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ABSTRACT

Time series play a fundamental role in many domains, capturing

a plethora of information about the underlying data-generating

processes. When a process generates multiple synchronized signals

we are faced with multidimensional time series. In this context

a fundamental problem is that of motif mining, where we seek

patterns repeating twice with minor variations, spanning some of

the dimensions. State of the art exact solutions for this problem run

in time quadratic in the length of the input time series.

We provide a scalable method to find the top-𝑘 motifs in multidi-

mensional time series with probabilistic guarantees on the quality

of the results. Our algorithm runs in subquadratic time in the length

of the input, and returns the exact solution with probability at least

1−𝛿 , where 𝛿 is a user-defined parameter. The algorithm is designed

to be adaptive to the input distribution, self-tuning its parameters

while respecting user-defined limits on the memory to use.

Our theoretical analysis is complemented by an extensive ex-

perimental evaluation, showing that our algorithm is orders of

magnitude faster than the state of the art.
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1 INTRODUCTION

Time series play a central role in modeling the evolution of data-

generating processes in many domains. To capture the multifaceted

nature of processes generating data, time series are oftentimes

multidimensional: collections of co-evolving signals whose mea-

surements are synchronized, collectively describing the evolution

of the process. Extracting information from such multidimensional

time series is thus fundamental.

In particular, top-𝑘 motifs mining is a crucial and challenging

problem: intuitively, the goal is to find patterns that occur twice

with minor modifications, spanning many, but not all, the signals
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of the time series. More formally, given a time series T with 𝐷 > 1

dimensions and 𝑛 points, the problem consists in finding 𝑘 pairs

of T’s subsequences with the smallest distance, where the distance

captures the similarity between subsequences. Indeed, similar pat-

terns might imply a particular behavior, making motif discovery

a crucial step for higher-level analysis. Applications include fore-

casts for volcanic eruptions [10], healthcare management [26], and

machine management in industry [33]. In particular, multidimen-

sional motif discovery is key in pollution control [27], in quality

control in industrial settings [4], in activity discovery [7, 38], and

in healthcare [6, 26].

A common approach to motif discovery is to extend the approach

for motif mining in 1-dimension time series to the multidimensional

case: that is, we look for pairs of subsequences of the time series

where all the 𝐷 dimensions are similar. However, this approach

might not reveal interesting patterns: for instance, some dimen-

sions might be noisy or uncorrelated with respect to the others,

and they might hide similar patterns involving only a subset of the

dimensions that are in general unknown beforehand. We aim to

discover patterns that involve only a subset of the 𝐷 dimensions

which is unknown and needs to be retrieved as well. This formu-

lation overcomes the limitation of several previous approximate

approaches that assumed all dimensions as equally informative.

Multidimensional motifs can then be discovered with the follow-

ing naive approach: for each of the 2
𝐷
subset of dimensions, we

compare the 𝑂 (𝑛2) subsequences of T on the selected dimensions

and we return the 𝑘 closest ones. This solution forces 𝑂 (2𝐷𝑛2)
comparisons, which, for large sets of data, are clearly prohibitive.

In this paper, we propose a scalable and efficient solution that

aims at minimizing the number of distance computations to per-

form. We leverage Locality Sensitive Hashing (LSH), a common

technique in similarity search that groups together similar elements.

At a high level, we build an index of the time series where each mul-

tidimensional subsequence is mapped to a set of LSH hash values:

by the properties of LSH this ensures that similar subsequences

are more likely to hash to the same values across the dimensions

spanned by the motif. Thanks to this index we are able to prune

a hefty amount of candidates from the search space. We focus on

comparisons based on the z-normalized Euclidean Distance, however
our approach can be generalized to other similarity measures.

One of the challenges of employing LSH is setting its parameters

to ensure that good quality results are retrieved efficiently, since

the precise setting of the parameters is data-dependent. To over-

come this challenge we design an index that automatically tunes

its parameters depending on the data at hand while respecting

user-specified limits on the memory to be used.

Our contributions are the following:
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• We design an approach for top-𝑘 motif discovery in multidimen-

sional time series, named MOMENTI. Our approach is based

on Locality Sensitive Hashing and returns exact answers with

a user-specified failure probability. Furthermore, we provide a

theoretical analysis of the correctness of our approach and on its

complexity in terms of distance computations carried out, along

with several optimizations to speed up the execution.

• We provide an open source implementation of our approach, that

we use to carry out an extensive experimental evaluation. We

show that our approach outperforms state-of-the-art baselines

in terms of scalability, while providing high quality results.

Organization. After reviewing the related work (Section 2) and

introducing the background concepts of time series and motif dis-

covery (Section 3), we describe our approach (Section 4). We then

proceed in formalizing the details of our approach (Section 5) and

we integrate optimizations to improve data adaptability and time

complexity (Section 6). Finally, we compare our proposal with other

baselines and we extensively test our approach under different con-

ditions to show its effectiveness (Section 7).

2 RELATEDWORK

A relatively large body of literature exists on time series and motif

discovery, however the multidimensional case, despite aggregat-

ing a large interest, has seen only a fraction of the various works

developed for the unidimensional case.

Comparisons between subsequences in time series are usually

carried out by comparing their shapes rather than the raw values,

in order to show invariance to noise and scale. Several similarity

measures have been used in time series processing, they can be

split in two major subgroups: elastic measures, that create a non

linear one-to-many mapping between points of sequences, and lock-
step measures, where the mapping is one-to-one [1]. Between the

most commonly used distances is Dynamic Time Warping (DWT),

an elastic measure that allows the comparison of temporally mis-

aligned sequences due to compression or stretching of shapes (i.e.,

warp in time). Edit Distances, are a family of distances that mea-

sure the number of edits (e.g., substitutions, deletions, insertions)
needed to obtain equal subsequences [40]. Another common mea-

sure is the z-normalized Euclidean Distance, a lock-step measure

that z-normalizes the data before computing the Euclidean Distance,

allowing variations in amplitude and mean values, so that the mea-

sured similarity is between the shapes [18]. This distance measure

is, up to a constant factor, equivalent to the Pearson correlation

coefficient [9].

Many motif discovery techniques rely on symbolic abstraction

of the raw data to facilitate matching of common patterns, besides

smoothing out noise in the data. SAX [25] found great success for

its efficiency, requiring only a mean for the Piecewise Aggregate
Approximation and a table look-up for the symbol association. It is

less computationally complex than symbolizationmethods likeACA
[35]. Moreover, it is more general compared to methods like Persist
[30], which require time series with a recognizable underlying

structure [35]. We refer to the survey by Daw et al. [15] for a

complete overview on symbolization techniques.

Approximate algorithms for multidimensional motif discovery

can be categorized in two major families: those that reduce in

some way the time series into a unidimensional one and those that

effectively work on multidimensional data.

Algorithms in the first category use techniques like Principal
Component Analysis (PCA) to generate a meta-unidimensional time

series that can be processed with the standard approaches devel-

oped for motif discovery in the univariate case. The work in [37]

employs Minimum Description Length (MDL), to find the motifs.

This approach is based on the strong assumption that all dimensions

are relevant, as even a small number of noise dimensions leads to

a meta-time series with little to no information, the work of [37]

asserts how this algorithm can extract a motif that can be recognized
intuitively by human, underlining how more work is needed when

the structure of the time series is unknown. Moreover, the authors

highlight the challenge of dynamically tuning the input parameters,

since suboptimal sets can lead to poor outcomes in discovery.

The approaches that fall into the second category can be divided

into two subfamilies: those who find motifs that span simultane-

ously in all dimensions [8] and those who find subdimensional mo-
tifs. The second category is the one that allows the extraction of the

most amount of information, since finding motif in all dimensions

falls into a similar assumption of the algorithms that synthesize an

univariate meta-time series, considering also irrelevant dimensions

in the process.

For the task of subdimensional motif discovery, Minnen et al.

[29] introduced the Random Projection algorithm, which applies

SAX to independently symbolize each dimension of the time series,

then a matrix of collisions between the subsequences is populated

by iteratively random selecting a set of dimensions, creating words

by concatenating the selected symbols and finding the matches. The

algorithm has a linear running time in expectation, but it is greatly

affected by the input threshold on the distance, a data dependent

variable that is difficult to have an idea of without knowing in great

details the data and the kind of motif searched.

The matrix profile [41] is commonly used to solve this problem

exactly. It is a data structure that stores the distance between a sub-

sequence and its nearest neighbor. The first motif can be identified

by searching the minimal entry in the matrix, the second is the

next minimum not overlapping with the first one, and so on. When

discovery is limited to motifs with a certain dimensionality, the

search can be restricted to only the 𝑑-th row of the matrix. To find

the set of dimensions that span the motif, a variety of techniques

can be used (e.g., finding the subset with minimal distance) with

MDL being the one used by the state-of-the-art implementation

[23].

Very recently, a different variant of the problem has been in-

troduced [36]: the goal is to find a set of 𝑘 subsequences of the

input, spanning a limited number of dimensions and minimizing

the maximum pairwise distance of subsequences in the set.

Locality Sensitive Hashing (LSH) is a technique often employed

in similarity search [3, 24] which we will review in the next section.

Relevant for the scope of this paper is the family of hash functions

for the Euclidean distance [14].

LSH has already been used in the context of time series to dis-

cover motifs: Rong et al. [34] employed LSH to derive fingerprints

for earthquake waveforms. In the one dimensional case Ceccarello

and Gamper [11] provided an algorithm with guarantees on recall

by employing the properties of LSH. Subsequences are matched
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Table 1: Table of symbols.

T Multidimensional time series

T𝑤 Set of subsequences from T of length𝑤

T𝑎 Subsequence at index 𝑎

T𝑓𝑎 Dimension 𝑓 of subsequence T𝑎
𝐷 Dimensionality of the time series

𝑑 Dimensionality of the motifs to discover

dist (·, ·) Distance function

dist𝑑 (·, ·) 𝑑-dimensional distance function

dims𝑑 (·, ·) dimensions involved in the computation of the

𝑑-dimensional distance function

𝑘 Number of motifs to find

ℎ𝑖, 𝑗

(︂
T𝑓𝑎

)︂
hash value of length 𝑖 at repetition 𝑗 for dimen-

sion 𝑓 of subsequence T𝑎
𝐿 Number of repetitions for LSH

𝐾 Number of concatenations for LSH

using their fingerprints, the distances are verified only on matching

fingerprint pairs, allowing the algorithm to compute just a fraction

of all the distance computations.

Using LSH requires setting up a number of parameters. The

framework developed by PUFFIN [5] is capable of automatically

tuning these parameters for 𝑘-nearest neighbors queries. Christiani

et al. [13] developed a technique to automatically find the best

number of concatenations and repetitions to successfully answer a

nearest neighbor query with a certain probability even when the

probability of collision between pairs of points is unknown. We

follow the PUFFINN implementation [5], expanding on the case

where the pairs are actually ordered sets.

3 PRELIMINARIES

3.1 Time Series and Motifs

We will start our introduction from the special case of a single

dimension time series.

Definition 3.1. A time series 𝑇 ∈ R𝑛 is an ordered sequence of

real valued numbers 𝑇 = [𝑡1, ... 𝑡𝑛] : 𝑡𝑢 ∈ R, ∀𝑖 ∈ [1, 𝑛] where 𝑛 is

the length of the time series.

Definition 3.2. A time series subsequence 𝑇𝑢,𝑤 ∈ R𝑤 is a subset

of adjacent elements from T starting at position 𝑢 and length 𝑤 ,

𝑇𝑢,𝑤 = [𝑡𝑢 , ... 𝑡𝑢+𝑤−1].
Definition 3.3. The z-normalized Euclidean Distance between two

time series subsequences 𝑇𝑢,𝑤 and 𝑇𝑣,𝑤 is defined as:

dist

(︁
𝑇𝑢,𝑤 ,𝑇𝑣,𝑤

)︁
=

⌜⃓⎷ ∑︂
𝑖∈[𝑤 ]

(︃
𝑇𝑢 (𝑖) − 𝜇 (𝑇𝑢,𝑤)

𝜎 (𝑇𝑢,𝑤)
−
𝑇𝑣 (𝑖) − 𝜇 (𝑇𝑣,𝑤)

𝜎 (𝑇𝑣,𝑤)

)︃
2

(1)

where 𝜇 and 𝜎 are the means and the standard deviations of the sub-

sequences, respectively, and 𝑇𝑢 (𝑖) is the 𝑖-th value of subsequence

𝑇𝑢,𝑤 .

Definition 3.4. A time series motif is the pair of subsequences

𝑇𝑢,𝑤 and 𝑇𝑣,𝑤 :

dist

(︁
𝑇𝑢,𝑤 ,𝑇𝑣,𝑤

)︁
≤ dist

(︁
𝑇𝑎,𝑤 ,𝑇𝑏,𝑤

)︁
for all 𝑎, 𝑏 ∈ [1, ... 𝑛 −𝑤 + 1].

It comes that overlapping sequences are more likely to satisfy

the condition above, these pairs are excluded in the problem for-

mulation by ensuring no trivial matches.

Definition 3.5. A pair of subsequences 𝑇𝑢,𝑤 and 𝑇𝑣,𝑤 is a trivial
match when: 𝑣 = 𝑢 or if, given an exclusion zone 𝜖 > 0, then

|𝑢 − 𝑣 | ≤ 𝜖 .

Common values for the exclusion zone 𝜖 are fractions of 𝑤 to

exclude matches in the neighboring area of a subsequence [42, 44].

We employ 𝜖 = 𝑤/2.
Expanding upon the single dimensional case, the notions for the

multidimensional case are derived.

Definition 3.6. Amultidimensional time series T ∈ R𝑛×𝐷 is a tuple

of 𝐷 time series 𝑇 ( 𝑗 ) ∈ R𝑛 : T =

(︂
𝑇 (1) , ... 𝑇 (𝐷 )

)︂
where 𝐷 is the

dimensionality of T and 𝑛 is its length.

Definition 3.7. A multidimensional subsequence T𝑢,𝑤 ∈ R𝑤×𝐷 is

a tuple of unidimensional subsequences from T starting at position

𝑢 and length𝑤 , T𝑢,𝑤 =

(︂
𝑇
(1)
𝑢,𝑤 , ... 𝑇

(𝐷 )
𝑢,𝑤

)︂
.

When clear from context we will omit the subscript𝑤 from the

subsequence notation.

Given two multidimensional subsequences, we are interested in

computing their distance. However, as we mentioned oftentimes

considering all dimensions in this computation is uninteresting

at best, misleading at worst. Following [41] we therefore consider

only a subset of 𝑑 dimensions when computing the distance.

Definition 3.8. The 𝑑-dimensional distance between two subse-

quences T𝑎 and T𝑏 is

dist𝑑 (T𝑎,T𝑏 ) = min

𝐹⊆2
[𝐷 ] , |𝐹 |=𝑑

∑︂
𝑓 ∈𝐹

dist

(︂
T𝑓𝑎 ,T

𝑓

𝑏

)︂
In other words, we select a subset of the dimensions of size𝑑 such

that the sum of the distances between the individual dimensions is

minimized. Similarly, with

dims𝑑 (T𝑎,T𝑏 ) = arg min

𝐹⊆2
[𝐷 ] , |𝐹 |=𝑑

∑︂
𝑓 ∈𝐹

dist

(︂
T𝑓𝑎 ,T

𝑓

𝑏

)︂
we denote the 𝑑 dimensions that define the distance between two

subsequences. Note that this set of dimensions is potentially differ-

ent for different pairs of subsequences. Furthermore, for a given pair

of subsequences we name the distance of the dimensions maximally

far apart among the ones belonging to dims𝑑 (T𝑎,T𝑏 ):

dist
max

𝑑
(T𝑎,T𝑏 ) = max

𝑓 ∈dims𝑑 (T𝑎,T𝑏 )
dist

(︂
T𝑓𝑎 ,T

𝑓

𝑏

)︂
(2)

Definition 3.9. A 𝑑-dimensional motif is the pair of subsequences

T𝑎 , T𝑏 such that

dist𝑑 (T𝑎,T𝑏 ) ≤ dist𝑑 (T𝑢 ,T𝑣) ∀𝑢, 𝑣 ∈ [𝑛 −𝑤 + 1]

We are interested in finding the most similar subsequences in

an unknown subspace.

Definition 3.10. Given a𝐷-dimensional time series T, motif length

𝑤 , motif dimensionality 𝑑 , and a distance function 𝑑𝑖𝑠𝑡 , the top-k
multidimensional motifs are the 𝑘 subsequences and their subspaces

𝐹 that minimize the 𝑑-dimensional distance with respect to all other
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Figure 1: Multidimensional time series from an industrial evaporator [17]. The top-3 two dimensional motifs are highlighted.

subsequences of length𝑤 in T, ensuring no trivial matches between

all possible pair of indices that are part of the motif pairs (i.e., no

motif overlaps with another).

Example 3.1. Figure 1 reports an example of multidimensional

motif discovery: readings of different sensors from an industrial

evaporator [17]. We highlight the top-3 motifs of length 𝑤 = 75

and dimensionality 𝑑 = 2. Notice how the middle signal does not

participate in the motifs.

3.2 Locality Sensitive Hashing

A powerful technique for approximate similarity search in high-

dimensional space is Locality Sensitive Hashing (LSH for short),

which we briefly introduce here. Given that the subsequences of

length 𝑤 of a time series can be seen as vectors in R𝑤 , this will
prove a useful tool in this setting as well. For an in-depth discussion

of LSH, refer to [3, 39]. We provide, as online supplemental material,

a short interactive LSH primer
1
.

Intuitively, LSH partitions a set of vectors randomly in such a

way that close vectors are more likely to end in the same part than

far away vectors. To formalize this intuition, the definition below

introduces a distance threshold 𝑅: vectors that are closer to each

other than 𝑅 are considered close, and vectors farther than 𝑐𝑅 are

considered far away.

Definition 3.11 (Locality Sensitive Hashing [3]). Let (X, dist) be
a metric space andH be a family of functions ℎ : X → 𝑈 for some

set 𝑈 . For a distance threshold 𝑅 and a constant 𝑐 > 1 the family

H is called (𝑅, 𝑐𝑅, 𝑝1, 𝑝2)-locality sensitive if ∀𝑥,𝑦 ∈ X and for ℎ

sampled fromH :

if dist(𝑥,𝑦) ≤ 𝑅 then Pr

ℎ∼H
[ℎ (𝑞) = ℎ (𝑝)] ≥ 𝑝1

if dist(𝑥,𝑦) ≥ 𝑐𝑅 then Pr

ℎ∼𝐻
[ℎ (𝑞) = ℎ (𝑝)] ≤ 𝑝2

. (3)

The event of two vectors having the same hash value is called a

collision. A key quantity to assess the performance of LSH families

is

𝜌 =
log 1/𝑝1

log 1/𝑝2

A small 𝜌 value entails that the LSH family is effective at discerning

close vectors from far-away ones.

1
https://www.dei.unipd.it/~ceccarello/MOMENTI-supplemental/

For the common case of the Euclidean distance considered in

this paper a widely used LSH family is that of Discretized Random
Projections [14]. For a vector 𝑥 ∈ R𝑤 and quantization parameter

𝑟 ∈ R+ the hash function is

ℎ(𝑥) =
⌊︃
𝑎 · 𝑥 + 𝑏

𝑟

⌋︃
(4)

where 𝑎 ∈ R𝑤 is a vector with random components following the

N(0, 1) Gaussian distribution, and 𝑏 ∈ R is chosen uniformly at

random in the interval [0, 𝑟 ].
The probability that two vectors 𝑥,𝑦 at Euclidean distance 𝑅

collide is:

Pr

ℎ∼H
[ℎ(𝑥) = ℎ(𝑦)] = 1 − 2 · 𝑛𝑜𝑟𝑚

(︂
− 𝑟
𝑅

)︂
− 2

√
2𝜋 𝑟/𝑅

(︃
1 − 𝑒−

(︂
𝑟2

2𝑅2

)︂ )︃
(5)

where 𝑛𝑜𝑟𝑚 is the cumulative distribution function of a Standard
normal distribution [14]. For this family of LSH functions we have

𝜌 = 1/𝑐 [2], a fact that we will use in the analysis of the complexity

of our algorithm.

As a notational shorthand, for two vectors 𝑥 and 𝑦 at distance

dist (𝑥,𝑦) we define

𝑃 (dist (𝑥,𝑦)) = Pr

ℎ∈H
[ℎ(𝑥) = ℎ(𝑦)] .

In order to amplify the gap between the collision probability of

close vectors (at distance ≤ 𝑅) and far vectors (at distance ≥ 𝑐𝑅) a
common strategy is to create a composite hash function by sampling

𝐾 hash functions and concatenating their outputs in a tuple of

length 𝐾 :

ℎ′ (𝑥) = ⟨ℎ1 (𝑥), ℎ2 (𝑥), . . . , ℎ𝐾 (𝑥)⟩
The resulting LSH family is (𝑅, 𝑐𝑅, 𝑝𝐾

1
, 𝑝𝐾

2
)-locality sensitive. Using

larger values of 𝐾 lowers the probability for both close and far

points to collide, with a more marked effect on the latter. Repeating

this process with 𝐿 independent composite hash functions implies

that points at distance smaller than 𝑅 collide in at least one of the

repetitions with probability at least 1 −
(︂
1 − 𝑝𝐾

1

)︂𝐿
.

Setting the parameters 𝐾 and 𝐿 requires the knowledge of the

distance threshold𝑅, which in our setting is the distance of the top-𝑘

motif. Of course we do not know this distance beforehand, therefore

in the following we describe an algorithm that automatically tunes

them based on the input.
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Algorithm 1:MOMENTI

Input :𝐷-dimensional time series T, subsequence length
𝑤 , number of motifs 𝑘 , 𝐾 max allowed number of

concatenations, 𝐿 max number of repetitions,

dimensionality of the motifs to find 𝑑 , failure

probability 𝛿

Output : {Set of the top-𝑘 motifs}, with probability 1 − 𝛿
// Initialization

1 for T𝑎 ∈ T𝑤 , 𝑓 ← 1 to 𝐷, 𝑗 ← 1 to 𝐿 do

2 compute ℎ𝐾,𝑗 (T
𝑓
𝑎 );

3 TOP = PriorityQueue();

4 for 𝑖 ← 𝐾 to 1 do

5 for 𝑗 ← 1 to 𝐿 do

6 𝐸← ∅;
7 for 𝑓 ← 1 to 𝐷 do

8 for (T𝑎, T𝑏 ) ∈ T𝑤 × T𝑤 : ℎ
𝑓

𝑖, 𝑗
(T𝑓𝑎 ) = ℎ

𝑓

𝑖, 𝑗
(T𝑓
𝑏
) do

9 if (T𝑎,T𝑏 ) ∉ 𝐸 then

10 𝐸← 𝐸 ∪ {(𝑎, 𝑏)};
11 𝑊 (𝑎, 𝑏) ← 1;

12 else

13 𝑊 (𝑎, 𝑏) ←𝑊 (𝑎, 𝑏) + 1;

14 for (𝑎, 𝑏) ∈ 𝐸 do

15 if𝑊 (𝑎, 𝑏) ≥ 𝑑 then

16 TOP.insert((T𝑎,T𝑏 ));
17 if |TOP|>k then

18 TOP.pop()

19 if |TOP| = 𝑘 ∧ STOP(TOP.max(), 𝑖, 𝑗, 𝛿) then
20 return TOP

21 return true top-𝑘 by computing all pairs;

Algorithm 2: Stopping condition

1 Function STOP((T𝑎,T𝑏 ), 𝑖, 𝑗, 𝛿) is

2 𝑝 ← 𝑃

(︂
dist

max

𝑑
(T𝑎,T𝑏 )

)︂𝑑
;

3 if 𝑖 = 𝐾 then return

(︁
1 − 𝑝𝑖

)︁ 𝑗 ≤ 𝛿 ;

4 else return

(︁
1 − 𝑝𝑖

)︁ 𝑗 · (︁1 − 𝑝𝑖+1)︁𝐿− 𝑗 ≤ 𝛿 ;

4 ALGORITHM

We now describe our algorithm, named MOMENTI (for MOtifs in
MultidimEnsioNal TImeseries), to find the top-𝑘 motifs in a multi-

dimensional time series. Our algorithm has a user-defined error

probability 𝛿 . At a high level, our algorithm is comprised of two

main phases. First, it builds a LSH-based index of the time series

subsequences, where the dimensions of all subsequences are hashed

independently. Then the index is traversed to discover candidate

motif pairs, until a data-dependent stopping condition is met. The

pseudocode of our algorithm is presented in Algorithm 1.

Index construction. As we have seen in the previous section, two

critical parameters in an LSH setup are the number of concatena-

tions 𝐾 and the number of repetitions 𝐿. Furthermore, the hash

function of Equation (4) requires a quantization parameter 𝑟 to be

set as well. We shall see how to automatically set 𝑟 later in Section 6.

For a time series T, setting 𝐾 and 𝐿 so to minimize the number of

distance computations requires the knowledge of the motif distance

before we construct the index. To work around the fact that we, of

course, do not know this distance beforehand, our index instead

sets the maximum 𝐾 and 𝐿 values to be used in the second phase.

To construct the index of the subsequence of length𝑤 of a mul-

tivariate time series T we first sample multiple independent com-

posite hash functions of length 𝐾 : one for each dimension 𝑓 ∈ [𝐷]
and repetition 𝑗 ∈ [𝐿]. As described in the previous section, this

is achieved by simply sampling a random vector 𝑎 and a random

value 𝑏 for each function. We denote the composite hash function

at repetition 𝑗 ∈ [𝐿] for dimension 𝑓 ∈ [𝐷] with ℎ𝑓
𝐾,𝑗

.

Then, for each subsequence T𝑎 , we compute multiple indepen-

dent hash values: for each dimension 𝑓 ∈ [𝐷] and for each repe-

tition 𝑗 ∈ [𝐿], we compute the composite hash value of length 𝐾

of the vector T𝑓𝑎 using the corresponding hash function, that is we

compute ℎ
𝑓

𝐾,𝑗
(T𝑓𝑎 ).

Note that a composite hash value can be seen as a string of 𝐾

integer values. A fundamental operation in the next phase will be

retrieving, for a given dimension 𝑓 ∈ [𝐷] and repetition 𝑗 ∈ [𝐿],
all the subsequences whose hash share the prefix of a given length.

To efficiently support this operation, we construct an index on hash

values consisting of a family of ordered vectors. Specifically, for

each dimension 𝑓 ∈ [𝐷] and each repetition 𝑗 ∈ [𝐿], each vector

indexes the string of 𝐾 hash values of all subsequences. By doing

so, hash values with the same prefix appear in contiguous ranges

of the array, providing higher locality of reference. In the following,

for 0 < 𝑖 ≤ 𝐾 we denote with ℎ
𝑓

𝑖, 𝑗
(T𝑓𝑎 ) the prefix of length 𝑖 of the

hash value for the subsequence dimension T𝑓𝑎 in repetition 𝑗 .

Index traversal. A key property of the index introduced in the

previous paragraph is that very similar subsequences are likely

to share long prefixes of their hashes. At the same time, due to

the probabilistic nature of LSH it is not certain that similar subse-

quences share a long prefix in the first repetition.

We first give the intuition behind the algorithm, and then give

all the details. Starting from the longest possible hash prefix, 𝐾 , the

𝐿 repetitions are considered, focusing on each one on all pairs of

subsequences sharing the same hash prefix: for each such pair we

can compute the distance, which is used to rank candidate motif

pairs in a priority queue. Furthermore, from the distance we can

derive the collision probability by means of Equation (5). We use

this probability to define a stopping condition that allows to rule

out the event that the true motif has not been seen in the repetitions
considered so far. If the probability of this negative event is less

than a user defined threshold 𝛿 and the priority queue contains at

least 𝑘 elements then the algorithm stops, returning the top-𝑘 pairs

in the priority queue. Otherwise the next iteration is considered,

with a caveat: if the last of the 𝐿 repetitions is reached with the

stopping condition not satisfied, then it means that hashes of length

𝐾 are too selective for the dataset at hand. Therefore, the process

is restarted considering prefixes of length 𝐾 − 1. This procedure

continues, potentially considering shorter and shorter prefixes,

until the stopping condition is met.
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The above high level intuition is complicated by the fact that we

have to deal with multidimensional subsequences whose dimen-

sions are hashed independently. In the following we thus detail the

algorithm with reference to the pseudocode in Algorithm 1.

The algorithm proceeds in rounds from 𝐾 to 1: in round 𝑖 hash

prefixes of length 𝑖 are considered. In each round 𝑖 then all repeti-

tions 1 ≤ 𝑗 ≤ 𝐿 are considered, and each such iteration is comprised

of three steps: counting the number of collisions, computing dis-

tances, and checking the stopping condition.

The first step (line 6 to 13) counts for each pair of subsequences

the number of dimensions in which they share a prefix of length

𝑖 . Note that retrieving the pairs of subsequences colliding in each

dimension (line 8) is done efficiently by leveraging the fact that hash

values are stored in lexicographically sorted arrays. By the end of

the first step the algorithm has built a set 𝐸 of pairs of subsequences

that collided in at least one dimension, and for each pair (𝑎, 𝑏) ∈ 𝐸
the function𝑊 (𝑎, 𝑏) reports the number of dimensions on which

T𝑎 and T𝑏 collided.

In the second step the focus (lines from 14 to 18) is on the pairs

that share prefixes in at least 𝑑 dimensions out of 𝐷 , where 𝑑 is the

target number of dimensions spanned by the motifs. The intuition

is that a motif pair (T𝑎,T𝑏 ), being similar in at least 𝑑 dimensions,

will have𝑊 (𝑎, 𝑏) ≥ 𝑑 . For each such pair, the algorithm computes

the distance and updates the priority queue of candidates, keeping

only the top-𝑘 in memory.

Finally, if the priority queue contains 𝑘 candidates then the algo-

rithm checks the stopping condition (Algorithm 2), which considers

the pair at maximum distance in the priority queue. In particular, for

this pair (T𝑎, T𝑏 ) the stopping condition focuses on dist
max

𝑑
(T𝑎,T𝑏 )

as defined in Equation (2). This distance is used to compute an upper

bound 𝑝 to the probability of the two subsequences colliding in 𝑑 di-

mensions at the same time independently (line 2). This probability 𝑝

is then used to compute the probability that a pair of subsequences

with a smaller pairwise distance was missed by the algorithm in

all the previous iterations. If this probability is smaller than the

user-defined 𝛿 , then the algorithm can successfully terminate. In

particular, line 3 is evaluated when the full hashes are being con-

sidered, and only the first 𝑗 repetition have been executed. Line 4

is executed when prefixes shorter than 𝐾 are under consideration,

and takes into account the fact that the algorithm executed 𝐿 − 𝑗
iterations with prefixes of length 𝑖 + 1.

Note that the iterative process of lines 4 to 15 inherently exhibits

anytime properties, as the priority queue only allows the insertion

of better solutions. The user can stop at any time the discovery to

retrieve the candidate motifs with their error probabilities.

Example 4.1. Consider the time series shown in Figure 1, let

T𝑎,T𝑏 be the names of the subsequences belonging to the first

motif (in red) and T𝑐 ,T𝑑 to the second (in blue), TOP be the queue
where we store the top motif with 𝑘 = 1, 𝐾 = 4, 𝐿 = 2 and 𝛿 = 0.1.

Let us assume that there exist no other collisions other than the two

motifs. During the iteration at 𝑖 = 4, 𝑗 = 1 we will scan the hashes

for each dimension and update our weights (lines 7-13), we find

𝑊 (T𝑎,T𝑏 ) =𝑊 (T𝑐 ,T𝑑 ) = 2. The first couple will be stored in the

queue since it has a lower distance (lines 14-18). At this point (line

19), STOP(dist𝑑 (T𝑎,T𝑏 ) , 4, 1) ≥ 𝛿 so the condition is not satisfied.

This happens again for 𝑗 = 2, when we find (T𝑐 ,T𝑑 ) we evaluate

the distance again because we have no memory of the past, and

discard it for its distance is greater than the couple stored in TOP.
Since the hashes of length 𝑖 = 4 were unable to satisfy the stopping

condition, we move to prefix length 𝑖 = 3. This time, for both 𝑗 = 1

and 𝑗 = 2, we find (T𝑎,T𝑏 ) and (T𝑐 ,T𝑑 ) with weight 2, we will

compare them again even though they already have been evaluated

during the previous step, we will later implement a way to avoid

this operation and save resources. At the end of repetition 𝑗 = 2 we

find that the bound on the failure probability of the pair stored in

the queue is satisfied and the algorithm stops.

5 ANALYSIS

In this section, we derive the probabilistic guarantees for our algo-

rithm as well as analyze its complexity.

Lemma 5.1. Given a pair of subsequences T𝑎,T𝑏 and parameter
𝑑𝑚 , consider iteration 𝑖 of the outer loop of Algorithm 1. Then, we

have𝑊 (𝑎, 𝑏) ≥ 𝑑 with probability at least 𝑃
(︂
dist

max

𝑑
(T𝑎,T𝑏 )

)︂𝑖 ·𝑑
where dist

max

𝑑
(·, ·) is defined as in Equation (2).

Proof. To have𝑊 (𝑎, 𝑏) ≥ 𝑑 we need the two subsequences to

collide in at least 𝑑 dimensions.

Consider the distance dist
max

𝑑
(T𝑎,T𝑏 ) and recall that, by definition,

all dimensions 𝐹 = dims𝑑 (T𝑎,T𝑏 ) will be at a closer distance.
At iteration 𝑖 of the outer loop of Algorithm 1 we have that

the two subsequences collide in all dimensions 𝐹 at the same time

with probability at least

∏︁
𝑓 ∈𝐹 𝑃

(︂
dist

(︂
T𝑓𝑎 ,T

𝑓

𝑏

)︂)︂𝑖
given that 𝑓¯ is

the dimension of maximum distance out of the 𝑑 ones in 𝐹 , each

factor of the above product is lower bounded by 𝑃

(︂
T𝑓

¯

𝑎 ,T
𝑓¯

𝑏

)︂
, hence

the statement follows. □

5.1 Correctness

To prove correctness we need to show that motif pairs are consid-

ered at least once before the algorithm terminates.

The following lemma bounds the probability that a given pair

of subsequences at indices 𝑎 and 𝑏 never has a weight𝑊 (𝑎, 𝑏) ≥ 𝑑 .
In other words, the following lemma bounds the probability that a

pair is never considered for inclusion in the TOP priority queue.

Lemma 5.2. Let (T𝑎,T𝑏 ) be a pair of subsequences and let

𝑝 = 𝑃

(︂
dist

max

𝑑
(T𝑎,T𝑏 )

)︂𝑑
Consider iteration 𝑖 out of 𝐾 of the outer loop and iteration 𝑗 out of 𝐿
of the inner loop of Algorithm 1. The probability that𝑊 (𝑎, 𝑏) < 𝑑 in
all previous iterations is upper bounded by{︄

(1 − 𝑝𝑖 ) 𝑗 if 𝑖 = 𝐾

(1 − 𝑝𝑖 ) 𝑗 · (1 − 𝑝𝑖+1)𝐿− 𝑗 otherwise
(6)

Proof. Sketch of the proof: from Lemma 5.1 we know the prob-

ability of the pair to collide in a single repetition with prefixes of

length 𝑖 . For the given pair the failure event is to have a weight

𝑊 (𝑎, 𝑏) < 𝑑 . Therefore, the probability of never colliding over 𝑗

independent repetitions is (1 − 𝑝𝑖 ) 𝑗 . In the case where 𝑖 = 𝐾 , the

statement follows. When 𝑖 < 𝐾 , we consider that the first 𝑗 itera-

tions performed with prefix 𝑖 fail independently and that the 𝐿 − 𝑗
iterations previously run with prefix 𝑖 + 1 failed as well. □
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From this we now derive two lemmas on the success probability

of the discovery. In Lemma 5.3 we allow each motif to fail indepen-

dently, in Lemma 5.4 we require that all the returned motifs are

correct within a probability.

Lemma 5.3. Algorithm 1 finds the true top-𝑘 motifs, each with
probability ≥ 1 − 𝛿 .

Proof. Let the stopping condition be met at iteration 𝑖′ and
concatenation 𝑗 ′, 𝑚1, ...𝑚𝑘 be the set of motifs returned by the

algorithm, sorted by increasing distances. We have that the fail-

ure probability of𝑚ℎ, ℎ ∈ [1, 𝑘] is upper bounded by the failure

probability 𝑚𝑘 for the monotonicity of the collision probability.

This failure probability is given by Lemma 5.2, by construction the

stopping condition ensures that this probability is ≤ 𝛿 . This is valid
for all returned pairs independently.

If the stopping condition is never met the algorithm reaches line

20, where all pairs of subsequences are considered, thus returning

the correct motifs with probability 1. □

Given this lemma it is easy to derive the expected recall of the

algorithm, that corresponds to 1 − 𝛿 .

Lemma 5.4. When called with failure probability 𝛿 ′ = 𝛿/𝑘 , Algo-
rithm 1 finds the true top-𝑘 motifs with probability ≥ 1 − 𝛿 .

Proof. From Lemma 5.3 we have that each pair fails indepen-

dently with probability ≤ 𝛿 ′ = 𝛿/𝑘 . By applying a union bound on

the 𝑘 pairs we obtain the statement. □

5.2 Number of Distance Computations

First, we introduce the concept of contrast, which will be useful

in capturing the difficulty of a dataset and in relating it to the

complexity of our algorithm.

Definition 5.1. For a 𝐷-dimensional time series T of length 𝑛, and

for parameters 𝑘 and 𝑑 let (T𝑎𝑘 ,T𝑏𝑘 ) and (T𝑎𝑛 ,T𝑏𝑛 ) be the 𝑘-th
and 𝑛-th motifs, respectively. We define

contrast𝑑,𝑘 |𝑛 (T) =
dist

max

𝑑

(︁
T𝑎𝑛 ,T𝑏𝑛

)︁
dist

max

𝑑

(︁
T𝑎𝑘 ,T𝑏𝑘

)︁
The following theorem ensures that our algorithm computes,

in expectation, a subquadratic number of distances in expectation,

assuming we give to the algorithm enoughmemory. The complexity

is parameterized by the contrast of the motifs in the multivariate

time series: a large contrast implies a smaller complexity.

Theorem 5.5. On a 𝐷-dimensional time series T of length 𝑛, with
parameters 𝑘 ≥ 1, 𝑑 ∈ [1, 𝐷], 𝛿 ∈ (0, 1), Algorithm 1 computes

𝑂

(︃
𝑛1+1/𝑐

log

1

𝛿
+ 𝐿𝑘

)︃
distances in expectation, where 𝑐 = contrast𝑑,𝑘 |𝑛 (T), for𝐿 ∈ Ω

(︂
𝑛1/𝑐

)︂
.

Proof. Let T be the set of all the subsequence pairs of T. For any

pair of subsequence indices (𝑎, 𝑏), let 𝑝𝑎𝑏 = 𝑃

(︂
dist

max

𝑑
(T𝑎,T𝑏 )

)︂𝑑
.

Consider (T𝑎𝑘 , T𝑏𝑘 ) and (T𝑎𝑛 , T𝑏𝑛 ), the𝑘-th and𝑛-th𝑑-dimensional

motifs of T, and let 𝑝1 = 𝑝𝑎𝑘𝑏𝑘 and 𝑝2 = 𝑝𝑎𝑛𝑏𝑛 . Furthermore, let

𝜌 =
log 1/𝑝1

log 1/𝑝2

.

For notational convenience, define the following operator that

gives the expected number of distance computations carried out in

𝑗 independent repetitions with hash prefixes of length 𝑖:

ED (𝑖, 𝑗) = 𝑗 ·
(︂ ∑︂
(T𝑎,T𝑏 ) ∈T

𝑝𝑖
𝑎𝑏

)︂
Recall that, for hash prefixes of length 𝑖 , examining

log 1/𝛿
𝑝𝑖

1

inde-

pendent repetitions ensures that the top 𝑘 motif pairs are seen at

least once with probability at least 1 − 𝛿 . Using the notation short-

hand defined above, the number of expected distance computations

in this case is ED

(︃
𝑖,

log 1/𝛿
𝑝𝑖

1

)︃
.

Now define T>𝑘 and T>𝑛 as the sets of subsequence pairs that

are farther than the 𝑘-th and 𝑛-th motifs, respectively. Then we

have

ED

(︄
𝑖,

log 1/𝛿
𝑝𝑖

1

)︄
≤ log 1/𝛿

𝑝𝑖
1

· ⎛⎜⎝𝑛 +
∑︂

(T𝑎,T𝑏 ) ∈T>𝑛

𝑝𝑖
𝑎𝑏

⎞⎟⎠
≤ log 1/𝛿

𝑝𝑖
1

·
(︃
𝑛 +

(︃
𝑛

2

)︃
𝑝𝑖

2

)︃ (7)

where the inequality follows from the definition of T>𝑛 .

Defining 𝑖∗ = log𝑛

log
1

𝑝
2

we have

(︁𝑛
2

)︁
𝑝𝑖
∗

2
≤ 𝑛 and

1

𝑝𝑖
∗

1

= 𝑛
log 1/𝑝

1

log 1/𝑝
2 = 𝑛𝜌 .

Therefore there is a prefix length 𝑖∗ for which the number of

expected distance computations to see the 𝑘-th motif colliding at

least once is

ED

(︄
𝑖∗,

log 1/𝛿
𝑝𝑖
∗

1

)︄
= 𝑂

(︃
𝑛1+𝜌

log

1

𝛿

)︃
= 𝑂

(︃
𝑛1+ 1

𝑐 log

1

𝛿

)︃
(8)

where 𝑐 = contrast𝑑,𝑘 |𝑛 (T) and the equality follows from the defi-

nition of 𝜌 for the LSH family we employ in our algorithm.

Now, let 𝑖′ ≥ 𝑖∗ be the largest prefix 𝑖 such that the stopping

condition holds. With probability 1−𝛿 the algorithm stops at prefix

𝑖′. Conditioned on this event, the number of distance computations

carried out at level 𝑖′ is

ED

(︄
𝑖′,

log 1/𝛿
𝑝𝑖
′

1

)︄
+ ED

(︄
𝑖′ + 1, 𝐿 − log 1/𝛿

𝑝𝑖
′

1

)︄
(9)

Where the second term accounts for the repetitions considered in

iteration 𝑖′ + 1 of the outer loop of the algorithm. First we bound

the first term of the addition. Similarly to before, define T>𝑘 as the

set of subsequence pairs that are farther away than the 𝑘-th motif.

ED

(︄
𝑖′,

log 1/𝛿
𝑝𝑖
′

1

)︄
≤ 𝐿𝑘 + log 1/𝛿

𝑝𝑖
′

1

⎛⎜⎝
∑︂

(T𝑎,T𝑏 ) ∈T>𝑘

𝑝𝑖
′

𝑎𝑏

⎞⎟⎠
(𝑎)
≤ 𝐿𝑘 + log 1/𝛿

𝑝𝑖∗
1

⎛⎜⎝
∑︂

(T𝑎,T𝑏 ) ∈T>𝑘

𝑝𝑖
∗

𝑎𝑏

⎞⎟⎠
≤ 𝐿𝑘 + ED

(︄
𝑖∗,

log 1/𝛿
𝑝𝑖
∗

1

)︄
(𝑏 )
= 𝑂

(︃
𝐿𝑘 + 𝑛1+ 1

𝑐 log

1

𝛿

)︃
where (a) follows from the fact that 𝑝1 ≥ 𝑝𝑎𝑏 and (b) follows from

Equation (8). The theorem follows by observing that the second

term of Equation (9) is a factor 1/𝑝1 = 𝑂 (1) larger than the first

term. □
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5.3 Index construction and size

We now consider the contribution to the running time of Algo-

rithm 1 given by the hash index and derive its space complexity.

Lemma 5.6. The hash construction at line 1 of Algorithm 1 takes
time 𝑂 (𝐷 · 𝐾 · 𝐿 · 𝑛 log𝑛).

Proof. For each multidimensional subsequence we have to eval-

uate 𝐷 · 𝐾 · 𝐿 hashes. For a fixed hash function we can compute all

the dot products in 𝑂 (𝑛 log𝑛) time, using the cyclical convolution

theorem. The result follows. □

Given that for each of the 𝑛 subsequences we have to store, in

each of the 𝐿 repetitions, a total of 𝐷 hashes of length 𝐾 we have

the following.

Theorem 5.7. Algorithm 1 has space complexity proportional to
𝑂 (𝐾 · 𝐿 · 𝐷 · 𝑛).

6 IMPLEMENTATION DETAILS

In this section, we describe the key aspects of the implementation

that impact the algorithm’s running time and its motif discovery

capabilities. Namely, the number of hash evaluations and compar-

isons and the challenge of not knowing the dimensionality of the

motifs to discover.

6.1 Index building

Setting the quantization width r. Recall from Equation 4 the formu-

lation of the hash function we use. Even though the choice of the

parameter 𝑟 does not compromise the correctness of the algorithm,

it is fundamental since it influences the performance. A value that

is too high will group many subsequences together at long indices,

mitigating the filtering effect of LSH, a value that is too low will sep-

arate even the smallest perturbation between subsequences, forcing

the algorithm to visit shorter prefixes. To deal with this parameter

automatically, the algorithm adopts an estimation-based heuristic.

First we sample a number of random vectors from ∼ N(0, 1),
computing their dot product with a random sample of subsequences

from the time series. This produces an estimate of the distribution

of the values that are discretized by Equation 4.

Then, we discretize this empirical distribution into 256 equal-

width buckets. The width of these buckets will be used as the

parameter 𝑟 in the hash function. The rationale is that by doing so

we will be able to represent each hash value with a single byte.

Note that this heuristic can be implemented efficiently by lever-

aging on the cyclical convolution theorem, the same method used

by MASS for the Distance Profile [43]. We can obtain, with one

convolution between one of the random vectors and the sample of

the time series, all the dot products for that vector.

Tensoring. Tensoring is a technique to reduce the number of eval-

uations for the hash functions [12]. Let H be a LSH family and

𝐾, 𝐿 ≥ 1 integers. For 𝑚 =
√
𝐿, we define H𝑙 as a set of 𝑚 hash

functions sampled fromH
𝐾
2 and similarly forH𝑟 . Then (ℎ𝑎, ℎ𝑏 ) ∈

H𝑙 ×H𝑟 , 1 ≤ 𝑎, 𝑏 ≤ 𝑚 provides𝑚2
repetitions with𝐾𝑚 evaluations.

Furthermore, let us define for 1 ≤ 𝑗 ≤ 𝐿:

ℎ𝐾,𝑗 =

(︂
ℎ 𝐾

2
,𝑙
, ℎ 𝐾

2
,𝑟

)︂
∈ H𝑙 ×H𝑟 where

{︄
𝑙 = 𝑗 ÷

√
𝐿

𝑟 = 𝑗 mod

√
𝐿

. (10)

The resulting hash is obtained from interleaving values from the

selected left and right hash. This reduces the hash evaluations

from 𝐾 · 𝐿 to 𝐾 ·
√
𝐿 at the cost of losing independence between

repetitions. To accommodate this change we give this alternative

formulation of Lemma 5.2, omitting the proof for the sake of space.

Lemma 6.1. Under the same conditions of Lemma 5.2, using the
tensoring approach, the probability that𝑊 (𝑎, 𝑏) < 𝑑 in all previous
iterations is upper bounded by{︄

𝑃𝑡 (𝑖/2, 𝑗) if 𝑖 = 𝐾
𝑃𝑡 (𝑖/2, 𝑗) · 𝑃𝑡 ((𝑖 + 1)/2, 𝐿 − 𝑗) otherwise

where 𝑃𝑡 (𝑖′, 𝑗 ′) = (1 − 𝑝 ⌈𝑖
′ ⌉ ) 𝑗 ′÷

√
𝐿 · (1 − 𝑝 ⌊𝑖′ ⌋ ) 𝑗 ′ mod

√
𝐿 .

Using Lemma 6.1 in the stopping condition of Algorithm 1 main-

tains the correctness guarantees of Lemmas 5.3 and 5.4.

Corollary 5.6.1. With the tensoring approach the index construction

takes time proportional to 𝑂 (𝐷 · 𝐾 ·
√
𝐿 · 𝑛 log 𝑛).

6.2 Index traversal

Comparisons on the fly. In Algorithm 1, maintaining the structure of

line 4 at runtime is very expensive, since it would require quadratic

space to store the weights for, potentially, each pair of subsequences.

To deal with this problem, while maintaining the same theoretical

approach, we just scan the index over each dimension and every

time a unidimensional collision is seen we immediately compute

𝑊 (𝑎, 𝑏), if greater or equal than the searched motif dimensionality

𝑑 , we perform the insertion of the pair in the priority queue. This

approach does not require any additional space at the cost of a

slightly higher number of hash comparisons, since we may evaluate

a colliding pair up to 𝐷 times.

Duplicate collisions within the same repetition. Our approach dynam-

ically chooses the length of the composite hashes by progressively

iterating on the prefixes of the full ones, this results in looking into

prefixes of decreasing size. Consequently, collisions at level 𝑖 are a

superset of the collisions at level 𝑖 + 1, in order to avoid unnecessary

distance computations, the algorithm will check if the colliding

hashes appear at the level 𝑖 + 1, skipping the pair in the positive

case.

6.3 Finding motifs of multiple dimensionalities

One of the critical points up to now is the fact that at input we re-

quire the number of dimensions 𝑑 that span the motif. In many real

scenarios, it is possible to know only approximately the expected

dimensionality of the pattern in a certain domain.

Our method can be easily extended to discover motifs spanning

different dimensions, allowing the user to specify a range of dimen-

sionalities 𝑑𝑙𝑜𝑤 , 𝑑ℎ𝑖𝑔ℎ of the motifs they want to discover. The data

structure at line 3 of Algorithm 1 becomes a set of 𝑑ℎ𝑖𝑔ℎ − 𝑑𝑙𝑜𝑤 + 1

priority queues, which are independently updated during the dis-

covery process. This allows the algorithm to reuse information

from a single distance computation across the different requested

dimensionalities. Since evaluating dist𝑑 (T𝑎,T𝑏 ) for a pair of sub-
sequences requires computing dist

(︂
T𝑓𝑎 ,T

𝑓

𝑏

)︂
∀𝑓 ∈ [𝐷], we can
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Table 2: Information about the evaluation datasets.

dataset n D window 𝑑 𝑐𝑑,1 |𝑛

potentials 2 500 8 50 8 6.11

evaporator 7 000 5 75 2 2.60

RUTH 14 859 32 500 4 3.24

weather 100 057 8 5000 2 2.43

whales 450 001 32 300 6 1.22*

quake 6 440 998 32 100 4 1.65*

electrical_load 6 960 008 10 1000 5 1.91*

LTMM 25 132 289 6 200 3 5.31*

* obtained through random sampling.

efficiently derive dist𝑑 (T𝑎,T𝑏 ) ∀𝑑 ∈ [1, 𝐷]. The condition of

line 15 is initially based on 𝑑𝑙𝑜𝑤 and gradually increases every time

the lowest dimensionality has its motif confirmed. This approach

allows to return solutions for each motif dimensionality as soon as

their error probabilities satisfy the required quality, inheriting the

anytime property.

7 EXPERIMENTS

This section aims at answering the following questions:

• How does our algorithm compare with the state-of-the-art?

• How do parameters 𝐾 , 𝐿, 𝑟 and 𝛿 influence the performance?

• How does the algorithm scale with respect to the input size?

• Is the algorithm able to find motifs in high dimensional noisy

time series?

Baselines. Our algorithm is compared to Mstump [23], the state-

of-the-art implementation for the multidimensional matrix profile.

We stress that Mstump is an exact algorithm that computes more

information than just the motifs: for instance it can be used to

detect discords. Our aim is to investigate the gains that can be

attained when only motifs are sought, and when a small failure

probability is accepted. Alongside, we consider the Extended Motif

Discovery (EMD) algorithm [37], reimplemented in [22], and the

Random Projection (RP) algorithm [29], reimplemented by us, for

comparisons with approximate approaches. We refer to our algo-

rithm as MOMENTI, which stands for MOtifs in MultidimEnsioNal

TImeseries. All algorithms were subject to a global timeout of 4

hours per execution for datasets under the million points, and 24

hours for larger datasets.

Experimental Setup. The evaluation was carried out on a machine

with a 8 core Intel Xeon W-2245 @ 3.90 GHz equipped with 128 GB

of memory.

Datasets. All the experiments are run on the following real datasets

from different domains, whose details can be found in Table 2.

• Potentials is a record of skin potentials [16];

• Evaporator is data from a four-stage evaporator to reduce the

water content from products [17];

• Ruth, the Mel-spectrogram of the song Running Up That Hill by
Kate Bush, extracted with the following parameters: 32-Mel scale

filters, 46 milliseconds short time Fourier transform window and

23 milliseconds hop;

Table 3: Time required to find the 𝑑-dimensional top motif,

for fixed 𝑑 , averaged over 9 runs. Values in parentheses are

estimates.

dataset MOMENTI MSTUMP EMD RP

Index build Total

potentials 0.11 0.51 3.65 4.80 3.20

evaporator 0.16 0.55 4.45 12.95 6.78

RUTH 2.91 8.10 84.04 1.5h 2.3h

weather 15.04 33.37 1035.73 - 1.2h

whales 60.67 2.2 h (2.7 days) - -

quake 175.3 3.6 h (7.2 days) - -

el_load 180.2 2.8 h (8.4 days) - -

LTMM 240.6 15.6 h (11.8 days) - -

• Weather is representing the hourly climate data near Monash

University, in Australia, for about 10 years [19];

• Whales is obtained from data of an underwater passive acous-

tic network and is a 10 minute recording of humpback whales

vocalizations [32];

• Quake is a waveform from the Observatories and Research Facil-

ities for European Seismology (ORFEUS) during the 2014 Aegean

Sea earthquake [28];

• El_load includes cleaned electrical consumption data in Watts

for 20 households at aggregate and appliance level [31];

• LTMM contains 3-day 3D accelerometer recordings of elder

community residents, used to study gait, stability, and fall risk

[20, 21].

The choice of the reference motif dimensionality 𝑑 for each

dataset is guided by the additional information available. Specifi-

cally, for Potentials, Evaporator and Weather we use metadata

information for the expected dimensionality of the pattern. For

Ruth and Whales, we follow previous work on audio data to find,

respectively, the drum pattern of the song and whale harmonization

[41]. Finally, El_load,Quake and Ltmm were chosen based on the

domain information.

Furthermore, we characterize each dataset by the contrast 𝑐𝑑,1 |𝑛
of its top 𝑑-dimensional motif, as per Definition 5.1. Datasets with

a small contrast are expected to be more difficult, i.e. require more

time to find the top motif. For instance El_load is expected to be

more difficult compared to Weather, since the latter has a pair

of subsequences that repeat the same shape at a distance that is

significantly smaller than the 𝑛-th closest pair.

Default parameter values. MOMENTI will have its parameters set

to default unless otherwise indicated. The failure probability is set

at 𝛿 = 0.01, the maximum hash length is set to 𝐾 = 8, while the

maximum number of repetitions is set to 𝐿 = 200. 𝑟 is automatically

estimated using the heuristic introduced in Section 6.1.

7.1 Finding the top motif

In this first experiment, the task is to find the top motif at a given

dimensionality 𝑑 (as per Table 2). For each dataset we report the

total running time of the baselines Mstump, EMD and RP in the

last three columns, whereas for our approach we report both the

total time and the time required to set up the index. All times are in
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Table 4: Number of cumulative distance computations to find

the top 𝑑-dimensional motif.

dataset MOMENTI MSTUMP EMD RP

potentials 64 2.4 · 10
7

1.0 · 10
2

2.7 · 10
3

evaporator 4.7 · 10
2

1.4 · 10
8

5 4.4 · 10
4

RUTH 1.2 · 10
2

3.3 · 10
9

5.4 · 10
3

2.3 · 10
5

weather 9.8 · 10
4

3.9 · 10
10

- 2.1 · 10
6

whales 3.1 · 10
8 (3.2 · 10

12) - -

quake 1.1 · 10
6 (6.6 · 10

14) - -

el_load 4.4 · 10
2 (2.4 · 10

14) - -

LTMM 4.4 · 10
2 (1.9 · 10

15) - -

seconds, unless otherwise noted. Furthermore, for timed out runs of

Mstump we report, in parentheses, an estimate of the running time,

which is made possible by the very regular behavior of Mstump

with respect to the input size. For EDM and RP the running time is

more unpredictable, therefore we refrain from providing estimates

for timed out runs.

As can be seen, our algorithm is faster on all settings, completing

the execution orders of magnitude faster than the baselines on the

larger datasets. To substantiate this observation, Table 4 reports

the number of distance computations carried out by each approach:

MOMENTI usage of LSH allows to effectively prune most distance

computations, whereas Mstump computes a quadratic number of

distances.

The EMD algorithm appears to be the slowest, its major draw-

back being the set up of the parameters for a successful discovery.

On the other hand, RP scales better to larger datasets but its param-

eter tuning heuristic repeatedly discards the collision matrix when

a sparsification target is not met, this is especially costly on high

dimensional datasets. We stress that the Matrix Profile computed

by Mstump allows the discovery of motifs of any dimensionality,

while in this test MOMENTI only finds the top motif for a fixed

dimensionality. In the next section we will investigate how MO-

MENTI behaves when finding motifs for all dimensionalities at the

same time.

Finally, Table 5 reports the memory usage, in gigabytes, of the

different algorithms. We observe that MOMENTI requires the least

memory to execute.

Quality of the motifs. To better understand what pairs are re-

turned by the different algorithms we measured the Mean Absolute

Relative Error (MARE) of the distances of the discovered motifs

with respect to the exact ones. We found that RP can reach MARE

values as high as 40%, while EMD stays below 20%. In contrast,

our method consistently maintains MARE under 3%, underlining

how beneficial LSH, that mainly explores close pairs, is in this con-

text. Further details on the quality of our results will be given in

Section 7.5.

7.2 Finding the top motifs with different

dimensionalities

In this second experiment the aim is to find the motifs for all di-

mensionalities 2 ≤ 𝑑 ≤ 𝐷 in the same execution. MSTUMP does

this natively, whereas our algorithm MOMENTI can be adapted to

do so as described in Section 6.3. EMD and RP can only achieve

Table 5: Memory required to find the top 𝑑-dimensional mo-

tif.

Space (GB)

dataset MOMENTI MSTUMP EMD RP

potentials 0.016 0.028 0.79 0.07

evaporator 0.020 0.030 0.81 0.1

RUTH 0.025 0.084 1.19 0.5

weather 0.027 0.106 - 0.8

whales 0.24 3.2 - -

quake 2.13 23.0 - -

el_load 1.50 7.4 - -

LTMM 3.00 15.7 - -

Table 6: Time required for the top motifs for all dimensional-

ities. Mean over 9 runs. Values in parentheses are estimates.

dataset MOMENTI MSTUMP

potentials 0.75 3.65

evaporator 0.89 4.45

RUTH 12.46 84.04

weather 47.85 1035.73

whales 2.5 h (2.7 days)

quake 5.8 h (7.2 days)

el_load 3.1 h (8.4 days)

LTMM 16 h (11.8 days)
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Figure 2: Solid lines mark the time required by MOMENTI

to find the top motif of each dimensionality for all datasets;

dashed lines mark the time required by the Mstump baseline

for the same task.

this through multiple executions and are thus excluded from this

experiment. In Table 6 we report the results for this experiment.
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Note that the running times for Mstump are identical to the ones

reported in Table 3, given that Mstump finds motifs for all dimen-

sionalities natively. As for MOMENTI the indexing time is the same

in this setting as the one reported in Table 3, therefore we omit it

for clarity. We observe that even in this more challenging scenario

our algorithm is able to discover the motifs for all dimensionalities

faster than the Mstump baseline. Indeed, the running time of MO-

MENTI is always within a factor ≈ 1.6 of its running time on the

one dimensional case.

To further investigate this behavior, in Figure 2 we report the re-

lation between the discovery time of a motif (𝑥 axis) and its distance

(𝑦 axis). Each color identifies a dataset, and each point represents a

motif for some dimensionality: for instance the Weather dataset

(orange) has 7 points in this figure because it has 8 dimensions,

and we set the algorithms to find the 7 motifs spanning between 2

and 8 dimensions. The dashed horizontal lines mark the runtime

performance of Mstump, which reports all the motifs at the same

time at the end of its execution. For instance, the orange dashed

horizontal line reports that Mstump takes ≈ 10
3
seconds on the

Weather dataset. The times marked by dashed lines and by the

rightmost points of each solid line are the same as in Table 6.

As can be observed in Figure 2, by virtue of how the algorithm

runs, motifs at a shorter distance are found earlier. For instance,

for Weather the motif of dimensionality 4 has a dist4 ≃ 49 while

the motif of dimensionality 5 has dist5 ≃ 77, which requires more

iterations (and thus more time) to meet the stopping condition of

the algorithm. As we discussed earlier, this fact can be used in an

anytime fashion: the execution can be stopped at any point after

the first motifs have been returned, knowing that motifs yet to be

found are at larger distances and thus might be uninteresting.

7.3 Scalability

We now test the scalability of MOMENTI compared to Mstump.

We omit EMD and RP from this comparison, as previous sections

show that they do not scale beyond moderately sized time series.

While the behavior of Mstump is data-independent, i.e. its running

time depends only on the size of the data, for MOMENTI the run-

ning time is influenced by both the size of the time series and the

contrast of the motifs. Therefore, to test the scalability in a robust

way we employ our largest dataset and a synthetic one. We gen-

erate a random walk with 𝐷 = 5 of length between 10000 and 100
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Figure 4: Time and space requirements for motif discovery

at different maximum allowed values of 𝐾 .

million, planting a sinusoidal motif of length𝑤 = 300 across 𝑑 = 2

dimensions perturbed with Gaussian noise such that 𝑐
2,1 |𝑛 is 1.1.

For LTMM we pick chunks of increasing size centered around the

true motif, we underline that each chunk has a different contrast,

so some could be harder than others for our algorithm. The results

are reported in Figure 3, where both axes use a logarithmic scale.

We observe that our algorithm scales better with the input size,

with a sub-quadratic running time.

7.4 Influence of parameters on the running time

We now study the impact of the parameters 𝐾 , 𝐿, and 𝑟 on the

running time, that in the previous experiments were either fixed

(𝐾 = 8 and 𝐿 = 200) or estimated from the data (the quantization

parameter 𝑟 ). Remember that our algorithm finds the correct an-

swer with probability 1 − 𝛿 for any setting of the parameters, that

influence only the performance. Each experiment in the following

has been repeated 10 times: the plots report the average as a colored

line, additionally, a gray dashed line reports the sizes of the hash

indices built under different settings. Dotted lines indicate that the

result is estimated due to timeout.

Impact of concatenations 𝐾 . We test 𝐾 ∈ {4, 8, 12, 16}, reporting
the results in Figure 4. We observe that a higher number of concate-

nations is related to longer computing times, both because more

repetition of the outer loop of Algorithm 1 have to be executed

and because the index construction takes longer. Conversely, us-

ing short hash values with 𝐾 = 4 incurs high execution times as

well, mainly because fewer distance computations are pruned. In

all tested cases the best tradeoff is achieved with 𝐾 = 8, which is

the recommended value and the one we used in all previous experi-

ments. We stress that for any value of 𝐾 considered in this section

MOMENTI is faster than the baseline Mstump.

Impact of repetitions L. We test 𝐿 in the range from 10 to 400,

setting 𝐾 = 8: a large 𝐿 will allow the stopping condition to be

satisfied in earlier iteration of the outer loop of Algorithm 1, thus

requiring fewer distance computations, at the expense of a higher

index build time. Figure 5 explores this trade-off, with values of 𝐿

between 100 and 200 minimizing the search time. Addingmore repe-

titions increases the memory usage, which however remains rather
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at different maximum allowed values of 𝐿.
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The red dot is the value found by the heuristic in Section 6.1.
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the measured recall and the fraction of time required with

respect to the tighter bound.

moderate, with 3.5Gb being used for the largest dataset, LTMM.

Datasets that benefit more from an increased number of repetitions

are those whose relative contrast is higher (e.g. LTMM), because

motifs are more likely to share long hash prefix. It is important to

note that the sublinear behavior in memory growth is due to our

use of the tensoring implementation.

Impact of the quantization parameter 𝑟 . In this experiment, we

manually fix 𝑟 ∈ {4, 8, 12, 16} and compare it with the value auto-

matically chosen by the algorithm using the procedure described

in Section 6.1 in terms of the resulting number of distance compu-

tations, and hence running time. Figure 6 shows that the choice of

𝑟 has a dramatic impact on the number of distance computations.

Remarkably, the value automatically picked by our algorithm in a

data-dependent way (and used in the rest of the experiments we

presented) attains the same performance as the best fixed parameter

considered in this experiment.

7.5 Quality of the results

Impact of probability threshold 𝛿 . We test the influence of 𝛿 (that

controls the algorithm’s failure rate) in the range from 0.05 to 0.4:

larger values allow the algorithm to satisfy the stopping condition

earlier, improving runtime at the cost of reduced recall. For each

setting we measured the achieved recall, the relative runtime with

respect to the stricter setting (𝛿 = 0.05), and the mean absolute rel-

ative error (MARE) of distances of the returned motifs with respect

to the ground truth. In Figure 7 we present the recall-efficiency

trade-off. We observe that the target recall imposed with 𝛿 is always

satisfied, moreover, the fraction of time required with respect to

our highest target is stable under similar contrast values (note the

similar behavior of LTMM, Weather and Ruth, which share a

relatively high contrast). About the quality of the discovered motifs

at lower deltas, we found that the MARE never exceeds 3% for

𝛿 ≤ 0.2, indicating that the quality of the result is still preserved.

Impact of noise. In this last experiment we replicate the experi-

mental design of [41], where the task is to reliably find motifs even

when datasets are cluttered by noisy dimensions. To evaluate the

robustness of our algorithm, we added from 4 to 256 additional

dimensions, each being a random walk, to datasets Potentials,

Evaporator, Ruth, Weather. Then we ran MOMENTI looking

for the 𝑑-dimensional motif, with 𝑑 as per Table 2, repeating each

experiment 12 times. In all settings, irrespective of the number of

additional noisy dimensions, our algorithm attained recall values of

1, showing its robustness to the number of irrelevant dimensions.

8 CONCLUSIONS

We presented a LSH based algorithm for the motif discovery prob-

lem in multidimensional time series, with strong guarantees on the

quality of the results. Experimental evidence supports the efficacy

and efficiency of our approach, demonstrating that it is able to find

motifs with only a fraction of all possible distance computations.
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