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ABSTRACT

Approximate Nearest Neighbor (ANN) search is a foundational yet

computationally demanding query in vector databases, critical for

applications such as information retrieval and generative AI infer-

ence. Hierarchical graph-based methods have attracted signi�cant

attention due to their promising query performances compared to

other indexes for ANN search. However, these methods still face

e�ciency bottlenecks because they rely on exhaustive and level-by-

level traversals within hierarchical graphs. This paper introduces

SHG, a novel hierarchical graph-based index that enhances search

e�ciency by bypassing intermediate and redundant levels. Speci�-

cally, SHG leverages a hierarchical vector compression method to

reduce the time spent on distance computations, and employs a

new data structure called shortcuts to determine the number of in-

termediate levels that can be safely skipped. Extensive experiments

demonstrate that our solution achieves 1.5–1.8× speedup compared

to state-of-the-art methods. Meanwhile, our method signi�cantly

improves the robustness of ANN search, boosting recall by up to

20% for certain queries on benchmark datasets.
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1 INTRODUCTION

With the emergence of large language models (LLMs), the vector

databases [40, 41] garner signi�cant attention for their abilities to

support e�cient data storage [25, 53], information retrieval [44, 45],

and retrieval-augmented generation [9, 32]. A fundamental query

type within vector databases is the Approximate :-Nearest Neigh-

bor (:-ANN) search. :-ANN has become a focal point of research

interest due to the challenge posed by high-dimensional vector data,

often referred to as the “curse of dimensionality” [28, 48]. Indexing
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Figure 1: Motivation example: search :-ANN (: = 3) of the

query vector (edges at each level are omitted for clarity)

is a key solution to this challenge and often provides an e�ective

balance between search e�ciency and the recall of query answers

[8, 34, 52, 56]. Among existing ANN indexes, graph-based indexes

demonstrate superior performance compared to other in-memory

indexes, including tree-based, hash-based, and quantization-based

methods [5, 47, 50]. Accordingly, this work is dedicated to an in-

depth exploration and enhancement of graph-based indexes.

Graph-based ANN Indexes. Graph-based ANN methods build

proximity graphs where each vector is represented as a node, and

edges between nodes signify neighbor relationships. By leverag-

ing these relationships, search algorithms iteratively expand the

necessary neighborhoods of currently traversed nodes, enabling

rapid query processing. Recent advancements in hierarchical graph-

based indexes have shown promising improvements in query per-

formance [18, 34, 36, 38]. Notably, Hierarchical Navigable Small

World (HNSW) [36] stands out as the most prevalent hierarchical

graph-based index in vector databases [40, 41], widely recognized

for its e�ciency and scalability. The following example illustrates

the main structure of the HNSW index.

Example 1 (Hierarchical Graph: HNSW [36]). Fig. 1a illustrates

an example of HNSW with four levels of proximity graphs (i.e.,

hierarchical graphs). At each level, edges connect nearby vectors,

though they are omitted for clarity. If a vector appears at level G , it

also appears at all lower levels down to level 1. Consequently, the

proximity graph at level 1 encompasses the entire dataset. When

searching:NNof the query vectormarked in red, the process begins

at level 4 to identify the locally nearest vector, which serves as the
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entry point for level 3. This procedure is repeated, moving down

through levels until reaching level 1. Finally, : nearest vectors are

identi�ed by traversing the graph at level 1 using a heap.

Our Observation and Motivation. A hierarchical graph-based

index typically traverses all proximity graphs from the top-most

level to the bottom-most level. This procedure involves numerous

distance computations over high-dimensional vector data, which

can become a signi�cant bottleneck for search e�ciency. However,

in practice, the nearest neighbor of the query vector at a higher

level G often remains as the nearest neighbor at lower levels (say

until level ~ < G), as long as their distance is su�ciently short. In

such cases, we can skip the levels above ~ and directly navigate to

level ~, thereby reducing unnecessary computations. To illustrate

this motivation, consider the following example.

Example 2 (Shortcut-enabled HNSW). Fig. 1b shows the key in-

sight from our observations in HNSW. When searching at level 4,

let 38B denote the distance between the query vector and its nearest

neighbor at this level. The relatively long distance suggests the need

for a more granular search. Upon moving to level 3, the nearest

distance signi�cantly decreases to 38B′ j 38B , suggesting that we

have approached the area close enough to the query vector. Now,

imagine an additional data structure, the shortcut (marked by blue

arrows across levels), which would allow us to skip level 2 and

directly navigate to level 1. This would eliminate the time spent

traversing level 2, thereby improving search e�ciency.

Main Idea of Our Solution. Inspired by above observations, a

Shortcut-enabled Hierarchical Graph (SHG) index is proposed to

facilitate e�cient level navigation within hierarchical graphs for

:-ANN search. Speci�cally, we �rst propose a hierarchical vector

compression method for reducing data dimensions across levels.

This method not only quickly approximates vector distances using

compressed coordinates, but also ensures a constant relative error

between adjacent levels. Then, we develop a novel data structure

called learned shortcut, which e�ectively infers the number of

levels that can be safely skipped. The shortcut is represented by

piecewise linear models trained on the samples generated from the

nodes in hierarchical graphs using :-th nearest neighbor density

estimation. Finally, we propose e�cient algorithms for constructing

our index SHG and performing :-ANN search using SHG.

Contribution. The main contributions are listed as follows:

• We are the �rst to identify that (i) certain level navigations

in hierarchical graphs are redundant and degrade search

e�ciency, and (ii) introducing shortcuts can eliminate these

unnecessary steps, thereby reducing computational cost.

• We propose a hierarchical vector compression method that

accelerates distance computations while providing approx-

imation guarantees and facilitating shortcut construction.

• We design a new index SHG enhanced with shortcuts. Un-

der this structure, we propose an e�cient construction

method and a scalable :-ANN search algorithm.

• Comprehensive experiments on 8 datasets show that our

solution accelerates :-ANN search by 1.5–1.8× compared to

the state-of-the-art methods [34, 36, 56]. Moreover, our ap-

proach exhibits superior robustness in recall performance.

Table 1: Summary of major notations

Notation Description

D ¦ R
3 A dataset D of 3-dimensional vectors

> = [E1, E2, · · · , E3 ] A 3-dimensional vector >

38B (>, >′ ) Exact distance between > and >′

;4E4;; (> ) Compressed representation of > at level ;

38B (;4E4;; (> ), ;4E4;; (>′ ) ) Approximate distance between > and >′ at level ;
( = { (3̂8B8 , ℎ8 ) | 8 } Training samples for construct learned shortcut

5 (3̂8B ) Infer skipped levels via learned shortcut

@, : , � Query vector @, integer : , and query answer �

In our test, our SHG achieves up to 20% higher recall in

queries where existing indexes struggle, with an average

improvement from 72% to 81% across all queries.

Roadmap. The rest of this paper is organized as follows. Sec. 2

de�nes the query and analyzes limitations of prior hierarchical

graph based indexes. In Sec. 3, we introduce our hierarchical vector

compression method and analyze its relative error. Our index SHG

and ANN search algorithm are detailed in Sec. 4. Finally, we conduct

experiments, review related work, and conclude in Sec. 5-7.

2 PRELIMINARIES

This section de�nes the query (Sec. 2.1), presents the limitations

of existing methods (Sec. 2.2), and highlights the research opportu-

nities that inspire our solution (Sec. 2.3). Table 1 summarizes the

frequently used notations in the rest of this paper.

2.1 Problem De�nition

Vectors e�ectively represent structured and unstructured data (e.g.,

images and words) via embedding models. These high-dimensional

data representations enable semantic search and power modern AI

systems like LLMs. A formal de�nition of vector data is as follows.

De�nition 1 (Vector Data). A vector data object > is represented

by a point within the 3-dimensional real coordinate space R3 , i.e.,

> = [E1, E2, · · · , E3 ], where E8 denotes the 8-th coordinate of the vector.

We useD to de�ne a set of 3-dimensional vector data, where the

data cardinality is denoted by = = |D|. The distance between any

two vectors >, >′ ∈ D is denoted as 38B (>, >′). In practice, 38B (·, ·)
can be instantiated as Euclidean distance or Lp-norm.

De�nition 2 (:-ANN Search). Given a query vector @ ∈ R3 and a

vector datasetD, :-Approximate Nearest Neighbor (:-ANN) search is

to identify a subset � ¦ D containing : vectors that are close to the

query vector @, with the objective of maximizing the recall as follows:

'420;; =
|� ∩�∗ |

:
(1)

where �∗ ¦ D denotes the exact :-nearest neighbors of @. Formally,

for all > ∈ �∗ and for all >′ ∉ �∗, 38B (>, @) f 38B (>′, @) holds.

There are also previous studies that focus on the (2, :)-ANN
search problem [28, 52], where the parameter 2 is explicitly em-

ployed to control search quality, such that 38B (@, >8 ) f 2 · 38B (@, >∗8 )
with >∗8 being the exact 8-th nearest neighbor of @. However, re-

cent studies and modern vector databases emphasize recall-based

approaches more prominently [34, 36, 47, 50].
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Algorithm 1: :-ANN search using HNSW [36]

Input: Dataset D, a query vector @, and parameter<!

Output: Approximate :-nearest neighbors � to @

// Index Construction Phase:

1 foreach Vector > ∈ D do

2 '0=!4E4; ← +− ln (uniform(0, 1)) ·<!,;
3 if '0=!4E4; is larger than current top level then

4 4? ← > ;

5 for ; ← '0=!4E4; to �0B4!4E4; do

6 Select neighbors at level ; with 38B (>, ·);
7 Build the NSW graph with neighbors at level ; ;

// :-ANN Search Phase:

8 4? ← the entry point at the top level;

9 for level ; ← )>?!4E4; to (�0B4!4E4; + 1) do
10 4? ← �nd the nearest neighbor to @ using exact distance

38B (@, ·) at level ; ;
11 Query result �← search :-ANN of 4? at the base level;

12 return �;

Remark. Indexing has become a cornerstone of state-of-the-art

methods for recall-oriented :-ANN search. Existing indexes can be

classi�ed into tree-based, LSH-based, graph-based, and other types.

Among these, graph-based indexes have demonstrated superior

query performance [5, 40, 50]. Consequently, this work primarily

focuses on enhancing the performance of graph-based indexes.

2.2 Understanding Hierarchical Graph-based
Indexes for :-ANN Search

Hierarchical graph-based indexes have emerged as a promising so-

lution for :-ANN search, o�ering a balance between high e�ciency

and excellent recall. By leveraging their hierarchical structures, this

kinds of graph-based indexes enable rapid vector searches and are

commonly adopted in vector databases.

Mainstream Index: HNSW. Hierarchical Navigable Small World

(HNSW) [36] is one of the most prevalent indexes for query opti-

mization in modern vector databases (e.g., Milvus [2], AnalyticDB-B

[51], SingleStore-V [10], and Pinecone [4]). The basic structure of

HNSW is illustrated in Fig. 1a, where vectors are connected in

hierarchical graphs. This unique structure has led to substantial

improvements in query e�ciency. For clarity, we brie�y introduce

the construction and search routine of HNSW.

HNSW-Enabled Search Routine. Algo. 1 shows the routine of

HNSW-based methods [36], with lines 1-7 outlining the index con-

struction phase and lines 8-12 outlining the :-ANN search phase.

During the construction phase, each vector > ∈ D is assigned a level

(i.e., '0=!4E4;) that follows an exponentially decaying probability.

This allows the vector > to exist at all levels from '0=!4E4; down

to �0B4!4E4; . At each level, the neighbors of > are identi�ed by

calculating the exact distances to other vectors within that level

(line 6). By connecting > to its neighbors, a proximity graph, called

Navigable Small World (NSW) [35], is constructed in line 7. In the

:-ANN search phase, the procedure begins at the top level, where

a data point 4? is selected as the entry point. The algorithm then

traverses each level sequentially, identifying the vector with the

nearest distance to 4? at each level and designating this vector

as the new entry point 4? for the subsequent level. This process

continues until reaching the level just above �0B4!4E4; (lines 9-10).

Finally, the approximate query result � is determined by a local

search within the graph at the bottom level �0B4!4E4; .

E�ciency Bottleneck of HNSW-like Indexes. Despite their

popularity, hierarchical graph-based indexes, such as HNSW-like

indexes [34, 36, 38], still face e�ciency bottlenecks during ANN

search. These bottlenecks primarily stem from two critical issues:

• IntensiveDistanceComputations. For high-dimensional

vector data, distance computations across all dimensions

are usually the predominant factor a�ecting time e�ciency.

• Exhaustive Level-by-Level Navigation. Prior methods

require a brute-force hierarchical navigation, scanning all

levels from the top-most level down to the lowest level. At

each level, a proximity graph needs to be explored, which

limits overall scalability.

Both issues contribute substantially to the computational overhead.

Thus, addressing these limitations is imperative for enhancing the

performance and scalability of this kind of indexes.

2.3 Overview of Our Solution

To address the above e�ciency bottlenecks, we propose a novel

hierarchical graph-based index, referred to as SHG.

Key Ideas of Our Index. Fig. 2 illustrates the core ideas underlying

our solution. The key innovations in our index SHG are twofold:

• ApproximateDistanceComputationswithCompressed

Vectors (Sec. 3). To reduce the computational cost of (ex-

act) distance computations, we propose an approximation

method that progressively compresses vectors across hier-

archical levels. This method enables e�cient computations

of distances using compressed vectors while maintaining a

proper approximation error (see Theorem 1).

• Shortcut Structure Between Adjacent Levels (Sec. 4).

To avoid exhaustive traversal through all levels, we devise

a specialized data structure called shortcut. A shortcut

connects the entry points between di�erent hierarchical

levels. By using the distance between the query vector and

the entry point at the top level, a shortcut can skip unnec-

essary levels and directly access a suitable bottom level.

Consequently, this approach saves a substantial portion of

runtime by bypassing certain levels and avoids traversing

proximity graphs at those levels.

Together, these techniques enhance the e�ciency and recall of

:-ANN search, as will be validated by experiments in Sec. 5.

3 HIERARCHICAL VECTOR COMPRESSION
FOR APPROXIMATE DISTANCES

This section �rst introduces a new vector compression strategy

that progressively compresses vector representations as the level

increases. Then, it provides an analysis of the relative error between

any two vectors across levels within the hierarchical structure.
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level1(o) = o=[0.2, 0.8, 0.1, 0.5, 0.4, 0.2, 0.6, 0.8] 

level2(o)=[0.5, 0.3, 0.3, 0.7] 

level3(o)=[0.4, 0.5] 

level4(o)=[0.45] 

(a)Hierarchical vector compression (3 = 8)

q
o1

o3

o2

f( dis(level4(q),level4(o1)) ) = 1

f( dis(level3(q),level3(o3)) ) = 2

(b) Shortcut enabled index

Figure 2: Overview of our solution

3.1 Hierarchical Vector Compression via
Progressive Mean Aggregation

A 3-dimensional vector > is represented as [E1, E2, · · · , E3 ], where
E8 is the coordinate value of the 8-th dimension. For simplicity, we

assume 3 = [L−1 for an integer L (with default value of [ set to 2).

We use ;4E4;; (>) to denote the compressed representation of this

vector’s coordinates at the level ; , where 1 f ; f L.
Main Idea. Eq. (2) presents the key steps of our hierarchical com-

pression method by using progressive mean aggregation.

;4E4;; (>) =



[
E1, E2, · · · , E3

]
if ; = 1

[
<40=>

;,1
,<40=>

;,2
, · · · ,<40=>

;,[L−;

]
if ; > 1

(2)

Speci�cally, at the base level (i.e., ; = 1), vectors maintain their

original uncompressed representation: ;4E4;1 (>) = [E1, E2, · · · , E3 ].
For upper levels (i.e., ; > 1), we use<40=>

;, 9
to denote the average of

the coordinate values within the 9-th segment at level ; − 1, which
covers dimensions from [ ( 9 − 1) + 1 to [ ( 9 − 1) + [. Accordingly,
<40=>

;,9
can be progressively calculated as follows:

<40=>
;,9

=




E 9 if ; = 1

1

[

[∑

:=1

<40=>
;−1,:+[ ( 9−1) if ; g 2

(3)

Example 3. As depicted in Fig. 2a, consider a vector > with 3 = 8

dimensions and [ = 2. At level 1, > is represented in its original

form as ;4E4;1 (>) = [0.2, 0.8, 0.1, 0.5, 0.4, 0.2, 0.6, 0.8]. At level 2, the
dimensionality is reduced to 4. Based on Eq. (3), we have<40=>2,1 =

(0.2 + 0.8)/2 = 0.5,<40=>2,2 = (0.1 + 0.5)/2 = 0.3,<40=>2,3 = (0.4 +
0.2)/2 = 0.3, and<40=>2,4 = (0.6+0.8)/2 = 0.7. According to Eq. (2),

the compressed vector at level 2 is ;4E4;2 (>) = [0.5, 0.3, 0.3, 0.7].
This process continues until reaching the level L = 4.

Remark. In practice, the dimensionality of vector data is typically

in the form of 2L−1. If this condition is not met, we can handle the

discrepancy by padding the vector with 0.

3.2 Distance Approximation over Compressed
Vectors and Relative Error Analysis

This subsection introduces how to compute the approximate dis-

tance for compressed vectors at the same level. It also analyzes

the relative error under commonly-used distance functions (e.g.,

Euclidean distance and Lp-norm).

Approximate Distance Computation. For any two vectors > and

>′ at level ; , we can use their compressed coordinates to approximate

their true distance, i.e., 38B (;4E4;; (>), ;4E4;; (>′)). Intuitively, this
approach reduces the computational cost of distance computations

by using lower-dimensional representations.

Relative Error Analysis in Euclidean Space. Our approximate

distance computation method guarantees a constant relative error

between consecutive hierarchical levels, as proved in Theorem 1.

Theorem 1. Given any two 3-dimensional vectors >, >′ ∈ D under

Euclidean space, for any level ; ∈ [1,L), the approximate distances

between them at levels ; and ; + 1 satisfy the following inequality:

38B (;4E4;;+1 (>), ;4E4;;+1 (>′)) f
1
√
[
· 38B (;4E4;; (>), ;4E4;; (>′)) (4)

Proof. The proof relies on Lemma 1 (which will be proved later)

and the vector compression scheme described in Eq. (2) and Eq. (3).

Under Euclidean space, we can derive the squared distance be-

tween any two compressed vectors at level ; + 1 as:

38B
(
;4E4;;+1 (>), ;4E4;;+1 (>′)

)2
=

[L−;∑

9=1

���<40=>;+1, 9 −<40=
> ′
;+1, 9

���
2

(5)

Based on Eq. (3), we know:

<40=>
;+1, 9 =

1

[

[∑

:=1

<40=>
;,:+[ ( 9−1) (6)

By substituting the expressions for<40=>
;+1, 9 and<40=

> ′
;+1, 9 from

Eq. (6) into the right-hand side (RHS) of Eq. (5), we have:

���<40=>;+1, 9 −<40=
> ′
;+1, 9

���
2
=

�����
1

[

[∑

:=1

(
<40=>

;,:+[ ( 9−1) −<40=
> ′

;,:+[ ( 9−1)

)�����

2

By applying Lemma 1, the RHS of this equation is bounded by:

���<40=>;+1, 9 −<40=
> ′
;+1, 9

���
2
f 1

[

[∑

:=1

���<40=>;,:+[ ( 9−1) −<40=
> ′

;,:+[ ( 9−1)

���
2

Consequently, the RHS of Eq. (5) is bounded by:

1

[

[L−;∑

9=1

[∑

:=1

���<40=>;,:+[ ( 9−1) −<40=
> ′

;,:+[ ( 9−1)

���
2

(7)

Under Euclidean space, the squared distance between the com-

pressed vectors at level ; is given by:

38B
(
;4E4;; (>), ;4E4;; (>′)

)2
=

[L−;+1∑

9=1

���<40=>;, 9 −<40=
> ′
;, 9

���
2

(8)
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By grouping and summing each block of [ consecutive terms of

|<40=>
;,9
−<40=> ′

;, 9
|2, the RHS of Eq. (8) can be rewritten as:

[L−;∑

9=1

[∑

:=1

���<40=>;,:+[ ( 9−1) −<40=
> ′

;,:+[ ( 9−1)

���
2

(9)

By substituting Eq. (9) into the upper bound in Eq. (7), we obtain:

38B
(
;4E4;;+1 (>), ;4E4;;+1 (>′)

)2 f 1

[
· 38B

(
;4E4;; (>), ;4E4;; (>′)

)2

This completes the proof. □

Lemma 1. Using our vector compression method in Euclidean

space, the following inequality holds for the corresponding coordi-

nates of any two vectors >, >′ ∈ D at any level ; ∈ [1,L]:
�����
1

[

[∑

:=1

(
<40=>

;,:+[ 9 −<40=
> ′
;,:+[ 9

)�����

2

f 1

[

[∑

:=1

���<40=>;,:+[ 9 −<40=
> ′
;,:+[ 9

���
2

Proof. The proof relies on the �nite form of Jensen’s inequality

[13], which is presented as follows:

� (F1G1 +F2G2 + · · · +F=G=) f
=∑

:=1

F:� (G: ) (10)

where � (·) is a convex function, andF1, · · · ,F= are non-negative

real values such that
∑=
:=1

F: = 1. By substituting � (G) = |G |2,
F1 = F2 = · · · = F= =

1
[ , and = = [, Eq. (11) simpli�es into:

�����
1

[
·

[∑

:=1

G:

�����

2

f 1

[
·

[∑

:=1

|G: |2 (11)

Finally, substituting G: with <40=>
;,:+[ 9 −<40=

> ′
;,:+[ 9 in Eq. (11)

yields the inequality presented in this lemma. □

Relative Error Analysis in Lp-norm. In Theorem 2, we extend

the relative error from Euclidean space to the Lp-norm. Due to page

limitations, please refer to our full paper [24] for the detailed proof.

Theorem 2. Given any two 3-dimensional vectors >, >′ ∈ D in

Lp-norm (? g 1), for any level ; ∈ [1,L), the approximate distances

between them at levels ; and ; + 1 satisfy the following inequality:

38B (;4E4;;+1 (>), ;4E4;;+1 (>′)) f [−1/? · 38B (;4E4;; (>), ;4E4;; (>′))

Remark. Theorems 1 and 2 indicate that the relative error between

distances at consecutive levels is bounded by a constant factor of

[−1/? ([ = 2 in our implementation). In practice, the cumulative er-

ror ([−1/? );−1 usually remains bounded, since the number of levels

L is typically small (e.g., 3-5) in real datasets (see Sec. 5). As exact

distances are maintained at level 1, distances become progressively

more accurate when navigating from upper to bottom levels.

Why We Need Progressively Accurate Distances. The deliber-

ate design of such distance patterns serves two purposes:

(i) Balancing Recall and E�ciency. At level 1, computing dis-

tances involves all dimensions, since the �nal answer is determined

by traversing the graph at this level. As the level increases, the

vector data becomes sparser, allowing for greater tolerance of dis-

tance errors. Thus, lower-dimensional representations are used to

compress vector data at higher levels, thereby enhancing e�ciency.

distances

1/(num of levels)

(a) Learned Shortcut

q
o1

o3

o2

o4

S = { 
 ( dis(level4(o2),level4(o1)) , 3),

( dis(level3(o2),level3(o1)) , 2),

( dis(level3(o3),level3(o4)) , 2),

...}

(b) Learned shortcut construction

Figure 3: Shortcut construction

(ii) Facilitating Shortcut Construction. Our index allows for

skipping certain levels by shortcuts. The distance between the entry

vector and the query vector will determine the number of skipped

levels. Intuitively, a �xed entry vector should bypass to the same

target level from di�erent starting levels, thereby skipping vary-

ing numbers of levels. Using di�erent approximation scales across

levels, shortcuts e�ectively capture this property (see Sec. 5.4).

4 SHORTCUT-ENABLED :-ANN INDEX

This section introduces our index SHG for :-ANN search. We de�ne

the shortcut in Sec. 4.1, present the construction method in Sec. 4.2,

propose the search algorithm in Sec. 4.3, and provide a complexity

analysis in Sec. 4.4. Finally, we discuss index maintenance in Sec. 4.5.

4.1 Key Component of Our Index: Shortcut

The shortcut is a critical component of our index designed to en-

hance the search e�ciency. Its primary role is to infer the number

of levels that can be skipped when traversing hierarchical graphs.

This allows the shortcut to serve as an auxiliary data structure that

complements ANN indexes and signi�cantly improves the query

e�ciency. In this section, we use the state-of-the-art hierarchical

graph-based index, HNSW [36], to introduce our solution.

Shortcut. The concept of shortcuts is formally de�ned as follows:

De�nition 3 (Shortcut). Given a query vector @ and an entry vector

4? in the hierarchical graph at a certain level ; , the shortcut leverages

the (approximate) distance 3̂8B between @ and 4? to infer the number

of levels, denoted by 5 (3̂8B), that can be skipped from ; . The shortcut

also guarantees that 4? remains the entry vector for the hierarchical

graph at the target level with high probability.

As shown in Fig. 2b, the entry vector at level ; is the nearest

neighbor to the query vector @ in the proximity graph at level

; − 1. Then, the entry vector serves as the initial traversal point

at level ; . Intuitively, the choice of entry vector is critical for both

recall and e�ciency. Thus, inferring the number of skipped levels

necessitates a solution that is both cautious and accurate. Meanwhile,

the shortcut should be also space-e�cient.

Learned Shortcut. For precise navigation across levels with mini-

mal memory cost, we draw inspirations from learned index struc-

tures [30], which utilize machine learningmodels to �t data distribu-

tions. Prior studies [14, 16, 17, 33, 43] demonstrate that linear model

based learned indexes are more lightweight and e�cient compared
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to traditional data structures. Thus, we also adopt piecewise linear

models to learn the number of levels that can be skipped, since

it provides a worst-case error bound under various distributions

[14, 16, 17]. A learned shortcut is de�ned as follows:

De�nition 4 (Learned Shortcut). Given a list of distance-level

tuples ( = {(3̂8B0, ℎ0), (3̂8B1, ℎ1), · · · } as the training data, where

3̂8B8 is the approximate distance between two compressed vectors,

and ℎ8 is the corresponding number of levels that can be safely

skipped. Let - denote the distances and . denote the levels. The

mapping - → . is �tted using a set of piecewise linear functions:

5 (3̂8B) = {(3̂8B1, B;>?41, 8=C4A24?C1), (3̂8B2, B;>?42, 8=C4A24?C2), · · · }.
Each triple (3̂8B8 , B;>?48 , 8=C4A24?C8 ) �ts a certain range of tuples

through the function: 5 (3̂8B) = 3̂8B × B;>?48 + 8=C4A24?C8 . The learned
shortcut is represented by the piecewise linear model 5 (3̂8B).

Example 4. As shown in Fig. 3a, the orange and blue points repre-

sent the distance-level tuples in the training data set ( . The x-axis

indicates distances, while the y-axis shows the reciprocal of the

number of levels that can be skipped. The learned shortcut 5 (3̂8B)
comprises two piecewise linear functions. The parameters of the

�rst function are trained using yellow data points, while the second

function is �tted to the blue data points. Since each linear function

only requires a limited number of parameters, the learned shortcut

remains space-e�cient even for large-scale datasets.

Remark. For non-linear models like neural networks, inference

time and memory usage are signi�cantly higher than linear models

for learning shortcuts (see our full paper [24] for evaluations).

4.2 Index Construction

Technical Challenge. Although piecewise linear models have

achieved signi�cant success in building learned indexes [17, 30],

we still face two major challenges to build learned shortcuts:

(i) Determining Safe Skip Levels. There is currently no estab-

lished guideline for deciding the number of levels that can be safely

skipped. Prior work on ANN search has not considered building

shortcuts in hierarchical graphs, making this a novel challenge.

(ii) Generating Su�cient Training Samples. Unlike existing

studies on learned indexes [39, 46, 49], the training data for our

model is not explicitly provided by the input dataset. Therefore, we

need to devise an e�ective algorithm to generate su�cient training

samples to build an accurate learned shortcut.

To tackle these challenges, we �rst introduce Lemma 2 as the

guideline of determining safe skip levels and present the detailed

method for generating su�cient training samples in Algo. 2.

Guideline for Skipping Levels. We propose a density-based crite-

rion to determine how many levels can be safely skipped. Speci�-

cally, consider > as the nearest neighbor of the query vector @ at

level G , which will serve as the entry point at level G + 1. If there
are already numerous nearby vectors at level G that exhibit short

distances to @ (but longer than >), it is likely that > will remain the

nearest neighbor to @ at level G + 1. In such cases, traversing the

proximity graph from > at level G + 1 becomes redundant. Since > is

the nearest vector to @, the nearby vectors of @ should also be close

to > . Therefore, we use the density around the data vector > ∈ D to

re�ect the presence of nearby vectors relative to the query vector

@, and derive Lemma 2 as the �nal guideline.

Lemma 2. Given a vector > in the hierarchical graph at level G ,

we say that the levels from G down to ~ + 1 can be skipped if ~ is

the �rst level lower than G satisfying the following condition:
(
38B (;4E4;G (>), ;4E4;G (>G,: ))

)3G

f
=~ · c

3~
2 · �( 3G2 + 1)

=G · c
3G
2 · �( 3~2 + 1)

·
(
38B (;4E4;~ (>), ;4E4;~ (>~,: ))

)3~

The parameter [ in hierarchical vector compression is 2.

Proof. We adopt the : nearest neighbor (NN) based estimation

method [7] to estimate the density of a vector > ∈ D as follows:

�4=B8C~ (>) = :

= ·+3 · (38B (>, >: ))3
(12)

Here, +3 =
c3/2

� (3/2+1) is the volume of the 3-dimensional unit ball,

�(3) = (3 − 1)! is the gamma function, and >: denotes the :th NN

to the vector > in the dataset D.

Extending Eq. (12) to a vector > from the vector collection at any

level G , we estimate its density as:

�4=B8C~ (>, G) = :

=G ·+3G ·
(
38B (;4E4;G (>), ;4E4;G (>G,: ))

)3G (13)

where =G is the number of vectors at level G , 3G =
3

2G−1 is the

corresponding vector dimension, and >G,: is >’s :th NN obtained

through traversing the proximity graph at level G . Similarly, the

density of a vector > at level ~ is denoted by �4=B8C~ (>,~).
The key condition for safely skipping from level G directly to the

lower level ~ requires that the density around > at level G is no less

than its density at level ~:

�4=B8C~ (>, G) g �4=B8C~ (>,~) (14)

Substituting the density expressions from Eq. (13) into both sides

of the condition in Eq. (14) yields the following inequality:
(
38B (;4E4;G (>), ;4E4;G (>G,: ))

)3G

f
=~

=G
·
+3~

+3G
·
(
38B (;4E4;~ (>), ;4E4;~ (>~,: ))

)3~

=
=~ · c

3~
2 · �( 3G2 + 1)

=G · c
3G
2 · �( 3~2 + 1)

·
(
38B (;4E4;~ (>), ;4E4;~ (>~,: ))

)3~
(15)

This inequality matches the lemma’s skipping condition. □

Rationality of Lemma 2. Please refer to our full paper [24].

Algorithm Details. Based on Lemma 2, we now introduce the

index construction algorithm in Algo. 2. Lines 1-8 follow the con-

struction method of HNSW [36] to build hierarchical graphs, as

introduced in Algo. 1, where L denotes the number of levels. The

primary distinction is that line 7 computes approximate distances

using compressed vectors instead of exact distances. This modi�-

cation accelerates the construction time. Subsequently, lines 9-19

generate the training data samples ( and build the learned shortcut.

Speci�cally, each vector > ∈ D is treated as a query vector to search

its nearest neighbor at each level (lines 10-11). For each level G , lines
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Algorithm 2: Construct our index SHG

Input: Dataset D, normalization factor<! for index level

Output: Our index SHG

// Hierarchical Graph Construction Phase:

1 SHG← ∅;
2 foreach Vector > ∈ D do

3 ; ← +− ln (uniform(0, 1)) ·<!,;
4 if ; is larger than current top level then

5 4? ← > ;

6 for 9 ← ; to 1 do

7 Select neighbors at level ; with approximate distance

38B (;4E4;; (>), ;4E4;; (·));
8 Build the NSW graph with neighbors at level ; ;

// Learned Shortcut Construction Phase:

9 Training data set ( ← ∅;
10 foreach vector > ∈ dataset D do

11 Search nearest neighbor (NN) to > at each level;

12 for level G ← L to 1 do

13 for level ~ ← 1 to G − 1 do
14 ==G , ==~ ← >’s nearest neighbor at levels G,~;

15 if the condition in Lemma 2 is satis�ed then

16 3̂8B ← 38B (;4E4;G (>), ;4E4;G (==G ));
17 ℎ ← G − ~, then add (3̂8B, ℎ) into ( ;
18 break;

19 Learned shortcut 5 (·) ← train on dataset ( ;

20 return SHG with learned shortcut 5 (·);

13-18 identify the lowest level ~ that satis�es Lemma 2. If such ~

exists, the tuple (3̂8B, ℎ) is added to ( , where d̂is is the approximate

distance and ℎ is the number of skipped levels. To train the shortcut,

( is �rst divided into segments, and then linear models are used to

�t the data within each segment (see [17] for more details).

Example 5. As shown in Fig. 3b, we simplify this example by

considering only two data points, >2 and >4. Starting at level 4,

>1 is the nearest vector to >2 with an approximate distance 3̂8B =

38B (;4E4;4 (>2), ;4E4;4 (>1)). Upon checking level 1, we assume that

the nearest neighbor to>2 meets the criteria of Lemma 2. Thismeans

we already �nd a vector (>1) at level 4 that is close enough to>2, even

compared to its nearest neighbor at level 1. Consequently, we can

safely skip from level 4 down to level 1 at >2, pruning ℎ = 3 levels.

We add (3̂8B, ℎ) into the training samples ( . Next, at level 3, >3 is

the nearest vector to >4. At level 1, we assume the nearest neighbor

to >4 satis�es the distance condition in Lemma 2. Therefore, at

level 3, we have also identi�ed a vector with a su�ciently short

distance to >4, allowing us to skip from level 3 down to level 1.

We subsequently add the corresponding tuple to ( . Similarly, we

traverse the hierarchical graphs and generate the training data ( .

4.3 :-ANN Search

Main Idea. Our index accelerates search e�ciency in two ways:

Algorithm 3: :-ANN search using our index SHG

Input: Query vector @, index SHG

Output: Approximate :-nearest neighbors � to @

1 4? ← entry vector at level L of SHG, ; ← L;
2 3̂8B ← 38B (;4E4;L (@), ;4E4;L (4?));
3 while ; − 5 (3̂8B) g 1 do

4 Skip levels from ; down to (; − 5 (3̂8B));
5 Current level ; ← ; − 5 (3̂8B);
6 Entry vector 4? ← search nearest neighbor to @ at level

; using approximate distance 38B (;4E4;; (@), ;4E4;; (·));
7 3̂8B ← approximate distance 38B (;4E4;; (@), ;4E4;; (4?));
8 Start searching :NN to @ from 4? at level 1 using a heap, ;

9 38B: ← track :th nearest distance from vectors in, to @;

10 while |, | > 0 do

11 > ← extract the nearest vector in, to @ ;

12 Pop the vector > from, ;

13 foreach Vector D ∈ >’s neighbourhood do

14 ;>F4A1>D=3 ← [L/2 · 38B (;4E4;L (@), ;4E4;L (D)) ;
15 if ;>F4A1>D=3 f 38B: then

16 Calculate exact distance 38B (@,D) ;
17 if 38B (@,D) < 38B: then

18 Push vector D into, , and update 38B: ;

19 return Query answer �← the :NN to @ extracted from, ;

• Using the vector compression method in Sec. 3, upper lev-

els require fewer dimensions to compute approximate dis-

tances. This signi�cantly reduces computational costs.

• Using the learned shortcut in Sec. 4.1, we can infer the

number of levels that are con�dent enough to be skipped.

This reduces the time spent traversing unnecessary levels.

Algorithm Details. Algo. 3 presents our :-ANN search method.

Lines 1-7 cover the search process of upper levels, starting from

the entry 4? and computing approximate distances to @. Lines 3-7

navigate hierarchical graphs to reach the base level, with lines 4-5

using learned shortcuts to skip certain levels with approximate

distances. Lines 8-19 describe the base-level search, beginning from

4? at level 1, with a :-sized heap, maintaining nearby neighbors

to @. Lines 13–18 determine whether neighboring vectors of > in

the proximity graph at the base level qualify as next candidates.

Speci�cally, for each neighborhood vector D, line 14 computes its

approximate distance to @, which serves as a lower bound for the

exact distance based on Theorem 1. When this lower bound ex-

ceeds the distance threshold 38B: (i.e., the :th nearest distance from

vectors in, to @), D is eliminated from consideration. Otherwise,

lines 17-19 compute D’s exact distance to @ and compare it with

38B: to decide whether D should be added to, as a candidate.

Example 6. As shown in Fig. 2b, the query vector @ is marked in

red, and we assume 4? = >1 at level 4. Initially, the learned shortcut

infers that the approximate distance 38B (;4E4;4 (@), ;4E4;4 (>1)) is
large, indicating that a �ner search is needed. Consequently, the

shortcut outputs 1, resulting in a skip from level 4 down to level 3.

At this level, we identify that >3 has the nearest distance to @. Using
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the distance, the shortcut then infers that 2 levels can be skipped.

Based on this inference, traversal at level 2 is unnecessary, and >3
serves as the entry vector to traverse the proximity graph at level

1. Since level 1 contains all data objects, we use a :-sized heap to

maintain the �nal :-ANN when traversing the graph.

4.4 Complexity Analysis

This subsection o�ers a complexity analysis of construction time,

index size, and search time. For simplicity, we denote the number of

vectors by = and consider HNSW [36] as the hierarchical graph.

Construction Complexity. Lines 1-8 of Algo. 2 constructs

HNSW in$ (= log=) time [36]. Each loop of line 10 requires$ (log=)
time for searching HNSW [36] in line 11 and $ (L2) time for lines

12-18, whereL is the number of levels in HNSW.With$ (=L) train-
ing samples, line 19 builds the learned shortcut using the method

in [17] in $ (=L) time. The overall complexity remains $ (= log=),
as L is typically small (e.g., 3-5) in real-world datasets (in Sec. 5).

Index Space Cost. In addition to the memory S required for hi-

erarchical graphs, our index incurs two additional memory costs: (i)

compressed vector coordinates and (ii) learned shortcut. Compressed

vectors take $ (=) space, while the learned shortcut takes almost

constant space compared to S. For instance, in our evaluations, the

space occupancy of the learned shortcut is less than 3 MB, while S
is 2,503 MB for Deep100M. The overall space cost is S +$ (=).

Search Complexity. Algo. 3 requires $ (1) time to infer the

skipped levels. By leveraging our index, certain levels can be skipped

during traversal of the hierarchical graphs. Thus, the search com-

plexity remains no higher than that of HNSW [36], i.e., $ (log=).

4.5 Index Maintenance

Although ANN search is often studied over static data, some recent

studies also consider the issue of index maintenance over dynamic

updates. In general, dynamic updates involve two scenarios: delet-

ing existing vectors and inserting new vectors. Our index SHG can

e�ectively handle either scenario with the following strategies:

Deletion. In hierarchical graph based indexes, such as those

implemented in the HNSW library [1], a prevalent method for

deleting vectors is to mark them as deleted and verify these markers

during graph traversal. This method is also generally e�ective for

our index. However, if a substantial portion of the dataset (e.g., 50%)

has been deleted, up to half of the vectors at each level may be

non-existent. In such cases, search e�ciency might be reduced, so

it may be bene�cial to rebuild the entire index from scratch.

Insertion.Our index takes twomain steps to insert a new vector:

(i) Insertion in Hierarchical Graph. This step adheres to

the insertion routine for hierarchical graph-based indexes. Taking

HNSW [36] as an example, inserting a new vector involves estab-

lishing new edges between existing vectors and the new vector. It

takes $ (log=) time [36] to insert a vector into a set of = vectors.

(ii) Insertion in Learned Shortcut. Our SHG additionally per-

forms insertions in learned shortcuts. It inserts the training data

associated with the new vector and leverages the foundation model,

PGM index [17], to process these updates in $ (log=) time [3].

Table 2: Summary of datasets

Dataset Dim. Card. #(Query) Type #(Level)

OpenAI 1,536 1M 10,000 Text 4

Enron 1,369 94K 200 Text 3

GIST1M 960 1M 1,000 Image 3

Msong 420 992K 200 Audio 3

UQ-V 256 1M 10,000 Video 3

MsTuring10M 100 10M 1,000 Text 4

SIFT100M 128 100M 10,000 Image 4

Deep100M 96 100M 10,000 Image 4

5 EXPERIMENTAL STUDY

This section �rst presents the setup (Sec. 5.1), then evaluates (1)

construction cost, (2) search performance, (3) e�ectiveness of our

vector compression method, and (4) capability of updating data

(Sec. 5.2–5.5). Finally, the main results are summarized in Sec. 5.6.

5.1 Experimental Setup

Datasets. As outlined in Table 2, we evaluate on eight real-world

datasets spanning diverse cardinalities (94K-100M) and dimensions

(96-1536). These datasets are widely considered as standard bench-

marks for testing :-ANN search. For example, Enron, Msong, and

UQ-V have been utilized in prior survey [50] of state-of-the-art

(SOTA) graph-based methods, whereas the other datasets originate

from the open-sourced competitions [42] hosted by the NeurIPS

community. Each dataset also provides a test set as query vectors.

ComparedAlgorithms.We chose the graph-basedmethodsHNSW

[36], NSSG [19], and HVS [34] as our competitors because they out-

perform other in-memory ANNS techniques [47, 50], such as tree-

based [6, 37] and quantization-based methods [23, 26]. Furthermore,

we also incorporate LSH-APG [56] as a recent SOTA baseline, as it

e�ectively integrates the advantages of locality-sensitive hashing

(LSH) with the strengths of graph-based approaches.

• HNSW [36]. We set " = 48 and 4 5 �>=BCAD2C8>= = 80,

aligning with the parameters used in existing work [52, 56].

• NSSG [19]. NSSG is an enhanced variant of NSG [20]. Fol-

lowing its original implementation, we con�gure the pa-

rameters as follows: ! = 500, ' = 60, and �=6;4 = 60.

• HVS [34]. The parameters of HVS are set as" = 32,) = 4,

and 4 5 �>=BCAD2C8>= = 500. Besides, we sample 100,000

vectors as training samples for each dataset. These settings

are consistent with those in the original paper [34].

• LSH-APG [56]. We set  = 16, ! = 2, ) = 24, ) ′ = 2) and

?g = 0.95, which are the same as the settings in its code.

Both HNSW and SHG maintain L < 5 levels across datasets (see

Table 2). Please see our full paper [24] for evaluations on larger L.
Metrics.We measure the construction costs of each index by as-

sessing its memory cost and construction time. As for search perfor-

mances, recall (de�ned in Eq. (1) with the default : = 20) is used

to measure accuracy, and e�ciency is assessed using search time,

which represents the average time required to process each query.

Implementation.We implement our method as well as all compet-

ing algorithms in C++, using the g++ compiler. All experiments are
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Figure 4: Evaluation of index construction on eight real-world datasets
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Figure 5: Search performance on eight real-world datasets (with default query parameter : = 20)

conducted in a single-threaded environment on amachine equipped

with 40 Intel(R) Xeon(R) E5 2.30GHz processors with 1 TB of RAM.

5.2 Evaluation of Index Construction

Construction Time. Fig. 4a compares the construction time across

eight datasets. While our SHG and other hierarchical graph-based

indexes (e.g., HNSW and HVS) require more time than LSH-APG,

the total time cost remains acceptable given the data sizes. Our SHG

completes both training sample generation and learned shortcut

construction within 80 seconds across these datasets (see Table 3).

However, by leveraging approximate distances of compressed vec-

tors, our index SHG achieves a 9%-23% reduction in construction

time compared to HNSW. Besides, our method reduces construction

time by 12%-33% relative to HVS in Fig. 4a.

Memory Cost. Fig. 4b compares the memory costs associated with

various methods. Compared to HNSW, our SHG requires additional

but marginal space for learned shortcuts. For example, under the

four largest datasets, this overhead remains below 3MB as shown in

Table 3. While LSH-APG incurs the lowest memory cost, all indexes

can �t within the main memory of a modern server.

Table 3: Time and memory cost for learned shortcuts.

Dataset OpenAI MsTuring10M SIFT100M Deep100M

Time (s) 23.18 1.89 79.07 15.87

Memory (MB) 0.776 0.840 1.120 2.440

5.3 Evaluation of Search Performance

The evaluations encompass experiments with di�erent settings of

the query parameter : and assessments of performance robust-

ness. Adhering to the benchmark evaluation protocols [31, 42, 50],

we present the results via recall-time curves. Speci�cally, for each

dataset, :-ANN searches are conducted using an independent query

set. This query set is then divided into equally sized subsets, ordered

by recall values. We report the average recall and average time for

processing query vectors within each subset.
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Figure 6: Search performance on real-world datasets (with larger query parameter ġ = 50)

Search Performance on Default Query Parameter. Fig. 5 illus-

trates the overall search performances of the compared methods

(with defaultġ = 20). Overall, the results demonstrate that our index

SHG outperforms other methods, particularly excelling in achieving

recall rates exceeding 80% within the shortest time. Moreover, our

method shows notable advantages on those datasets (e.g., Enron).

For large-scale datasets with 100million vectors (i.e., Deep100M and

SIFT100M), our method demonstrates superior search performance.

On the SIFT100M dataset, our method achieves over 90% recall in

2.2 ms, whereas HNSW takes the same time but achieves less than

80% recall. Similarly, on the Deep100M dataset, our method reaches

over 80% recall faster than HNSW.

Speci�cally, for datasets with vectors exceeding 1,000 dimen-

sions, our method (SHG) requires less time (10 ms) than LSH-APG

to achieve a recall greater than 85%. To reach a recall of 95% on

the Enron dataset, SHG requires 20% less time than LSH-APG. On

datasets with 10 million vectors, the advantages of SHG are even

more pronounced. It takes about 1 ms for SHG to achieve a recall

of over 85%, while all other methods consume more than 2.5 ms to

reach the same recall on the MsTuring10M dataset. For Deep100M

dataset, SHG is still the fastest, achieving over 85% recall in about

2.5 ms, whereas LSH-APG only reaches the recall less than 80%, and

others perform even worse. For instance, HVS and HNSW achieves

just above 75% recall. For other datasets, SHG demonstrates a per-

formance improvement of 1.5× faster in reaching 90% recall than

LSH-APG, and it can be 1.8× faster than HNSW. Moreover, our

method is also fastest in achieving recall above 90% on the GIST1M,

UQ-V, and SIFT100M datasets.

The e�ciency gains stem from acceleration at both upper levels

and the base level. As shown in the time breakdown in Fig. 7, our

solution SHG achieves consistent time reductions across all levels,

compared to the baseline HNSW. These improvements result from

two key optimizations: (1) learned shortcuts that skip unnecessary

level navigations, and (2) compressed vectors enabling approximate

distance computations through fewer dimension scans. The results

also demonstrate that searching upper levels account for 18%–42%

(when ĨěęėĢĢ g 80%) of total search time in HNSW, indicating

non-negligible computation overhead.

Search Performance on Varied Query Parameter. Fig. 6 shows

the search performance when the query parameter ġ increases to 50.

We observe that all methods exhibit increasing time to achieve the

same recall value when ġ = 20. However, our method consistently

maintains the fastest time than others to reach the same recall.
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Figure 7: Average search time across upper and base levels

(ĨěęėĢĢ g 80%)

Speci�cally, our method takes less than 0.7 ms for the Enron

dataset and less than 0.9 ms for the other datasets to achieve 90% re-

call. On the GIST1M dataset, our method consistently outperforms

others when the recall exceeds 40%. Compared to the results in

Fig. 5c, LSH-APG achieves a 50% recall slightly faster than SHG

when ġ = 20. This trend indicates that the advantages of our index

over others continue to grow as ġ increases.
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Figure 8: Recall robustness between SHG and LSH-APG

Relative Recall Robustness Between SHG and LSH-APG. This

experiment only compares our SHG with LSH-APG due to its su-

perior performance over other baselines. Speci�cally, we sample

a new set of query vectors that are not included in the original

dataset for index construction. We refer to them as “unseen vectors”.

As shown in Fig. 8, we use boxplots (a.k.a., box-and-whisker plots) to

show the distributions of recall values for these queries. In boxplots,

the solid horizontal lines at the lower and upper ends (i.e., whiskers)

represent the lowest and highest recall values, respectively. The

size of the rectangular box re�ects the recall stability. The dashed

horizontal line within each box represents the median recall value.
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Figure 9: Ablation study on our hierarchical vector compression method (SHG-original vectors)

Compared to previous evaluations, the search performance of

LSH-APG signi�cantly declines on these unseen vectors. For ex-

ample, using LSH-APG to answer ġ-ANN search, the worst-case

recall is consistently below 40% across all datasets. In contrast, SHG

demonstrates more robust search performance than LSH-APG. For

instance, on the Msong dataset, the worst recall achieved by SHG

exceeds 60%. This indicates that using SHG instead of LSH-APG can

improve recall by over 20% for certain queries. Moreover, the box

sizes of SHG are always smaller than those of LSH-APG, and the

median recall of SHG is consistently higher. These results demon-

strate that SHG is more robust and stable than LSH-APG. The im-

provement in robustness is particularly important in real-world

applications, since users continually launch various new search

requests that often involve unseen data objects.

5.4 Ablation Study: The E�ectiveness of Our
Hierarchical Vector Compression Method

Setup. This ablation experiment is designed to verify the e�ective-

ness of our hierarchical vector compression method. To this end, we

construct our index using the original uncompressed vectors across

all levels, denoting this solution as SHG-original vectors. Fig. 9 illus-

trates the comparisons between HNSW [36], SHG-original vectors,

and SHG. Please refer to our full paper [24] for detailed evaluations.

Observation #1: SHG-original vectors outperforms HNSW

inmost cases.Across these datasets, the index SHG-original vectors

performs better than HNSW [36], in most cases. For example, on

the SIFT100M dataset, SHG-original vectors requires 8% less time

than HNSW to reach a 90% recall. On the Deep100M dataset, HNSW

takes 7% more time than SHG-original vectors to reach a recall of

above 80%. This performance advantage indicates that shortcuts

e�ectively reduce computational costs.

Observation #2: SHG achieves a superior query perfor-

mance compared to SHG-original vectors. The comparisons

demonstrate that our vector compression method, which employs

varying approximation scales, facilitates more accurate inferences

on the number of skipped levels via learned shortcuts.

Overall, our solution achieves superior search e�ciency through

hierarchical vector compression, at the additional memory cost for

compressed vector representations.
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Figure 10: Update performance on the OpenAI dataset

5.5 Evaluation of Handling Data Updates

Setup. This evaluation is conducted on the OpenAI dataset, which

contains a total of 2,321,096 vectors. For previous evaluations,

we used the �rst one million vectors. To assess the capability

of SHG in handling data updates, we further inserted the next

100ġ, 200ġ, 300ġ, 400ġ, 500ġ vectors into the previously built index.

Result. Fig. 10 presents the evaluation results. Speci�cally, the

update time represents the total time spent on designated insertions.

In Fig. 10a, each new vector takes 12 ms to be inserted, achieving

rapid latency for handling updates. Meanwhile, the recall decreases

slightly (see our full paper [24] for evaluations). Regarding search

time, it increases marginally when inserting new vectors. Both

trends are reasonable given the expanding data scalability. These

results demonstrate that our index maintains a robust performance

when handling data updates.

5.6 Summary of Experimental Results

After conducting the previous experiments, we summarize the

major results as follows:

(i) Limitations of hierarchical graph-based indexes: The ex-

perimental study reveals two key limitations in hierarchical graph-

based indexes (e.g., HNSW): (1) some intermediate levels can often

be avoided to improve search e�ciency and (2) exact distance cal-

culations are computationally expensive.

(ii) Superior search performance of our index:Our proposed

index SHG, which leverages two novel methods (hierarchical vector

compression and learned shortcuts), can accelerate HNSW by 1.8×
while maintaining the same search accuracy. This enhanced perfor-

mance is mainly achieved with an additional memory overhead of

3 MB for storing the shortcuts.
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(iii) More robust e�ectiveness for searching arbitrary vec-

tors: Our index SHG also shows a more robust search performance

compared to the SOTA graph-based method, LSH-APG. For ex-

ample, to reach a 90% recall, SHG is 1.5× faster than LSH-APG.

Moreover, our method exhibits greater robustness when search-

ing “unseen” vectors that are not included in the original dataset

used for constructing indexes. In these ġ-ANN queries, which are

common in real-world applications, our index can improve search

recall by up to 20% compared to LSH-APG.

(iv) Capability to handle data updates in our index: Our

index handles updates e�ciently with 12 ms per insertion latency,

and maintains over 95% recall and 10 ms search time.

6 RELATED WORK

This section reviews related studies from two perspectives: ANN

search over high-dimensional vector data, and learning-based indexes.

6.1 ANN Search over High-Dimensional Vectors

To address the challenges of ġ-ANN search over large-scale high-

dimensional vector data, there are three mainstream strategies:

product quantization, hashing, and graph-based indexes.

Product quantization based methods [21, 29] partition the dataset

into clusters based on quantization values, streamlining the identi�-

cation of candidate vectors that match the query. Locality-Sensitive

Hashing (LSH) is commonly used in hashing based methods [11,

22, 27, 52]. These types of hashing functions are used to project

high-dimensional vectors into some low-dimensional hash buckets,

allowing searches to check the buckets containing the query.

By comparison, graph-based indexes [34, 36, 56] have demon-

strated superior search performance compared to other solutions, as

demonstrated in recent experimental surveys [5, 31, 47, 50]. These

indexes create a proximity graph where each node represents a

dataset vector, and edges connect neighboring vectors for e�cient

ANN searches. NN-Descent [12] was �rst introduced to reduce con-

struction complexity and has since been widely adopted [20, 54, 55].

To further improve construction e�ciency, NSW [35] proposes a

consecutive insertion strategy to insert vectors one by one to update

the graph structure. LSH-APG [56] aims to integrate this strategy

and LSH to devise a novel indexing mechanism. HNSW [36] is prob-

ably the most popular graph-based index in vector databases. It

introduces a hierarchical structure to mitigate the issue of hubness,

ensuring that the degree of each graph node is constrained at every

level. Its superior performance leads to several important derivative

methods, such as HCNNG [38] and HVS [34].

6.2 Learning-Based Indexing

The learned index [30] optimizes indexing by using machine learn-

ing models. It leverages the ML model to capture data distribution

characteristics, e�ectively “replacing” traditional index structures.

This technique signi�cantly reduces both space and query costs.

ZM-Index [49], Flood [39], and LIMS [46] are recent popular

learned indexes designed for multi-dimensional data, yet they are

limited to data dimensions below 65, and struggle with scalability

for high dimensions. ZM-Index [49] lacks support for k-nearest

neighbors (kNN) queries and struggles to e�ciently accommodate

data updates. Flood [39] partitions the data space into grid cells

across dimensions to ensure an even distribution of points within

each partition. Intuitively, this strategy is more e�ective for low-

dimensional data andmay not perform as well in higher dimensions.

As for LIMS [46], it focuses on exact similarity search instead of

ġ-ANN search. PGM-index [15, 17] is an e�cient learned index

o�ering theoretical guarantees for query performance, space ef-

�ciency, and updates. By segmenting data and using piecewise

linear approximations, it outperforms traditional index structures

in space e�ciency while maintaining high query e�ciency. While

we use PGM-index as the foundation model for learned shortcuts,

this index is primarily suited for low-dimensional data and not for

high-dimensional vector data.

7 CONCLUSION

This paper aims to accelerate ġ-ANN search over high-dimensional

vector data. While hierarchical graph-based indexes are widely

adopted in vector databases, their query e�ciency still su�ers from

exhaustive navigations of proximity graphs across all levels. To

mitigate this issue, we propose a new index named SHG that avoids

traversing unnecessary levels. SHG index incorporates a hierarchi-

cal vector compression algorithm that progressively reduces vector

dimensions at each level while ensuring approximation for com-

puted distances. Moreover, we design a novel data structure called

shortcut that learns from inter-level approximate distances to infer

the number of levels that can be safely skipped. We evaluate our

solution against state-of-the-art methods using eight benchmark

datasets. Overall, our approach achieves a 1.5–1.8× speedup in

search e�ciency compared to existing methods and demonstrates

superior robustness in terms of query recall.
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