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ABSTRACT
Tabular data is abundant and crucial across both industry and

academia. Federated learning (FL) offers a promising solution for

the analysis of tabular data distributed across multiple organiza-

tions, without the need to share the privacy information of each

client. Existing federated tabular data prediction methods optimize

performance and privacy leakage under the completeness assump-

tion of tabular data. They are not applicable in real-world scenarios

that are struggling with missing values in tabular data. In this

paper, we propose a novel federated prediction framework for in-

complete tabular data, named DARN, which leverages the missing
complementarity to directly optimize prediction performance with-

out relying on the imputed values. It is especially beneficial when

clients exhibit heterogeneity in missing data distributions, and the

pairwise observed data are complementary. Specifically, each client

trains a missing distribution learning model to capture the distri-

bution of locally incomplete data. To assist in this, we present a

missing-aware transformer block with a novel missing-aware atten-

tion mechanism to represent incomplete tabular data directly. The

server calculates the personalized weights of the prediction models

by combining missing complementary score and observed sample
size score, thereby maximizing the utility of the available data. Ex-

tensive experiments on four publicly available real-world datasets

demonstrate that DARN outperforms state-of-the-art methods with

25.80% improvement in both classification and regression tasks.
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1 INTRODUCTION
Tabular data, which constitutes over 70% of global data and is com-

monly stored in databases or spreadsheets [21], is abundant and

crucial across both industries and academia. It is often distributed
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across multiple organizations, making centralized data sharing im-

practical due to privacy and regulatory concerns. Federated learning

(FL) [17, 49] collaboratively trains a global model on distributed

data without the need for raw data sharing [1, 40]. It allows orga-

nizations to utilize their tabular data while ensuring privacy and

compliance. Consequently, FL is particularly beneficial for various

prediction tasks related to tabular data, including healthcare [41],

urban computing [6, 28], recommender systems [22], and so forth.

Federated prediction task involves the collaborative training of

predictive models across distributed clients, enabling predictions to

be made without directly sharing private data. This approach offers

a scientifically sound and practical foundation for decision-making

while preserving privacy. Existing federated tabular data prediction

methods can be categorized into two branches. The first branch con-

sists of machine learning-based methods, such as gradient boosting

decision tree (GBDT) [16, 29, 30, 58], random forests [32, 44, 48],

and XGBoost [48, 51]. The second branch is deep learning-based

methods, where the representatives include generative adversarial

networks (GAN) [12, 57] and contrastive learning [19]. All of these

prediction methods achieve high performance and minimal privacy

leakage under the assumption that the tabular data possessed by

each client is complete.
However, in real-world scenarios, incomplete tabular data is ubiq-

uitous due to various factors, such as human error during data

processing, machine malfunctions, respondents’ refusal to answer

certain questions, and privacy constraints [36]. As a result, the

presence of missing values in tabular data hinders researchers from

conducting comprehensive analyses. Thus, it is critical and chal-

lenging to propose an effective federated prediction framework on

incomplete tabular data.

Example 1: Figure 1(a) shows a toy example of a financial sce-

nario. Due to limited data and the need for privacy protection, all

banks aim to collaboratively train a federated credit scoring model

using incomplete tabular data from each institution [15, 18]. There

are two banks: Bank A, which specializes in serving freelancers

(e.g., Livi Bank), and Bank B, which focuses on new immigrants (e.g.,
Chime Bank) [27]. High-income freelancers at Bank A exhibit sys-

tematic missing data due to privacy concerns and income volatility;

however, their credit scores are complete. Conversely, new immi-

grants at Bank B lack local credit history, resulting in missing low

credit scores despite complete income profiles. As a result, Bank A
exhibits systematic gaps in high-income records (> $1000k), while

Bank B lacks low credit scores (FICO
1 < 600).

1
The FICO score is widely used in credit scoring systems and serves as a key criterion

for the approval of loans and credit cards. The higher the score, the lower the risk and

the better the credit, and vice versa.
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(a) FL with incomplete tabular data (b) Annual income vs. credit score (c) Annual income distribution (d) Credit scores distribution

Figure 1: Illustration of missing data complementarity in federated learning with incomplete tabular data prediction.

There is a group of related studies that impute incomplete data

by aggregating all users’ data for centralized learning. The core idea

behind these centralized imputation methods is to replace missing

values with estimates generated through various techniques, in-

cluding statistical methods [3, 13], machine learning ones [9, 56],

and deep learning ones [34]. However, they cannot be directly ap-

plied in a federated learning scenario for two major reasons. First,
they require access to data from all users to estimate the missing

values, which introduces privacy and security risks, as user data is

often highly sensitive. The second reason is that, these methods basi-

cally operate under the ideal assumptions of missing completely at

random (MCAR) [50] and missing at random (MAR) [23]. In other

words, they do imputations that only rely on observed data. They

fail to effectively deal with the more complex mechanism of missing

not at random (MNAR) [31], where the probability of missing data

is related to the value itself, and the pattern of missingness cannot

be fully captured by other observed variables.

A step-by-step approach is typically followed for federated in-

complete tabular prediction, in which missing values are imputed,

and the estimated values are subsequently used to perform various

federated prediction tasks. However, this approach has three limi-

tations. First, these federated imputation methods for tabular data

[33, 60] are not capable of handling more complex missing data

mechanisms, i.e., MNAR. Second, it overlooks valuable information

that could be derived from downstream tasks, such as task-specific

features or feedback that could refine the imputation process [8, 11].

As a result, this may lack targeted adjustments, thereby impacting

the accuracy and effectiveness of the task. Third, errors incurred
during the imputation phase can propagate and amplify during the

prediction stage, further deteriorating overall performance. This

cumulative error effect reduces the reliability and accuracy of model

predictions. Overall, the step-by-step approach for federated pre-

diction models with incomplete tabular data is suboptimal.

Inspired by previous works [37, 52, 59], this paper aims to train

federated prediction models over incomplete tabular data directly

without relying on estimated values. However, the following two

challenges need to be addressed.

Challenge 1: How can the available data be maximally utilized to
construct prediction models without introducing estimation error? In
the FL architecture, each participant presents an individual entity.

The missing data patterns are heterogeneous across clients due to

differences in data collection methods, environmental factors, user

behaviors, and so on. In the aforementioned toy example, Bank A
lacks records of high-income individuals but has complete credit

scores, while Bank B faces the opposite issue. This creates an op-

portunity for missing complementarity. It implies that for specific

features, the missing parts of local data can be recovered by the

corresponding parts of other clients. As shown in Figure 1(b), the

complete global knowledge distribution can be jointly modeled by

the data of Bank A and Bank B. Specifically, as shown in Figure 1(c),

Bank B’s observed annual income data distribution can potentially

assist in imputing A’s missing annual income data. Similarly, as

shown in Figure 1(d), Bank B’s missing low-score segment is filled

by Bank A’s comprehensive data spanning FICO. The missing data

mechanism is categorized as MNAR because the probability of miss-

ingness is directly related to the unobserved data values (e.g., high
income or low credit score). It motivates us to construct personal-

ized prediction models by leveraging missing complementarity to

improve model performance.

Challenge 2: How can incomplete tabular data be represented to
capture the missing data distribution accurately? Tabular data repre-
sentation is the process of converting structured data into a format

that machine learning models can effectively use to capture pat-

terns and relationships. The quality of this representation directly

influences task processing, model training, and final prediction per-

formance. However, existing studies on tabular data representation

primarily focus on full-knowledge data analysis problems [2, 55].

Moreover, some encoding techniques for incomplete tabular data re-

quire supplementary imputation algorithms, which may introduce

bias [20]. Thus, it is crucial to represent missing tabular data in a

way that accurately captures the missing data distribution without

the need for additional imputation operations.

In this paper, we propose a novel framework, named federated

incomplete tabular data prediction with missing complementarity

(DARN). It enables personalized federated prediction by leverag-

ing the complementarity of missing data distributions, without

relying on imputed values. Specifically, to address the first chal-

lenge, each client maintains amissing distribution learning model to
learn the distribution of local incomplete data. We also introduce a

missing complementarity score calculated based on the dissimilar-

ity between different pairs of missing distributions. By combining

the missing complementarity score with the observed sample size

score, the personalized weight for the prediction model is derived,

maximizing the utilization of the observed data. To address the

second challenge, we propose a missing-aware transformer block

that incorporates a missing-aware attention mechanism. This block

is shared between the prediction and imputation models, allow-

ing it to directly represent incomplete data while capturing the
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missing pattern without the need for imputation. The shared block

ensures that there is no additional computation or communication

overhead for the model. The representation is further employed in

the prediction model training and missing distribution learning to

enhance overall performance. In addition, we analyze DARN as a

privacy-preserving framework, which can be enhanced through

the application of differential privacy [47]. In summary, the key

contributions of this paper are as follows:

• We propose a novel federated incomplete tabular data prediction

framework, called DARN, which trains personalized prediction

models directly on missing data without relying on the estimated

values. It leverages the complementarity of missing data to max-

imize the utility of the available information.

• We introduce the missing complementarity score, which is calcu-

lated based on the dissimilarity between themissing distributions.

We combine it with the observed sample size score to calculate

the personalized weight for optimizing the prediction model.

• We present a missing-aware transformer block incorporating

a missing-aware attention mechanism to directly represent in-

complete tabular data and capture complex missing patterns for

enhanced utility.

• Extensive experiments on four publicly available datasets in six

scenarios demonstrate the superiority of DARN over state-of-

the-art methods in both classification and regression tasks. We

also evaluate the effectiveness of DARN using two real-world

incomplete tabular datasets.

The remainder of this paper is organized as follows. In Section 2,

we review the related work. In Section 3, two key concepts and the

problem statement are described. The proposed framework DARN
is elaborated in Section 4. The experimental results are reported in

Section 5. Finally, we conclude the paper in Section 6.

2 RELATEDWORK
In this section, we provide an overview of the related studies on

tabular data prediction and incomplete data imputation under the

federated environment, respectively.

Federated tabular data prediction. Tabular data is a typical
structure that organizes and stores information in a tabular form,

commonly used in various fields [22, 41], e.g., finance, healthcare,
and recommender systems. Existing federated tabular data predic-

tion methods contain machine learning-based and deep learning-

based ones. The machine learning-based methods include gradi-

ent boosting decision tree (GBDT) [16, 29, 30, 58], random forests

[32, 44, 48], and XGBoost [48, 51]. For example, the study in [48]

proposes a novel solution for privacy-preserving vertical decision

tree training and prediction, ensuring that no intermediate infor-

mation is disclosed beyond what the clients have agreed to release.

Furthermore, a significant number of deep learning-based predic-

tion models for federated tabular data have also been developed. For

example, some studies [12, 57] leverage GANs to generate synthetic

tabular data, which in turn helps build more effective downstream

global models. Contrastive learning is used to create more common

feature representations across different data silos [19]. However,

the above two types of studies only consider the complete data

scenarios. It limits their applicability in the real world, which is

struggling with ubiquitous incomplete tabular data.

Federated incomplete data imputation. It focuses on effec-

tively imputing missing data through collaborative learning while

preserving data privacy. Existing federated missing data imputation

methods can be classified into three branches: GAN-based meth-

ods, expectation maximization (EM)-based methods, and multiple

imputation (MI)-based methods. In particular, the GAN-based meth-

ods [33, 60] leverage GAN to capture complex data distributions

and generate synthetic data that closely resembles real-world data.

These synthetic datasets are then used to enhance the robustness

of models across clients. The EM-based methods [11] iteratively

perform expectation steps (to estimate missing values) and max-

imization steps (to optimize model parameters). It progressively

predicts missing values in distributed data. The MI-based methods

[8] use statistical models to impute missing data based on observa-

tional data and then transmit statistical summaries generated from

the imputed data for global modeling and inference. However, all

of the aforementioned methods impute missing values in federated

learning under the MAR or MCAR assumptions, which rely on

observed data. Moreover, if using the federated imputation as a

prior step of federated prediction tasks over missing tabular data,

the accuracy of downstream prediction models is highly depen-

dent on the accuracy of estimated values. Thus, existing federated

imputation methods neither address more complex missing data

mechanisms, i.e.,MNAR, nor effectively help federated prediction

over incomplete tabular data.

3 PRELIMINARIES
In this section, we present two key concepts: incomplete tabular

data and standard federated learning. Then, we describe the problem

we studied in this paper. Table 1 summarizes the frequently used

notations throughout the paper.

Incomplete tabular data. Incomplete tabular data, also known

as missing tabular data, can be categorized into the following three

types based on the mechanism and cause of the missing data [42]:

(i) missing completely at random (MCAR) [50], where missing val-

ues are unrelated to both observed and missing components; (ii)

missing at random (MAR) [23], in which the likelihood of missing

data depends on other observed variables but remains unrelated to

the missing values; and (iii) missing not at random (MNAR) [31],

indicating that the missing data is only related to the missing value

themselves. For example, as shown in Figure 1, higher-income par-

ticipants often withhold their income, resulting in missing values

that are directly related to the measured variable. Among the three

missing data mechanisms, MNAR is the most complex and rep-

resentative. Therefore, this paper primarily focuses on analyzing

incomplete tabular data under the MNAR mechanism.

Let us consider an incomplete tabular dataset 𝐷 = {(x𝑖 , 𝑦𝑖 )}𝑁𝑖=1,
where x𝑖 = (𝑥𝑖1, · · · , 𝑥𝑖𝑑 ) represents a sample with 𝑥𝑖 𝑗 ∈ 𝒳𝑗 tak-
ing values from a 𝑑-dimensional space, and 𝑦𝑖 ∈ Y denotes the

corresponding label. We focus on cases where feature values are

missing, but the label is complete, i.e., scenarios in which one or

more feature values 𝑥𝑖 𝑗 are not observed for certain samples x𝑖 . To
systematically encode the missing data within 𝐷 , we introduce a

mask matrix M, defined as M = (m1, · · · ,m𝑁 )⊤. Each mask vector

m𝑖 = (𝑚𝑖1, · · · , 𝑚𝑖𝑑 ) corresponds to a sample x𝑖 and indicates the

presence or absence of its feature values. The elements of M are
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Table 1: Notation description.
Notation Description

𝐾 the number of clients in the federated learning system

𝑁 the total number of samples from all 𝐾 clients

𝑇 the total rounds of collaborative communication

𝐸 the number of local training epochs

𝜆 the noise strength of the Laplace distribution

𝐷𝑘 the local private dataset of the 𝑘-th client

𝑂𝑘 the total number of observed features across all samples of the 𝑘-th

client

𝐶𝑖 the observed sample size score of the 𝑖-th client

𝑆𝑖 𝑗 the pair complementary score of the 𝑖-th and 𝑗 -th client

X, X̂,X′ the incomplete, reconstructed and masked attribute matrix, i.e.,
X, X̂,X′ ∈ R𝑛×𝑑

Y, Ŷ the true and predicted label matrix, i.e., Y, Ŷ ∈ Y𝑛×1
M, M̂ the mask matrix and transformed mask matrix of X, i.e., M, M̂ ∈

R𝑛×𝑑

M′ the predicted missing probability matrix, i.e.,M′ ∈ R𝑛×𝑑
R the random mask matrix, i.e., R ∈ {0, 1}𝑛×𝑑
A the attention score matrix

H the high-dimensional representation vector, i.e., H ∈ R𝑑×𝑒
𝒫, 𝜃𝑃 the prediction model and its parameters

ℐ, 𝜃 𝐼 the imputation model and its parameters

ℳ, 𝜃𝑀 the missing distribution learning model and its parameters

defined as follows:

𝑚𝑖 𝑗 =

{︄
1, if 𝑥𝑖 𝑗 is observed,

0, if 𝑥𝑖 𝑗 is missing,
(1)

where 𝑖 ∈ {1, · · · , 𝑁 } and 𝑗 ∈ {1, · · · , 𝑑}. The mask matrix M
functions as an indicator for the availability of each feature across

all samples in 𝐷 .

Standard federated learning. In this paper, we consider a

typical horizontally partitioned federated learning setup, involv-

ing a central server and a total of 𝐾 local clients. The goal is to

collaboratively train a high-performance FL global model parame-

terized by 𝜃∗ under server cooperation without sharing their local

dataset. For each client 𝑘 ∈ [𝐾] holds a private complete dataset

𝐷𝑘 = {(x𝑘
𝑖
, 𝑦𝑘
𝑖
) |𝑖 = 1, 2, · · · , 𝑛𝑘 }, where x𝑘𝑖 and 𝑦𝑘

𝑖
denote the 𝑖-th

input and label of 𝑘-th client, and [𝐾] represents a collection of

client indices. 𝑁 =
∑︁𝐾
𝑘=1

𝑛𝑘 is the total number of samples from all

clients. Assume that all participants are honest but curious, mean-

ing they adhere to the protocol but attempt to learn information

from the received messages. Mathematically, the goal objective of

standard FL is to minimize the loss of all 𝐾 clients as follows:

𝜃∗ = argmin

𝜃

𝐾∑︂
𝑘=1

𝑤𝑘ℒ(𝜃𝑘 ),

where ℒ(𝜃𝑘 ) = E(x,𝑦) ∈𝐷𝑘 ℓ (x, 𝑦;𝜃𝑘 ) is the empirical loss of 𝑘-th

client, ℓ (·; ·) is the supervised loss for client tasks, and 𝑤𝑘 is the

weight for the 𝑘-th client’s loss such that𝑤𝑘 ≥ 0 and

∑︁𝐾
𝑘=1

𝑤𝑘 = 1.

Problem definition. Based on the above concepts, we assume

the existence of a central server and 𝐾 clients in this paper. Each

client has an incomplete tabular dataset 𝐷𝑘 = (X𝑘 ,Y𝑘 ), where
X𝑘 ∈ R𝑛𝑘×𝑑 is incomplete attribute matrix, Y𝑘 ∈ Y𝑛𝑘×1 is label
matrix. A mask matrix M𝑘 of X𝑘 represents the state of missing

features, where M𝑘 ∈ R𝑛𝑘×𝑑 is same as Eq. 1. Each client has 𝑛𝑘
samples and the same feature spaces. Therefore, the total number

of all clients’ samples is 𝑁 =
∑︁𝐾
𝑘=1

𝑛𝑘 . We consider two types

of prediction tasks including classification Y ∈ {1, · · · ,𝐶} and
regression Y ∈ R.

The problem objective is to obtain an optimal set of local pre-

diction model parameters 𝒫 = {𝜃𝑃
1
, 𝜃𝑃

2
, · · · , 𝜃𝑃

𝐾
}, imputation model

parameters ℐ = {𝜃 𝐼
1
, 𝜃 𝐼

2
, · · · , 𝜃 𝐼

𝐾
} and missing distribution model

parametersℳ = {𝜃𝑀
1
, 𝜃𝑀

2
, · · · , 𝜃𝑀

𝐾
} that minimizes the supervised

loss, reconstruction loss and missing distribution learning loss

across all 𝐾 clients, i.e.,

argmin

𝜃

𝐾∑︂
𝑘=1

𝑤𝑘

(︂
ℒsup (𝜃𝑃𝑘 ) + 𝛼ℒrec (𝜃 𝐼𝑘 ) + ℒprob (𝜃𝑀𝑘 )

)︂
, (2)

where ℒsup (𝜃𝑃𝑘 ) = E(x,𝑦) ∈𝐷𝑘 ,m∈M𝑘 ℓ (𝒫 (x,m|𝜃
𝑃
𝑘
), 𝑦) is the super-

vised loss, ℒrec (𝜃 𝐼𝑘 ) = E(x,𝑦) ∈𝐷𝑘 ,x′∈X′𝑘 ,m̂∈M̂𝑘
ℓ (ℐ (x′, m̂|𝜃 𝐼

𝑘
), x) is

the reconstruction loss, andℒprob (𝜃𝑀𝑘 ) = Ex̂∈X̂𝑘 ,m∈M𝑘 ℓ (ℳ(x̂|𝜃
𝑀
𝑘
),

m) is the missing distribution learning loss. X′ and X̂ are masked

and reconstructed attribute matrix of X, repectively. M̂ is the trans-

formed mask matrix ofM, 𝛼 is a hyperparameter of weight, and𝑤𝑘
is the weight of client 𝑘 in the global optimization process.

4 DARN FRAMEWORK
In this section, we introduce our proposed federated incomplete tab-

ular data predictionmodel,DARN, which enables privacy-preserving
prediction across multiple clients using incomplete data directly.

This model fully leverages the information from each client’s miss-

ing data distribution, maximizing the utility of available data.

4.1 Framework Overview
The overall framework of DARN is shown in Figure 2. The frame-

work enables personalized federated prediction by leveraging the

complementarity of heterogeneousmissing data distributions, thereby

eliminating errors introduced by imputation.

It primarily comprises two core components: (i) missing distri-
bution learning for prediction model in the local training phase 2 ,

and (ii) personalized weight averaging in the server aggregation

phase 4 . Each client employs a shared missing-aware transformer

block to encode incomplete and masked incomplete data into high-

dimensional embeddings, respectively. Subsequently, distinct multi-

layer perceptron (MLP) networks are utilized to generate predicted

labels and reconstructed data. The reconstructed data is then fed

into the missing distribution learning model, which is equipped

with a logistic regression network to estimate the missing distri-

bution. Lastly, the missing distribution and the observed sample

size for each client are transmitted to the server. After receiving the

information from clients, the server calculates personalized weights

for each client’s prediction model based on the complementarity of

the missing distribution and the amount of observed data. Personal-

ized averaging is then performed using these weights. The optimal

personalized prediction models are derived after 𝑇 collaborative

communication rounds or when a convergence criterion is satisfied.

Overall, this framework learns the distribution of missing data

and leverages the complementarity of missing data during model

training, fully utilizing the available data from each client. It, in

turn, enhances the collaborative training effect in federated learning.

As a result, DARN accelerates model convergence and boosts the
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performance of downstream tasks, while simultaneously ensuring

privacy without introducing additional bias.

4.2 Missing Distribution Learning for
Prediction Model

A straightforward approach to handling incomplete data in feder-

ated learning is to jointly impute the missing values across clients

[33, 60]. Once the data is imputed, downstream prediction tasks

can be performed using the completed dataset. However, it has two

main limitations: (i) missing data imputation often introduces addi-

tional errors, as the process may rely on assumptions and estimates

that are not always accurate, and (ii) averaging imputation model

parameters disregards each client’s unique missing data distribu-

tions. As a result, the performance of a global model trained on

imputed data for specific downstream tasks may be suboptimal.

To this end, DARN leverages the complementarity of each client’s

missing data distribution to perform prediction tasks directly, with-

out relying on imputed data. The advantage of our method is that

it avoids potential bias and error accumulation associated with

data imputation, particularly when data is highly incomplete or the

missing mechanism is complex (i.e., MNAR).

Learning each client’s missing data distribution is essential for

obtaining a high-performance prediction model with incomplete

data. We achieve this by designing an imputation model with the

shared missing-aware transformer block and a missing distribution
learning model. Based on the heterogeneity missing distribution,

high-performance prediction models can be derived.

Missing-aware transformer-based imputation model. To
avoid the imputation error, we incorporate the transformer to rep-

resent the incomplete tabular data directly. However, traditional

transformer models require supplementary imputation algorithms

to handle missing data [20]. Even when padding vectors are used to

replace embeddings for missing values, it can still negatively impact

the calculation of attention scores. To address this, we propose a

missing-aware transformer block with a novel missing-aware at-

tention mechanism. It enables the model to learn the distributions

of both observed data and the missing states of incomplete data,

enhancing the generation of effective representations.

Specifically, we first mask the incomplete data X ∈ R𝑛×𝑑 with

a random mask matrix R at a rate of 𝜌 to get masked attribution

matrix X′. The random mask matrix representing the masking

status of each value is denoted by R ∈ {0, 1}𝑛×𝑑 = (r1, · · · , r𝑛)⊤,
where each vector r𝑖 = (𝑟𝑖1, · · · , 𝑟𝑖𝑑 ) corresponds to a sample x𝑖 .
In particular, 𝑟𝑖 𝑗 = 1 means that the 𝑗-th feature of x𝑖 is masked,

otherwise 𝑟𝑖 𝑗 = 0. For the masked matrix X′, the missing-aware

transformer block first computes the query Q, key K, and value V
matrices using linear transformations. Meanwhile, based on the

mask matrixM, we generate the transformedmask matrix M̂, where

each element 𝑚̂𝑖 𝑗 ∈ M̂ takes a value from {1,−∞}. In detail, 𝑚̂𝑖 𝑗 = 1

(resp. −∞) iff the𝑚𝑖 𝑗 = 1 (resp. 0). Then, the attention matrix A
can be calculated as follows:

A = Attention(Q,K,V) = softmax

(︄
QK𝑇√︁
𝑑𝑘

+ M̂
)︄
V,

where 𝑑𝑘 is the dimension of the K, affecting the scaling in the

dot-product computation.

The main idea of the missing-aware attention mechanism is that

special treatment is applied to missing values during the calculation

of the attention matrix. It uses the transformed mask matrix M̂,

which adds −∞ to the attention scores corresponding to the missing

values. The attention scores taking values of −∞ are ignored after

the softmax operation since they equal zero. This mechanism en-

ables the transformer block to learn and represent incomplete data

directly, without imputation, effectively eliminating the influence

of missing values on data representation.
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(a) Incomplete data X (b) Masked data X′ (c) Reconstructed data X̂

Figure 3: An illustrative workflow of the imputation model.

Next, the attention matrix A is fed into normalization, residuals

and feed-forward layers successively, similar to a traditional trans-

former, to produce the high-dimensional representation H ∈ R𝑑×𝑒 ,
with 𝑑, 𝑒 denoting the number of features and the embedding di-

mension, respectively. Finally, the high-dimensional representation

H inputs an MLP to get the reconstructed data X̂.
We provide a running example to illustrate the workflow of the

imputation model, as shown in Figure 3. It is designed to capture the

underlying data distribution more accurately and produce more pre-

cise imputation results, thereby providing more effective guidance

for training the missing distribution learning model. The objective

of the imputation model ℐ (·|𝜃 𝐼 ) is to minimize the reconstruction

loss, i.e., the mean absolute error between the original values of

the masked data and the reconstructed values. Taking the example

from Figure 3, we calculate the mean absolute error for {9.8, 10.0},

{720, 700}, and {780, 800}. Consequently, the reconstruction loss of

the 𝑘-th client can be expressed as follows:

ℒrec (𝜃 𝐼𝑘 ) =
1∑︁𝑛𝑘

𝑖=1

∑︁𝑑
𝑗=1𝑚𝑖 𝑗 · 𝑟𝑖 𝑗

𝑛𝑘∑︂
𝑖=1

𝑑∑︂
𝑗=1

𝑚𝑖 𝑗 · 𝑟𝑖 𝑗 · ℓ (𝑥𝑖 𝑗 , 𝑥̂𝑖 𝑗 ), (3)

where 𝑟𝑖 𝑗 represents the value in the random mask matrix R, and
𝑚𝑖 𝑗 is the feature missing state of 𝑥𝑖 𝑗 . 𝑥̂𝑖 𝑗 is the predicted value es-

timated by the missing-aware transformer-based imputation model

with the input of the masked values X′ and the transformed mask

matrix M̂, i.e., X̂ = ℐ (X′, M̂|𝜃 𝐼 ). ℓ (𝑥𝑖 𝑗 , 𝑥̂𝑖 𝑗 ) represents the absolute
error in the 𝑗-th feature of the 𝑖-th sample between X and X̂.

Missing distribution learning model. Based on the recon-

structed data obtained through the missing-aware transformer-

based imputation model, we design a missing distribution learning

model to capture the unique missing distribution for each client.

Specifically, we feed the reconstructed data X̂ into the missing dis-

tribution learning model, which consists of a logistic regression net-

work. This network generates a missing probability matrix M′, i.e.,
M′ = ℳ(X̂|𝜃𝑀 ). By comparing the missing probability matrix M′

with the mask matrixM, the missing distribution learning model is

trained. The parameters of the missing distribution learning model

represent the client’s unique missing distribution. Our empirical

evaluation also validates the effectiveness of approximating the

missing distribution using logistic regression. The binary cross-

entropy loss is used to measure the difference between𝑚𝑖 𝑗 ∈ M
and𝑚′

𝑖 𝑗
∈ M′ for the 𝑘-th client as follows:

ℒprob (𝜃𝑀𝑘 ) = −
𝑛𝑘∑︂
𝑖=1

𝑑∑︂
𝑗=1

(︂
𝑚𝑖 𝑗 log(𝑚′𝑖 𝑗 ) + (1 −𝑚𝑖 𝑗 ) log(1 −𝑚

′
𝑖 𝑗 )

)︂
,

(4)

where𝑚𝑖 𝑗 and𝑚
′
𝑖 𝑗
represent the feature missing state of X and X̂,

repectively.

Missing-aware transformer-based prediction model. Lever-
aging the learned distribution of missing data, these clients, which

are highly complementary, collaboratively train personalized pre-

diction models. The prediction model utilizes the shared missing-

aware transformer block from the imputation model to generate a

comprehensive data embedding. Subsequently, this model employs

an additional MLP to predict the label Ŷ using the derived data em-

bedding, i.e., Ŷ = 𝒫 (X,M|𝜃𝑃 ). We apply a supervised learning loss,

ℒsup, to update the learnable weights in this MLP. Here, we also

use the cross-entropy loss to calculate the difference between the

predicted label and the ground truth for the 𝑘-th client as follows:

ℒsup (𝜃𝑃𝑘 ) = −
(︂
Y log(Ŷ) + (1 − Y) log(1 − Ŷ)

)︂
. (5)

4.3 Personalized Weight Averaging
To maximize each client’s available data for direct prediction with-

out relying on estimated data, we leverage the missing complemen-

tary score and observed sample size score to calculate personalized

weights, resulting in high-performance prediction models. Formally,

let 𝑂𝑘 denote the total number of observed features across all sam-

ples (i.e., cells) for the 𝑘-th client, and let 𝜃𝑀
𝑘

represent the missing

distribution (i.e., the parameters of the missing distribution learning

model) for the 𝑘-th client. Specifically, we calculate the observed

sample size score by:

𝐶𝑘 =
𝑂𝑘

max{𝑂1,𝑂2, · · · ,𝑂𝐾 }
. (6)

We measure the cosine similarity between two missing distribu-

tions (𝜃𝑀
𝑖

of 𝑖-th client and 𝜃𝑀
𝑗

of 𝑗-th client) to denote the pair

missing complementary score as follows:

𝑆𝑖 𝑗 =
1

2

⎛⎜⎜⎝1 −
∑︁𝑑
𝑘=1

𝜃𝑀
𝑖𝑘
𝜃𝑀
𝑗𝑘√︂∑︁𝑑

𝑘=1
(𝜃𝑀
𝑖𝑘
)2 ·

√︂∑︁𝑑
𝑘=1
(𝜃𝑀
𝑗𝑘
)2

⎞⎟⎟⎠ , (7)

where 𝑑 refers to the dimensionality of the features in the input

tabular data. The value of 𝑆 lies within the interval [0, 1]. If the
missing distributions 𝜃𝑀

𝑖
and 𝜃𝑀

𝑗
of two clients are very similar, the

cosine similarity approaches 1, causing 𝑆𝑖 𝑗 to approach 0, which

indicates weak complementarity. Conversely, if the missing distri-

bution of the two clients differs significantly, the cosine similarity

decreases, and 𝑆𝑖 𝑗 approaches 1, reflecting strong complementarity.

In addition, the number of complete samples is also important

to the prediction model. The less missing data there is, the more

information a client can provide. Therefore, these clients with high

complementary scores and larger observed cell sizes can collab-

oratively train high-performance prediction models with greater

personalized weights. To achieve this, we incorporate the missing

complementary scores 𝑆 and the observed sample size scores 𝐶

into our personalized model aggregation process to get the per-

sonalized prediction model. For each pair of client 𝑖 and client 𝑗

(𝑖, 𝑗 ∈ [𝐾], 𝑖 ≠ 𝑗), the weight of 𝑖-th client is calculated by:

𝑤𝑖 𝑗 = 𝛽𝐶 𝑗 + (1 − 𝛽)𝑆𝑖 𝑗 , (8)

where 𝛽 is a hyperparameter to adjust the importance degree of ob-

served sample size scores or missing complementary scores. Then,

the personalized prediction model and imputation model for 𝑖-th
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Algorithm 1: The DARN Algorithm

Input: 𝐾 clients, collaborative communication rounds𝑇 , local

training epochs 𝐸, incomplete datasets 𝐷𝑘 and its mask

matrix M𝑘 , initialized prediction model 𝒫 and its

parameters 𝜃𝑃 , initialized imputation model ℐ and its

parameters 𝜃 𝐼 , and initialized missing mechanism modelℳ
and its parameters 𝜃𝑀 , batch size 𝑏

Output: The optimal personalized prediction model

{𝜃𝑃∗
1
, · · · , 𝜃𝑃∗

𝐾
}

Server executes: /* Run on central server */
1: initialize 𝜃𝑃

0
, 𝜃 𝐼

0
and 𝜃𝑀

0

2: for each round 𝑡 from 0 to (𝑇 − 1) do
3: for each client 𝑘 ∈ [𝐾 ] in parallel do
4: {𝜃𝑃

𝑘,𝑡+1, 𝜃
𝐼
𝑘,𝑡+1, 𝜃

𝑀
𝑘,𝑡+1,𝑂𝑘 } ← ClientUpdate (𝜃𝑃

𝑘,𝑡
, 𝜃 𝐼
𝑘,𝑡
)

5: calculate observed sample size scores with Eq. 6

6: calculate missing complementary scores with Eq. 7

7: calculate personalized weight with Eq. 8

8: update prediction and imputation model with Eq. 9

9: return {𝜃𝑃∗
1
, · · · , 𝜃𝑃∗

𝐾
}

Client executes: /* Run on client 𝑘 */
10: Function ClientUpdate (𝜃𝑃

𝑘,𝑡
, 𝜃 𝐼
𝑘,𝑡
) :

11: 𝜃𝑃
0
, 𝜃 𝐼

0
← deepcopy (𝜃𝑃

𝑘,𝑡
, 𝜃 𝐼
𝑘,𝑡
)

12: calculate the number of observed cells𝑂𝑘

13: for each local epoch 𝑒 from 0 to (𝐸 − 1) do
14: {X,Y} ← SampleBatch (𝐷𝑘 , 𝑏 )
15: get predicted label Ŷ = 𝒫 (X,M |𝜃𝑃𝑒 )
16: get mask incomplete data X′ with R
17: get transformed mask matrix M̂
18: get reconstructed data X̂ = ℐ (X′, M̂ |𝜃 𝐼𝑒 )
19: get predicted missing probability matrix M′ = ℳ(X̂ |𝜃𝑀𝑒 )
20: calculate supervised loss ℒsup with Eq. 5

21: calculate reconstruction loss ℒrec with Eq. 3

22: calculate missing distribution learning loss ℒpro with Eq. 4

23: update the 𝜃𝑃
𝑒+1, 𝜃

𝐼
𝑒+1, 𝜃

𝑀
𝑒+1 with Eq. 2

24: 𝜃𝑃
𝑡+1 = 𝜃

𝑃
𝐸
, 𝜃 𝐼
𝑡+1 = 𝜃

𝐼
𝐸
, 𝜃𝑀
𝑡+1 = 𝜃

𝑀
𝐸

25: return 𝜃𝑃
𝑘,𝑡+1, 𝜃

𝐼
𝑘,𝑡+1, 𝜃

𝑀
𝑘,𝑡+1,𝑂𝑘

client can be refined by the personalized weight as follows:

𝜃𝑃𝑖 = 𝛾𝜃𝑃𝑖 + (1 − 𝛾)
1

𝐾 − 1
∑︂

𝑗≠𝑖, 𝑗∈[𝐾 ]
𝑤𝑖 𝑗𝜃

𝑃
𝑗 ,

𝜃 𝐼𝑖 = 𝛾𝜃
𝐼
𝑖 + (1 − 𝛾)

1

𝐾 − 1
∑︂

𝑗≠𝑖, 𝑗∈[𝐾 ]
𝑤𝑖 𝑗𝜃

𝐼
𝑗 ,

(9)

where 𝛾 is a hyperparameter to adjust the personalized weight.

4.4 Algorithm Overall Procedure
The training process of DARN is presented in Algorithm 1. Initially,

the central server initializes a global prediction model 𝜃𝑃
0
, an impu-

tation model 𝜃 𝐼
0
and a missing distribution learning model 𝜃𝑀

0
. In

the 𝑡-th interaction, the server sends the prediction model 𝜃𝑃𝑡 , the

imputation model 𝜃 𝐼𝑡 and the missing distribution learning model

𝜃𝑀𝑡 to each client 𝑘 ∈ [𝐾]. For 𝑘-th client, after downloading 𝜃𝑃𝑡 , 𝜃
𝐼
𝑡

from the server, it has three operations: (i) get predicted label Ŷ
using local incomplete data X and corresponding mask matrixM

(Line 15); (ii) random mask incomplete data to get X′ with random

mask matrix R and get transformed mask matrix M̂, leverageX′ and
M̂ as input to get reconstructed data X̂ (Lines 16-18); and (iii) get

predicted missing probability matrix M′ (Line 19). Then, the super-
vised loss ℒsup, reconstruction loss ℒrec, and missing distribution

learning loss ℒpro are calculated (Lines 20-22). By minimizing the

loss functionwith Eq. 2, the parameters of the predictionmodel 𝜃𝑃
𝑡+1,

imputationmodel 𝜃 𝐼
𝑡+1 andmissing distribution learningmodel 𝜃𝑀

𝑡+1
can be updated. These parameters, 𝜃𝑃

𝑘,𝑡+1, 𝜃
𝐼
𝑘,𝑡+1, 𝜃

𝑀
𝑘,𝑡+1, and𝑂𝑘 , are

sent to the server. After receiving the parameters from all clients,

the server calculates the observed sample size score with Eq. 6 (Line

5) and missing complementary score with Eq. 7 (Line 6). Combining

the above two scores, the personalized weight can be calculated

with Eq. 8 (Line 7). Finally, the server can update the prediction

model and imputation model according to personalized weight with

Eq. 9 (Line 8). The whole process repeats until convergence or meets

the predefined requirements. In this way, the optimal personalized

prediction models {𝜃𝑃∗
1
, · · · , 𝜃𝑃∗

𝐾
} are constructed, maximizing the

utility of observed data by leveraging missing complementarity

without relying on estimated values.

4.5 Privacy Protection Enhanced DARN
We argue that DARN adheres to the standard FL training protocol

by transmitting model parameters rather than local training data,

thus protecting each client’s local training data from exposure to

other parties, including the FL server [35]. Specifically, the trans-

mitted parameters are the prediction models 𝜃𝑃 , imputation models

𝜃 𝐼 , missing distribution learning models 𝜃𝑀 , and the number of

observed cells 𝑂 . The number of observed cells is an aggregated

statistic that does not reveal any raw data or sensitive loss distribu-

tion of individual samples. However, the parameters of 𝜃𝑃 , 𝜃 𝐼 , 𝜃𝑀 ,

and 𝑂 may still pose a risk of revealing sensitive user information

if malicious entities attempt to infer private details. To mitigate

this risk, we incorporate the local differential privacy (DP) [46]

technique into our method.

Definition 1. Federated (𝜖, 𝛿)-Differential Privacy with Laplace
Noise. Letℛ : 𝐷1 × · · · ×𝐷𝐾 → 𝒴 be a randomized mechanism in a
federated system with 𝐾 clients.ℛ satisfies (𝜖, 𝛿)-differential privacy
if for any two adjacent federated datasets𝐷 = (𝐷1, · · · , 𝐷𝑘 , · · · , 𝐷𝐾 )
and 𝐷′ = (𝐷1, · · · , 𝐷′𝑘 , · · · , 𝐷𝐾 ) differing in at most one data record
of any single client 𝐷𝑘 , and for all measurable subsets 𝑌 ⊆ 𝒴 :

Pr[ℛ(𝐷) ∈ 𝑌 ] ≤ 𝑒𝜖 · Pr[ℛ(𝐷′) ∈ 𝑌 ] + 𝛿. (10)

To enforce this guarantee, each client 𝑘 perturbs its shared pa-

rameters 𝜃𝑘 = {𝜃𝑃
𝑘
, 𝜃 𝐼
𝑘
, 𝜃𝑀
𝑘
,𝑂𝑘 } in each communication round as

𝜃˜𝑘 = 𝜃𝑘 +𝜂𝑘 , where 𝜂𝑘 ∼ Laplace(0,Δ𝑓 /𝜖). Here, 𝜖 denotes privacy
budget and Δ𝑓 denotes the 𝐿1-sensitivity of the parameter update

function 𝑓 , defined as: Δ𝑓 = max𝐷𝑘 ,𝐷
′
𝑘
∥ 𝑓 (𝐷𝑘 ) − 𝑓 (𝐷′𝑘 )∥, where

𝐷𝑘 and 𝐷′
𝑘
are adjacent local datasets differing by one record. The

global model, obtained by aggregating {𝜃˜𝑘 }𝐾𝑘=1, preserves 𝜖-DP
due to the post-processing immunity of differential privacy. The

experimental results in Table 10 demonstrate that by adjusting the

intensity of noise, 𝜆 = Δ𝑓 /𝜖 , we can control the privacy protec-

tion capability of DARN. Specifically, increasing the noise intensity
enhances the effectiveness of privacy protection.
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Table 2: Dataset statistics in the experiments.
Name # Samples # Features Task
Bank 45,211 16 Classification

Higgs 98,050 29 Classification

Covertype 581,012 54 Classification

Gas 4,178,504 56 Regression

Beers 2,410 11 Classification

Mobility 2,268,105 77 Regression

5 EXPERIMENTS
In this section, we evaluate the performance of our proposed frame-

work, DARN, against six state-of-the-art federated tabular data

prediction methods in both classification and regression tasks. All

methods are implemented in Python. The experiments are con-

ducted in an Intel Core 2.90GHz server with 3 × A40 48GB (GPUs)

and 256GB RAM, running on the Ubuntu 18.04 system.

5.1 Experimental Setup
Datasets. Four publicly available real-world datasets are utilized

to evaluate the effectiveness of DARN: Bank [38], Higgs [5], Cover-

type [7] and Gas [26]. Two real-world incomplete datasets, Beers
[39] and Mobility [45], are employed to test its effectiveness and

applicability, with average missing rates of 16% and 30.62%, respec-

tively. The characteristics of these datasets are shown in Table 2.

For each dataset, 10% is randomly selected for testing, 10% for val-

idation, and the remaining 80% is used for training. The missing

rate of the dataset is denoted by 𝑅. To simulate an independent and

identically distributed (IID) scenario, all training data are randomly

assigned to all clients. Following [24], we model the non-IID case

by incorporating Dirichlet sampling (i.e., Dir(𝜑)) to capture label

distribution skew across clients, where 𝜑 indicates heterogeneity

degree. A small 𝜑 means high heterogeneity.

Missing pattern simulation. We simulate MNAR patterns,

as discussed in [10], because they frequently occur in real-world

scenarios and pose significant challenges to address. In this paper,

we categorize the MNAR missing patterns into two types: MNAR-

High and MNAR-Low. To simulate MNAR, an attribute 𝑓𝑚 is first

selected. The value 𝑥𝑖𝑚 of a sample x𝑖 is missing with a probability

of P𝑚 (𝑥𝑖𝑚), i.e.,

P𝑚 (𝑥𝑖𝑚) = Φ(𝑥𝑖𝑚)/
𝑛∑︂
𝑖=1

Φ(𝑥𝑖𝑚),

where Φ(𝑥𝑖𝑚) represents the ranking of 𝑥𝑖𝑚 in 𝑓𝑚 . In the MNAR-

High setting, higher values of 𝑓𝑚 correspond to higher rankings,

whereas in the MNAR-Low setting, lower values of 𝑓𝑚 result in

higher rankings. We define the missing pattern asℳ1 = ℳ(𝐶1, 𝑟1)
and ℳ2 = ℳ(𝐶2, 𝑟2), where 𝑟1 and 𝑟2 represent the missing rates

of each client, and the classes 𝐶1,𝐶2 ∈ {𝐻, 𝐿} denote High (H) and

Low (L), respectively.

Federated learning scenarios with missing data. To capture

the heterogeneity of missing data patterns and address a common

situation of missing data across clients, we define the following

six scenarios, each varying in complementarity, generalizability, or

missing mechanisms. Let theℳ-set represent the set of all missing

patterns, defined by varying missing rates and class values.

• Balanced complementarity (BC) scenario: For each feature, half of

the clients adhere to the missing pattern ℳ(𝐻, 0.5), while the

other half follow ℳ(𝐿, 0.5). This configuration represents an

ideal case of balanced complementarity, whereDARN is expected

to achieve optimal performance.

• Complete complementarity (CC) scenario: For each feature, half

of the clients are randomly selected and provided with a missing

pattern drawn from the ℳ-set. The complementary missing

pattern is assigned for the same feature in the remaining clients.

For example, if a feature in the selected clients followsℳ(𝐻, 0.4),
the other clients are assigned ℳ(𝐿, 0.6).

• Partial complementarity (PC) scenario: For each feature, half of the
clients are randomly selected and assigned amissing pattern from

theℳ-set, denoted asℳ1 (𝐶1, 𝑟1). For the same feature in the

remaining clients, a partially complementary patternℳ2 (𝐶2, 𝑟2)
is applied, satisfying 𝐶1 ≠ 𝐶2 and 𝑟1 ≠ 1 − 𝑟2.

• Single-sided complementarity (SSC) scenario: In this scenario, half

of the clients are randomly selected and assigned a pattern from

the ℳ-set, denoted as ℳ1 (𝐶1, 𝑟1). For the same feature, the

remaining clients are assigned a single-sided complementarity

pattern ℳ2 (𝐶2, 𝑟2), meaning the patterns partially vary from,

but do not fully complement, those of the selected clients, satis-

fying 𝐶1 = 𝐶2 and 𝑟1 ≠ 𝑟2.

• Completely random (CR) scenario: In this scenario, each client

is randomly assigned a pattern from the ℳ-set for each fea-

ture, which may result in fully independent and uncoordinated

missing patterns across all clients.

• Mixed missing mechanism (MMM) scenario: In this scenario, each

client is randomly assigned one missing data mechanism from

MCAR, MAR, and MNAR with equal probability, and the missing

rate is set to 50% for all clients.

Baselines. In the experiments, we evaluate DARN against six

state-of-the-art baselinemethods, comprising threemachine learning-

based methods (F-XGBoost [51], F-GBDT [30] and F-RF [48]), three

deep learning-based variants employed in FL (F-MLP [20], F-TabNet

[4], and F-SAINT [43]), and two variants of DARN (Central-DARN

and Local-DARN). Since F-XGBoost is the only method capable of

directly handling incomplete tabular data, we employ four advanced

data imputation methods: F-Mean [14], F-MIWAE [34], F-NMIWAE

[25], and F-GAIN [54] to impute missing values for the other meth-

ods. Notably, federated versions of all these deep learning prediction

and imputation methods are implemented using the FedAVG [35]

algorithm, adapted from their respective local implementations.

Central-DARN refers to a centralized learning framework where all

data is stored in a single location, without any privacy preservation.

Local-DARN involves all clients independently training their local

models without parameter aggregation, and we report the average

performance metrics across all these clients.

Metrics. To evaluate the performance of all methods, we use

AUC and standard accuracy to evaluate classification performance.

AUC quantifies the area under the receiver operating characteristic

curve based on the prediction results, whereas accuracy represents

the proportion of correctly classified samples relative to the total

number of samples in the dataset. For the regression task, we employ

root mean square error (RMSE) and R-squared (R2). RMSE quantifies

the mean squared magnitude of the prediction errors, whereas R2

indicates the proportion of the variance in the dependent variable

that is explained by the independent variables. A lower RMSE value
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Table 3: The prediction performance under the BC scenario.
Datasets Bank Higgs Covertype Gas

Models Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ RMSE ↓ R2 ↑
F-XGBoost 0.843 ± 0.004 0.723 ± 0.003 0.649 ± 0.003 0.707 ± 0.002 0.707 ± 0.005 0.933 ± 0.003 103.436 ± 2.551 0.994 ± 0.001

F
-
G
B
D
T F-Mean 0.831 ± 0.003 0.710 ± 0.004 0.635 ± 0.003 0.685 ± 0.001 0.692 ± 0.003 0.911 ± 0.001 116.968 ± 3.019 0.993 ± 0.001

F-MIWAE 0.815 ± 0.002 0.695 ± 0.003 0.618 ± 0.004 0.666 ± 0.005 0.678 ± 0.003 0.897 ± 0.004 − −
F-NMIWAE 0.818 ± 0.003 0.698 ± 0.002 0.621 ± 0.005 0.669 ± 0.003 0.683 ± 0.001 0.901 ± 0.002 − −
F-GAIN 0.834 ± 0.002 0.715 ± 0.003 0.638 ± 0.001 0.689 ± 0.003 0.697 ± 0.004 0.919 ± 0.003 107.149 ± 5.147 0.994 ± 0.001

F
-
R
F

F-Mean 0.814 ± 0.002 0.691 ± 0.002 0.619 ± 0.004 0.659 ± 0.007 0.664 ± 0.002 0.885 ± 0.003 − −
F-MIWAE 0.802 ± 0.003 0.680 ± 0.002 0.608 ± 0.004 0.646 ± 0.005 0.655 ± 0.001 0.869 ± 0.003 − −
F-NMIWAE 0.805 ± 0.002 0.684 ± 0.002 0.610 ± 0.001 0.648 ± 0.002 0.659 ± 0.003 0.874 ± 0.001 − −
F-GAIN 0.819 ± 0.003 0.697 ± 0.002 0.624 ± 0.003 0.665 ± 0.004 0.671 ± 0.001 0.894 ± 0.001 − −

F
-
M
L
P

F-Mean 0.824 ± 0.003 0.702 ± 0.003 0.623 ± 0.004 0.666 ± 0.003 0.677 ± 0.003 0.894 ± 0.001 133.398 ± 7.269 0.990 ± 0.001

F-MIWAE 0.812 ± 0.002 0.690 ± 0.002 0.617 ± 0.004 0.656 ± 0.002 0.659 ± 0.007 0.882 ± 0.002 − −
F-NMIWAE 0.816 ± 0.003 0.695 ± 0.002 0.621 ± 0.001 0.660 ± 0.002 0.668 ± 0.005 0.890 ± 0.003 − −
F-GAIN 0.828 ± 0.002 0.708 ± 0.002 0.633 ± 0.005 0.684 ± 0.005 0.683 ± 0.002 0.899 ± 0.002 125.699 ± 4.937 0.992 ± 0.001

F
-
T
a
b
N
e
t

F-Mean 0.837 ± 0.002 0.715 ± 0.003 0.629 ± 0.003 0.674 ± 0.003 0.717 ± 0.002 0.937 ± 0.001 86.418 ± 6.841 0.995 ± 0.001

F-MIWAE 0.825 ± 0.003 0.705 ± 0.002 0.623 ± 0.001 0.667 ± 0.001 0.704 ± 0.001 0.928 ± 0.002 − −
F-NMIWAE 0.829 ± 0.002 0.710 ± 0.002 0.624 ± 0.003 0.671 ± 0.001 0.712 ± 0.003 0.937 ± 0.002 − −
F-GAIN 0.840 ± 0.002 0.720 ± 0.002 0.634 ± 0.003 0.685 ± 0.004 0.728 ± 0.002 0.942 ± 0.001 78.175 ± 3.184 0.995 ± 0.001

F
-
S
A
I
N
T F-Mean 0.840 ± 0.003 0.720 ± 0.002 0.637 ± 0.003 0.688 ± 0.002 0.723 ± 0.002 0.941 ± 0.001 72.491 ± 5.497 0.996 ± 0.001

F-MIWAE 0.828 ± 0.002 0.708 ± 0.002 0.625 ± 0.002 0.672 ± 0.003 0.709 ± 0.003 0.933 ± 0.004 − −
F-NMIWAE 0.832 ± 0.003 0.713 ± 0.002 0.627 ± 0.005 0.674 ± 0.002 0.713 ± 0.005 0.938 ± 0.003 − −
F-GAIN 0.843 ± 0.002 0.725 ± 0.002 0.644 ± 0.006 0.702 ± 0.004 0.734 ± 0.002 0.947 ± 0.003 67.198 ± 1.487 0.997 ± 0.001

Central-DARN 0.856 ± 0.003 0.744 ± 0.002 0.643 ± 0.001 0.700 ± 0.003 0.727 ± 0.002 0.943 ± 0.002 74.164 ± 7.928 0.997 ± 0.001

Local-DARN 0.852 ± 0.002 0.740 ± 0.003 0.639 ± 0.001 0.696 ± 0.001 0.721 ± 0.002 0.940 ± 0.003 71.948 ± 6.156 0.997 ± 0.001

DARN 0.878 ± 0.001 0.781 ± 0.001 0.662 ± 0.001 0.721 ± 0.001 0.770 ± 0.002 0.967 ± 0.001 40.147 ± 2.009 0.999 ± 0.001

Table 4: The prediction performance under the CC scenario.
Datasets Bank Higgs Covertype Gas

Models Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ RMSE ↓ R2 ↑
F-XGBoost 0.832 ± 0.003 0.712 ± 0.002 0.651 ± 0.005 0.710 ± 0.005 0.703 ± 0.002 0.929 ± 0.003 99.681 ± 4.651 0.994 ± 0.001

F-GBDT 0.820 ± 0.002 0.699 ± 0.003 0.640 ± 0.004 0.692 ± 0.002 0.695 ± 0.003 0.917 ± 0.005 111.519 ± 5.941 0.993 ± 0.001

F-RF 0.805 ± 0.003 0.681 ± 0.002 0.621 ± 0.001 0.662 ± 0.002 0.668 ± 0.006 0.891 ± 0.003 − −
F-MLP 0.814 ± 0.002 0.692 ± 0.002 0.631 ± 0.005 0.682 ± 0.004 0.689 ± 0.003 0.902 ± 0.004 127.581 ± 3.654 0.992 ± 0.001

F-TabNet 0.826 ± 0.003 0.706 ± 0.002 0.632 ± 0.004 0.686 ± 0.003 0.721 ± 0.004 0.939 ± 0.003 81.651 ± 0.001 0.995 ± 0.001

F-SAINT 0.829 ± 0.002 0.711 ± 0.003 0.643 ± 0.003 0.701 ± 0.002 0.732 ± 0.001 0.944 ± 0.002 71.948 ± 4.738 0.997 ± 0.001

Central-DARN 0.847 ± 0.002 0.735 ± 0.003 0.641 ± 0.001 0.694 ± 0.003 0.727 ± 0.003 0.941 ± 0.004 68.417 ± 6.185 0.997 ± 0.001

Local-DARN 0.843 ± 0.003 0.731 ± 0.002 0.637 ± 0.002 0.689 ± 0.002 0.720 ± 0.003 0.939 ± 0.002 76.779 ± 3.617 0.997 ± 0.001

DARN 0.868 ± 0.002 0.772 ± 0.002 0.658 ± 0.002 0.717 ± 0.001 0.767 ± 0.002 0.964 ± 0.002 45.164 ± 3.698 0.999 ± 0.001

Table 5: The prediction performance under the PC scenario.
Datasets Bank Higgs Covertype Gas

Models Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ RMSE ↓ R2 ↑
F-XGBoost 0.821 ± 0.002 0.702 ± 0.002 0.649 ± 0.003 0.708 ± 0.002 0.701 ± 0.001 0.926 ± 0.002 107.982 ± 0.669 0.994 ± 0.001

F-GBDT 0.810 ± 0.003 0.691 ± 0.002 0.636 ± 0.004 0.688 ± 0.003 0.695 ± 0.002 0.915 ± 0.002 114.648 ± 1.233 0.994 ± 0.001

F-RF 0.797 ± 0.002 0.673 ± 0.002 0.622 ± 0.001 0.661 ± 0.001 0.664 ± 0.003 0.886 ± 0.001 − −
F-MLP 0.805 ± 0.002 0.684 ± 0.002 0.626 ± 0.001 0.676 ± 0.001 0.684 ± 0.001 0.894 ± 0.001 131.495 ± 2.541 0.992 ± 0.001

F-TabNet 0.817 ± 0.002 0.698 ± 0.002 0.634 ± 0.005 0.684 ± 0.004 0.724 ± 0.003 0.940 ± 0.001 86.176 ± 2.481 0.995 ± 0.001

F-SAINT 0.820 ± 0.002 0.703 ± 0.002 0.636 ± 0.001 0.693 ± 0.002 0.728 ± 0.001 0.942 ± 0.002 73.486 ± 4.561 0.997 ± 0.001

Central-DARN 0.838 ± 0.002 0.727 ± 0.002 0.640 ± 0.004 0.693 ± 0.004 0.725 ± 0.003 0.941 ± 0.002 70.165 ± 7.169 0.997 ± 0.001

Local-DARN 0.834 ± 0.002 0.723 ± 0.002 0.637 ± 0.002 0.690 ± 0.003 0.714 ± 0.002 0.936 ± 0.002 79.146 ± 5.532 0.997 ± 0.001

DARN 0.859 ± 0.001 0.764 ± 0.001 0.653 ± 0.001 0.713 ± 0.002 0.754 ± 0.001 0.957 ± 0.002 52.194 ± 5.024 0.999 ± 0.001

signifies superior prediction performance, whereas higher values

correspond to better performance for the other three metrics.

Implementation details. The total number of clients 𝐾 in the

FL system is set to 10. Each federated imputation algorithm is con-

figured with a learning rate of 0.3 and is run for a total of 𝑇 = 100.

For F-MIWAE and F-NMIWAE, the sampling size is set to 10, and

their corresponding local models are MIWAE and non-MIWAE,

respectively, both grounded in the importance-weighted autoen-

coder framework. In F-Mean, each client sends its local mean to the

server, which computes the global mean by averaging the received

local means and then sends it back to the clients. In F-GAIN, the

local model is GAIN, with both the generator and discriminator

implemented as two-layer fully connected networks. For all fed-

erated prediction methods, the learning rate is set to 0.001, and

𝑇 = 100. In F-XGBoost, the maximum tree depth is fixed at 5. For

two attention-based federated prediction methods (F-TabNet and

F-SAINT), the embedding size is set to 32, the number of attention

heads is 4, the dropout rate is 0.5, and the transformer depth is

6. In DARN, the model is trained with hyperparameters 𝛼 = 0.5,

𝛽 = 0.8 and 𝛾 = 0.5. We restrict the missing rate 𝑟 to a moderate

range of 0.3 to 0.7. This ensures sufficient data for learning while

maintaining a substantial missing rate to assess its impact across

various scenarios effectively. For the non-IID setting, we set 𝜑 = 0.1

to simulate high heterogeneity. An early stopping strategy [53] is

employed for all methods, which halts training if the validation loss

does not improve for seven consecutive epochs, thereby mitigating

overfitting. Each set of experiments is repeated five times with in-

dependent random seeds to ensure reliability, and the results, along

with their margin of error, are presented.

5.2 Overall Performance
Effectiveness.We assess the effectiveness of federated prediction

methods across the six scenarios, as shown in Tables 3-9. The best

results are highlighted in bold. It is observed that F-RF is unable
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Table 6: The prediction performance under the SSC scenario.
Datasets Bank Higgs Covertype Gas

Models Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ RMSE ↓ R2 ↑
F-XGBoost 0.813 ± 0.003 0.693 ± 0.003 0.646 ± 0.002 0.706 ± 0.002 0.689 ± 0.006 0.913 ± 0.005 109.781 ± 5.517 0.994 ± 0.001

F-GBDT 0.802 ± 0.004 0.682 ± 0.003 0.634 ± 0.007 0.687 ± 0.010 0.684 ± 0.005 0.913 ± 0.003 117.982 ± 1.981 0.993 ± 0.001

F-RF 0.789 ± 0.003 0.665 ± 0.002 0.618 ± 0.008 0.656 ± 0.006 0.651 ± 0.002 0.871 ± 0.003 − −
F-MLP 0.796 ± 0.003 0.676 ± 0.002 0.623 ± 0.003 0.671 ± 0.002 0.673 ± 0.007 0.886 ± 0.004 135.714 ± 4.897 0.992 ± 0.001

F-TabNet 0.808 ± 0.002 0.689 ± 0.002 0.628 ± 0.003 0.675 ± 0.001 0.710 ± 0.001 0.931 ± 0.002 90.641 ± 3.983 0.994 ± 0.001

F-SAINT 0.811 ± 0.002 0.694 ± 0.002 0.638 ± 0.001 0.695 ± 0.001 0.722 ± 0.001 0.936 ± 0.002 76.415 ± 6.614 0.997 ± 0.001

Central-DARN 0.829 ± 0.003 0.718 ± 0.002 0.643 ± 0.001 0.697 ± 0.002 0.726 ± 0.004 0.941 ± 0.005 64.517 ± 2.148 0.998 ± 0.001

Local-DARN 0.825 ± 0.002 0.714 ± 0.002 0.638 ± 0.002 0.693 ± 0.003 0.717 ± 0.001 0.938 ± 0.003 68.492 ± 4.738 0.997 ± 0.001

DARN 0.851 ± 0.001 0.755 ± 0.001 0.648 ± 0.001 0.707 ± 0.001 0.731 ± 0.001 0.947 ± 0.001 55.134 ± 6.517 0.999 ± 0.001

Table 7: The prediction performance under the CR scenario.
Datasets Bank Higgs Covertype Gas

Models Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ RMSE ↓ R2 ↑
F-XGBoost 0.838 ± 0.003 0.718 ± 0.002 0.642 ± 0.001 0.698 ± 0.002 0.705 ± 0.003 0.929 ± 0.002 105.564 ± 3.477 0.994 ± 0.001

F-GBDT 0.826 ± 0.002 0.705 ± 0.003 0.632 ± 0.006 0.687 ± 0.002 0.696 ± 0.006 0.918 ± 0.004 103.189 ± 3.655 0.993 ± 0.001

F-RF 0.811 ± 0.002 0.688 ± 0.002 0.618 ± 0.003 0.655 ± 0.004 0.676 ± 0.001 0.901 ± 0.002 − −
F-MLP 0.820 ± 0.003 0.699 ± 0.002 0.626 ± 0.004 0.673 ± 0.005 0.688 ± 0.005 0.899 ± 0.002 114.487 ± 7.246 0.993 ± 0.001

F-TabNet 0.832 ± 0.002 0.710 ± 0.003 0.631 ± 0.005 0.675 ± 0.003 0.719 ± 0.001 0.936 ± 0.003 82.791 ± 4.489 0.994 ± 0.001

F-SAINT 0.835 ± 0.003 0.715 ± 0.003 0.641 ± 0.001 0.698 ± 0.001 0.737 ± 0.002 0.948 ± 0.003 69.486 ± 3.332 0.997 ± 0.001

Central-DARN 0.852 ± 0.003 0.739 ± 0.002 0.638 ± 0.003 0.692 ± 0.002 0.733 ± 0.004 0.946 ± 0.003 71.912 ± 6.166 0.998 ± 0.001

Local-DARN 0.849 ± 0.002 0.736 ± 0.003 0.636 ± 0.004 0.688 ± 0.003 0.723 ± 0.002 0.939 ± 0.004 73.984 ± 8.728 0.997 ± 0.001

DARN 0.873 ± 0.001 0.777 ± 0.001 0.660 ± 0.002 0.720 ± 0.001 0.773 ± 0.001 0.971 ± 0.001 38.624 ± 1.137 0.999 ± 0.001

Table 8: The prediction performance under the MMM scenario.
Datasets Bank Higgs Covertype Gas

Models Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ RMSE ↓ R2 ↑
F-XGBoost 0.824 ± 0.003 0.704 ± 0.002 0.628 ± 0.003 0.683 ± 0.002 0.691 ± 0.004 0.914 ± 0.003 108.245 ± 3.500 0.993 ± 0.002

F-GBDT 0.808 ± 0.003 0.689 ± 0.002 0.619 ± 0.005 0.672 ± 0.003 0.682 ± 0.002 0.903 ± 0.004 115.892 ± 3.700 0.993 ± 0.002

F-RF 0.789 ± 0.002 0.668 ± 0.002 0.605 ± 0.002 0.641 ± 0.003 0.662 ± 0.003 0.886 ± 0.002 − −
F-MLP 0.810 ± 0.002 0.694 ± 0.001 0.613 ± 0.001 0.659 ± 0.004 0.673 ± 0.004 0.892 ± 0.003 132.782 ± 7.300 0.991 ± 0.002

F-TabNet 0.811 ± 0.002 0.693 ± 0.001 0.621 ± 0.006 0.661 ± 0.005 0.705 ± 0.003 0.921 ± 0.003 87.345 ± 4.600 0.994 ± 0.002

F-SAINT 0.817 ± 0.001 0.709 ± 0.002 0.625 ± 0.002 0.683 ± 0.003 0.713 ± 0.002 0.931 ± 0.003 74.123 ± 4.800 0.996 ± 0.002

Central-DARN 0.815 ± 0.002 0.701 ± 0.002 0.623 ± 0.004 0.681 ± 0.004 0.709 ± 0.004 0.929 ± 0.003 72.345 ± 7.300 0.996 ± 0.002

Local-DARN 0.806 ± 0.002 0.693 ± 0.002 0.620 ± 0.003 0.678 ± 0.004 0.698 ± 0.003 0.924 ± 0.004 81.234 ± 8.800 0.996 ± 0.002

DARN 0.866 ± 0.001 0.769 ± 0.001 0.645 ± 0.002 0.705 ± 0.003 0.758 ± 0.002 0.956 ± 0.003 51.456 ± 5.200 0.998 ± 0.001

to generalize for regression tasks, and its performance is marked

as “ − ”. Additionally, some entries are labeled as “ − ” when the

runtime exceeds 10
5
seconds. Since all baselines achieve nearly the

best results using F-GAIN for imputation, as shown in Table 3, we

exclusively use F-GAIN for imputation across all scenarios.

We have the following observations. First, it can be observed

that DARN consistently outperforms all baseline methods, achiev-

ing higher prediction performance (i.e., Accuracy, AUC, and R2)

and lower errors (i.e., RMSE). Specifically, DARN achieves an av-

erage improvement of 36.91%, 34.32%, 26.72%, 25.80%, 40.85%, and

28.20% for BC, CC, PC, SSC, CR and MMM scenarios, respectively,

across all metrics and datasets. These imputation-based methods

exhibit poor performance because the introduction of imputation

techniques can introduce bias, potentially compromising the final

prediction accuracy. Although F-XGBoost can handle incomplete

tabular data directly, its performance is suboptimal, particularly

on large datasets (e.g., Covertype and Gas). This is because large

datasets tend to increase the depth of individual trees, causing the

model to fit finer details of the data and become more prone to

overfitting. In contrast, DARN excels due to its effective capture

of each client’s unique missing data distribution and the use of

a complementary missing distribution to construct personalized

federated prediction models directly, without relying on estimated

values. It also has advantages for large datasets due to the increased

availability of observed information.

Second, DARN outperforms two variants of centralized learning-

based DARN, i.e., Central-DARN and Local-DARN. For example,

(a) Efficiency evaluation (b) Ablation study

Figure 4: The efficiency evaluation and ablation study.

in the BC scenario, as shown in Table 3, DARN achieves an aver-

age performance improvement of 42.43% over Central-DARN and

40.77% over Local-DARN. This is because DARN is designed for

a distributed framework and calculates personalized weights for

each client based on the similarity of pairs of clients’ missing distri-

butions and their observed sample sizes. However, Central-DARN

processes all data through a single centralized node, treating all

incomplete tabular data samples as equally important for the pre-

diction model. The Local-DARN is similar to Central-DARN but

with fewer training samples. It demonstrates that our proposed

method is explicitly designed for collaborative scenarios involving

missing complementarity.

Third, DARN exhibits a decreasing advantage in prediction per-

formance as the level of missing pattern complementarity decreases.

In scenarios with high to moderate complementarity (i.e., BC, CC,
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Table 9: The prediction performance under the non-IID setting.
Scenarios BC CC PC SSC CR

Models Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑
F-XGBoost 0.685 ± 0.004 0.903 ± 0.003 0.672 ± 0.002 0.891 ± 0.002 0.663 ± 0.003 0.881 ± 0.001 0.655 ± 0.005 0.872 ± 0.004 0.678 ± 0.003 0.898 ± 0.002

F-GBDT 0.674 ± 0.005 0.892 ± 0.004 0.662 ± 0.003 0.880 ± 0.003 0.652 ± 0.002 0.872 ± 0.002 0.645 ± 0.004 0.863 ± 0.003 0.669 ± 0.004 0.887 ± 0.003

F-RF 0.656 ± 0.002 0.873 ± 0.002 0.645 ± 0.003 0.861 ± 0.002 0.634 ± 0.001 0.853 ± 0.001 0.627 ± 0.002 0.844 ± 0.002 0.650 ± 0.002 0.868 ± 0.002

F-MLP 0.665 ± 0.003 0.883 ± 0.002 0.654 ± 0.002 0.871 ± 0.003 0.646 ± 0.001 0.863 ± 0.001 0.638 ± 0.003 0.854 ± 0.002 0.659 ± 0.003 0.878 ± 0.002

F-TabNet 0.694 ± 0.002 0.911 ± 0.003 0.683 ± 0.003 0.899 ± 0.002 0.674 ± 0.002 0.891 ± 0.001 0.666 ± 0.001 0.882 ± 0.002 0.688 ± 0.002 0.906 ± 0.003

F-SAINT 0.709 ± 0.003 0.925 ± 0.002 0.698 ± 0.002 0.913 ± 0.003 0.689 ± 0.001 0.905 ± 0.002 0.681 ± 0.002 0.896 ± 0.002 0.703 ± 0.003 0.920 ± 0.003

Central-DARN 0.705 ± 0.003 0.920 ± 0.002 0.698 ± 0.002 0.910 ± 0.003 0.690 ± 0.002 0.902 ± 0.002 0.682 ± 0.003 0.893 ± 0.002 0.703 ± 0.003 0.918 ± 0.002

Local-DARN 0.701 ± 0.002 0.917 ± 0.003 0.694 ± 0.003 0.907 ± 0.002 0.686 ± 0.002 0.899 ± 0.002 0.678 ± 0.002 0.890 ± 0.002 0.699 ± 0.002 0.915 ± 0.003

DARN 0.742 ± 0.001 0.952 ± 0.001 0.732 ± 0.002 0.940 ± 0.002 0.723 ± 0.001 0.932 ± 0.001 0.715 ± 0.001 0.923 ± 0.001 0.737 ± 0.001 0.947 ± 0.001

(a) Bank (b) Higgs (c) Covertype (d) Gas

Figure 5: The prediction performance of tabular data prediction algorithms vs. missing rate 𝑅.

(a) Bank (b) Higgs (c) Covertype (d) Gas

Figure 6: The prediction performance of DARN vs. weight hyperparameter 𝛼 .

and PC scenarios), DARN significantly outperforms baseline meth-

ods and improves slightly in the low complementarity scenario

(i.e., SSC scenario). Even in the CR scenario and practical setting

(i.e., MMM scenario) with random missing patterns or missing

mechanisms for each client, DARN performs well, as missing com-

plementarity is also present in these scenarios to some extent. By

calculating the personalized weight, DARN can further leverage the

observed samples to their maximum potential instead of imputation.

Considering that low and moderate levels of missing complemen-

tarity are likely to occur frequently in real-world scenarios, DARN
may demonstrate higher practical applicability.

Finally, DARN also remains effective in the non-IID setting. The

results on the Covertype dataset in Table 9 show that DARN con-

sistently achieves the highest prediction performance compared to

all other baseline methods across all scenarios. As an example, in

the BC scenario, the average test accuracy of DARN is 4.65% higher

than that of the best-performing baseline F-SAINT. This is because

F-XGBoost and imputation-based methods face greater challenges

in the non-IID setting. The skewed label distribution can introduce

processing bias or additional imputation errors, further degrading

prediction performance. In contrast, DARN aims to directly rep-

resent incomplete data and leverage the observed information to

its fullest extent, without introducing additional biases due to the

heterogeneous distribution.

Efficiency. Since FL involves multiple communication rounds

with all clients, efficiency is essential when training personalized

models to handle incomplete data. We compare the runtime of

DARN with these deep learning-based methods to assess the effi-

ciency of our approach, as our method falls within this category.

These deep learning methods all employ F-GAIN for handling in-

complete data, which is the best-performing federated imputation

algorithm discussed earlier. The average runtime for each method

across all scenarios and datasets is reported in Figure 4(a). The re-

sults indicate that DARN demonstrates competitive (or even lower)

runtime compared to these deep learning methods. This is because

these deep learning-based methods (F-TabNet and F-SAINT), which

combine prediction with imputation, incur significant computa-

tional overhead. An exception is F-MLP, which demonstrates rela-

tively high efficiency due to its lower model complexity; however,

its performance is not comparable to that of attention-based models.

In contrast, DARN only requires fitting an additional logistic regres-

sion model to learn the missing data distribution for calculating

personalized weights. Its runtime for each dataset is comparable

to that of Central-DARN and Local-DARN. These results demon-

strate that our model offers significantly higher efficiency, making

it better suited to meet the demands of real-world applications.

5.3 Ablation Study
We conduct ablation studies to evaluate the effectiveness of different

components inDARN under the non-IID setting using the following

four strategies. The experimental results on the Covertype dataset,

focusing on BC and CR scenarios, are presented in Figure 4(b).
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Table 10: The performance of DARN vs. noise 𝜆.
Datasets Covertype Bank

𝜆 Accuracy ↑ AUC ↑ Accuracy ↑ AUC ↑
0 0.770 ± 0.002 0.967 ± 0.001 0.878 ± 0.001 0.781 ± 0.001
0.1 0.766 ± 0.002 0.962 ± 0.001 0.874 ± 0.002 0.777 ± 0.001

0.2 0.762 ± 0.003 0.958 ± 0.003 0.870 ± 0.001 0.773 ± 0.002

0.3 0.759 ± 0.002 0.956 ± 0.003 0.867 ± 0.002 0.770 ± 0.001

0.4 0.755 ± 0.001 0.953 ± 0.001 0.863 ± 0.001 0.766 ± 0.002

0.5 0.756 ± 0.001 0.955 ± 0.001 0.864 ± 0.001 0.767 ± 0.001

• w/o C: This strategy does not consider the observed data size

score when calculating the personalized weight.

• w/o MAT : This strategy uses a traditional transformer block

instead of the missing-aware transformer for both the prediction

and imputation models. As a result, they do not incorporate

a missing-aware attention mechanism and instead rely on the

values estimated by the imputation model.

• w/o REC: This strategy does not incorporate reconstruction error
during the local model update process.

• w/o PWC: This strategy does not employ the personalizedweight

calculation approach. Instead, it directly utilizes FedAVG for

parameter updates.

The results indicate that the observed data size score, the missing-

aware transformer block, reconstruction loss, and the personalized

weight calculation strategy all positively influence prediction per-

formance. Specifically, the average performance decreases by 2.19%,

2.04%, 3.20%, and 3.29%, respectively, when these components are

removed. It highlights that the personalized weight calculation

strategy contributes most significantly to DARN.

5.4 Parameter Evaluation
Effect of 𝑅.We investigate the robustness of DARN against a range

of missing rates, from 30% to 70%. From the results on the four

datasets under the CR scenario, as shown in Figure 5, we observe

that DARN consistently outperforms all baseline methods. As the

missing rate 𝑅 increases, the prediction accuracy decreases for all

methods due to the reduced availability of observed data. Notably,

the prediction accuracy of DARN decreases at a much slower rate.

This advantage can be attributed to themissing distribution learning

module, which is a strength in the missing-aware transformer block.

Additionally, the personalized weight averaging strategy optimizes

the use of the available data. As a result,DARN effectively mitigates

the adverse effects of higher missing rates.

Effect of 𝛼 . We investigate how DARN performs with different

weights for the reconstruction loss in Eq. 2. The parameter 𝛼 is

designed to train these three models in a balanced manner, while

also partially mitigating reconstruction errors. Figure 6 illustrates

the impact of the hyperparameter 𝛼 on the performance of DARN
on the four datasets under BC and CR scenarios. As shown, DARN
achieves its optimal performance, indicated by higher accuracy or

lower RMSE, when 𝛼 is set to 0.5.

Effect of 𝜆.We validate the privacy-utility tradeoff of DARN en-

hanced with the DP technique, as defined in Eq. 10. Specifically, we

vary the Laplacian noise strength added to the shared parameters,

denoted by 𝜆 = Δ𝑓 /𝜖 , from 0 to 0.5 in increments of 0.1, and conduct

a set of experiments on the Bank and Covertype datasets under the

BC scenario. Tuning the noise intensity allows control of privacy

protection strength, with higher noise levels offering stronger pri-

vacy guarantees. As shown in Table 10, performance deteriorates

Table 11: The performance over real-world datasets.
Datasets Beers Mobility
Models Accuracy ↑ AUC ↑ RMSE ↓ R2 ↑

F-XGBoost 0.228 0.605 81.04 0.539

F-GBDT 0.220 0.591 84.75 0.521

F-RF 0.208 0.586 88.43 0.504

F-MLP 0.222 0.594 78.12 0.546

F-TabNet 0.231 0.611 74.39 0.557

F-SAINT 0.238 0.629 70.83 0.553

Central-DARN 0.245 0.646 66.72 0.571

Local-DARN 0.237 0.631 71.57 0.555

DARN 0.253 0.648 63.41 0.587

as the noise strength 𝜆 increases, though the degradation remains

minimal when 𝜆 is not excessively large. This demonstrates that

our method not only provides robust privacy protection but also

meets the essential security requirements for practical deployment.

5.5 Case Study
We further verify the superiority of the DARN on two real-world in-
complete datasets—the Beers dataset and theMobility dataset. Specif-

ically, the Beers dataset is a real-world dataset sourced through

web scraping and manually cleaned by the dataset owner, with an

average missing rate of 16%. It is a multi-class classification task

involving the prediction of 16 different beer styles. The Mobility

dataset, which tracks COVID-19 community mobility, shows how

the length of stay at various locations changes relative to a baseline

in a specific region, with an average missing rate of 30.62%. It is a

regression task to predict the number of new cases confirmed after a

positive test. From Table 11, we can observe that our method consis-

tently outperforms baseline approaches on two real-world datasets,

achieving an average improvement of 3.92% on the Beers dataset

and 10.35% on the Mobility dataset. The results not only demon-

strate that missing complementarity exists to a certain degree in

real-world incomplete datasets, but also confirm the robustness and

applicability of DARN in real-world scenarios.

6 CONCLUSION
In this paper, we introduce a novel federated prediction framework

for incomplete tabular data, called DARN. This framework lever-

ages missing complementarity to construct personalized federated

prediction models without relying on imputed values. Each client

trains a model to learn the unique missing data distribution and

uploads its parameters, along with the observed sample size. The

central server calculates missing complementarity scores and ob-

served sample size scores to determine the personalized weights for

the prediction models. Furthermore, we present a missing-aware

transformer block to represent incomplete tabular data accurately.

We incorporate differential privacy techniques into DARN to en-

hance privacy. Extensive experiments on four publicly available

real-world datasets and two real-world incomplete datasets verify

the superiority and robustness of DARN.
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