Proposed Techniques: Execution Time

Figure 7: Results of Proposed Techniques: Effectiveness. Error bars indicate lower/upper bounds for methods with randomness.

Prune, the total utility score tends to be larger based on the way to

calculate it as shown in Equation 1. The actual performance of Stats
and Prune will be even more outstanding, considering the penalty

regarding perceptual scalability brought by the number of bars in

NoMerge. Here, we did not apply such penalties in the utility score

to ensure consistency with the previous study [49]. The pruning

strategies developed in Section 3.3 involved some false negatives

that might discard some promising visualization plans. Therefore,

we can consider Prune makes a trade-off between effectiveness

and efficiency; thus its effectiveness results are worse than Stats.
Besides, there is also an observation that the advantage of Stats
becomes more obvious when there is a larger number of result

tables. This is because Stats is a data-driven approach, and more

data could result in more accurate estimation. Moreover, we also

see that NoMerge performs generally better than Overlap since

syntactically similar columns do not necessarily lead to related

columns. It also shows that simple heuristics cannot easily handle

the series creation step, and it is essential to introduce the data-

driven approach, as we did.

Finally, we also investigate the scalability of our LakeVisage
framework (i.e., above Prunemethod) w.r.t. the other two important

factors: the data size of involved tables and the number of returned

visualization plans. Since LakeBench is much larger than the other

two datasets, we only conduct scalability experiments on it. To

evaluate the scalability with respect to data scale, we select the top-

20 queries with the largest number of rows in the query and result

tables from LakeBench. For these queries, we vary the data scale

Figure 8: Results of Scalability on LakeBench dataset

from 20% to 100% for all the query and result tables and observe

the performance of our proposed method. As shown in the left sub-

figure of Figure 8, LakeVisage achieves near-linear scalability under
all settings. Then, we vary the number of returned visualization

plans, 𝑛, and show the results in the right sub-figure of Figure 8. We

can see that the execution time stays stable before 𝑛 reaches 50 and

sometimes larger 𝑛 even leads to less time. The reason is that when

doing the group-by operations to generate candidates, many plans

can have the same dimension attributes but different measurement

attributes; thus, they have the same utility score. When the number

of 𝑛 increases, the utility score of the top element on the min heap

might not change, and our search algorithm converges at a similar

time or even faster due to the shared computation of aggregation

developed in Section 3.3. When 𝑛 is larger than 50, we observe that

the utility score of the top element also increases greatly, and thus,

it takes more time to finish searching.
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5.3 Case Study
Next we show two case studies about some interesting visualiza-

tion plans recommended by our proposed system. Our goal is to

illustrate the useful insights gained from data discovery through

the visualizations provided by the proposed techniques. First, we

would like to illustrate an example of series creation in addition

to the data discovery results. Figure 9 shows an example with a

query table and result tables about cars. This example is about a car

sales scenario that presents information such as the price, make,

and date of the cars. In this visualization, the dimension attribute

𝐴 is a numerical column Year which is divided into several bins as

introduced in Section 3.1; the measure attribute𝑀 is a numerical

column Price and the aggregate 𝐹 is AVG. Specifically, the series

is created based on the data distribution of the Year column in the

query and result tables. We find that the created series can illus-

trate a correlation with the fuel of cars
5
. The visualization of the

above series also reveals that the number of Hybrid/Electric cars

has grown much faster than that of Gas cars over the last 10 years.

It would save data scientists from the enormous efforts of manual

programming to discover such a fact.

Figure 9: Case Study:the series created based on distribution
of Year shows an interesting trend about fuel of cars.

Figure 10: Case Study: A Visualization Plan with Textual
Columns as Dimension Attribute.

Another important case we want to show is about the situa-

tion where textual columns serve as the dimensional attribute 𝐴

in a visualization plan. As discussed previously, a key difference

between LakeVisage and previous data visualization works for re-

lational databases is that our work must handle textual columns

and recognize visualization plans composed with them. Figure 10

shows an example with a query table about employee information,

and result tables with similar contents. And LakeVisage created a

5
The series labels are manually created by us based on the available table metadata.

visualization plan where 𝐴 is a textual column Organization,𝑀 is

Salary and 𝐹 is AVG. Here, the Organization columns consist of

the names of different organizations where employees work. Our

approach splits the cells of such columns into several clusters, and

each value of the dimensional attribute corresponds to a cluster, as

shown in the bottom left of Figure 10. Here, we identify the latent

semantics of the clustering results: each cluster corresponds to a

specific type of organization, such as schools, governments, and

companies. This visualization plan could further illustrate the aver-

age salary in different types of organizations, rather than a specific

one. We can see that even the simple heuristics in Section 3.1 could

help discover such interesting visualizations.

6 USER STUDY
6.1 Design
We compare LakeVisage with literate programming tools such as

computational notebooks typically used by data scientists for ex-

ploring data discovery results in data lakes.

Datasets and quiz tasks. We selected two query tables from the

popular Open Data repository
6
and retrieved the top-10 union-

able tables returned by Starmie [14] as data discovery results. The

two query tables were related to pet and medical domains which

could represent real world tasks for data scientists. The number of

columns in the two query tables is 11 and 12, respectively. Table 2

lists the questions provided to the participants when using computa-

tional notebooks. Meanwhile, to make a fair comparison, questions

for the visualization systems are similar in difficulty but with dif-

ferent attributes and predicates. These questions were designed to

introduce an increasing level of difficulty to the participants. There-

fore, we did not randomize the order of the questions. These ques-

tions represent a range of data analysis tasks that users typically

perform over data discovery results (see supplementary material for

details.) We leverage the typology of data exploration tasks [4] to

identify the purposes and actions required for each question. This

typology encompasses a range of domain-independent tasks on

visual data representations and has been widely utilized as a guide-

line for developing models of visualization systems and defining the

scope of tasks in various domains, e.g., interactive task authoring,

document mining, and multivariate network analysis [41]. All of

these tasks required participants to complete several actions rep-

resenting one of the following purposes: browse (searching based

on characteristics where location is unknown), lookup (searching

based on entities where location is known), identify (returning

the characteristics of entity found during search), generate/record

(generation or recording of new information), and compare (return-

ing characteristics of multiple entities).

Study participants and phases.We recruited 12 participants (3 fe-

male and 9 male) for the study via Slack outreach at Company − X.
The participants had different technical roles and expertise, such

as Research Engineers (principal, senior, and junior), Research Sci-

entists (senior and junior), and Full-stack developers. The study

was conducted by a co-author of the paper. And none of the pa-

per authors were study participants. The study consisted of three

phases: introduction, quiz, and survey. During the introductory

6
https://www.data.gov
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Table 2: Example quiz tasks and their corresponding purposes and actions.
Questions Purpose and actions

Q1: List all primary colors covered in the result tables. browse tables→lookup column→generate set

Q2: Which animal type appears as the highest frequency in the most number of states? browse tables→lookup column→generate aggregate→compare
Q3: What is the third most frequent status tag across all tables? browse tables→lookup column→generate aggregate→compare
Q4: What is the average price of rabbits across all tables? browse tables→lookup column→identify subset→generate aggregate

Q5: What is the min gross cost of the records with 10mg strength from the state of Florida? browse tables→lookup column→identify subset→generate aggregate→compare
Q6: What is the second least frequent presentation among results in the year 2014? browse tables→lookup column→identify subset→generate aggregate→compare

Table 3: Results of User Study. # Answers indicate how many
users provided answers to the question; Accuracy means the
portion of correct answers.

Metric Method Q1 Q2 Q3 Q4 Q5 Q6

Max Submission Time (s)

Notebook 336 509 364 613 173 216

LakeVisage 85 117 88 266 68 145

Min Submission Time (s)

Notebook 87 70 42 144 64 82
LakeVisage 32 20 14 123 36 85

Avg Submission Time (s)

Notebook 209.1 194.7 191.5 319.5 119.1 163

LakeVisage 54 62.7 46.5 172.8 51.75 111.4

# Answered

Notebook 12 12 12 12 5 4

LakeVisage 12 12 12 12 12 12

Accuracy (%)

Notebook 100 100 91.7 25 41.7 25

LakeVisage 91.7 100 100 100 100 100

phase, participants received a brief overview of the study objec-

tives and its follow-up phases. The quiz phase required participants

to solve several tasks related to exploring data discovery results

within a data lake using both a computational notebook for writing

Python programs and LakeVisage. However, we alternated the or-

der of systems between consecutive participants. Before answering

the quiz with a system, participants were provided with a tuto-

rial to help familiarize themselves with the functionalities — for

LakeVisage, participants were introduced to various features; and

for computational notebooks, participants were provided with a

suite of utility functions to help in data discovery. Following the

tutorial, participants performed several warm-up tasks before pro-

ceeding to the actual quiz tasks. Upon the completion of the quiz

phase, participants were provided with a survey via Google Form

to gauge their impressions about both systems.

Evaluation. We evaluated the completion time and accuracy for

all of the tasks. We analyzed the survey responses to quantify the

usability of both systems. We also collected qualitative feedback

during the survey to understand the benefits and limitations of

both systems. In presenting participant responses in Section 6.3, we

included excerpts from complete responses (indicated by . . .). Addi-

tionally, we corrected spelling and grammatical mistakes. Therefore,

the quotes presented in this paper are essentially paraphrases.

6.2 Results and Analysis
We analyze the quantitative and qualitative data collected during

the quiz and interview phases to address our research questions.

Task Submission Performance. In Table 3, we show the re-

sponse times of participants for each task, using computation note-

book and LakeVisage, respectively. For all the tasks, participants’
submission times using LakeVisagewere obviously lower than note-
book on average. Moreover, all of the participants completed at

least five tasks in less time using LakeVisage. In fact, there were

only two instances (Q4 by 𝑃9 and Q6 by 𝑃10) where participants

took more time to complete tasks using LakeVisage.

Task Accuracy. As shown in Table 3, for the easier tasks (Q1-Q3),

participants exhibited similar accuracy. Notably, among the par-

ticipants who used notebooks, seven and eight did not complete

submissions for the more challenging tasks Q5 and Q6, respectively.

These tasks required participants to perform a sequence of oper-

ations on the data lake. However, to effectively implement those

operations, participants had to formulate their understanding of

the tables, relevant columns, and suitable sub-selections and then

manually compare different candidates. Therefore, the errors in

completing the eventual task may stem from the cognitive load asso-

ciated with reasoning over the result of these operations. Though all

the participants attempted Q4 when using a notebook, only 25% of

the participants provided correct responses due to task complexity.

6.3 Participant Feedback
Our analysis of the survey results revealed that 83.3% of participants

preferred LakeVisage to computational notebooks. These partici-

pants found LakeVisage visualizations useful in synthesizing infor-

mation across multiple tables. On a scale of 1 to 5 (1=not challeng-

ing at all, 5=very challenging), the participants rated LakeVisage
to be easier to use (𝜇 = 2, 𝜎 = 0.27) compared to notebooks

(𝜇 = 3, 𝜎 = 0.81). We now discuss the strengths and limitations of

both systems based on the qualitative feedback from participants.

Getting started with analytics sessions. Majority of partici-

pants (𝑁 = 8) found LakeVisage useful in launching the analytics

sessions, specifically when working with unfamiliar datasets or a

larger data collection — “. . . LakeVisage provides the quick overview
of data which is helpful to decide which direction we should go deeper”
(𝑃4). In contrast, participants (𝑁 = 7) exhibited negative impres-

sions towards notebooks when launching a session for the first

time due the cumbersome interactions via iterative programming

— “you have to write some code before getting insights, might also
require more understanding of the schema and values in the tables to
write valid functions . . . takes a bit of trial-and-error . . .” (𝑃12).
Familiarity and learning curve. Besides the challenges in get-

ting started, participants noted additional factors as potential limita-

tions of notebooks such as lack of recall (of appropriate Dataframe

operations) and a steeper learning curve (with literate program-

ming). For example, 𝑃1 commented — “Notebooks require users to be
very familiar with Dataframes, while most users might forget if they
don’t use (Dataframes) frequently”. In contrast, participants found

visualizations presented in LakeVisage intuitive. Three participants
mentioned that LakeVisagewould be very helpful for non-technical
users due to the low barrier to familiarizing with visualizations —

“the visualization didn’t need any prior familiarity” (𝑃11).
Convenience and ease of use. Participants (𝑁 = 7) also found

LakeVisage easier to use compared with notebooks. Participants

obtained insights faster with LakeVisage as shown in Table 3. For

example, 𝑃12 commented — “. . . faster to get insights, visualization
tends to bemore informative and provides muchmore insights than the
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notebooks”. In contrast, participants deemed notebook operations

time-consuming — “Using Notebook took more time because I needed
coding” (𝑃2). Participant 𝑃10 commented — “. . . hard to manipulate
(notebooks) unless you know (Dataframe) operations well”.
Flexibility of exploration. Participants (𝑁 = 4) appreciated the

higher flexibility afforded by notebooks, specifically when perform-

ing more in-depth analysis. For example, new observations may

prompt an analyst to issue new queries over the data lake on the fly.

However, visualizations provided in LakeVisage are pre-defined and
thus limit users’ degrees of freedom. For example, participant 𝑃12

mentioned that notebooks provided “a lot more flexibility in terms
of analysis that can be done and analysts who are familiar might find
it easier to use than learning to interact with a visualization tool”.
Participant 𝑃4 commented — “A notebook-based system enables us
to conduct detailed and finer-grained operations if needed”. The same

participant found LakeVisage to be limiting — “LakeVisage some-
times lacks the customizability, especially when users want to execute
complicated analysis”. Participant 𝑃12 mentioned — “visualizations
can sometimes be limited and less flexible when data is pre-aggregated
in the visualization in a way that is far from the desired aggregation”.
Scope and functionalities. In terms of exploration goals, par-

ticipants preferred visualizations to locate extremities in data and

performing comparisons — “I prefer Visualization for the purpose like
finding the max/min values” (𝑃2). Participants preferred notebooks

for dynamically computing aggregations over attributes of interest.

Participant 𝑃3 found the top-𝐾 visualizations to be overwhelming

due to the visual discontinuity caused by scrolling up and down

the ranked list and requested features such as performing natural

language querying over the visualizations. Two other participants

requested similar features — “For LakeVisage, having a simple search
might be helpful. For example: show me any graphs that are related
to a data column” (𝑃8). Participants (𝑁 = 2) also commented on the

uncertainty introduced by approximations of the top-𝐾 results and

requested greater transparency when communicating results.

7 RELATEDWORK
7.1 Data Discovery from Data Lakes
There is a long stream of research works about data discovery

from data lakes in the data management community. The exam-

ples of data discovery tasks include finding related tables [46],

schema complement [26], domain discovery [37] and column an-

notation [31]. Among them the problem of finding related tables

attracts more attentions in the recent years. There are two sub-tasks

in this application, namely joinable table discovery and table union

search [46]. Joinable table discovery aims at finding tables that can

be joined with the given table on a column. LSH Ensemble [59]

and JOSIE [58] employed syntactic similarity functions to decide

joinability. PEXESO [8] computed the fuzzy similarity between

columns based on pre-trained word, and Deep Join [9] relied on

fine-tuned BERT model to capture the semantic information of

columns. MATE [11] focused on the problem of composited join

key with multiple columns. And Juneau [57] studied the joinable

discovery over semi-structured data. The bottleneck of Table Union

Search is to find a proper way to decide the column unionability

scores. Nargesian et al. [36] proposed the first definition and design

space for this problem. The 𝐷3L system [3] divided columns into

different categories and computed unionability score accordingly.

SANTOS [24] utilized the knowledge base to decide unionability

and Starmie [14] learned a BERT based encoder for table columns.

Gen-T [12] tried to reclaim the original tables from unioned ones.

There are also some studies targeting at improving the usability

of data lake related tasks. Aurum [15] provided a declarative query

language to express data discovery tasks; RONIN [38] constructed

a GUI to support navigation of data lakes [35] to ease the browsing.

Ver [17] came up with a new variants of joinable table discovery

to provide user-friendly views of data lakes. Auctus [6] aimed at

improving the usability of keyword search over data lakes while

Humboldt [2] automatically provided customized UIs for data dis-

covery based on meta-data. None of above efforts can support our

task that generates visualizations for results of data discovery tasks.

7.2 Visualization Recommendation Systems
Visualization recommendation systems can be broadly categorized

into rule-based and machine learning (ML)-based approaches. Rule-

based systems, such as Voyager [52], SeeDB [49], and AVA [50], rely

on heuristics derived from expert experience or empirical studies.

Technically, they shared the similar idea with earlier work of explor-

ing results of OLAP queries [20, 44, 45]. These systems recommend

visualizations based on specific goals or aesthetic properties. For ex-

ample, Voyager suggests visualizations emphasizing visual appeal,

while SeeDB highlights differences between datasets. LUX [28]

enables visualization recommendations for dataframes in compu-

tational notebooks while factoring in user intent. Zenvisage [47]

generalizes these systems by enabling the detection of desired vi-

sual patterns across large datasets. Additionally, systems like Pro-

filer [22] and Scorpion [53] focus on identifying specific patterns,

such as outliers, while VizDeck [23] presents a dashboard of poten-

tial 2D visualizations for a dataset. Transactional Panorama [48]

studies the problem of refreshing visualization results. ML-based

systems propose a different approach by learning from data instead

of applying predefined rules. Draco-Learn [33] optimizes visualiza-

tion recommendations by learning weights for trade-offs between

design constraints. VizML [19] focuses on predicting design choices

for visualizations, offering better interpretability and ease of in-

tegration. All these methods cannot operates over a set of result

tables from data lakes w.r.t. the query table as LakeVisage did.

8 CONCLUSION
In this paper, we studied the new research problem of visualization

recommendation for data discovery over data lakes. We first came

up with a formal definition of this problem by addressing the issues

of (i) defining how to build visualization over multiple result tables

in the output of data discovery; and (ii) developing the concept of

series to illustrate the relatedness in data discovery result; and (iii)

handling multiple data formats including categorical, numerical

and textual columns. Then, we proposed an end-to-end framework

LakeVisage as the solution to this problem, which features the

technical contributions of a data-driven approach to create the

potential series of the visualization as well as progressive pruning

strategies to remove unpromising visualization plans. Experimental

results on end-to-end evaluation and user study demonstrated the

efficiency and usability of our proposed framework.
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