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ABSTRACT
Densest subgraph discovery (DSD) is a fundamental topic in graph

mining. It has been studied for decades, and is widely used in vari-

ous areas, including network science, biological analysis, and graph

databases. As a typical problem of DSD, the 𝑘-clique densest sub-

graph (CDS) problem aims to detect a subgraph from a graph, such

that the number of 𝑘-cliques over the number of its vertices is max-

imized. While the CDS problem has received plenty of attention in

the literature, existing CDS algorithms that perform best in prac-

tice often have weaker theoretical guarantees, while those with

the stronger theoretical assurances tend to perform worse in prac-

tice. Besides, all the existing CDS algorithms struggle with graphs

with high degeneracy values, a characteristic commonly found in

real-world graphs. To bridge the huge gap between practice and

theory, in this paper, we first introduce a novel graph reduction

technique, which locates the CDS into a very small subgraph, with

non-trivial theoretical guarantees. We further propose a new effi-

cient approximation algorithm by employing the state-of-the-art

𝑘-clique counting algorithm, which shares all the advantages of

existing algorithms, achieving both strong practical efficiency and

theoretical guarantees. Extensive experiments on 12 real-world

large graphs demonstrate the high efficiency of our CDS algorithm.

Particularly, our algorithm is up to four orders of magnitude faster

than the state-of-the-art algorithm while maintaining the same

accuracy guarantees and requiring much less memory.
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1 INTRODUCTION
As a fundamental problem in graph mining, Densest Subgraph

Discovery (DSD) has been studied for decades in the literature

[3, 6, 13, 28, 54, 56, 63, 71, 73, 77, 91, 92], and widely used in many
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Figure 1: An example of the 𝑘-clique densest subgraph.

areas, such as biology [19, 30, 37, 66], network science [16, 24], and

social network [4, 17, 32, 33, 42, 45, 87, 88]. The classic DSD problem

[34] aims to find the subgraph with maximum edge-density, or the

number of edges over the number of vertices within the subgraph,

which is often called the edge-density-based densest subgraph

(EDS). Recently, this problem has been generalized as the 𝑘-Clique
Densest Subgraph (CDS) problem [27, 28, 36, 46, 50, 57, 68, 71, 76, 91],

aiming to find the subgraph with the highest 𝑘-clique-density,

which is the defined as the number of 𝑘-cliques over the num-

ber of vertices within it. Note that since an edge can be considered

as a 2-clique, the EDS problem is a special case of the CDS problem

with 𝑘=2. Similarly, the triangle-density densest subgraph problem

[68] corresponds to the CDS problem with 𝑘=3. Among the three

problems, CDS is particularly well-suited for networks where mod-

eling higher-order and more complex relations is required, such

as protein-protein and gene-gene interaction networks. For exam-

ple, in Figure 1, the 3-clique density of the subgraph induced by

{𝑣4, · · · , 𝑣8} (in shaded region) is
4

5
, since it includes four 3-cliques

and five vertices, and it is actually the 3-clique densest subgraph

since there is no other subgraph with a higher 3-clique-density.

The CDS solutions have been widely used in many real-world

application [27, 28, 36, 46, 50, 57, 71, 76]. For example, the CDS can

be used to detect “near-cliques”, and when 𝑘 gets large, it is more

likely to capture useful “near-cliques”, which can help discover

biologically relevant functional groups [19, 41, 76, 77], find social

communities [4, 15, 77], and detect anomalies [31, 72, 85]. In many

of these applications, finding a “near-clique” is very important

since a “near-clique” can be considered a clique in the forming

stage or one with missing edges due to data corruption. Besides,

finding CDS is very useful in many graph data mining applications

when 𝑘 is relatively small. Specifically, it can help identify research

communities in the DBLP network [28, 76, 77], detect subnetworks

with a specific function in the biology network [28] and clusters in

senators’ networks on US bill voting [28, 76], and discover compact

dense subgraphs from e-commerce and social networks [68].

• Prior works. While the CDS is very useful, it is computation-

ally costly in both time and space. In the literature, various exact

and approximation algorithms have been developed to solve the
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Figure 2: Time and memory costs of CDS algorithms.

CDS problem. The exact algorithms are often based on maximum

flow [34, 57, 76], 𝑘-core [28], and convex programming [23, 36, 71].

The approximation algorithms are based on peeling [11, 13, 14, 76],

𝑘-core [28, 51], and convex programming [14, 23, 36, 71, 84, 91].

The five representative algorithms are KClist++ [71], SCTL [36],
SuperGreedy++ [14], KCCA [91], and PSCTL [84]. Generally, these

algorithms update the vertex weights via 𝑇 iterations, and then the

vertices with larger vertex weights are more likely to be included in

the CDS. The first three algorithms are based on clique enumeration
to update the vertex weights, while the remaining two are based

on clique counting.
(1) Clique enumeration-based algorithms. In KClist++ and SCTL,

they first assign a weight 0 to every vertex 𝑣 in the graph, initially.

Then, they enumerate all the 𝑘-cliques in the graph for𝑇 iterations,

and for each 𝑘-clique, they increase the minimum vertex weight

in it by one. For SuperGreedy++ algorithm, it iteratively removes

the vertices via 𝑇 iterations, and in each iteration, it removes the

vertex with the smallest weight, and then updates the remaining

vertex weights for subsequent computation. All of them are based

on the clique enumeration to update the vertex weights. However,

the numbers of 𝑘-cliques in real-world graphs increase dramatically

even for relatively small values of 𝑘 , as shown in [40, 82, 91]. For

instance, on the DBLP dataset, there are over 10
18

15-cliques. Hence,

enumerating almost all 𝑘-cliques is extremely costly, making the

above three algorithms unscalable for processing large-scale graphs.

(2) Clique counting-based algorithms.To alleviate the above issues,
Zhou et al. [91] first proposed a clique counting-based CDS algo-

rithm (KCCA). Specifically, in each iteration, KCCA updates the weight
of vertex with minimum weight in the graph, by calculating the

number of 𝑘-cliques containing it. KCCA has achieved remarkable

performance improvement compared to the clique enumeration-
based algorithms. Recently, another clique counting-based algo-

rithm, PSCTL [84], follows the same framework as SCTL, but utilizes
the clique counting to update the vertex weights. As shown in our

experiments, KCCA and PSCTL achieve comparable performance in

terms of efficiency, memory usage, and accuracy, and both of them

are extremely faster than the clique enumeration-based algorithms.

•Motivation. While the existing works above have achieved

some positive progress, they still have some limitations, which can

be summarized from two aspects:

(1) Practical performance. Since both KCCA and PSCTL employ

local 𝑘-clique counting from PIVOTER [69], they inherit PIVOTER’s
limitations. A key limitation of PIVOTER is that its time and space

costs grow exponentially with the degeneracy value of the graph.

As shown in Figure 2, they are intractable to handle graphs with

high degeneracy values, where the degeneracy values of HT, HW,

and UK datasets are 561, 2208, and 943 respectively. For instance, on

the UK dataset (with 18 M vertices and 261 M edges), both KCCA and
PSCTL cost over 1 TB of memory to build SCT, leading to the out-

of-memory (OOM) issue. In addition, other algorithms encounter

time limit issues and fail to complete within three days.

(2) Theory-practice gap. To obtain a (1 − 𝜖)-approximation ratio

solution, both KCCA and PSCTL need Ω
(
Δ |Ψ𝑘 (𝐺 ) |

𝜖2

)
iterations theo-

retically, where Δ denotes the maximum number of 𝑘-cliques that

share a vertex in 𝐺 , and |Ψ𝑘 (𝐺) |denotes the number of 𝑘-cliques

in 𝐺 . While the SuperGreedy++ only takes Ω

(
Δ log |Ψ𝑘 (𝐺 ) |
𝜌∗
𝑘
(𝐺 ) ·𝜖2

)
iter-

ations, its practical performance is poor. Hence, it is essential to

bridge the gap between practical performance and theoretical as-

pects: Can we design an efficient CDS algorithm that shares the
advantages of all the existing algorithms for processing real-world
large graphs (e.g., graphs with high degeneracy values)? In this paper,

we show that it is possible to achieve this.

• Our technical contributions. To make the CDS algorithm

more practical, we propose an elegant graph reduction technique

based on the inclusion-exclusion principle, which first reduces our

search space into a very smaller region, allowing the algorithm to

obtain the optimal solution quickly. It plays a crucial role in making

our algorithm handle the graph with high degeneracy values. For

example, on the UK dataset with 18 million vertices, when 𝑘=7, it

is reduced to a subgraph with just 1,665 vertices using our graph

reduction technique, achieving a 10000× reduction.

Besides, from a theoretical perspective, we develop a simple yet

efficient (1−𝜖)-approximation algorithm, called 𝑘-Clique Counting

And SuperGreedy++-based (CCAS) algorithm, with 0 < 𝜖 < 1, in-

spired by SuperGreedy++ [14] which works in an iterative manner.

Specifically, in each iteration of SuperGreedy++, it first assigns a
weight to every vertex 𝑣 in the graph, which is initialized to the

number of 𝑘-cliques containing 𝑣 , and then removes the vertex

𝑣 with the smallest weight from the graph. Afterwards, for each

𝑘-clique containing 𝑣 , it updates the weights of other vertices in

this clique. We observe that in each iteration of SuperGreedy++,
the change of vertex weight, can actually be calculated by using the

𝑘-cliques counting, which is often much faster than 𝑘-clique enu-

meration. Moreover, we bridge the connection between the vertex

weights in CCAS and those in the convex-programming formulation

of the CDS problem. We further design an early stop condition to

obtain a solution with (1−𝜖)-approximation ratio guarantee, which

only needs a few iterations, rather than Ω

(
Δ log |Ψ𝑘 (𝐺 ) |
𝜌∗
𝑘
(𝐺 ) ·𝜖2

)
iterations

which is needed by the original SuperGreedy++ algorithm.

In addition, based on the nested relationship among the CDS’s

for different 𝑘-values, we propose an efficient algorithm that finds

the CDS’s for all the possible 𝑘 values with non-trivial theoretical

guarantees, and its running time cost is nearly the same as that of

discovering the CDS for a single 𝑘 value.

Extensive experimental evaluations on 12 real-world large graphs

show that CCAS achieves both higher efficiency and scalability than

the existing CDS algorithms on all datasets. Particularly, it is up to

four orders of magnitude faster than the SOTA algorithms. Besides,

it produces a near-optimal solution on all datasets.

In summary, our principal contributions are as follows.
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• To locate the CDS into a small subgraph, we propose an

effective graph reduction technique with a non-trivial the-

oretical guarantee.

• We develop an efficient CDS algorithm by employing the

SOTA 𝑘-clique counting algorithm, achieving a better theo-

retical guarantee and practical performance.

• We conduct experiments on 12 real-world large graphs to

demonstrate the efficiency and scalability of our algorithm.

Outline. We introduce the CDS problem in Section 2. Section 3

analyzes the limitations of state-of-the-art (SOTA) algorithms. We

introduce our graph reduction method in Section 4, and present our

CCAS algorithm in Section 5. We further extend CCAS for processing
all 𝑘 values in Section 6. The experimental results are reported in

Section 7. We review the related works in Section 8 and conclude

in Section 9. For lack of space, all detailed proofs in this paper are

included in our technical report [64] and we only show the proof

sketches for some key lemmas and theories.

2 PROBLEM DEFINITION
Table 1: Notations and meanings.

Notation Meaning
𝐺 = (𝑉 , 𝐸 ) a graph with vertex set𝑉 and edge set 𝐸

𝐺 [𝑆 ] the subgraph of𝐺 induced by vertices in 𝑆

Ψ𝑘 (𝐺 ) the set of 𝑘-cliques in𝐺

Ψ𝑘 (𝑣,𝐺 ) the set of 𝑘-cliques containing 𝑣 in𝐺

D𝑘 (𝐺 ) the 𝑘-clique densest subgraph of𝐺

𝜌𝑘 (𝐻 ) the 𝑘-clique density of subgraph 𝐻

S𝑘 (𝐺 ) an approximate 𝑘-clique densest subgraph of𝐺

𝑙 (𝑣) the weight of vertex 𝑣

We consider an unweighted and undirected graph 𝐺=(𝑉 , 𝐸),
where 𝑉 and 𝐸 are the sets of vertices and edges in the graph,

respectively. Denote by 𝑛 = |𝑉 | and𝑚 = |𝐸 | (𝑛 ≤ 𝑚) the numbers of

vertices and edges in 𝐺 respectively. Given a vertex set 𝑆 , we use

𝐺 [𝑆] = (𝑆, 𝐸 (𝑆)) to denote the subgraph of 𝐺 induced by 𝑆 , where

𝐸 (𝑆)= {(𝑢, 𝑣) ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆} denotes the set of edges between

vertices in 𝑆 . For a given graph𝐻 , we also denote its sets of vertices

and edges by 𝑉 (𝐻 ) and 𝐸 (𝐻 ), respectively.
A 𝑘-clique is a complete graph with a set 𝐶 of 𝑘 vertices where

there is an edge between every pair of vertices. In this case without

ambiguity, we simply refer to a 𝑘-clique by its set of vertices. We

use Ψ𝑘 (𝐺) to represent the set of 𝑘-cliques in 𝐺 . Denote by Ψ𝑘 (𝐺)
= {𝐶 ⊆ 𝑉 | 𝐶 is a 𝑘-clique of 𝐺}. For each vertex 𝑣 ∈ 𝐺 , we use
Ψ𝑘 (𝑣,𝐺) to denote the set of 𝑘-cliques containing 𝑣 in the graph 𝐺

(𝑘 ≥ 3). We define the 𝑘-clique engagement of 𝑣 in𝐺 as the number

of 𝑘-cliques containing 𝑣 in 𝐺 , i.e., |Ψ𝑘 (𝑣,𝐺) |. We summarize the

frequently used notations in Table 1.

We now formally present the definition of 𝑘-clique density.

Definition 1 (𝑘-cliqe density [76]). Given a subgraph 𝐻 of a
graph 𝐺 and a positive integer 𝑘 , the 𝑘-clique density of 𝐻 , denoted
by 𝜌𝑘 (𝐻 ), is the average number of 𝑘-cliques per vertex in 𝐻 , i.e.,

𝜌𝑘 (𝐻 ) =
|Ψ𝑘 (𝐻 ) |
|𝑉 (𝐻 ) | . (1)

Definition 2 (𝑘-cliqe densest subgraph [28, 36, 57, 71, 76]).

Given a graph 𝐺 and a positive integer 𝑘 , a subgraph 𝐻 of 𝐺 is the

𝑘-clique densest subgraph (𝑘-CDS), denoted by D𝑘 (𝐺), if 𝐻 has the
maximum k-clique density among all subgraphs of 𝐺 . We use 𝜌∗

𝑘
(𝐺)

to denote the 𝑘-clique density of D𝑘 (𝐺).
When 𝑘=2, D2 (𝐺) is the classic edge-density-based densest sub-

graph (EDS) [34] that maximizes the edge-density, i.e., the average

number of edges per vertex within the subgraph. In this work,

we mainly focus on the cases when 𝑘 ≥ 3, and study the (1 − 𝜖)-
approximation solution (0 < 𝜖 < 1). Since as shown in existing

works [36, 71], approximation algorithms are not only significantly

faster than exact algorithms, but also produce solutions with 𝑘-

clique densities that are very close to those of the exact solutions.

Here, the approximation ratio of an algorithm is defined as the

𝑘-clique density of its solution over that of the CDS, which is at

most 1.0. A (1 − 𝜖)-approximation solution means that the 𝑘-clique

density of the returned subgraph is at least (1 − 𝜖) · 𝜌∗
𝑘
(𝐺). Next,

we formally present the definition of CDS problem.

Problem 1 (CDS problem [27, 28, 36, 46, 50, 57, 68, 71, 76, 84, 91]).

Given a graph𝐺 and an integer 𝑘 ≥ 3, find the subgraph of𝐺 , denoted
by D𝑘 (𝐺), which has the highest 𝑘-clique density.

Example 1. In the graph 𝐺 of Figure 1, there are 7 3-cliques, i.e.,
𝐶1 = {𝑣1, 𝑣2, 𝑣8}, 𝐶2 = {𝑣2, 𝑣3, 𝑣8}, · · · , 𝐶7 = {𝑣9, 𝑣10, 𝑣11}. The sub-
graph𝐻 of {𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9} contains four 3-cliques, so its 3-clique
density is 4

5
. Clearly, 𝐻 is the 3-clique densest subgraph since no other

subgraph has a higher 3-clique density.

3 ANALYSIS OF SOTA PRACTICAL AND
THEORETIC ALGORITHMS

In this section, we first review the two SOTA CDS algorithms,

i.e., KCCA and SuperGreedy++, that achieve the best practical and
theoretical results respectively, and then discuss their limitations.

3.1 Review of KCCA
To our best knowledge, the CDS that achieves the best practical

performance is KCCA [91], which is based on the interesting fact that
𝑘-clique counting is remarkably faster than clique enumeration.

KCCA follows the Frank-Wolfe framework in the existing CDS algo-

rithms [23, 71] and only needs to use𝑘-clique counting to update the

vertices’ weights, instead of enumerating the 𝑘-cliques. Specifically,

in each iteration, it updates the weight of the vertex by counting

the number of 𝑘-cliques containing it, and also proposes a simulta-

neous vertex weight update strategy to speed up the convergence.

Even within limited iterations, it can yield near-optimal approxi-

mation results [91]. Besides, recently, we have noticed that Ye et al.

[84] proposed another 𝑘-clique counting-based algorithm PSCTL,
which improves SCTL [36] by using 𝑘-clique counting, and achieves
comparable performance with KCCA, as shown in our experiments.

Since the above algorithms are based on the Frank-Wolfe, they

need at least Ω
(
1

𝜖2
·
√
𝑘Δ|Ψ𝑘 (𝐺) |

)
iterations to obtain a (1 − 𝜖)-

approximation solution.

3.2 Review of SuperGreedy++
The algorithm that has the lowest theoretical number of iterations

with an approximation ratio of (1−𝜖) is SuperGreedy++ [14], which
finds the densest subgraph that utilizes the generalized supermod-

ular density as a density metric [14, 81]. Since 𝑘-clique density is
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Algorithm 1: SuperGreedy++ [14]
input :A graph𝐺 and two positive integers 𝑘 and𝑇

output :An approximate CDS S𝑘 (𝐺 )
1 foreach 𝑣 ∈ 𝑉 (𝐺 ) do 𝑙 (0) (𝑣) ← 0; S𝑘 (𝐺 ) ← 𝐺 ;

2 foreach 𝑡 ← 1, 2, 3, · · · ,𝑇 do
3 foreach 𝑣 ∈ 𝑉 (𝐺 ) do 𝑙 (𝑡 ) (𝑣) ← 𝑙 (𝑡−1) (𝑣) + |Ψ𝑘 (𝑣,𝐺 ) |;

𝑀 ← 𝐺 ;

4 foreach 𝑖 ← 1, 2, 3, · · · , 𝑛 do
5 𝑣𝑖 ← argmin𝑣∈𝑉 (𝑀 ) 𝑙

(𝑡−1) (𝑣) ;
6 update the vertex weights via 𝑘-clique enumeration;

7 foreach𝐶 ∈ Ψ𝑘 (𝑣𝑖 , 𝑀 ) do
8 foreach 𝑢 ∈ 𝐶 and 𝑢 ≠ 𝑣𝑖 do
9 𝑙 (𝑡 ) (𝑢 ) ← 𝑙 (𝑡 ) (𝑢 ) − 1 ;

10 Remove 𝑣𝑖 and all its adjacent edges from𝑀 ;

11 if 𝜌𝑘 (𝑀 ) > 𝜌𝑘 (S𝑘 (𝐺 ) ) then S𝑘 (𝐺 ) ← 𝑀 ;

12 return S𝑘 (𝐺 )

a specific kind of generalized supermodular density [81], the CDS

problem can be solved by SuperGreedy++. Algorithm 1 presents a

naive algorithm for finding the CDS using SuperGreedy++.
SuperGreedy++ works in an iterative manner. Specifically, in

each iteration, for each vertex 𝑣 ∈ 𝑉 (𝐺), it first initializes the 𝑙 (𝑣)
as the sum of its 𝑘-clique engagement and the weight of 𝑣 in the

previous iteration (line 3), and then iteratively removes the ver-

tex with the smallest weight (line 4 - 11). Afterwards, it updates

the weights of the remaining vertices via 𝑘-clique enumeration
(lines 7-9). Finally, the subgraph with the highest 𝑘-clique density

in the whole peeling process is returned (line 12). Note that when

the number of iterations is just one, it is the same as Greedy [76].
SuperGreedy++ is guaranteed to find a (1 − 𝜖)-approximation so-

lution after Ω

(
Δ log |Ψ𝑘 (𝐺 ) |
𝜌∗
𝑘
(𝐺 ) ·𝜖2

)
iterations, which is often much less

than those Frank-Wolfe-based algorithms.

3.3 Limitations of SOTA CDS algorithms
The limitations of SOTA CDS algorithms achieving the best practi-

cal and theoretical results are as follows:

(1) Both KCCA and SuperGreedy++ cannot efficiently process large
real-world graphs with higher degeneracy values. While KCCA has

achieved remarkable performance on the CDS problem, it still has

some limitations, since it employs the 𝑘-clique counting algorithm

PIVOTER, which has a key limitation that the SCT in PIVOTER costs

O(𝑛 · 𝛿 · 3𝛿/3) time for local vertex counting on specified 𝑘 , and

has a space cost of O(𝑛 · 3𝛿/3), where 𝑛 and 𝛿 are the number of

vertex and degeneracy value of the graph respectively. As shown in

Figure 2, KCCA is costly on the graphs with high degeneracy values

in both time and space.

(2) The gap between practical performance and theoretical guar-
antee. Under the same approximation ratio guarantee, KCCA runs
empirically faster than SuperGreedy++, but needs a larger number

of iterations in theoretical, while SuperGreedy++ needs fewer iter-

ations, though it needs to enumerate all 𝑘-cliques in each iteration,

which is very time-consuming; For instance, the SOTA 𝑘-clique

enumeration algorithm EBBkC [80] needs at least one month to

list all the 15-cliques on the DBLP network.

Hence, the limitations above motivate us to design an efficient

algorithm that shares all the advantages of the existing algorithms, a
theoretically and practically better algorithm.

4 OUR GRAPH REDUCTION ALGORITHM
In this section, we propose an effective graph reduction algorithm,

which aims to significantly improve the practical performance of

all CDS algorithms. It is based on an interesting fact that on most

real-world graphs, the ratio of the number of vertices in the CDS

comprises no more than 0.11% of the total vertices in the original

graph, as shown in Table 2. This is mainly because the CDS problem

aims to maximize the 𝑘-clique density where vertices with small

clique engagements are excluded. Hence, this motivates us to locate

the CDS into a relatively small sub-graph before running a CDS

discovery algorithm.

Table 2: The ratio of the number of vertices in the CDS to
that of the whole graph.

Datasets # vertices 𝑘=7 𝑘=15

|𝑉 (𝐷𝑘 (𝐺 ) | ratio |𝑉 (𝐷𝑘 (𝐺 ) | ratio

WT 120,834 127 0.105% 96 0.079%

DP 317,080 114 0.036% 114 0.036%

ZB 7,827,193 325 0.004% 325 0.004%

UK 18,483,190 944 0.005% 944 0.005%

FS 124,836,180 141 0.0001% 141 0.0001%

To achieve this goal, existing works have made some efforts [28,

36, 83, 91], where the two representative methods are 𝑘-core-based

and 𝑘-clique engagement-based, respectively. Specifically, to find

CDS with a given 𝑘 , the former one [36, 91] locates the CDS into a

(𝑘 − 1)-core, which is much smaller than the original graph, while

the latter one [28, 36, 84] utilizes the relationship between the 𝑘-

clique engagement and the lower bound of the optimal density to

reduce the search space, via the following lemma:

Lemma 4.1 ([36]). Given a graph 𝐺 , and a lower bound density
of 𝜌∗

𝑘
(𝐺), 𝜌𝑘 (𝐺), then D𝑘 (𝐺) is contained in the subgraph 𝐺𝜌𝑘 (𝐺 ) ,

which is induced by the vertices with its 𝑘-clique engagement ≥
𝜌𝑘 (𝐺), i.e., ∀𝑣 ∈ 𝑉 (𝐺𝜌𝑘 (𝐺 ) ), Ψ𝑘 (𝑣,𝐺𝜌𝑘 (𝐺 ) ) ≥ 𝜌𝑘 (𝐺). Here 𝐺𝜌𝑘 (𝐺 )
is referred to as the search scope w.r.t. the density 𝜌𝑘 (𝐺).

However, both methods have their limitations: (1) Effectiveness.
The 𝑘-core-based method removes only a small number of vertices,

leaving a large search space. For example, on the UK dataset with

18 million vertices and 261 million edges, when setting 𝑘=7, the

7-core still contains 11 million vertices and 246 million edges, while

the CDS contains only 944 vertices. (2) Efficiency. The 𝑘-clique

engagement-based method requires local 𝑘-clique counting for

each vertex, which is very costly for graphs with high degeneracy

values. The SOTA 𝑘-clique counting method PIVOTER struggles to

process large graphs (e.g., on the UK dataset, it takes over 100 hours

to count local 7-cliques).

To overcome the above issues, we make two key observations:

(1) large 𝑘 k-cliques are composed of many smaller 𝑘-cliques, and

(2) counting smaller k-cliques is significantly faster than counting

larger k-cliques. For example, on the UK dataset, when 𝑘=3, the

local triangle counting only takes around 21s, while it takes more

than 100 hours to count 7-cliques. Motivated by these, we propose

a Hierarchical Clique Graph Reduction (HCGR) algorithm that uses
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Figure 3: Illustrating our graph reduction technique.

𝑘-clique engagement of small 𝑘 values to approximate the clique

engagement of large 𝑘 values. We first introduce the relationship

between clique numbers of two adjacent 𝑘 values in Lemma 4.2.

Lemma 4.2. Given a graph 𝐺 = (𝑉 , 𝐸), if |Ψ𝑘 (𝐺) | ≥
(𝜇
𝑘

)
where

𝜇 is an arbitrary integer no less than 𝑘 (i.e., 𝜇 ≥ 𝑘), then we have
|Ψ𝑘−1 (𝐺) | ≥

( 𝜇

𝑘−1
)
.

Proof sketch. We prove the contrapositive: if |Ψ𝑘−1 (𝐺) | <( 𝜇

𝑘−1
)
, then |Ψ𝑘 (𝐺) | <

(𝜇
𝑘

)
. Since each 𝑘-clique is contained in some

maximal clique, by applying the inclusion-exclusion principle over

the set of maximal cliques R(𝐺), the number of 𝑘-cliques in 𝐺 can

be calculated as:

|Ψ𝑘 (𝐺) | =
∑︁

S⊆R(𝐺 )
(−1) |S |

( | ⋂
𝑅∈S

𝑅 |

𝑘

)
, (2)

where S is a subset of R(𝐺) and 𝑅 denotes a maximal clique in 𝐺 .

Therefore, we can express |Ψ𝑘 (𝐺) | and |Ψ𝑘−1 (𝐺) | as linear combi-

nations of combinatorial numbers, which are:

|Ψ𝑘−1 (𝐺) | =
𝜇−1∑︁

𝑖=𝑘−1
𝛽𝑖
( 𝑖
𝑘−1

)
(3)

|Ψ𝑘 (𝐺) | =
𝜇−1∑︁

𝑖=𝑘−1
𝛽𝑖
( 𝑖
𝑘

)
(4)

where, 𝛽=(𝛽𝑘−1, 𝛽𝑘 , · · · , 𝛽𝜇−1) ∈ Z𝜇−𝑘+1.
Hence, we have

|Ψ𝑘 (𝐺 ) |
|Ψ𝑘−1 (𝐺 ) | <

𝜇−𝑘+1
𝑘

, and we conclue that:

|Ψ𝑘 (𝐺) | <
𝜇 − 𝑘 + 1

𝑘
|Ψ𝑘−1 (𝐺) | <

(𝜇
𝑘

)
(5)

□

The following lemma shows how to use 𝑟 -clique engagement

(𝑟 < 𝑘) to estimate the lower bound of 𝑘-clique engagement.

Lemma 4.3. Given a graph 𝐺 = (𝑉 , 𝐸), ∀𝑣 ∈ 𝑉 , if |Ψ𝑘 (𝑣,𝐺) | ≥ 𝜌 ,
then for any 𝑟 ∈ N, with 3 ≤ 𝑟 ≤ 𝑘 , we have |Ψ𝑟 (𝑣,𝐺) | ≥

( 𝜇
𝑟−1

)
,

where 𝜇 denotes the maximum integer such that
( 𝜇

𝑘−1
)
≤ 𝜌 .

The above lemma can be directly proved by using mathematical

induction on Lemma 4.2, so we omit the details here.

Example 2. Figure 3 demonstrates the effectiveness of our graph
reduction technique compared to (𝑘 − 1)-core reduction. Suppose we
aim to find the 4-CDS. First, the search space is reduced to the 3-core,
i.e., all vertices in 𝐻3 can be excluded. However, vertices in 𝐻2 are
not in any 4-clique, they remain in the search space. By Lemma 4.3,
since 𝐻1 is a 5-clique that provides a density lower bound (i.e., 1) for
the optimal solution, we can calculate the maximum 𝜇 for 𝑘=3, as(

3

4−1
)
= 1 ≤ 1. Thus, if a vertex is included in D4 (𝐺), its 3-clique

engagement must be at least
(
3

2

)
= 3, and vertices in 𝐻2 are pruned,

leaving only 𝐻1 which is actually the 4-CDS.

Based on the above discussions, we develop an effective algo-

rithm that significantly reduces the search space, as shown in Al-

gorithm 2. The correctness of this reduction is theoretically guar-

anteed by Lemma 4.3, ensuring that the results remain identical

with or without reduction. Here, we employ the maximum clique

size (denoted by 𝜔) to estimate the lower bound of optimal density,

i.e., 𝜌𝑘 (𝐺) =
(𝜔
𝑘

)
. Note that 𝜔 needs to be computed in advance.

We would like to highlight that, despite being an NP-hard prob-

lem, the SOTA maximum clique computing algorithm [12] runs

extremely fast in practice, thanks to the power-law distribution of

vertex degrees in real-world graphs.

Algorithm 2: HCGR
Input :A graph𝐺 , two positive integers 𝑘 and 𝑟 , and the density

lower bound 𝜌𝑘 (𝐺 )
Output :A reduced subgraph of𝐺

1 𝜇 ← the maximum integer such that

( 𝜇

𝑘−1
)
≤ 𝜌𝑘 (𝐺 ) ;

2 while True do
3 𝑣 ← argmin𝑢∈𝑉 (𝐺 ) |Ψ𝑟 (𝑢,𝐺 ) | ;
4 if |Ψ𝑟 (𝑣,𝐺 ) | <

( 𝜇
𝑟−1

)
then

5 𝐺 ← 𝐺 [𝑉 (𝐺 )\𝑣 ] ;
6 else break ;

7 return𝐺 ;

Given an integer 𝑘 , HCGR first computes the maximum integer

𝜇 based on Lemma 4.3 (line 1). Next, it iteratively removes the

vertices whose 𝑟 -clique engagements are less than

( 𝜇
𝑟−1

)
(lines 2-6).

Note that in practice, choosing 𝑟=3 is sufficient to prune almost all

vertices that are not in CDS, as shown in our experimental results

later. Besides, local triangle counting can be finished in 𝑂 (𝛿 ·𝑚)
time, which is very efficient. When computing 𝜔 is unavailable, we

adopt the heuristic algorithm [12] to obtain a relatively large clique

size in 𝑂 (𝛿 ·𝑚) time. That is, a decent lower bound of the optimal

density can be estimated, allowing HCGR to remain effective.

5 OUR CCAS ALGORITHM
Inspired by SuperGreedy++, in this section we propose a simple

yet effective approximation CDS algorithm by using 𝑘-clique count-

ing, rather than 𝑘-clique enumeration. By combining the graph

reduction algorithm above, our new CDS algorithm achieves a

near-optimal solution with both strong practical performance and

theoretical guarantees.

5.1 From clique enumeration to clique counting
Recall that in the 𝑡-iteration of SuperGreedy++ (see Algorithm 1),

the increased weight of vertex 𝑣 , i.e., 𝑙 (𝑡 ) (𝑣) − 𝑙 (𝑡−1) (𝑣), is the 𝑘-
clique engagement of 𝑣 in the remaining graph when vertex 𝑣 is

peeled. After that, we reduce the weights of all the other vertices

that share the 𝑘-cliques with vertex 𝑣 (lines 7-9 of algorithm 1).

When all the vertices in the graph have been processed in this

fashion, one iteration is complete. Let 𝑉𝑖 = {𝑣1, · · · , 𝑣𝑖 } denote the
set of the first 𝑖 vertices removed during this iteration. Besides, for

each vertex 𝑣 ∉ 𝑉𝑖 , we denote by 𝑌𝑘 (𝑣,𝑉𝑖 ) the number of 𝑘-clique

engagements that 𝑣 will lose after all vertices in 𝑉𝑖 are removed
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Figure 4: The SCT for the graph in Figure 1.
from 𝑉 (𝐺), i.e.,

𝑌𝑘 (𝑣,𝑉𝑖 ) = |
⋃
𝑢∈𝑉𝑖

Ψ𝑘 ({𝑣,𝑢},𝐺) | (6)

We define the residual clique engagement of 𝑣 as:

ˆ𝑙 (𝑣 | 𝑉𝑖 ) = Ψ𝑘 (𝑣,𝐺) − 𝑌𝑘 (𝑣,𝑉𝑖 ) (7)

Then, the difference between
ˆ𝑙 (𝑣 | 𝑉𝑖 ) and ˆ𝑙 (𝑣 | 𝑉𝑖+1) is:

ˆ𝑙 (𝑣 | 𝑉𝑖 ) − ˆ𝑙 (𝑣 | 𝑉𝑖+1) = 𝑌𝑘 (𝑣,𝑉𝑖+1) − 𝑌𝑘 (𝑣,𝑉𝑖 ) (8)

We split 𝑌𝑘 (𝑣,𝑉𝑖+1) into two parts: those induced by 𝑉𝑖 , and the

new one by 𝑣𝑖+1. Thus,

𝑌𝑘 (𝑣,𝑉𝑖+1) = | (∪𝑢∈𝑉𝑖Ψ𝑘 ({𝑣,𝑢},𝐺)) ∪ Ψ𝑘 ({𝑣𝑖+1, 𝑣},𝐺) | (9)

Note that the cliques involving 𝑣 and 𝑣𝑖+1 are only affected by

vertices not in 𝑉𝑖 , we simplify:

ˆ𝑙 (𝑣 | 𝑉𝑖 ) − ˆ𝑙 (𝑣 | 𝑉𝑖+1) = |Ψ𝑘 ({𝑣𝑖+1, 𝑣},𝐺 [𝑉 \𝑉𝑖 ]) | (10)

Therefore, when a vertex is removed from the graph, we can

use local 𝑘-clique counting to efficiently maintain the 𝑘-clique

engagements of the remaining vertices.

Next, we briefly introduce the SOTA 𝑘-clique counting algorithm

PIVOTER [40], which implicitly constructs a succinct clique tree

(SCT) to assign a unique representation for each 𝑘-clique. The

SCT adapts the recursion tree of the Bron-Kerbosch algorithm for

maximal clique enumeration [74]. Specifically, the SCT is built based

on this recursion tree, by assigning each vertex a unique label, either

“pivot” or “hold”, each 𝑘-clique can be uniquely represented. The

“pivot” is selected to compress the tree by skipping its neighbors

during enumeration, while the non-neighbors of the pivot are called

the “hold” vertices. Such a tree-shaped index has a virtual root node

1
connecting all second-level sub-trees.

Each root-to-leaf path Γ is uniquely encoded by the pivot vertices
(denoted by P(Γ)) and hold vertices (denoted byH(Γ)) along the
path [40]. In addition, we use 𝑉 (Γ) denotes all vertices in Γ, i.e.,
𝑉 (Γ) = P(Γ) ∪ H (Γ). The following lemma demonstrates how to

count the number of 𝑘-cliques in each root-to-leaf path.

Lemma 5.1 ([40]). Given a root-to-leaf path Γ, each 𝑘-clique must
contain all vertices inH(Γ) and contain 𝑘 − |H (Γ) | vertices in P(Γ).
Each vertex in P(Γ) on this path is contained by

( | P (Γ) |−1
𝑘−|H(Γ) |−1

)
𝑘-

cliques and each vertex inH(Γ) is contained by
( | P (Γ) |
𝑘−|H(Γ) |

)
𝑘-cliques.

1
To avoid ambiguity, we use “node” to represent “vertex” on the SCT, and use “vertex”

to represent “vertex” in the graph.
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Figure 5: Workflow of CCAS.

Example 3. Figure 4 shows the SCT of the graph in Figure 1, where
each node shows the id of the vertex it stores. For instance, to count the
3-cliques containing 𝑣6, we need to traverse two root-to-leaf paths Γ1
= ⟨𝑟𝑜𝑜𝑡, 𝑣4, 𝑣5, 𝑣6⟩ and Γ2 = ⟨𝑟𝑜𝑜𝑡, 𝑣5, 𝑣7, 𝑣6⟩. For Γ1, since it has one
hold vertex and two pivot vertices, there are

( | P (Γ) |−1
𝑘−|H(Γ) |−1

)
=
(
1

1

)
= one

3-cliques containing 𝑣6 in Γ1. Similarly, there is
(
1

1

)
= one 3-clique

containing 𝑣6 in Γ2. In total, there are two 3-cliques containing 𝑣6.

5.2 Our CCAS algorithm
Based on the discussions above, we develop a new CDS algorithm,

denoted by CCAS, by adapting the SCT for the local 𝑘-clique count-

ing. Algorithm 3 shows CCAS, and we present its workflow in Figure

5. Specifically, to obtain a (1 − 𝜖)-approximate CDS S𝑘 (𝐺), CCAS
takes four input parameters: 𝐺 , 𝑘 , 𝑇 , and 𝜖 , and sequentially per-

forms the following steps: 1) compute a lower bound 𝜌𝑘 (𝐺) of the
optimal density, which is used in the graph reduction (line 1); 2)

remove vertices not belonging to the CDS using the HCGR (line 2); 3)
build the SCT (line 3) and based onwhich, update the vertex weights

of 𝑇 iterations via updateIter on the reduced graph from Step 2

(lines 12-28); 4) extract the subgraph with the highest density dur-

ing Step 3 and verify whether it satisfies the (1− 𝜖)-approximation;

and 5) if so, output the CDS; otherwise, update𝑇 to 2×𝑇 and repeat

from Step 3 until the error criterion is satisfied (lines 6-10).

In each iteration of updateIter, it first initializes 𝑙 (𝑣) as the
sum of its 𝑘-clique engagement and the weight of 𝑣 in the previous

iteration (line 14). Then, it iteratively removes the vertices with the

smallest 𝑙 values from the graph, and when a vertex 𝑣𝑖 is removed,

it needs to update the weights of 𝑣𝑖 ’ neighbors in the remaining

graph. To achieve this, it traverses all SCT paths containing 𝑣𝑖 to

update the corresponding vertex weights (lines 19 - 27). Since it

only needs to update the vertex weights in the remaining graph, for

each path Γ, it first modifies its hold and pivot vertex sets (lines 20

and 22), where 𝑣𝑖 is considered as the hold vertex. Next, it updates

the 𝑙 value for each vertex in the remaining graph by its 𝑘-clique

engagement on this path (lines 23 - 26). Finally, the subgraph with

the highest density, during the whole process, would be returned

as the candidate CDS.

Theorem 5.2. Given a graph 𝐺 with 𝑛 vertices and degeneracy
of 𝛿 , CCAS costs 𝑂 (𝜉 · 𝛿) space, and 𝑂 (𝜉 · 𝛿3) time for each iteration,
where 𝜉 denotes the cardinality of SCT.

Theorem 5.3. CCAS takes Ω
(
Δ log |Ψ𝑘 (𝐺 ) |
𝜌∗
𝑘
(𝐺 ) ·𝜖2

)
iteration to obtain a

(1 − 𝜖)-approximation solution.

Generally, our algorithm can be viewed as a clique counting

version of SuperGreedy++, so it achieves the same convergence

rate as SuperGreedy++ [14].

Theorem 5.4. CCAS reduces the overall time complexity at least by

𝑂 (𝜌∗
𝑘
(𝐺) ·

√
𝑘) over KCCA and by 𝑂 ( (

𝛿
2
)𝑘−2
𝜉
) over SuperGreedy++,
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Algorithm 3: CCAS
input :A graph𝐺 and two positive integers 𝑘 ,𝑇 and a real value 𝜖

output :An approximate CDS S𝑘 (𝐺 )
1 𝜌𝑘 (𝐺 ) ← compute the density lower bound of D𝑘 (𝐺 ) ;
2 𝐺 ← HCGR(𝐺 , 𝜌𝑘 (𝐺 )); // our graph reduction algorithm;

3 SCT← build_SCT(𝐺 ); // build the SCT for 𝐺;

4 𝑡𝑠 ← 1; 𝑡𝑒 ← 𝑇 ; 𝑓 ← False;

5 foreach 𝑣 ∈ 𝑉 (𝐺 ) do 𝑙 (0) (𝑣) ← 0;S𝑘 (𝐺 ) ← 𝐺 ;

6 repeat
7 S𝑘 (𝐺 ) ← updateIter(𝐺 , SCT, 𝑡𝑠 , 𝑡𝑒 );

8 if S𝑘 (𝐺 ) satisfies (1 − 𝜖 )-approx. ratio then 𝑓 ← True ;

9 else 𝑡𝑠 ← 𝑡𝑒 + 1; 𝑡𝑒 ← 𝑡𝑒 ∗ 2 ;
10 until 𝑓 =True;
11 return S𝑘 (𝐺 ) ;

12 Function updaterIter(𝐺 , SCT, 𝑡𝑠 , 𝑡𝑒):
13 foreach 𝑡 ← 𝑡𝑠 , 𝑡𝑠+1, · · · , 𝑡𝑒 do
14 foreach 𝑣 ∈ 𝑉 (𝐺 ) do 𝑙 (𝑡 ) (𝑣) ← 𝑙 (𝑡−1) (𝑣) + |Ψ𝑘 (𝑣,𝐺 ) | ;
15 𝑀 ← 𝐺 ;

16 foreach 𝑖 ← 1, 2, 3, · · · , |𝑉 (𝐺 ) | do
17 𝑣𝑖 ← argmin𝑣∈𝑀 𝑙 (𝑡 ) (𝑣) ;
18 remove 𝑣𝑖 and all its adjacent edges from𝑀 ;

19 foreach root-to-leaf path Γ ∈ SCT and 𝑣𝑖 ∈ V(Γ) do
20 H ← (H(Γ) ∩𝑉 (𝑀 ) ) ∪ {𝑣𝑖 } ;
21 if H(Γ) ⊈ H then continue; ;

22 P ← P(Γ) ∩𝑉 (𝑀 ) ;
23 foreach 𝑣 ∈ H and 𝑣 ≠ 𝑣𝑖 do
24 𝑙 (𝑡 ) (𝑣) ← 𝑙 (𝑡 ) (𝑣) −

( |P |
𝑘−H

)
;

25 foreach 𝑢 ∈ P do
26 𝑙 (𝑡 ) (𝑣) ← 𝑙 (𝑡 ) (𝑣) −

( |P |−1
𝑘−H−1

)
;

27 if 𝜌𝑘 (𝑀 ) > 𝜌𝑘 (S𝑘 (𝐺 ) ) then S𝑘 (𝐺 ) ← 𝑀 ;

28 return S𝑘 (𝐺 ) ;

respectively, where all variables keep the same meanings as the THE-
OREM 5.2.

The detailed proof is shown in our technical report [64].

Example 4. Continue Example 3 with 𝑘 = 3. Figure 6 shows the
vertex weight update process in CCAS due to the removal of 𝑣3. The
first row shows the vertex weights 𝑙 (1) (𝑣) before removing 𝑣6, where
the gray shaded boxes denote those vertices that are removed. The blue
shaded boxes contain the weights of the vertices on this path. Since
𝑣6 has the minimum weight among all vertices in the first row, when
we process Γ1, we have H = {𝑣4}, and P = {𝑣5, 𝑣6}, so 𝑣4’s weights
are updated by the number of cliques containing them in this path,
i.e., 2 −

(
2−1

3−1−1
)
= 1, and 𝑣5’s weight is updated to 4 −

(
2−2

3−2−1
)
= 3.

Similarly, when we process Γ2, 𝑣5 and 𝑣7’s weights are updated by the
number of cliques containing them in this path, i.e., 3 −

(
2−1

3−1−1
)
= 2.

Finally, 𝑣6 is removed from the graph.

5.3 Early stop criterion
Note that to obtain a (1− 𝜖)-approximation solution, CCAS requires

Ω

(
Δ log |Ψ𝑘 (𝐺 ) |
𝜌∗
𝑘
(𝐺 ) ·𝜖2

)
iterations. However, the optimal density is often

unknown in advance [23, 50, 71]. On the other hand, as shown in

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖 𝒗𝟗 𝒗𝟏𝟎 𝒗𝟏𝟏 𝒗𝟏𝟐

1 1 0 2 4 2 2 2 1 0 0 0

1 1 0 1 3 2 2 2 1 0 0 0

1 1 0 1 2 2 1 2 1 0 0 0

1 1 0 1 2 2 1 2 1 0 0 0

before removing 𝑣6

remove 𝑣6

process path Γ1

process path Γ2

Figure 6: Illustrating the weight update of CCAS.

the existing works [71, 91, 92], to obtain a (1 − 𝜖)-approximation

solution, the practical number of iterations required is significantly

lower than the theoretically estimated value. More specifically,

these algorithms aim to optimize the convex programming (CP)
formulation [71] of the CDS problem, where the CP formulation is

shown in the following:

CP(𝐺,𝑘) minmax

𝑣∈𝑉
𝑟 (𝑣)

s.t. 𝑟 (𝑣) =
∑︁

𝐶∈Ψ𝑘 (𝑣, 𝐺 )
𝛼𝐶𝑣 , ∀𝑣 ∈ 𝑉∑︁

𝑣∈𝐶
𝛼𝐶𝑣 = 1, ∀𝐶 ∈ Ψ𝑘 (𝐺)

∀𝑣 ∈ 𝐶, 𝛼𝐶𝑣 ≥ 0, ∀𝐶 ∈ Ψ𝑘 (𝐺)

where 𝛼𝐶𝑣 indicates the weight assigned to 𝑣 from a clique𝐶 contain-

ing it, and 𝑟 (𝑣) is the weight sum received by 𝑣 from all the 𝑘-cliques

containing 𝑣 . Here, the vector r =
[
𝑟 (𝑣1) 𝑟 (𝑣2) · · · 𝑟 (𝑣𝑛)

]
. We

observe that ∥r∥∞ = max𝑣∈𝑉 𝑟 (𝑣), which means that the objective

function ofCP(𝐺,𝑘) is: min ∥r∥∞. Notice that in the CDSD𝑘 (𝐺), it
is possible to distribute all cliques weights such that the weight sum

received by each vertex is exactly 𝜌∗
𝑘
(𝐺), meaning that each vertex

𝑣 ∈ 𝑉 (D𝑘 (𝐺)) has 𝑟 (𝑣) = 𝜌∗
𝑘
(𝐺). Indeed, ∥®𝑟 ∥∞ is a decent upper

bound of 𝜌∗
𝑘
(𝐺), and tighter bounds can be derived via Lemma 13

in [71] by using the vector r. This is useful in estimating the approx-

imation ratio in practice when the exact solution is unavailable.

In our algorithm, each vertex 𝑣 is assigned a weight 𝑙 (𝑣), based on
this, we aim to establish a connection between theweight 𝑙 (𝑣) in our
algorithm and the value 𝑟 (𝑣) in the CP(𝐺,𝑘). More specifically, our

goal is to leverage the vertexweight vector
®𝑙=
[
𝑙 (𝑣1), 𝑙 (𝑣2), · · · , 𝑙 (𝑣𝑛)

]
used in our algorithm, as an upper bound of 𝜌∗

𝑘
(𝐺), and use it to

estimate the approximation ratio of our algorithm. This provides a

theoretical guarantee for CCAS, even when the optimal density is

unknown, making it more practical for real-world scenarios.

In the 𝑡-th iteration of CCAS, each 𝑘-clique assigns its unit weight

to the vertex that is removed first from the graph. Let 𝜋 (𝑡 ) (𝑣)
represents the removal order of vertex 𝑣 , that is, if 𝑣 is removed

before 𝑢 , then 𝜋 (𝑡 ) (𝑣) < 𝜋 (𝑡 ) (𝑢). Expressed in terms of 𝛼 𝐶
𝑣 :

𝛼 𝐶
𝑣 =

{
1 if 𝑣 = argmin𝑢∈𝐶 𝜋 (𝑡 ) (𝑢)
0 otherwise

By using it, for any vertex 𝑣 , 𝑙 (𝑡 ) (𝑣) can be updated by:

𝑙 (𝑡 ) (𝑣) = 𝑙 (𝑡−1) (𝑣) +
∑︁

𝐶∈Ψ𝑘 (𝑣, 𝐺 )
𝛼𝐶𝑣
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By dividing both sides by 𝑡 , we have:

𝑙 (𝑡 ) (𝑣)
𝑡

=
𝑙 (𝑡−1) (𝑣)

𝑡
+

∑︁
𝐶∈Ψ𝑘 (𝑣, 𝐺 )

𝛼𝐶𝑣

𝑡

=
∑︁

𝐶∈Ψ𝑘 (𝑣, 𝐺 )
𝛼𝐶
(𝑡 )

𝑣 ,

where𝛼𝐶
(𝑡 )

𝑣 retains the samemeaning as in the formulationCP(𝐺,𝑘),
representing the weight assigned to vertex 𝑣 from a clique𝐶 contain-

ing it. Hence, in the 𝑡-th iteration (𝛼 (𝑡 ) , 𝑙 (𝑡 )𝑡 ) is a feasible solution
for CP(𝐺,𝑘). We further demonstrate that, even without knowing

the optimal density, Algorithm 3 is guaranteed to achieve a (1 − 𝜖)-
approximation ratio solution within Ω

(
log𝜖

𝜖2
· Δ|Ψ𝑘 (𝐺) |

)
iterations,

outperforming KClist++, SCTL, and PSCTL.
That is, while our algorithm does not explicitly involve the 𝛼

vector, it is implicitly embedded within the process, to be more

specific, in the 𝑡 + 1-th iteration of CCAS, 𝛼 (𝑡+1) is updated by:

𝛼 (𝑡+1) =
𝑡

𝑡 + 1 · 𝛼
(𝑡 ) + 1

𝑡 + 1 · 𝛼 (11)

In fact, Equation (11) can be interpreted as updating the 𝛼 vec-

tor using a convex combination with a learning rate of
1

𝑡+1 , sim-

ilar to existing CDS methods. Based on this, we can derive an-

other convergence of CCAS, which is guaranteed to find a (1 + 𝜖)-
approximation density upper bound of the optimal solution after

Ω
(
log𝜖

𝜖2
· Δ|Ψ𝑘 (𝐺) |

)
iterations. Specifically, ∥®𝑙/𝑡 ∥∞ is a decent up-

per bound, and tighter bounds can be derived via Lemma 13 in [71]

by using vector
®𝑙/𝑡 as the r vector in CP(𝐺,𝑘).

Remark. Our CCAS reduces the overall time complexity (the

product of # of iterations and the time complexity per iteration) by

a factor of𝑂 (𝜌∗
𝑘
(𝐺) ·
√
𝑘) over KCCA and a factor of𝑂 ( (

𝛿
2
)𝑘−2
𝜉
) over

SuperGreedy++, respectively, as shown in Theorem 5.4. A detailed

comparison of CCAS with the existing works in [64].

5.4 Limitations
While CCAS has achieved remarkable performance on the CDS prob-

lem, the method still has some limitations. Since our algorithm em-

ploys local 𝑘-clique counting from PIVOTER, it inherits PIVOTER’s
limitations. Specifically, for extremely dense graphs with heavily

overlapping cliques, the effectiveness of our graph reduction tech-

nique HCGR diminishes, as fewer vertices can be pruned in advance.

Thus, both the running time and memory usage of CCAS increase
significantly, making it less suitable for such datasets. Note that

this type of graph is notoriously challenging for many clique-based

tasks (e.g., clique counting [40], listing [22, 80], and maximal/maxi-

mum clique discovery [12, 49, 53]), and the same difficulty applies

to all existing CDS algorithms, including CCAS. Fortunately, most

real-world graphs follow power-law degree distributions, which

allows CCAS to be time- and space-efficient in practice.

6 A CDS ALGORITHM FOR ALL 𝑘 VALUES
In practical applications, users may not know which 𝑘 value best

suits their needs, so theymay have to explore the CDS’s for a variety

of 𝑘 values. However, all the existing algorithms treat each 𝑘 value

independently, so it is inefficient to use them to compute the CDS’s

for various 𝑘 values. To fill this gap, in this section we propose a

novel algorithm for finding the CDS’s for all the possible 𝑘 values,

by utilizing the power of our graph reduction technique.

We first present a novel lemma to demonstrate the density rela-

tionship between the large and smaller 𝑘 values.

Lemma 6.1. Given a graph 𝐺 , and an approximate 𝑘-clique CDS,

S𝑘 (𝐺), for any 𝑘′ < 𝑘 , we have 𝜌∗
𝑘 ′
(𝐺) ≥

(𝛾
𝑘 ′
)

|S𝑘 (𝐺 ) | , where 𝛾 is the

maximum integer such that
(𝛾
𝑘

)
≤ 𝜌𝑘 (S𝑘 (𝐺)) · |S𝑘 (𝐺) |.

Using Lemma 6.1, we can leverage the solution for a larger 𝑘 to

generate lower bound densities for smaller 𝑘′ < 𝑘 . A straightfor-

ward approach is first to compute the 𝜔-clique CDS, where 𝜔 is the

maximum clique size in𝐺 . Then, for each smaller 𝑘 , a density lower

bound can be derived from S𝜔 (𝐺) and used in the graph reduction

process. (Algorithm 2). However, this approach is inefficient and

leads to redundant computations, since HCGR must be re-executed

on the entire graph for each 𝑘 . To enhance efficiency, we propose

a novel algorithm based on the nested relationships among the

graphs after reduction across different 𝑘 values.

Theorem 6.2. Given a graph 𝐺 , an approximate 𝑘-clique CDS,
S𝑘 (𝐺), for any integers 3 ≤ 𝑥 < 𝑘 , we use 𝜌𝑥 (𝐺) and 𝜌𝑥+1 (𝐺) to
denote the lower bound of optimal densities obtained by the Lemma
6.1, then we have 𝜇𝑥 ≤ 𝜇𝑥+1, where 𝜇𝑥 and 𝜇𝑥+1 are derived by
Lemma 4.3, using 𝜌𝑥 (𝐺) and 𝜌𝑥+1 (𝐺).

Proof sketch. Recall that 𝜇𝑥+1 is the maximum integer satis-

fying: (𝜇𝑥+1
𝑥

)
≤

( 𝛾
𝑥+1

)
|S𝜔 (𝐺) |

. (12)

To prove 𝜇𝑥 ≤ 𝜇𝑥+1, we need to show that:(𝜇𝑥
𝑥

)
≤

( 𝛾
𝑥+1

)
|S𝜔 (𝐺) |

. (13)

This is equivalent to proving:

𝜇𝑥 ≤ 𝛾 −
𝛾 + 1
𝑥 + 1 (14)

Since 𝜌𝜔 (S𝜔 (𝐺)) · |S𝜔 (𝐺) | ≥ 1, we have 𝛾 ≥ 𝜔 > 𝑥 . We rewrite

𝛾 as 𝑝 · (𝑥 + 1) + 𝑏, where 𝑝 ≥ 1 and 0 ≤ 𝑏 ≤ 𝑘 , giving:

𝜇𝑥 ≤ 𝑝 · 𝑥 + 𝑏 − 1 (15)

We prove this by contradiction. If 𝜇𝑥 > 𝑝 · 𝑥 + 𝑏 − 1, it must violate

the definition of 𝜇𝑥 .

Since

(𝜇𝑥
𝑥

)
is a non-decreasing function of 𝜇𝑥 , we only need to

check 𝜇𝑥 = 𝑝 · 𝑥 + 𝑏. This leads to the inequality:(𝑝 ·𝑥+𝑏
𝑥

)
>

(𝑝 ·𝑥+𝑝+𝑏
𝑥+1

)
|S𝜔 (𝐺) |

. (16)

Using the fact that |S𝜔 (𝐺) | ≥ 𝛾 , we derive:
(𝑝 · 𝑥 + 𝑏)!

(𝑝 · 𝑥 + 𝑏 − 𝑥 + 1)! >
(𝑝 · (𝑥 + 1) + 𝑏 − 1)!

𝑥 · (𝑝 · (𝑥 + 1) + 𝑏 − 𝑥)! (17)

𝑥 >

𝑝 ·𝑥+𝑏−𝑥+𝑝∏
𝑖=𝑝 ·𝑥+𝑏−𝑥+2

(𝑖 + 𝑥 − 1)
𝑖

(18)

For 𝑝 = 1, the right-hand side is clearly smaller than 𝑥 . For 𝑝 ≥ 2,

the right-hand side is bounded by 𝑒 .
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Hence, we finish our proof since 𝑥 ≥ 3 > 𝑒 . □

Theorem 6.2 enables us to adopt an incremental approach to find

the CDS for all 𝑘 values. Specifically, the subgraph produced by exe-

cuting HCGR for a particular 𝑘 value can be directly utilized in subse-

quent computations for larger 𝑘 values. This means that we can per-

form these calculations on the reduced graph—or sketch—instead of

the entire original graph, thereby significantly improving efficiency.

When finding the CDS for an integer 𝑘 , we set 𝑟 = 𝑘 − 1 instead
of the default 𝑟 = 3. This adjustment leads to more effective graph

reduction by removing more vertices. Based on the discussions

above, we develop a CDS algorithm for all 𝑘 values, denoted by

CCAS-A, which is presented in our technical report [64].

7 EXPERIMENTS
We now present the experimental results. Section 7.1 discusses the

setup. We discuss the results in Sections 7.2 and 7.3.

Table 3: Datasets used in our experiments.

Dataset Category 𝑛 𝑚 𝛿

bio-SC-GT (BG) Biological 1,716 31,564 60

econ-beacxc (EB) Economic 507 42,176 118

WikiTalk (WT) Communication 120,834 237,551 54

Slashdot (SD) Comments 77,360 469,180 54

DBLP (DP) Collaboration 317,080 1,049,866 113

HepTh (HT) Citation 22,908 2,444,798 561

Hollywood (HW) Collaboration 1,069,126 56,306,652 2,208

zhishi-baidu (ZB) Hyperlink 7,827,193 62,246,014 267

UK-2002 (UK) Web 18,483,190 261,787,260 943

Arabic-2005 (AC) Web 22,743,892 553,903,073 3,247

IT-2004 (IT) Web 41,290,648 1,027,474,947 3,224

Friendster (FS) Social 124,836,180 1,806,067,135 304

SK-2005-web (SK) Web 50,636,059 1,810,063,330 4,510

UK-2006 (US) Web 77,449,748 2,635,849,931 5,014

7.1 Setup
Datasets. We use 14 real-world datasets from various domains,

which are downloaded from the Stanford Network Analysis Plat-

form [62], Laboratory of Web Algorithmics [61], Network Repos-

itory [65], and Konect [44]. Their detailed descriptions can also

be found on these websites. Table 3 reports the statistics of these

graphs, where 𝛿 denotes the degeneracy of graph.

Competitors. We mainly compare our CCAS algorithm with the

following approximation CDS algorithms:

• KClist++ [71]: the convex programming-based algorithm,

which is briefly recapped in Section 1.

• PSCTL [83]: the improved version of SCTL, which is dis-

cussed in Section 3.

• SuperGreedy++ [14]: the algorithm needs the lowest theo-

retical number of iterations, as discussed in Section 3.

• ESuperGreedy++: the variant version of SuperGreedy++
by replacing KClist in which with the SOTA clique enu-

meration algorithm EBBkC [80].
• KCCA [91]: the SOTA approximation CDS algorithm, which

is discussed in Section 3.

Note that CoreApp [28] is not included in our experiments, be-

cause its efficiency and accuracy were significantly outperformed

by our compared algorithms [36, 91]. Besides, we compare PSCTL
instead of SCTL, since the former one is a better version of SCTL in

both efficiency and accuracy. We implement all the algorithms in

Table 4: Results on datasets with highest degeneracy values.

𝑘
AC IT

Time (s) Accuracy Memory (GB) Time (s) Accuracy Memory (GB)

5 6,733 1.000 14.7 15,086 0.997 27.2

15 6,762 1.000 13.8 14,921 0.992 23.2

20 6,684 1.000 12.6 14,856 0.991 23.7

25 6,690 1.000 12.0 14,773 0.990 22.5

30 6,755 1.000 11.7 14,747 0.990 22.0

35 6,687 1.000 11.5 14,697 0.990 21.6

45 6,754 1.000 11.0 14,627 0.989 20.8

𝑘
SK US

Time (s) Accuracy Memory (GB) Time (s) Accuracy Memory (GB)

5 47,654 1.000 48.0 119,171 0.986 70.1

15 48,499 1.000 46.0 39,708 0.999 66.3

20 47,462 1.000 44.8 39,901 0.999 63.7

25 48,050 1.000 43.5 39,816 0.999 60.3

30 47,758 1.000 41.6 39,877 0.999 56.9

35 48,015 1.000 39.6 39,773 0.999 55.7

45 47,529 1.000 37.9 41,022 0.999 53.5

C++ and run experiments on a machine having an Intel(R) Xeon(R)

Platinum 8358 CPU @ 2.60GHz and 1TB of memory, with Ubuntu

installed. If an algorithm cannot finish within 100 hours, we mark

its running time as “INF” and its memory usage as “—”. If an algo-

rithm requires more than 1TB of memory, we mark its running time

as “—” and its memory usage as “OOM” in the tables. In addition,

if an algorithm encounters either “INF” or “OOM”, we mark its

accuracy as “—”. In our experiments, we have already included the

time cost of building the SCT and finding the maximum cliques in

all results.

Running details. For datasets where KCCA and PSCTL encounter
out-of-memory (OOM) issues, we use their memory-friendly ver-

sions as an alternative. That is to say, during the SCT building

process, we only keep the SCT nodes in the main memory, until

their memory usage is close to 1TB, for the remaining nodes, we

recompute them in each iteration to avoid the OOM problem. By

default, both 𝜖 and 𝑇 are set to 1 if not explicitly specified.

7.2 Overall comparison results
In this section, we extensively compare CCAS with the competitor

algorithms from various angles.

1. Effect of𝑘 . Figure 7 depicts the average running time of all the

CDS algorithms on ten datasets by varying the clique size 𝑘 , where

𝑘=5∼30 and 𝑇=10. Clearly, CCAS is up to four orders of magnitude

faster than KCCA and PSCTL, since it has the better theoretical guar-
antee and can find the CDS over the very small graph, whereas KCCA
and PSCTL struggle to handle the graph with high degeneracy value,
such as HW and UK datasets. In addition, even for the graphs with

low degeneracy values, CCAS is still more efficient than the competi-

tor methods, because, in each iteration, it requires just a straight-

forward operation, compared to KCCA and PSCTL. Moreover, KCCA
and PSCTL achieve comparable performance on all datasets, since

both of them are based on the Frank-Wolfe algorithm and local

vertex 𝑘-clique counting. Moreover, all clique-counting-based algo-

rithms are significantly faster than the enumeration-based methods,

SuperGreedy++ and ESuperGreedy++. Notably, ESuperGreedy++
achieves up to 40× speedup over SuperGreedy++, owing to a more

efficient clique enumeration algorithm. Hence, in the following

experiments, we mainly compare PSCTL and KCCA.
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Figure 7: Effect of 𝑘 on the efficiency of SuperGreedy++, ESuperGreedy++, KCCA, PSCTL, and CCAS.

In addition, we report the running time, accuracy, and memory

cost of CCAS on the four graphs with largest degeneracy values in

Table 4. Note that both PSCTL and KCCA not only require over TB of

memory but also take more than 100 hours to find the CDS; thus,

we omit their results. However, by using a few thousand seconds,

CCAS can obtain solutions that are extremely close to optimal, and

only take less than 80 GB of memory.

Table 5: Effect of 𝜖 and 𝑘 . (Processing time (in seconds); Best
performers are highlighted in bold.)

Dataset Method 𝑘 = 7 𝑘 = 15

1 0.1 0.05 0.01 1 0.1 0.05 0.01

HT

PSCTL 79,752 79,752 155,885 268,701 INF INF INF INF

KCCA 76,191 76,191 150,316 261,231 INF INF INF INF

CCAS 8.6 8.6 8.6 8.6 8.5 8.5 8.5 8.5

WG

PSCTL 2.8 2.8 6.9 18.3 1.4 3.2 3.2 4.8

KCCA 7.0 8.2 11.5 16.0 8.3 8.3 8.3 8.6

CCAS 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.2

HW

PSCTL INF INF INF INF INF INF INF INF

KCCA INF INF INF INF INF INF INF INF

CCAS 52.3 52.3 52.3 52.3 52.2 52.2 52.2 52.2

ZB

PSCTL 89.4 123.5 182.1 507.6 100.4 143.9 143.9 634.7

KCCA 185.5 261.5 261.5 339.2 150.2 176.9 176.9 405.3

CCAS 11.5 11.5 11.5 12.1 9.3 9.3 9.3 10.0

UK

PSCTL INF INF INF INF INF INF INF INF

KCCA INF INF INF INF INF INF INF INF

CCAS 78.6 78.6 78.6 78.6 20.0 20.0 20.0 20.0

AC

PSCTL INF INF INF INF INF INF INF INF

KCCA INF INF INF INF INF INF INF INF

CCAS 5,853 5,853 5,853 5,853 6,703 6,703 6,703 6,703

2. Effect of 𝜖 . We evaluate the effect of 𝜖 using five datasets

from different domains, where the values of 𝜖 are set to 1, 0.1, 0.05,

and 0.01, respectively. Here, we only report the results for 0.1 and

0.01, and the other results are shown in our technical report. The

experimental results are reported in Table 5, which clearly shows

that CCAS outperforms the other algorithms on all datasets. Partic-

ularly, on HT dataset, CCAS is up to four orders of magnitude faster

than both KClist++ and SCTL, and for around half of the datasets,

CCAS is over three orders of magnitude faster than its competi-

tors. In addition, on the datasets with high degeneracy values, both

PSCTL and KCCA struggle to produce reasonable solutions within

Table 6: Running time of all 𝑘 values. (Processing time (in
seconds); Best performers are highlighted in bold.)

Dataset Method 𝜖 = 0.1 𝜖 = 0.01
25% 50% 75% 100% 25% 50% 75% 100%

DP

PSCTL 6.2 10.2 13.8 16.9 9.1 13.2 16.7 19.8

KCCA 6.4 7.1 7.5 7.7 8.1 8.8 9.3 9.5

CCAS-A 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

ZB

PSCTL 3,509 4,053 4,511 4,778 12,181 12,968 13,569 13,834

KCCA 4,781 5,033 5,163 5,230 9,949 10,273 10,453 10,581

CCAS-A 66.0 103.0 136.7 161.7 106.0 166.6 217.3 247.5

UK

PSCTL INF INF INF INF INF INF INF INF

KCCA INF INF INF INF INF INF INF INF

CCAS-A 456.6 456.6 456.6 456.6 456.6 456.6 456.6 456.6

FS

PSCTL 125,544 191,483 245,604 286,646 201,621 267,560 321,681 INF

KCCA INF INF INF INF INF INF INF INF

CCAS-A 2,167 2,168 2,169 2,169 3,090 3,091 3,092 3,092

100 hours in most cases, because the competitors typically contain

a vast number of nodes in their SCTs.

3. Efficiency of finding the CDS’s for all 𝑘 .We compare the

efficiency of our algorithm CCAS-A and others for finding the CDS’s
for all 𝑘 values. Specifically, for each graph, we record the running

time of those algorithms as they process the 𝑘 values from 3 to 25%

·𝜔 , 50% ·𝜔 , 75% ·𝜔 , and 100% ·𝜔 across six datasets in Table 6. We

only present the results for 𝜖=0.1 and 0.01, and the results for other

approximate ratios are shown in our technical report [64]. We make

the following observations and analysis: (1) the runtime of PSCTL
and KCCA increases proportionally with the number of 𝑘 values they

process, while CCAS-A maintains a nearly constant runtime. This

stable performance is because CCAS-A uses historical computation

information to prune the search space; (2) for graphs with high

degeneracy values, PSCTL and KCCA cannot complete within 100

hours, even for the 25% ·𝜔 values; (3) CCAS-A almost takes the same

time to handle one 𝑘 value as it does 𝜔 values for some datasets, as

shown in Figure 7.

4. Overall performance. We provide a comprehensive com-

parison of the CDS algorithms in terms of accuracy, running time

(s), and memory usage (MB) across 10 datasets, as summarized
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Table 7: Results across different CDS algorithms in terms of accuracy, running time (s), and memory usage (MB).

Dataset 𝑘
Accuracy Running time (s) Memory (MB)

PSCTL KCCA SuperGreedy++ CCAS PSCTL KCCA SuperGreedy++ CCAS PSCTL KCCA SuperGreedy++ CCAS

EB

5 0.99 0.99 1.00 1.00 24.0 59.0 86.0 8.2 185 8,426 3 493

7 1.00 0.99 1.00 1.00 126.0 151.0 19,076.0 28.9 1,291 9,157 4 890

9 1.00 0.99 — 1.00 190.2 197.3 INF 44.4 2,540 9,378 — 1,068

11 1.00 0.99 — 1.00 205.0 200.0 INF 44.2 2,541 9,396 — 1,086

13 1.00 0.99 — 1.00 207.1 200.0 INF 46.0 2,540 9,396 — 1,086

ZB

10 0.99 0.99 — 0.99 322.0 276.0 INF 9.2 5,798 46,747 — 1,524

15 0.99 0.99 — 0.99 288.0 230.2 INF 7.4 5,786 21,283 — 1,412

20 0.99 0.99 — 0.99 242.0 192.0 INF 6.1 5,770 18,064 — 1,326

25 0.99 0.99 — 0.99 154.0 138.3 INF 4.5 4,766 15,060 — 1,283

30 0.99 0.99 — 0.99 85.0 89.0 INF 4.1 4,337 12,381 — 1,256

UK

10 — — — 1.00 INF INF INF 18.0 OOM OOM — 6,232

15 — — — 1.00 INF INF INF 17.0 OOM OOM — 6,046

20 — — — 1.00 INF INF INF 16.0 OOM OOM — 5,834

25 — — — 1.00 INF INF INF 14.0 OOM OOM — 5,612

30 — — — 1.00 INF INF INF 13.0 OOM OOM — 5,426
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Figure 8: Scalability test for CCAS algorithm.

in Table 7, where 𝑘 = 5 ∼ 30 and 𝑇 = 10. Due to the space lim-

itation, we only provide the results on three datasets here, and

move the remaining results and detailed analysis into our technical

report [64]. We can make the following observations and analy-

sis: (1) All methods achieve comparable performance in terms of

accuracy (2) Our method, CCAS, is significantly faster than all com-

petitors on all datasets and different 𝑘 values. (3) SuperGreedy++
always consumes less memory than other methods due to its light-

weight space complexity (i.e., 𝑂 (𝑚)). However, SuperGreedy++ is

extremely time-consuming because it needs to enumerate all cliques.

Among the three clique-counting-based algorithms, although they

share the same theoretical space complexity, CCAS typically uses

less memory in practice, thanks to our graph reduction technique,

which effectively reduces memory usage.

7.3 Detailed analysis of CCAS
We perform an in-depth evaluation and analysis of CCAS.

1. Time cost of different steps in CCAS. Recall that CCAS se-

quentially performs the following three steps: (1) reducing the

original graph by our proposed graph reduction technique (HCGR),
(2) building the SCT (buildTree), and (3) updating vertex weights

with 𝑇 iterations via SCT updateIter. Figure 9 shows the time

cost of these three steps on ten datasets, where 𝑘 = 15, 𝑇 = 10, and

the graphs are assumed to be loaded into memory. We see that

on the small datasets, the third step accounts for a relatively large

portion of the total time. Besides, on the other datasets, HCGR and
buildTree are the most computationally expensive steps. For ex-

ample, the time cost of HCGR on the ZB and WG datasets is higher

0 10 20 30 40 50 60 70 80 90 100 110

BG

EB

WT

SD

HT

HW

ZB

UK

AC

IT

Time proportion (%)

HCGR buildTree updateIter

Figure 9: Proportion of time cost of each step in CCAS.

than other steps, and the time cost of buildTree on the AC and IT

datasets is the most significant proportionally.

2. Scalability test. In this experiment, we evaluate the scalability

of our CDS algorithm from two perspectives using 𝑘=7 and 𝑇=10:

(1) For each graph, we create five induced subgraphs by randomly

selecting 20%, 40%, 60%, 80%, and 100% of the vertices. We run

CCAS on these subgraphs and report the average runtime and the

resulting degeneracy value 𝛿 . (2) Second, to isolate the impact of

the number of edges while maintaining a fixed dense region, we

construct another set of five subgraphs by selecting the top 20%

to 100% of edges based on their core numbers, where the core

number of an edge is defined as the smaller core number of its

two endpoints. This ensures that all subgraphs are sampled from

the high-density region of the graph, preserving the core structure

while gradually increasing the number of edges. We evaluate CCAS
on these subgraphs and report the average runtime and resulting

edge counts. The results on the three largest graphs are given in

Figure 8, and the additional results are presented in our technical
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Figure 10: Effectiveness of the graph reduction technique.

report [64]. Based on the above results, we make the following

observations and analysis: (1) The running time of CCAS on all

datasets is proportional to the value of 𝛿 , which is aligned with our

time complexity analysis of CCAS. (2) When the value of 𝛿 is fixed,

the number of edges does not highly affect the efficiency of CCAS.
3. Effectiveness of graph reduction algorithm. In this exper-

iment, we evaluate the effectiveness of HCGR for 𝑘 = 15 by varying

𝑟 from 3 to 6. Setting 𝑟=𝜏 means executing HCGR multiple times

with 𝑘 incrementing from 3 up to 𝜏 , where 𝑟 = 0 corresponds to

locating the graph into its (𝑘 − 1)-core without using HCGR. As
shown in Figure 10, we observe that: (1) Using HCGR significantly
reduces the running time compared to not using it, achieving up to

a 1,00× speedup on the IT dataset, while also pruning more vertices

from the graph. (2) For HCGR, as the 𝑟 increases, there is no huge

decrease in running time and the number of remaining vertices.

This indicates that setting 𝑟 = 3 is sufficient to eliminate almost all

the vertices that are not in the CDS. The results on other datasets

are shown in our technical report

4.Parallelization of CCAS. We have implemented a parallel

version of CCAS by paralleling the process of constructing the SCT

and enumerating paths in the vertex update, denoted by CCAS-Par.
In CCAS-Par, during the SCT building stage, each thread is assigned

to construct a sub-tree of the SCT, while during the vertex weight

updating stage, each thread is scheduled for updating the vertex

weights within one path. The running time results of CCAS-Par,
evaluated by varying the number of threads from 1 to 16 across

five datasets, are presented in our technical report [64]. Clearly, as

the number of threads increases, the overall runtime of CCAS-Par
decreases, demonstrating strong parallel scalability. For example,

on the AC and IT dataset, using 16 threads allows CCAS-Par to

achieve self-speedups of 12 times.

8 RELATEDWORKS
In this section, we first review the existing works of DSD problems,

including EDS/CDS probelms and their variants, and then briefly

review the related works of dense subgraph discovery.

• EDS/CDS problems. EDS problem aims to find the subgraph

with the maximum average degree [2, 4–7, 10, 11, 25, 34, 35, 47,

59, 69, 73]. This problem can be solved by solving a parametric

maximum-flow problem [34] with binary search. In general, exact

EDS solutions are suitable for small graphs, but their performance

declines for larger graphs. Consequently, researchers have turned

to approximation algorithms [6, 13, 14, 28, 35, 43, 59] to enhance

efficiency. The peeling algorithm for 𝑘-core decomposition runs in

linear time and provides a 2-approximation [13]. The EDS problem

can be formulated as a convex programming and solved by the

linear programming solver [14, 23, 35, 39, 71]. Recently, Zhou et al.

provided a comprehensive benchmark [92] for the EDS problem.

The EDS problem has been generalized to the CDS problem, which

can detect “near-clique” subgraphs [27, 28, 36, 50, 57, 76]. Notably,

when𝑘 = 2, this problem reduces to the EDS problem. Themaximum

flow-based algorithm is extended to solve this problem [28, 57, 76].

Besides, the convex programming-based algorithms [14, 36, 71, 91]

have been studied, which are extensively reviewed in Section 3. For

more details, please refer to the recent survey of DSD [46, 50].

• Variants of EDS/CDS problems.Many variants of EDS prob-

lem have been studied [3, 20, 29, 54, 63, 69, 81]. The EDS problem

has been extended for directed graph, which finds the directed

densest subgraph [43, 51, 55, 56]. The densest 𝑘-subgraph problem

(DkS) aims to maximize the number of edges in a subgraph with 𝑘

vertices, which is NP-hard [29]. The top-𝑘 locally densest subgraph

discovery problems find the locally dense regions [54, 63, 75]. The

anchored densest subgraph problems [20, 21, 83] aim to maximize

𝑅-subgraph density of the subgraphs containing an anchored node

set. Recently, the fair densest subgraph problem and diverse dens-

est subgraph problems [1, 58, 60] have been explored to achieve

equitable outcomes and overcome algorithmic bias. Besides, the

variants of CDS problem have also been studied, such as pattern-

based densest subgraph [28] and triangle densest subgraph [79].

• Dense subgraph discovery. Another group of works highly

related to DSD is about dense subgraph discovery. Many cohesive

subgraph models like 𝑘-core [9, 70], 𝑘-truss [18, 67, 87], 𝑘-ECC [38,

86], 𝑘-clique [22], quasi-clique [77, 78], and 𝑘-plex [8, 93] have

been studied, which have found various applications in community

search [26]. Besides, these models are extended to other types of

graphs [48, 52, 89, 90]. Nevertheless, these works are different from

DSD since they do not use the density definition as a key metric.

9 CONCLUSIONS
In this paper, we investigate the problem of efficient𝑘-clique densest

subgraph (CDS) discovery. Among existing CDS solutions, algo-

rithms that perform well in practice often have weaker theoretical

guarantees, while those with strong theoretical assurances tend to

perform worse in practice. To improve the practical efficiency, we

introduce a novel graph reduction technique that locates the CDS

into a small subgraph with non-trivial theoretical guarantees. We

further propose a new efficient approximation algorithm by employ-

ing the SOTA 𝑘-clique counting algorithm, achieving both strong

practical efficiency and theoretical guarantees. Our experimental

results on 14 real-world large graphs show that our proposed algo-

rithm is highly efficient and achieves up to four orders of magnitude

faster than the SOTA algorithms. In the future, we plan to design

GPU-friendly algorithms for the CDS problem, explore I/O-efficient

and distributed solutions, investigate time and memory-efficient

CDS algorithms in very dense graphs, and develop efficient methods

for CDS in large dynamic graphs.
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