
Improving Time Series Data Compression in Apache IoTDB
Yuxin Tang

Renmin University of

China

yuxintang@ruc.edu.cn

Feng Zhang
∗

Renmin University of

China

fengzhang@ruc.edu.cn

Jiawei Guan

Renmin University of

China

guanjw@ruc.edu.cn

Yuan Tian

Timecho

yuan.tian@timecho.com

Xiangdong Huang

NERCBDS, EIRI,

Tsinghua University

huangxdong@tsinghua.edu.cn

Chen Wang

NERCBDS, EIRI,

Tsinghua University

wang_chen@tsinghua.edu.cn

Jianmin Wang

NERCBDS, EIRI,

Tsinghua University

jimwang@tsinghua.edu.cn

Xiaoyong Du

Renmin University of

China

duyong@ruc.edu.cn

ABSTRACT
Time series data are generated on an unprecedented scale across

various domains. Although traditional compression techniques re-

duce storage costs, they typically require full decompression be-

fore querying, leading to increased latency and higher resource

consumption. Homomorphic compression (HC), which enables di-

rect computation on the compressed data without decompression,

shows the potential for both reduced storage and improved query

performance. However, the unique complexities of time series data

pose challenges that current HC methods have yet to adequately

address. In this paper, we introduce HC theory in the time series do-

main, transformatively enabling HC to time series database queries.

Building on our theory, we develop CompressIoTDB – a novel homo-

morphic compression framework integrated into Apache IoTDB. By

leveraging our proposed CompColumn structure, our framework

supports a wide range of query operators, including filtering, ag-

gregation, and window-based functions, all while maintaining data

in its compressed form. Furthermore, we incorporate system-level

optimizations such as late decompression and dynamic auxiliary

management to further boost query efficiency. Extensive exper-

iments show that CompressIoTDB significantly enhances query

processing for time series data, achieving an average throughput

improvement of 53.4% and memory usage reduction of 20%.

PVLDB Reference Format:
Yuxin Tang, Feng Zhang, Jiawei Guan, Yuan Tian, Xiangdong Huang, Chen

Wang, Jianmin Wang, and Xiaoyong Du. Improving Time Series Data

Compression in Apache IoTDB. PVLDB, 18(10): 3406 - 3420, 2025.

doi:10.14778/3748191.3748204

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/yuxin370/CompressIoTDB.

∗
Feng Zhang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.

doi:10.14778/3748191.3748204

1 INTRODUCTION
Time series data are critical in numerous fields, including Internet

of Things (IoT), finance [28, 53, 59, 74], healthcare [23, 64, 75, 91],

and industrial monitoring [17, 86]. Their chronological structure

and exponential growth driven by connected devices and real-time

streams necessitate efficient management and querying [14, 24–

27, 41–43, 63, 72, 81, 85, 95, 100]. Compression techniques have been

used by most time series management systems, such as Apache

IoTDB [9], InfluxDB [40], and OpenTSDB [65], to minimize storage

costs and transmission bandwidth. However, these compression

methods generally require full decompression before querying,

leading to significant delays and increased resource consumption,

particularly when dealing with large datasets.

Applications

Apache IoTDB

compress

SQL 
Query

decompress

Chunk
Group 1

Chunk
Group 2

Chunk
Group 3

…

Chunk Group 
Header

Chunk 1 Chunk n…

Chunk 
Header

Page Page…

Financial
Analytic

Industry 
Monitoring

…

𝑇 𝐷1𝐷2 𝐷n…

…

TsFile

data ingestion
… 𝑡𝑖 , 𝑑𝑖 …

(a) IoT data processing pipeline in Apache IoTDB

(b) Query performance of 

comp. vs. uncomp. data

Figure 1: IoT data processing in Apache IoTDB.

Figure 1a illustrates a simplified IoT data processing pipeline

in Apache IoTDB, which recently ranked first in the TPCx-IoT

benchmark [79]. IoTDB ingests time series data from various IoT

applications. These data, featured by high-frequency, redundancy,

and regularity, are then compressed using light-weight methods

(e.g., RLE) and stored in the TsFile format. For example, railway

systems generate 300 billion data points daily, requiring 5TB un-

compressed, which is infeasible. TsFile reduces this by up to 95%.

However, query execution still requires full decompression, causing

significant overhead. As shown in Figure 1b and discussed in § 5.3,

while compression cuts disk usage by over 90%, it increases query

latency by 15.8% due to decompression costs—highlighting the need

for direct querying on compressed data.

Fortunately, homomorphic compression (HC) [36] emerges as a

transformative solution, enabling computations directly on com-

pressed text data without decompression. Combining HC with time

series data management presents three key advantages: ➀ It re-

duces query latency. Since operations can be performed directly on

compressed data, the system avoids the overhead of decompression,

3406

https://doi.org/10.14778/3748191.3748204
https://github.com/yuxin370/CompressIoTDB
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748204
https://www.acm.org/publications/policies/artifact-review-and-badging-current


significantly speeding up query execution times. ➁ It improves

memory and storage efficiency, and thus enhances system scal-

ability. Keeping data compressed throughout the query process

minimizes memory usage, allowing large datasets to be processed

without straining system resources. ➂ HC offers a unified theory

framework for direct computation on compressed data, shifting

the paradigm from empirical optimizations to a principled design

methodology. Therefore, this paper investigates how to enable HC

in time series databases (TSDBs).

Although HC has been well-studied, its application to time series

data remains largely unexplored. The unique complexities of time

series data – such as high-frequency sampling, large scale, tempo-

ral alignment, and timestamp-dependent query patterns
1
– pose

challenges that current HC methods do not adequately address. ➀

Current HC prioritizes general-purpose compression algorithms

(e.g., LZW), with limited support for light-weight schemes tailored

for time series data. ➁ Current HC supports only basic operations

(e.g., extract). While decompression overhead consumes up to 65.0%

of total query time (§ 5.4.2), direct timestamp-dependent queries on

compressed time series data are still under-explored. ➂ IoT datasets

can contain over 90% null values [80] due to misaligned sampling.

Current HC, treating data as byte streams, overlook time series

complexities like null bitmap management. As a result, there is a

pressing need for new solutions to bridge HC and TSDBs. While

prior efforts [66, 92, 96] have explored direct computation within

streaming systems, they overlook TSDB-specific needs: high com-

pression, inherent data complexity, and specialized query semantics.

Moreover, existing approaches lack a unified theoretical model, call-

ing for new TSDB-specific innovations, as detailed in § 2.2.

In this paper, we present a novel HC framework tailored for time

series data processing, enabling HC to time series database queries.

Building on HC, we introduce a homomorphic query framework for

time series data, called CompressIoTDB. Our approach, integrated
into Apache IoTDB, introduces a compressed data structure, Comp-

Column, to support direct computation on compressed time series

data.By incorporating light-weight compression schemes such as

Run-Length Encoding (RLE) [33], Dictionary Encoding [83], and

Ts_2Diff [84], it provides robust support for a wide range of query

operators, including filtering, aggregation, and window-based func-

tions, all while maintaining the data compressed. We incorporate

system-level optimizations to manage auxiliary data structures

such as null bitmaps. Together, these techniques significantly im-

prove query performance and system scalability, offering a practical

solution for large-scale time series data management.

We evaluate CompressIoTDB on the IoT-benchmark and five

real-world datasets with diverse scales and characteristics. Results

show a 53.4% average throughput improvement and 20.0% memory

reduction, demonstrating the effectiveness of our approach. The

main contributions of this paper are as follows: ➀ We propose a

theoretical model specialized for time series data that redefines

querying on compressed data and provides formal validation of its

performance advantages. ➁ We design a unified and modular data

structure, CompColumn, to manage compressed time series data

efficiently. It supports key time series database query operators

1
“Timestamp-dependent query patterns” refer to operations on time series data that

explicitly rely on temporal relationships or constraints tied to timestamps, such as

timestamp-based joins.

and ensures seamless interaction with both the storage layer and

query engine. ➂ We develop CompressIoTDB, a homomorphic

compression framework integrated into Apache IoTDB, enabling

efficient query execution on compressed time series data.

2 MOTIVATION
2.1 Problem Definition
Industrial IoT sensors generate high-volume real-time time series

data. In time series data, each data point consists of a timestamp 𝑡

and a data value 𝑑 , formally represented as (𝑡, 𝑑). A time series 𝑆 is

a sequence of such data points ordered by time, formally defined

as 𝑆 = ⟨(𝑡1, 𝑑1) , (𝑡2, 𝑑2) , . . . , (𝑡𝑛, 𝑑𝑛)⟩ , where 𝑡𝑖 is a timestamp

and 𝑑𝑖 is the associated value, for 1 ≤ 𝑖 ≤ 𝑛. For simplicity, we

denote the timestamp sequence as 𝑇 and the value sequence as

𝐷 . Thus, a time series 𝑆 can be represented as 𝑆 = (𝑇, 𝐷), where
𝑇 = ⟨𝑡1, . . . , 𝑡𝑛⟩ and 𝐷 = ⟨𝑑1, . . . , 𝑑𝑛⟩. TSDBs, optimized for this

structure, typically separate time series into two columns: a time

column𝑇 and a value column𝐷 , each stored in a compressed format.

Based on this structure, we define six basic query operators on time

series data [2, 12, 80]. Depending on the operator, computations

are performed on time columns 𝑇 , data columns 𝐷 , or both.

Filter: Filter operators apply conditions to filter data, either on

time column 𝑇 or value column 𝐷 .

Timestamp-based join: The timestamp-based join operatormerges

two time series 𝑆1 = (𝑇1, 𝐷1), 𝑆2 = (𝑇2, 𝐷2) by unifying their time-

stamps: 𝑆 = {(𝑇, 𝐷1, 𝐷2) |𝑇 = 𝑇1 ∪𝑇2}, where timestamps from both

series align. Unmatched timestamps are preserved with null values

for missing data (e.g., (𝑡1, 𝑑1, 𝑛𝑢𝑙𝑙) if (𝑡1, 𝑑1) ∈ 𝑆1 and 𝑡1 ∉ 𝑇2).
Aggregation: Aggregation operators apply functions 𝑓 : 𝐷 → R to

the value column to yield a rational number. Common aggregation

functions include sum, average, variance, max, min, and count.
Group by sliding window: This operator groups time series

into successive time windows. Formally,𝐺 (𝑆, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑,𝑤𝑖𝑛𝑑𝑜𝑤)
groups the series 𝑆 into windows between the specified 𝑠𝑡𝑎𝑟𝑡 and

𝑒𝑛𝑑 times, with a defined window size 𝑤𝑖𝑛𝑑𝑜𝑤 . It is often used

alongside aggregation functions.

Expression: Expression operators perform computations on value

columns, involving both unary and binary operators. Unary opera-

tors include negative, regular match, and null check. Binary
operators include arithmetic (+, −, ×, ÷), comparison (>, <, ≥, ≤,
=, ≠), and logical operations (and, or).
Slicing: This operator extracts a subset of the time series based on

position. It contains two parameters: 1) offset, which defines the

starting position, and 2) limit, which specifies the number of data

points to include in the slice.

Queries, involving various operators, require upfront decompres-

sion, introducing latency and memory bottlenecks, thus calling for

optimized methods for efficient execution on compressed data.

2.2 Revisiting Existing Compression Solutions
Time series compression. Time series compression [4, 6, 15, 38, 44,

55–57, 67, 71, 87], which aims to conserve storagewhilemaintaining

crucial data characteristics for effective retrieval and analysis, can be

typically categorized as either previous-value-based ormodel-based.

Traditional XOR-based compression algorithms [16, 54, 55, 67, 88],

as well as delta-based compression methods [78, 84], typically lack

3407



support for direct querying over compressed data due to sequen-

tial dependencies. There are also model-based approaches [18–

20, 29, 44, 45, 51, 56, 70, 87, 89] that provide efficient compression,

but they are often lossy and may not satisfy the precision needs of

industrial applications. We focus on lossless lightweight compres-

sion algorithms in this work, which have also been shown to be

effective for query-friendly compression in recent studies [5].

Querying compressed data in databases. Efficient querying of

compressed time series data employs strategies such as columnar

storage for selective decompression [31, 48, 69, 84], index structures

with skip pointers [9, 34, 82], and query-aware metadata [77, 85].

Despite these advancements, the decompression overhead is still a

bottleneck. Many studies have explored direct computation on com-

pressed data [7, 21, 30, 32, 35, 36, 39, 61, 66, 73, 76, 92–94, 96]. And

some studies focus on enabling direct querying of compressed data

in columnar databases [3, 49, 68]. Designed for general-purpose

columnar databases, these approaches do not prioritize light-weight

algorithms suitable for time series compression, and do not take

the complexities of time series data organization and timestamp-

dependent queries into consideration. In this work, we focus on

direct computations for timestamp-dependent operators, with opti-

mizations tailored for time series structures.

Difference from compression in stream systems. Direct query-
ing on compressed data in TSDBs differs significantly from stream

processing in three key aspects. ➀ System design priority: Stream
frameworks favor light-weight compression for low latency over

compression ratio, while TSDBs emphasize higher compression

ratio for efficient storage and maintenance. ➁ Data scope: Stream
processing frameworks typically operate on small sliding windows

(e.g. 512-1024 tuples in each window [96, 97]), whereas TSDBs

must handle large-scale historical data requiring bulk data anal-

ysis. ➂ Query complexity: TSDBs are optimized for complex

timestamp-based queries (e.g., timestamp-based join), while stream

systems focus on simpler queries on real-time streams. These dif-

ferences necessitate specific design for TSDBs. Our work intro-

duces lightweight schemes, timestamp-dependent operators and

TSDB-tailored optimizations with both formal model and practical

implementation, bridging the gap between high compression ratios

and efficient querying.

2.3 Compressed Time Series Data Direct
Processing in Apache IoTDB

Apache IoTDB [9] is a state-of-the-art open-source time series

database developed in Java. It operates on the TsFile format [98],

optimized for sequential time series data management. It employs

a dual-layer compression strategy, combining light-weight algo-

rithms for column encoding with general-purpose heavyweight

compression algorithms to minimize the data footprint. It is promis-

ing to enable direct processing of compressed time series in IoTDB.

However, developing a query framework that supports direct query-

ing of compressed data presents significant challenges, as discussed

in Section 1. To address these challenges, we introduce Compres-
sIoTDB, a novel solution designed to facilitate efficient querying

over compressed time series data.

Basic Idea. The basic idea of CompressIoTDB is to enable efficient,
direct computation on key time series database operators in com-
pressed time series data queries. By framing direct computation as an
algebraic homomorphism problem, we shift the paradigm from empir-
ical optimizations to a mathematically grounded design methodology,
providing performance guarantees while supporting a broad range of
compression algorithms and TSDB operators.
Novelties. To address the aforementioned challenges in Section 1,

we propose the following novel designs:

• Theoretical framework for homomorphic compres-
sion on time series data (§ 3). We present the first formal

framework that models the entire query process over com-

pressed time series data. It captures complex time series

data semantics and highly timestamp-dependent operators,

and provides guidance for compression method selection

and system design. Through theoretical proof, we guaran-

tee the validity of homomorphic queries.

• Homomorphic query framework with modular de-
sign (§ 4.2 and 4.3). We present a query framework built on

HC that enables direct querying of compressed time series

data. By introducing a novel CompColumn structure, our

approach manages compressed time series data efficiently

in memory while supporting a wide range of key time series

database operators such as window-based aggregation.

• System-level optimizations (§ 4.4). We introduce system-

level optimizations to further enhance query performance.

These include dynamic auxiliary encoding for handling

nulls and lazy deletions without compromising compres-

sion, and late decompression that defers general-purpose

decompression until the data is accessed. These optimiza-

tions reduce data access overhead, significantly improving

query throughput and latency.

3 THEORETICAL FRAMEWORK FOR TIME
SERIES DATA

3.1 Definition of Homomorphic Query on Time
Series Data

Homomorphic algebra system for time series data. We define

the uncompressed and compressed algebra systems as (𝑆𝑢 ,Π) and
(𝑆𝑐 ,Θ), where 𝑆𝑢 and 𝑆𝑐 represent uncompressed and compressed

time series, respectively. The sets Π = {F ,J ,A,G, E,S} and Θ =

{F ,J ,A ,G , E ,S } refer to six basic operators for uncompressed

and compressed time series, corresponding one-to-one. Formally,

a compression algorithm that satisfies the paradigm of operating
directly on compressed data can be expressed as a mapping 𝜑 : 𝑆𝑢 →
𝑆𝑐 . If for any 𝑜𝑝 ∈ Π and the corresponding operator 𝑜𝑝′ ∈ Θ, we
have 𝜑−1 (𝑜𝑝′ (𝑐1, . . . , 𝑐𝑛)) = 𝑜𝑝

(︁
𝜑−1 (𝑐1) , . . . , 𝜑−1 (𝑐𝑛)

)︁
, where

𝑐1, . . . , 𝑐𝑛 ∈ 𝑆𝑐 . We call 𝜑 homomorphic compression (HC).
Time series compression algorithms can be specified as four ba-

sic encoding transformations: delta, repeat, bit-packing, and dictio-

nary [22], formally represented as𝐶 = {𝑇𝑑𝑒𝑙𝑡𝑎,𝑇𝑟𝑒𝑝𝑒𝑎𝑡 ,𝑇𝑝𝑎𝑐𝑘 ,𝑇𝑑𝑖𝑐 }.
light-weight time-series-specific compression algorithms typically

use these basic components to encode IoT sensor data into encoded

bit-array: 𝜑 = 𝑇𝑘 ◦𝑇𝑘−1 ◦ . . . ◦𝑇1,𝑇𝑗 ∈ 𝐶 . For example, Gorilla [67]

is a combination of 𝑇𝑑𝑒𝑙𝑡𝑎 , 𝑇𝑟𝑒𝑝𝑒𝑎𝑡 , and 𝑇𝑝𝑎𝑐𝑘 . Table 1 shows how

3408



different homomorphic operators interact with each encoding com-

ponents. Specifically, 𝑇𝑑𝑒𝑙𝑡𝑎 supports aggregation and expression

computations via its telescoping sum property; random access to

an arbitrary point, however, is restricted. In contrast, compres-

sion methods using 𝑇𝑟𝑒𝑝𝑒𝑎𝑡 , 𝑇𝑝𝑎𝑐𝑘 , and 𝑇𝑑𝑖𝑐 typically allow partial

random access or localized computation, which enables direct eval-

uation of operators in the operator set Π.

Table 1: Operator–encoding component matrix
Operator 𝑇𝑑𝑒𝑙𝑡𝑎 𝑇𝑟𝑒𝑝𝑒𝑎𝑡 𝑇𝑝𝑎𝑐𝑘 𝑇𝑑𝑖𝑐
Filter − ✓ ✓ ✓
Timestamp-based Join − ✓ ✓ ✓
Aggregation ∗ ✓ ✓ ✓
Group by Sliding Window − ✓ ✓ ✓
Expression ∗ ✓ ✓ ✓
Slicing − ✓ ✓ ✓
✓: Direct support; ∗: Conditional support; −: Limited or no support.

Process of compressed series querying inTSDBs. Following [36,
37], we represent the distribution of a multi-step process and the

probability of an event during the process using the following syn-

tax: 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = {𝑜𝑢𝑡𝑝𝑢𝑡 : 𝑃𝑟𝑜𝑐𝑒𝑠𝑠}. And we use 𝑦 ← 𝑓 (𝑥)
to denote 𝑦 as the output of function 𝑓 (𝑥). The traditional query
process on a compressed time series is denoted as:

𝐼𝑢 (𝑐) =
⎧⎪⎪⎨⎪⎪⎩𝑢 :

𝑢0 ← 𝐷𝑒𝑐𝑜𝑚𝑝 (𝑐) , 𝑢1 ← 𝑅𝑒𝑠𝑡𝑜𝑟𝑒 (𝑢0) ,
𝑢2 ← 𝑜𝑝1 (𝑢1) , . . . , 𝑢 ← 𝑜𝑝𝑛 (𝑢𝑛−1)

|︁|︁|︁|︁|︁|︁ 𝑖 ∈ {1, . . . , 𝑛}𝑜𝑝𝑖 ∈ Π
𝑐 ∈ 𝑆𝑐

⎫⎪⎪⎬⎪⎪⎭ ,
where 𝐷𝑒𝑐𝑜𝑚𝑝 refers to data decompression, and 𝑅𝑒𝑠𝑡𝑜𝑟𝑒 refers to

the restoration of auxiliary structures (e.g., deletion lists or null

bitmaps). This equation indicates that to process compressed time

series data, traditional database systems involve three steps: 1)

decompressing the compressed data; 2) restoring auxiliary infor-

mation to decompressed data based on auxiliary structures; and 3)

executing queries on the decompressed data. A more concise rep-

resentation is 𝐼𝑢 (𝑐) = (𝑄𝑢 ◦ 𝑅𝑢 ◦𝑈 ) (𝑐) = 𝑄𝑢 (𝑅𝑢 (𝑈 (𝑐))), where
𝑈 represents the decompression process, 𝑅𝑢 refers to the auxiliary

structure restoration on uncompressed time series data, and 𝑄𝑢

denotes querying on uncompressed time series data.

We define homomorphic query based on the definition of HC.

Definition 3.1 (Homomorphic Query). Given HC 𝜑 : 𝑆𝑢 → 𝑆𝑐 ,

let 𝑄𝑢 = ⟨𝑜𝑝1, . . . , 𝑜𝑝𝑛⟩, 𝑜𝑝𝑖 ∈ Π, be a query on 𝑆𝑢 , and 𝑄𝑐 =⟨︁
𝑜𝑝′

1
, . . . , 𝑜𝑝′𝑛

⟩︁
, 𝑜𝑝′

𝑖
∈ Θ, represents a query on 𝑆𝑐 . 𝑅𝑢 and 𝑅𝑐 refer

to auxiliary restoration for 𝑆𝑢 and 𝑆𝑐 , respectively. If

𝜑−1 ((𝑄𝑐 ◦ 𝑅𝑐 ) (𝑐1, . . . , 𝑐𝑛)) = (𝑄𝑢 ◦ 𝑅𝑢 )
(︂
𝜑−1 (𝑐1) , . . . , 𝜑−1 (𝑐𝑛)

)︂
,

where 𝑐1, . . . , 𝑐𝑛 ∈ 𝑆𝑐 , then𝑄𝑐 is called a homomorphic query (HQ).

3.2 Properties of Homomorphic Query
While homomorphic query builds a mapping from the operations

on compressed time series data to those on uncompressed data, a

valid homomorphic query should satisfy the following property:

Definition 3.2 (Direct Homomorphic Query). Given HC mapping

𝜑 : 𝑆𝑢 → 𝑆𝑐 , and homomorphic query 𝑄𝑐 , if there involves no

computation fragment in the form of 𝑜𝑝′ (𝑢), 𝑜𝑝′ ∈ Θ, where𝑢 ∈ 𝑆𝑢
refers to any uncompressed data segment in the query process, we

consider 𝑄𝑐 to be direct.

This definition stipulates that direct homomorphic queries op-

erate exclusively on compressed data, without requiring decom-

pression at any point. For queries that necessitate decompression

at certain operators, we call it Partially Homomorphic Query
(for a formal definition, please see Appendix A). While sacrificing

full directness, partial homomorphism balances correctness with

reduced decompression overhead for operators that support homo-

morphic mapping, offering practical performance gains without

complexity of full homomorphic.

Definition 3.3 (Effective Restore). Given query𝑄 and HCmapping

𝜑 : 𝑆𝑢 → 𝑆𝑐 , let 𝑅𝑢 and 𝑅𝑐 denote the auxiliary restore processes on

uncompressed and compressed time series data such that 𝜑 (𝑅𝑢 ) =
𝑅𝑐 . If for any 𝑢 ∈ 𝑆𝑢 , the cost of restoring the compressed data,

𝐶𝑜𝑠𝑡 (𝑅𝑐 (𝑐)), 𝑐 ∈ 𝑆𝑐 , is less than that of the uncompressed data,

𝐶𝑜𝑠𝑡 (𝑅𝑢 (𝑢)), we define 𝑅𝑐 as an effective restore.

Definition 3.4 (Effective Homomorphic Query). Given query 𝑄

and HC mapping 𝜑 : 𝑆𝑢 → 𝑆𝑐 , let query on uncompressed time

series data be 𝑄𝑢 = ⟨𝑜𝑝1, . . . , 𝑜𝑝𝑛⟩, 𝑜𝑝𝑖 ∈ Π, and the correspond-

ing homomorphic query on compressed time series data be 𝑄𝑐 =

⟨𝑜𝑝′
1
, . . . , 𝑜𝑝′𝑛⟩, 𝑜𝑝′𝑖 ∈ Θ, where 𝜑 (𝑜𝑝𝑖 ) = 𝑜𝑝′

𝑖
, 𝑖 ∈ {1, . . . , 𝑛}. If for

any 𝑢 ∈ 𝑆𝑢 , we have 𝐶𝑜𝑠𝑡 (𝑄𝑐 (𝑐)) < 𝐶𝑜𝑠𝑡 (𝑄𝑢 (𝑢)), where 𝑐 = 𝜑 (𝑢),
we define 𝑄𝑐 as an effective homomorphic query.

Definition 3.4 highlights that effective homomorphic queries

reduce operation overhead. While homomorphic queries are ex-

pected to achieve performance improvement through reduced I/O

overhead, memory usage, and redundant computations, some com-

pression algorithms may introduce additional overhead due to the

need for maintaining extra data structures, making direct queries

on compressed time series data slower than those on uncompressed

data. Such query is considered ineffective and is referred to as an

Ineffective Homomorphic Query.

Lemma 3.5. Given time series 𝑆𝑢 , for any query:

𝑄𝑢 (𝑢0 ) =
⎧⎪⎪⎨⎪⎪⎩𝑢𝑛 :

𝑢1 ← 𝑜𝑝
1
(𝑢0 ) ,𝑢2 ← 𝑜𝑝

2
(𝑢1 ) ,

. . . ,𝑢𝑛 ← 𝑜𝑝𝑛 (𝑢𝑛−1 )

|︁|︁|︁|︁|︁|︁ 𝑖 ∈ {0, . . . , 𝑛}
𝑜𝑝𝑖 ∈ Π
𝑢𝑖 ∈ 𝑆𝑢

⎫⎪⎪⎬⎪⎪⎭ ,
we have 𝑆𝑖𝑧𝑒 (𝑢0) ≥ 𝑆𝑖𝑧𝑒 (𝑢1) ≥ . . . ≥ 𝑆𝑖𝑧𝑒 (𝑢𝑛−1) ≥ 𝑆𝑖𝑧𝑒 (𝑢𝑛),
where 𝑆𝑖𝑧𝑒 (𝑢) denotes the size (in bytes) of time series 𝑢.

Proof. Let Π = {F ,J ,A,G, E,S} denote the operator set. For
time series 𝑢 ∈ 𝑆𝑢 , we analyze each operator: 1) Filter (F ). A
filter F (𝑢) = 𝑢′ removes data points violating condition. Since

𝑢′ ⊆ 𝑢, 𝑆𝑖𝑧𝑒 (𝑢′) ≤ 𝑆𝑖𝑧𝑒 (𝑢). 2) Timestamp-based join (J ). For𝑢1 =

(𝑇1, 𝐷1) and 𝑢2 = (𝑇2, 𝐷2), J (𝑢1, 𝑢2) = {(𝑇, 𝐷1, 𝐷2) | 𝑇 = 𝑇1 ∪𝑇2}.
Since 𝑇1 ∪ 𝑇2 ⊆ 𝑇1 + 𝑇2 (timestamps may overlap), 𝑆𝑖𝑧𝑒 (𝑆) ≤
𝑆𝑖𝑧𝑒 (𝑆1) + 𝑆𝑖𝑧𝑒 (𝑆2). 3) Aggregation (A). An aggregation A(𝑢) =
𝑑 ∈ R maps a series to a scalar. As 𝑑 requires constant storage,

we have 𝑆𝑖𝑧𝑒 (𝑑) ≤ 𝑆𝑖𝑧𝑒 (𝑢). 4) Group by sliding window (G).
Let𝐺 (𝑆, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑,𝑤𝑖𝑛𝑑𝑜𝑤) partition𝑢 into subseries {𝑢1, . . . , 𝑢𝑚}.
If followed by aggregation (e.g., A(𝑢𝑖 )), each group reduces to

a scalar: 𝑆𝑖𝑧𝑒 ({A(𝑢1), . . . ,A(𝑢𝑚)} ≤ 𝑆𝑖𝑧𝑒 (𝑢). If no aggregation,

𝑆𝑖𝑧𝑒 (𝐺 (𝑢)) = 𝑆𝑖𝑧𝑒 (𝑢). 5) Expression (E). Expression operators

transform values without altering timestamps. Since no new data

points are added and value transformations preserve cardinality, we

have 𝑆𝑖𝑧𝑒 (𝑢′) = 𝑆𝑖𝑧𝑒 (𝑢). 6) Slicing (S). S(𝑢, 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑙𝑖𝑚𝑖𝑡) = 𝑢′

extracts a contiguous subset. As 𝑢′ ⊆ 𝑢, 𝑆𝑖𝑧𝑒 (𝑢′) ≤ 𝑆𝑖𝑧𝑒 (𝑢). Since

3409



for any operator sequence 𝑜𝑝1, . . . , 𝑜𝑝𝑛 ∈ Π, each step satisfies

𝑆𝑖𝑧𝑒 (𝑢𝑘 ) ≤ 𝑆𝑖𝑧𝑒 (𝑢𝑘−1). By reduction,

𝑆𝑖𝑧𝑒 (𝑢0) ≥ 𝑆𝑖𝑧𝑒 (𝑢1) ≥ . . . ≥ 𝑆𝑖𝑧𝑒 (𝑢𝑛) .
□

Lemma 3.5 indicates that the total data size decreases mono-

tonically as query operations are performed, which is a common

characteristic in real-world queries.

Proposition 3.6. Given compressed time series 𝑆𝑐 , an auxiliary
restore process 𝑅𝑢 and a query 𝑄𝑢 = ⟨𝑜𝑝1, 𝑜𝑝2, . . . , 𝑜𝑝𝑛⟩, 𝑜𝑝𝑖 ∈ Π on
uncompressed time series, along with an effective auxiliary restore 𝑅𝑐
and an effective homomorphic query𝑄𝑐 = ⟨𝑜𝑝′

1
, 𝑜𝑝′

2
, . . . , 𝑜𝑝′𝑚⟩, 𝑜𝑝′𝑖 ∈

Θ on compressed time series, there exists a mapping 𝜑 : 𝑆𝑢 →
𝑆𝑐 such that 𝜑−1 ((𝑄𝑐 ◦ 𝑅𝑐 ) (𝑐)) = (𝑄𝑢 ◦ 𝑅𝑢 )

(︁
𝜑−1 (𝑐)

)︁
. we have

𝐶𝑜𝑠𝑡 (𝐼𝑢 (𝑐)) ≥ 𝐶𝑜𝑠𝑡 ((𝐼𝑐 (𝑐))), where 𝐼𝑢 (𝑐) = (𝑄𝑢 ◦ 𝑅𝑢 ◦𝑈 ) (𝑐)
and 𝐼𝑐 (𝑐) =

(︁
𝐼 ′𝑢 ◦𝑄𝑐 ◦ 𝑅𝑐

)︁
(𝑐), 𝑐 ∈ 𝑆𝑐 .

Proof. Given 𝐶𝑜𝑠𝑡 (𝐼𝑢 (𝑐)) and 𝐶𝑜𝑠𝑡 (𝐼𝑐 (𝑐)), we have
Cost (𝐼𝑢 (𝑐)) − Cost (𝐼𝑐 (𝑐))
=
(︁
Cost (𝑈 (𝑐)) − Cost

(︁
𝑈

(︁
𝑐 𝑗
)︁ )︁ )︁
+ (Cost (𝑅𝑢 (𝑢)) − Cost (𝑅𝑐 (𝑐)))

+
(︂
Cost

(︁⟨︁
𝑜𝑝1, 𝑜𝑝2, . . . , 𝑜𝑝 𝑗

⟩︁
(𝑢0)

)︁
− Cost

(︂
⟨𝑜𝑝′

1
, 𝑜𝑝′

2
, . . . , 𝑜𝑝′𝑗 ⟩ (𝑐0)

)︂)︂
.

According to Lemma 3.5, we have 𝑆𝑖𝑧𝑒 (𝑐) ≥ 𝑆𝑖𝑧𝑒
(︁
𝑐 𝑗
)︁
, which

implies that 𝐶𝑜𝑠𝑡 (𝑈 (𝑐)) ≥ 𝐶𝑜𝑠𝑡
(︁
𝑈

(︁
𝑐 𝑗
)︁ )︁
. Furthermore, by Defini-

tion 3.4, we obtain the inequality 𝐶𝑜𝑠𝑡
(︁
⟨𝑜𝑝1, 𝑜𝑝2, . . . , 𝑜𝑝 𝑗 ⟩ (𝑢0)

)︁
≥

𝐶𝑜𝑠𝑡

(︂
⟨𝑜𝑝′

1
, 𝑜𝑝′

2
, . . . , 𝑜𝑝′

𝑗
⟩ (𝑐0)

)︂
. By Definition 3.3, it follows that

𝐶𝑜𝑠𝑡 (𝑅𝑢 (𝑢)) ≥ 𝐶𝑜𝑠𝑡 (𝑅𝑐 (𝑐)). Thus, we conclude that
𝐶𝑜𝑠𝑡 (𝐼𝑢 (𝑐)) ≥ 𝐶𝑜𝑠𝑡 (𝐼𝑐 (𝑐)) .

□

Due to space constraints, a concise proof is provided here, with

the details presented in Appendix C. Proposition 3.6 identifies three

cost-determining factors for homomorphic and traditional queries:

time series data decompression, auxiliary restoration, and
operator computation. Although partial homomorphic queries

cannot avoid time series data decompression, they delay decompres-

sion until necessary, reducing the decompressed data sizes. This

minimizes overhead, enabling effective homomorphic queries to

outperform traditional ones. Even ineffective homomorphic queries

show significant potential by offsetting operational costs through

reduced decompression and I/O overhead.

4 COMPRESSIOTDB
4.1 Overview of System Modules
Guided by the theoretical framework established in Section 3, we

propose a novel solution, calledCompressIoTDB. It consists of three
modules: Data Structure Module, Operator Module, and Opti-
mization Module, as shown in Figure 2. These modules enable

direct computation on compressed time series data within IoTDB’s

query layer. The data structure module serves as the system’s foun-

dation, providing essential structures that ensure directness (Defini-
tion 3.2) for the operator and optimization modules. The operator

module implements effective homomorphic queries (Definition 3.4)

by facilitating direct computation on compressed time series data for

key time series operators, as listed in § 2.1. The optimization module

enhances the overall performance by accelerating the construction

of compressed time series data structures and data transmission via

effective restore (Definition 3.3). For implementation details, please

refer to Appendix D.

IoTDB Query Layer

Data Structure Module

Operator Module

IoTDB Client

IoTDB Storage Layer

Aggregation Expression

Compressed Data Chunk

Count  Sum Average 
Variance Max Min …

CompColumn

Arithmetic Logic
Compare  …

SQL Query Query Result

Filter
Unary operator 

Binary comparison
Regex matching

Late Decompression

Optimization Module

TsFileTsFile TsFileTsFile TsFileTsFile TsFileTsFile TsFileTsFile

Compression Offset Index

HintIndex

Slicing

Group by Sliding 
Window

C
o

m
p

re
ss

Io
TD

B

Join

Dynamic 
Auxiliary Management

3

2

1

Figure 2: Framework of CompressIoTDB

Workflow. The workflow of CompressIoTDB proceeds in three

stages, as shown in Figure 2. ❶ CompressIoTDB loads compressed

time series data chunks from the storage layer into the chunk cache.

❷ It retrieves compressed time series data from the chunk cache

and constructs CompColumn in two phases: 1) late decompression
for TsFile (§ 4.4.2), which defers general-purpose decompression

until the data is actually accessed; 2) dynamic auxiliary manage-
ment (§ 4.4.1), which avoids light-weight decompression and uses a

dynamic encoding strategy to restore auxiliary in a compact form.

❸ It executes homomorphic operators directly on the compressed

time series data stored in CompColumn (§ 4.3), leveraging the Com-
pression Offset Index (§ 4.2.2) and 𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 (§ 4.2.3) for efficient

data access. Intermediate results are passed between operators as

CompColumns, and the final query results are returned to the client

in uncompressed form.

Compression algorithm selection. We use three different com-

pression algorithms for our homomorphic query framework: 1) the

repeat-based RLE algorithm, suitable for a variety of data types,

2) the Dictionary encoding algorithm, commonly used for text

data, and 3) the delta-based Ts_2Diff algorithm, suitable for nu-

merical data. In Apache IoTDB, Dictionary encoding combines

dictionary-based and run-length encoding by first encoding strings

with dictionary and then compressing the result with RLE.

4.2 Data Structure Module
The data structure module provides key structures for storing and

accessing compressed time series data, especially the CompCol-
umn structure, which ensures the directness of CompressIoTDB.
The primary goals of this design are to maximize performance while

minimizing memory usage.

Design concept. Homomorphic queries improve performance by

reducing I/O costs and avoiding decompression overhead. However,

3410



enabling direct computation on compressed data requires query

operators to be aware of and adapt to the compression scheme, ne-

cessitating extensive code modifications and engine disruptions [1].

To address this, we propose the CompColumn data structure, which

efficiently manages compressed time series data and provides uni-

fied interfaces for operators. These interfaces abstract compression

details, enabling direct computation (e.g., writing, slicing, reversing,

and (de)serialization) without exposing algorithm-specific logic,

ensuring efficient data access and manipulation. To further stream-

line data access, we incorporate a Compression Offset Index and a

𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 within CompColumn.

Listing 1: CompColumn definition in CompressIoTDB
1 class CompColumn implements Column{
2 public:
3 CompColumn(int arrayOffset , int positionCount ,
4 Column [] values , int[] patternOffsetIndex );
5 public ColumnEncoding getEncoding ();
6 // reading
7 Object getObject(int position );
8 Pair <Column[], int[]> getCompBlocks ();
9 // slicing
10 Column getRegion(int positionOffset , int length );
11 Column subColumn(int fromIndex );
12 // reversing
13 void reverse ();
14 private:
15 Column [] values; // compression block array
16 int[] compressionOffsetIndex;
17 int hintIndex;
18 };
19 class CompColumnBuilder implements ColumnBuilder {
20 // writing
21 CompColumnBuilder writeCompressionBlock(
22 Column value , int logicPositionCount );
23 ColumnBuilder write(Column column , int index);
24 };
25 class CompColumnEncoder implements ColumnEncoder {
26 // deserialization
27 Column readColumn(ByteBuffer input ,
28 TSDataType dataType , int positionCount );
29 // serialization
30 void writeColumn(DataOutputStream output ,
31 Column column );
32 };

4.2.1 CompColumn Design. CompColumn is designed as a mod-

ular class that inherits from the abstract class Column, which pro-

vides a unified data representation in Apache IoTDB. As shown

in Listing 1, in CompColumn, each compression block is stored

as a Column, and a compressed time series is constructed as an

array of these Columns, referred to as values. The two key data

structures within CompColumn, compressionOffsetIndex (here-

after denoted as coIndex) and hintIndex, are crucial for enabling
fast access to compressed time series data. The getEncoding func-

tion returns the compression algorithm used for the stored val-

ues. The getObject and getCompBlocks functions offer data ac-

cess at different granularities, either at the individual data point

level or at the compression block level. Functions like getRegion
and subColumn allow for slicing operations on CompColumn, and

reverse reverses the order of data stored in values. Two helper

classes, CompColumnBuilder and CompColumnEncoder, handle the
writing and (de)serialization processes of CompColumn. CompCol-

umn’s modular design enables operators to access both compressed

and uncompressed data via unified interfaces, allowing them to

focus on computation. This design also allows new compression

schemes to be easily integrated by inheriting from the Column class

and implementing required interfaces.

4.2.2 Compression Offset Index. A key distinction between com-

pressed and uncompressed data is that uncompressed data supports

random access, while compressed data, despite retaining some struc-

tural organization, lacks efficient random access capabilities. This

often necessitates traversing the entire compressed dataset to re-

trieve a single tuple, resulting in significant overhead. To achieve

fast compressed time series data locating, we implement offset

indexing between compressed and uncompressed data.

The compression offset index is structured as a two-tiered map-

ping. The first tier consists of block-level entries that map uncom-

pressed data blocks to their compressed counterparts. Each block

stores a reference to the starting position of the corresponding

compressed segment. The second tier contains fine-grained off-

sets within each block, mapping specific uncompressed tuples to

their relative position within the compressed block. This allows

for efficient narrowing down of the search scope during data re-

trieval. During access, we first map through the offset index to the

target segments within the compressed data, and then conduct a

narrow-scoped search to retrieve the desired tuple or compression

block. For example, as shown in Figure 3, to fetch data at position

𝑡𝑎𝑟𝑔𝑒𝑡𝑂 𝑓 𝑓 𝑠𝑒𝑡 = 18, we first consult the compression offset index

and locate at coIndex[3], with 𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 = 3 (explained further

in § 4.2.3). This index points to a compression block spanning from

position 17 to 22. Then, we retrieve data from the second compres-

sion block, i.e., Values[3]. Since the value array is RLE-encoded

(where each block represents a run of repeated values), the target

value at position 18 is 7.

0 1 2 3 4

0 1 2 3 4
3 8 3    4    5    3 

130 4 17

7

Compression
Offset Index
(coindex[5])

Value Array
(values[4])

3  3  3  3  8  8  8  8  8  8  8  8  8  3  4  5  3  7  7  7  7  7 

targetOffset=18
HintIndex=3

#

22

position = 18

Figure 3: An example of the CompColumn for RLE

4.2.3 𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 . In time series database queries, data is often ac-

cessed sequentially during scans. To optimize access, CompColumn

employs a 𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 , a 4-byte integer that stores the last accessed

position in the compression offset index. When retrieving data,

CompColumn first checks if the 𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 falls within the seg-

ment containing the target data. If it does, CompColumn directly

accesses and returns the data. If not, the system determines whether

the target data lies beyond the current indexed segment. If so, it

continues traversing the compression offset index from the current

position and updates the 𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 . Otherwise, traversal begins

from the start. This design avoids traversing the index from scratch

on each access [47]. For example, when handling large-scale time

series data exceedingmemory capacity, slicing is necessary. Assume

that CompColumn is split into fixed-length sub-columns (e.g., 8,000

points) for memory efficiency. ℎ𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 is initialized to 0. When

accessing the first (0, 8000) interval, we directly retrieve the starting
position. Upon reaching the 8,000th position, traversal identifies

index 100 (assuming coIndex[100] maps to the original uncom-

pressed segment 7,800–8,100). We then update the ℎ𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 to 100

3411



and perform compressed data slicing at this boundary. For next

requests for (8,001, 16,000), we leverage the ℎ𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 value 100 as

the starting point for index lookup, eliminating full index traversal

and achieving 𝑂 (1) query complexity through stateful index point-

ers. Experimental results show that the 𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 hits the correct

segment in most cases, yielding a notable 11.7% improvement in

throughput (detailed in § 5.4).

4.3 Operator Module
The operator module provides support for direct computation on

key operators in TSDBs, with a focus on implementing effective

homomorphic query operators that ensure directness and effective
homomorphic query. We implement six core operators as detailed

in Section 2.1. Using homomorphic query techniques, Compres-
sIoTDB avoids decompression, effectively utilizing the compact

information in the compressed time series data to reduce redun-

dant computations and enhance query performance.

4.3.1 Operator Design. In CompressIoTDB, we provide full sup-
port for RLE and Dictionary encoding. Queries with operators

from Π = {F ,J ,A,G, E,S} are mapped to a fully homomorphic

queries, while others are handled as partial homomorphic queries.

For Ts_2Diff, we support aggregation and expression operators.

Operations are pushed down to allow direct access to compressed

data, minimizing transmission overhead [90]. For queries involving

columns compressed using different algorithms, each column is

read sequentially through unified interface as compression block

and processed according to its specific algorithm.

Filter operator. The value filter operator, supporting unary predi-

cates, binary comparisons, and regular expressions, are evaluated

run- or dictionary-wise. For RLE algorithm, we scan RLE pattern

blocks, where repeated data points are computed only once to re-

duce redundant calculations. For dictionary algorithm, we probe

the dictionary directly and reuse the resulting bitmap efficiently.

5

𝒏′

7

𝒗′

𝒏′ = 𝒊𝒏𝒅𝒆𝒙 𝒉𝒊𝒅𝒙 + 𝟏 − 𝒊𝒏𝒅𝒆𝒙[𝒉𝒊𝒅𝒙]

𝒎𝟐 ഥ𝒗 𝒏

21

𝒎𝟐

7.25

ഥ𝒗

16

𝒏

+
𝒏 × 𝒏′ × 𝒗′ − ഥ𝒗 𝟐

𝒏 + 𝒏′
+𝒏′+

𝒏′ × 𝒗′ − ഥ𝒗

𝒏 + 𝒏′

1.31 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 =
𝒎𝟐

𝒏

20.55 7.36 11

𝒂𝒄𝒄

116

𝒂𝒄𝒄

+𝐧′ × 𝐯′

81

𝒏

16

𝒏

+𝒏′

11

7.25 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 =
𝒂𝒄𝒄

𝒏

𝒕𝒑𝒎𝒂𝒙

8

𝒕𝒑𝒎𝒊𝒏

4

=
𝒎𝒂𝒙(𝒗′, 𝒕𝒑𝒎𝒂𝒙)

=
𝒎𝒊𝒏(𝒗′, 𝒕𝒑𝒎𝒊𝒏)

𝒕𝒑𝒎𝒂𝒙

8

𝒕𝒑𝒎𝒊𝒏

4

variance max/minsum/average

8 4   5

110 9

ℎ𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 ℎ𝑖𝑑𝑥 = 2

Compression
Offset Index

Value Array

16

7 #

Figure 4: Homomorphic aggregation on RLE-encoded data

Aggregation operator. We implement common aggregation op-

erators, including average, variance, sum, max, min, and count,

processing compressed data incrementally using temporary state

accumulators. Figure 4 illustrates homomorphic aggregation over

RLE-compressed data, where cumulative variables are updated dur-

ing traversal to avoid loading all data at once. For variance, three
variables are maintained:𝑚2 (sum of squared deviations from the

mean), 𝑣 (current mean), and 𝑛 (number of processed data points).

The final variance is derived from𝑚2. For sum and average, we
track the running sum of the series, while for max/min, we maintain

the current minimum or maximum value. Each time the operator

receives the next data run, represented as (𝑛′, 𝑣 ′), the cumulative

variables are updated incrementally. This allows efficient aggrega-

tion without iterating through every individual values. For Ts_2Diff,

aggregations are computed by applying formulas to each compres-

sion block. For instance, the block sum is derived as Σ𝑛
𝑖=0
((𝑛− 𝑖)𝑑𝑖 ),

where 𝑛 is the block size and 𝑑𝑖 is the i-th delta value. For brevity,

we skip further details here.

Expression operator. Expression operators encompass arithmetic,

logical, and comparison operations. For unary operations, RLE-

compressed data is processed by traversing RLE patterns, comput-

ing each repeated value only once. Dictionary encoding traverses

the dictionary table without modifying the actual data sequence.

In Ts_2Diff, addition and subtraction operations are performed ex-

clusively on base values, avoiding iterating through all data points.

Algorithm 1: Homomorphic Join with RLE-Encoding

Input: 𝑏𝑙𝑜𝑐𝑘𝑠 : data block array, rows: selected join-row index list.

Output: 𝑟𝑒𝑠𝑢𝑙𝑡𝐵𝑢𝑖𝑙𝑑𝑒𝑟 : builders for output columns.

1 for each column index 𝑗 in 𝑏𝑙𝑜𝑐𝑘𝑠 do
2 𝑏𝑢𝑖𝑙𝑑𝑒𝑟 ← 𝑟𝑒𝑠𝑢𝑙𝑡𝐵𝑢𝑖𝑙𝑑𝑒𝑟 .𝑔𝑒𝑡 ( 𝑗 ) ;
3 𝐶𝑜𝑚𝑝𝐶𝑜𝑙𝑢𝑚𝑛 ← 𝑏𝑙𝑜𝑐𝑘𝑠.𝑔𝑒𝑡𝐶𝑜𝑙𝑢𝑚𝑛 ( 𝑗 ) ;
4 if 𝐶𝑜𝑚𝑝𝐶𝑜𝑙𝑢𝑚𝑛 is RLE then

/* Process each run in the RLE column */
5 for each run 𝑟 in𝐶𝑜𝑚𝑝𝐶𝑜𝑙𝑢𝑚𝑛 do
6 𝑠𝑢𝑏𝑠𝑒𝑡 ← { 𝑘 ∈ 𝑟𝑜𝑤𝑠 | 𝑘 ∈ 𝑟 .𝑟𝑎𝑛𝑔𝑒 } ;
7 if 𝑟 represents a single repeated value then
8 for each 𝑠𝑒𝑞 in 𝑠𝑢𝑏𝑠𝑒𝑡 do
9 𝑏𝑢𝑖𝑙𝑑𝑒𝑟 .writePattern(seq = null_seq ? null :

r.value, |seq |) ;
10 else
11 𝑣𝑎𝑙𝑠 ← [ 𝑟 .𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒 (𝑘 − 𝑟 .𝑠𝑡𝑎𝑟𝑡 ) or null | 𝑘 ∈

𝑠𝑢𝑏𝑠𝑒𝑡 ] ;
12 𝑏𝑢𝑖𝑙𝑑𝑒𝑟 .writePattern(𝑣𝑎𝑙𝑠 , |subset |) ;
13 else

/* Traditional join */
14 return 𝑟𝑒𝑠𝑢𝑙𝑡𝐵𝑢𝑖𝑙𝑑𝑒𝑟 ;

Timestamp-based join operator. In TSDBs, data is typically

joined using timestamp alignment. Aligned data is pre-aligned

on disk during writes, shifting alignment costs to ingestion and

eliminating query-time operations. For unaligned data, joins may

introduce null values We dynamically encode the inserted nulls

while compacting the joined series without requiring fully decom-

pression. Algorithm 1 shows an example of homomorphic joins

on RLE-encoded data via column-wise processing. Given selected

row index list, for each column, we first initialize output buffers

and load compressed data (Lines 1-3). On RLE-encoded columns

(Line 4), we process runs (Line 5) by: ➀ Identifying overlapping row

ranges (Lines 6). ➁ For constant runs, we directly write uniform

values or nulls (Lines 7-9); For non-constant runs, we extract values

sequentially (Lines 10-12). Uncompressed columns use standard

3412



row-wise joins (Line 13) and results are return as a builder (Line 14).

The algorithm’s ideal time complexity is𝑂 (𝑅𝐶), where 𝑅 and𝐶 are

the number of RLE runs and columns, outperforming traditional

solution (𝑂 (𝑁𝐶), 𝑁 is the number of selected rows) when 𝑅 ≪ 𝑁 .

Group by sliding window operator. This operator is often used

in conjunction with aggregation operators. Based on the intervals

specified by time windows, we divide the data columns into small

chunks in compressed format. We perform direct calculations on

the compressed time series data within each of these chunks.

Slicing operator. Slicing enables efficient sequential scans of large

historical time series by processing data in batches to avoid memory

overload. This operator directly identifies the startOffset and

endOffset using the HintIndex. It then extracts the corresponding

sub-array for values and incrementally updates the Compression
Offset Index during traversal.

Besides above core operators, we implement two more basic

operations to support a broader range of queries. 1) Reversal is
performed when queries require results in order of time. By default,

Apache IoTDB returns query results in ascending time order. When

a ORDER BY TIME DESC clause is used, the results are reversed.

2) (De)Serialization is used for data transmission. By serializing

CompColumn into a compact byte stream, it reduces transmission

overhead. The serialized format varies by encoding algorithm.

4.3.2 Running Example of HomomorphicQuery. Using RLE-encoded
time series 𝑠 = ⟨(4, 3), (9, 8), (5, 7), (4, ⟨3, 4, 5, 3⟩)⟩ as depicted in Fig-

ure 3, we illustrate the query processing by query: SELECT s/2
FROM series WHERE s > 3 OFFSET 11 LIMIT 4.

➀CompColumn construction andfilter push down.Wefirst

load time series data from the storage layer into memory as Com-

pressed Data Chunks. it is constructed into CompColumn, restoring

32-bit integers via bit-unpacking first. In the CompColumnBuilder,
we pack each pattern into a compression block (values) within
CompColumn. At the same time, we calculate each block’s start

offset to build the compression offset index, with coIndex[0] ini-
tialized to 0. Notably, the filter operator is pushed down to CompCol-

umn construction phase to reduce the overhead of CompColumn

building and data transmission. Specifically, for the first pattern

(4, 3), since 3 fails the filter, this pattern is filtered out and will not

participate in the construction. For the second pattern (9, 8), since

8 > 3, it is retained, and thus we initialize values[0] to ⟨8⟩ and
set coIndex[1] to 9. For the pattern (4, ⟨3, 4, 5, 3⟩), batch filtering

is impossible, requiring per-value checks. Among these, only 4 and

5 satisfy the filtering condition; hence, the pattern is transformed

into (2, ⟨4, 5⟩). We set values[1] to ⟨4, 5⟩, and set coIndex[2] to
11. For the last pattern (5,7), the computation procedure is the same.

After filtering, the final values array is ⟨8, ⟨4, 5⟩, 7⟩, with coIndex
initialized to ⟨0, 9, 11, 16⟩. The hint index is initialized to 0.

➁ Expression operator. First, we retrieve the first pattern

(𝑣 = 8) in CompColumn. Instead of computing run lengths, we

directly perform calculations on the value, yielding 𝑣 = 8/2 = 4.

Subsequently, for the next non-run-length-encoded pattern, we

process each data point individually; the last value 𝑣 = 7 undergoes

the same computation to produce 𝑣 = 3.5. This yields a compressed

values array ⟨4, ⟨2, 2.5⟩, 3.5⟩, while coIndex remains unchanged.

➂ Slicing operator. To retrieve 5 data points at offset 11, we

finally execute the slicing operator. With 𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 initialized to

0, we first locate the offset 11 via CoIndex. This yields index = 1

(coIndex[1] = 9 and coIndex[2] = 11). Consequently, we discard

values[0] and update coIndex[1] to 11−11+1 = 1, setℎ𝑖𝑛𝑡𝑖𝑛𝑑𝑒𝑥 =

1, and retain only the last element of values[1]. For end offset 11 +
4 = 15, we traverse from ℎ𝑖𝑛𝑡𝑖𝑛𝑑𝑒𝑥 to avoid full scans, identifying

index = 2 (coIndex[2] = 11, coIndex[3] = 16). The coIndex[2] is
updated to coIndex[1] + 15 - coIndex[2] = 5. The resulting value

array becomes ⟨2.5, 3.5⟩, with the reconstructed coIndex as ⟨0, 1, 5⟩.
Given that Group by sliding window operator partitions time

series similarly to the slicing operator, using time windows instead

of offsets, further details of this operator are omitted for brevity.

➃Aggregation operator.Consider query SELECT variance(s)
FROM series WHERE s > 3, we execute aggregation operator on

CompColumn constructed after filtering in ➀, using incremental

temporary state accumulators. With 𝑛, 𝑣 ′, and𝑚2 both initialized

to 0, we proceeds as follows: Initially, we iterate over CompColumn,

fetching the first pattern (𝑣 ′ = 8). The𝑛′ is computed as coIndex[1]
− coIndex[0] = 9. Then, using the formula shown in Figure 4 for

incremental computation, we obtain𝑚2 = 0, 𝑣 = 8, and 𝑛 = 9. Next,

we move to the following pattern, which is not in run-length for-

mat. Each value is processed incrementally with 𝑛′ = 1, resulting in

𝑚2 = 20.55, 𝑣 = 7.36, and 𝑛 = 11, as shown in Figure 4. For the last

pattern 𝑣 ′ = 7, 𝑛′ is computed as coIndex[3] − coIndex[2] = 5.

As a result, we get 𝑚2 = 21, 𝑣 = 7.25, and 𝑛 = 14, yielding a

variance of 1.31.

4.4 Optimization Module
The objective of the optimization module is to facilitate effective
restore and effective homomorphic queries in CompressIoTDB by

reducing data transmission and reading overhead. This is achieved

through two key optimizations: 1) dynamic auxiliary management,

and 2) late decompression for TsFile.

4.4.1 Dynamic Auxiliary Management. Time series data can be

either unaligned (each column has its own time column) or aligned

(columns share a time column), as show in Figure 5 (a) and (c). To

handle nulls in aligned formats, databases typically use a compact

layout where non-null values are stored contiguously, with nulls

tracked via a bitmap [1, 10, 11]. Additionally, lazy deletion strategies
are employed to avoid physical modifications by maintaining a

deletion list that records the positions of deleted data.

Analysis. This compact layout and lazy deletion strategy, while

optimizing storage and I/O, introduce complexity for homomorphic

queries. Nulls must be scattered into their correct positions using

the bitmap, leading to overhead during series scan. Lazy deletion

requires checking the deletion lists, further complicating data access.

These techniques disrupt the structure of compressed data, which

negatively impacts the performance of homomorphic queries.

Design. Instead of decompressing the entire dataset for each query,

we introduce a dynamic encoding strategy that maintains data in

a compact form while handling auxiliary structures, such as nulls

and deletion lists. For unaligned data, we directly traverse each RLE

pattern, and adjust its run-length by skipping deleted entries, never

decompress the data. For aligned data, we use dynamic encoding

to handle nulls without disturbing the compressed data structure.

First, based on the deletion list, we slice the null sequence into runs

3413



(c) Aligned data logical layout

T

0

1

2

3

4

5

(d) Aligned data compact layout

D1

(3,11)

(2,{13,12})

Bitmap1

1

1

0

1

1

1

Deletion 
List

4

D1 D2 D3

11 7 6

11 NULL NULL

NULL NULL 6

11 7 NULL

13 (deleted) 7 6

12 4 (deleted) NULL

D2

(3,7)

(1,4)

Bitmap2

1

0

0

1

1

1

Deletion 
List

5

D3

(3,6)

Bitmap3

1

0

1

0

1

0

Deletion 
List

empty

D2

11

11

11

13 (deleted)

12

T1

0

1

3

4

5

(a) Unaligned data logical layout

D3

6

6

6

T3

0

2

4

(b) Unaligned data compact layout

T

0

1

2

3

4

5

D2

(3,7)

(1,4)

Deletion 
List

5

D3

(3,6)

Deletion 
List

empty

T2

0

3

4

5

T3

0

1

4

T2

0

3

4

5

D2

7

7 

7

4 (deleted)

D2

(3,11)

(2,{13,12})

Deletion 
List

4

T1

0

1

3

4

5

Figure 5: Compact layout example using RLE encoding

that align with each RLE pattern. Then, we encode and merge con-

tinuous null runs directly back into the compressed data, preserving

its structure. For non-continuous nulls, as their insertion disrupting

the compressed data, we revert the affected segment to its original

format for simplify parsing in subsequent queries. For example,

in the unaligned layout (Figure 5 (b)), the deletion list indicates

that the entry at timestamp 4 in 𝐷1 has been deleted, so it is re-

moved, resulting in compressed series 𝐷1 = ⟨(3, 11), (1, 12)⟩. In the

aligned layout (Figure 5 (d)), 𝐷2 initially consists of six-bits bitmap

(100111) and RLE data ⟨(3, 7), (1, 4)⟩. After checking the deletion

list and bitmap, two nulls are inserted and a value is deleted, re-

sulting in compressed 𝐷2 = ⟨(1, 7), (2, 𝑁𝑈𝐿𝐿), (2, 7)⟩; 𝐷3 degrades

into ⟨(6, ⟨6 𝑁𝑈𝐿𝐿 6 𝑁𝑈𝐿𝐿 6 𝑁𝑈𝐿𝐿⟩)⟩, which no longer suits RLE

encoding, so we revert it to its original form. This dynamic encod-

ing strategy is applied during the series scan and does not require

full de-compression and re-compression, preserving the directness
of the query process.

4.4.2 Late Decompression for TsFile. To minimize decompression

and transmission costs, we employ late decompression for TsFile,

delaying general-purpose decompression until data access.

Analysis. As shown in Figure 6 (a), in Apache IoTDB’s original

approach, compressed data is stored in TsFile, where each page is

compressed using light-weight algorithms like RLE or Gorilla, fol-

lowed by general-purpose compression (e.g., LZ4). However, during

queries, the entire chunk undergoes general-purpose decompres-

sion even if only a small subset of data is needed. For example,

querying the first 200 data points in a chunk requires decompress-

ing all pages within the chunk, leading to wasted CPU cycles.

Design. We address this inefficiency by deferring general-purpose

decompression until the series scan phase, as illustrated in Fig-

ure 6 (b). Specifically, we defer general-purpose decompression to

the series-scan phase: chunks are read in their dual-compressed

form and iterated page by page, invoking heavyweight decompres-

sion only when the specific page is accessed and bypassing the

light-weight layer by directly instantiating CompColumn. This en-

sures that only the data actually scanned is decompressed, cutting

CPU overhead. This feature has been integrated into the Apache

TsFile
2
storage layer, enhancing overall system performance in

Apache IoTDB. Additionally, we encapsulate decompression logic

within CompColumn to support partially homomorphic queries,

2
https://github.com/apache/tsfile

Chunk Group 1 Chunk Group 2 Chunk Group 3

Single Encoded Tsfile 

chunk 1 chunk 2 chunk 3

decompress

single chunk

Page 1 Page 2 Page 3 Page 4 Page 5

single chunk

𝑳𝟎 : 4 𝑽𝟎 : 3 𝑳𝟏 : 9 𝑽𝟏 : 8 …

Page 1 Page 2 Page 3 Page 4 Page 5

decompress

3 3 3 3

Page 1 compressed page

𝑳𝟎:4 𝑽𝟎:3 𝑳𝟏:9 𝑽𝟏:8 …

decode

decompressed page

Page 1’ Page 2’ Page 3’ Page 4’ Page 5’

Series Scan

Data Flow

(a) IoTDB original series scan solution (b) Series scan with late decompression 

chunk 4 chunk 5 chunk 6 chunk 7 chunk 8 chunk 9

CompColumn
Compression 
Offset Index

HintIndex

CompColumn construction

Figure 6: Illustration of late decompression strategy

exposes uncompressed views for operators that do not support di-

rect computation on compressed time series data. This design keeps

data compressed as long as possible, minimizing transmission costs

by reducing the volume of transferred data.

5 EVALUATION
5.1 Experimental Setup
Baselines. We evaluate CompressIoTDB with three baselines, Un-
compressed, CompressIoTDB-NoLate, and IoTDB. Uncompressed
stores and queries data without compression. CompressIoTDB-
NoLate represents CompressIoTDBwithout the late decompression

optimization. IoTDB refers to the original Apache IoTDB, without

any of our enhancements. We use two light-weight compressions:

Run-Length Encoding (RLE) for numerical data and Dictionary En-

coding for string data. Meanwhile, for delta-based Ts_2Diff, we con-

duct queries with expression and aggregation operators to demon-

strate its performance. All light-weight compressed data is further

processed with LZ4 to improve compression efficiency.

Datasets. We evaluate CompressIoTDB using five open-source

real-world time series datasets as well as synthetic datasets with

diverse characteristics generated by IoT-benchmark, thereby assess-

ing the system under both practical conditions and varying dataset

configurations. For details on the data generation algorithms and

parameters, refer to Appendix B. We extend IoT-benchmark to sup-

port expression queries. Table 2 provides dataset statistics. These

datasets have been widely used in previous studies [8, 52, 84, 87, 92].

Table 2: Datasets
Name Attr # Length

Weather Forecast (WF) [99] 6 910,576

AMPds [60] 11 10,490,860

Smart Grid (SG) [46] 5 100,000,000

Linear Road (LR) [13] 6 108,437,193

Computer Monitor (CM) [62] 4 144,370,688

IoT-benchmark [58, 84] 5 10
5 − 10

9

Benchmark queries. We use ten queries derived from real-world

applications, combining various operators discussed in § 3.1. The de-

tailed applications of these queries are provided in Appendix E.For

3414

https://github.com/apache/tsfile


Q1 Q20

1

La
te

nc
y (

m
s) ×102

Weather Forcast

Q3 Q40

5
×102

Ampds

Q5 Q60

5

Smart Grid

Q7 Q80

5
×103

Linear Roads

Q9 Q100.0

2.5

×103
Computer Monitor

Uncompressed IoTDB CompressIoTDB-NoLate CompressIoTDB

Figure 7: Latency on real world datasets
WF Ampds SG LR CM0

50

Co
m

pr
es

sio
n

Ra
tio

 (%
)

Light-weight Compression
Dual-Compression

Figure 8: CPR of real
world datasets

Table 3: Queries
Query Detail

Q1 SELECT AVG (9 * bottom_temperature / 5 + 32) AS AvgBottomTemp_F
FROM root.air.wf WHERE bottom_temperature > 20;

Q2 SELECT AVG (wind_level), AVG (wind_direction) FROM
root.air.wf GROUP BY ((2013-09-01T06:00:56.000+08:00,
2013-9-01T06:16:00.000+08:00], 1m);

Q3 SELECT STDDEV (I) AS CurrentStandardDeviation, VARIANCE (I)
AS CurrentVariance FROM root.amp;

Q4 SELECT SUM (S) AS TotalApparentEnergy_kVAh, SUM(P) AS
TotalRealPower_kWh FROM root.amp;

Q5 SELECT AVG (plug) FROM root.sg
GROUP BY ((2013-09-01T06:00:56.000+08:00,
2013-9-02T12:05:00.000+08:00], 1d);

Q6 SELECT SUM (house) FROM root.sg
GROUP BY ((2013-09-01T06:00:56.000+08:00,
2013-9-02T12:05:00.000+08:00], 1d);

Q7 SELECT VARIANCE (direction) FROM root.lr WHERE
lane = 0 GROUP BY ((2013-09-01T06:00:56.000+08:00,
2013-9-02T12:05:00.000+08:00], 1d);

Q8 SELECT AVG (speed) FROM root.lr
GROUP BY ((2013-09-01T06:00:56.000+08:00,
2013-9-02T12:05:00.000+08:00], 1d);

Q9 SELECT VARIANCE (cpu) FROM root.cm
GROUP BY ((2013-09-01T06:00:56.000+08:00,
2013-09-02T22:07:06.688+08:00], 1d);

Q10 SELECT VARIANCE (priorities) FROM root.cm
GROUP BY ((2013-09-01T06:00:56.000+08:00,
2013-09-02T22:07:06.688+08:00], 1d);

QT1 SELECT AGG (v1), ... , AGG (v5) FROM data WHER time > ? AND
time < ?;

QT2 SELECT AGG (v1), ... , AGG (v5) FROM data WHERE v1 op ? AND
... AND v5 op ?;

QT3 SELECT EXP (v1), ... , EXP (v5) FROM data WHERE v1 op ? AND
... AND v5 op ?;

IoT-benchmark, we run three basic queries [50, 58] to compare the

baselines. Specifically, the three queries are 1) aggregation with a

time filter, 2) aggregation with value filters, and 3) expression with

value filters. Each query involves data from five sensors. Details of

each query are provided in Table 3.

Platform. We perform experiments on a server equipped with an

Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz and 64 GB of RAM.

5.2 Overall Evaluation
5.2.1 Performance. We explore the overall performance on five

real-world datasets. Specifically, we evaluate the latency of Com-
pressIoTDB by measuring the number of queries processed within

a given time period. Each query in Table 3 is executed 200 times,

with the first 50 rounds used for system warm-up. We then measure

the total query time for the subsequent 150 rounds to calculate the

average latency. The results are presented in Figure 7.

These results lead to several key conclusions. ➀ CompressIoTDB
consistently accelerates queries, reducing latency by 33.1% (53.4%

throughput gain) over IoTDB and 20.3% (29.9% throughput gain)

against Uncompressed, highlighting its dual benefit of minimizing

decompression overhead while enhancing compressed data process-

ing.➁ The performance gains correlate with compression efficiency.

For instance, Ampds (highest compression ratio) achieves 39.0%

latency reduction over IoTDB, while Linear Roads (20% compres-

sion ratio) shows modest gains (18.9%). This is because datasets

with higher compression ratios present more opportunities for I/O

optimization and efficient computation of compressed data. ➂ Com-
pressIoTDB outperforms its variant without late decompression

(CompressIoTDB-NoLate) by 14.5% in latency, demonstrating its ef-

fectiveness at reducing unnecessary decompression and improving

overall efficiency.

5.2.2 Space Saving and Late Decompression. Figure 8 presents

the compression ratios for each real-world dataset, calculated as:

Compression Ratio (CPR) = 1− size of compressed data

size of uncompressed data
. The bottom

dark blue bars in Figure 8 represent the compression ratios achieved

by light-weight compression, while the upper light bars show the

additional compression from applying general-purpose compres-

sion to the light-weight-compressed data. Several key observations

can be made. ➀ For most datasets, the majority of space reduc-

tion results from the light-weight compression algorithm, with

general-purpose compression contributing relatively little. This val-

idates our approach of performing direct queries on light-weight-

compressed data while delaying decompression for general-purpose

compression. ➁ The impact of late decompression is proportional to

the contribution of general-purpose compression. For example, in

the Computer Monitor dataset, general-purpose compression con-

tributes only 7.5% (to a total of 92.7%), so late decompression yields

only a 1.7% speedup. In contrast, for the Linear Roads dataset, the

light-weight compression alone gives 20%, but general compression

boosts this to 52.7%. Without the late decompression strategy, the

cost of decompression outweighs the performance benefits of ho-

momorphic querying, causing CompressIoTDB-NoLate to perform

worse than Uncompressed.

5.3 Macro-Benchmark Evaluation
Building on our evaluation of CompressIoTDB on real-world datasets,

we further assess its performance via macro-benchmarks. Specifi-

cally, we analyze three basic queries across datasets with varying

repetition rates
3
and sizes, generated using the IoT-benchmark.

The datasets comprise monotonically non-decreasing time series

with a mean value of 1 × 104, repetition rates ranging from 0 to 1,

and lengths up to 1.5 × 108. Each dataset simulates five sensors per

device with FLOAT data (generation algorithm in Appendix B).”

3
Repetition rate refers to the ratio of consecutive repeated data in the dataset. Lengths

of consecutive repeated data sequences are not correlated with repetition rates.

3415



0.1 0.3 0.5 0.7 0.9
2.5

5.0

7.5

Th
ro

ug
hp

ut
 (p

oi
ns

ts
/s

)

QT1

0.1 0.3 0.5 0.7 0.9
Repetition Rate

0.5

1.0

QT2

0.1 0.3 0.5 0.7 0.9

3

4

5
×107 QT3

Uncompressed IoTDB CompressIoTDB-NoLate CompressIoTDB

Figure 9: Throughput across varying repetition rates

5.3.1 Evaluation on Datasets with Varying Repetition Rates. Empiri-

cal analyses indicate a strong correlation between the performance

of CompressIoTDB and the dataset’s compression ratio. Specifically,

datasets with higher repetition rates, which are conducive to Run-

Length Encoding (RLE), yield better performance. This outcome

is expected as low repetition reduces RLE effectiveness, incurring

additional overheads in data maintenance during homomorphic

queries. Figure 9 illustrates the query latency and throughput re-

sults for datasets with a length of 1 × 108 and varying repetition

rates. We draw several key observations. ➀ Higher repetition rates

boost CompressIoTDB’s throughput significantly, while IoTDB sees

modest gains andUncompressed remains stable.➁CompressIoTDB
outperforms IoTDB by 36.9% on average (up to 75.5% at 0.9 repeti-

tion) and surpasses CompressIoTDB-NoLate by 4.4%, underscoring

late decompression’s efficacy across all repetition rates. ➂ At low

repetition rates,CompressIoTDB slightly lagsUncompressed due to
minimal RLE compression and auxiliary overhead. However, such

cases are rare in practice, as administrators optimize compression

strategies based on data traits.

5.3.2 Evaluation on Datasets with Varying Size. We conduct exper-

iments on datasets of different series length, from 10
5
to 10

9
, all

with a repetition rate of 0.5. The speedup ratios of CompressIoTDB
compared to Uncompressed and IoTDB are shown in Figure 10. The

speedup ratio is defined as: Speedup Ratio =
latency of baseline

latency of CompressIoTDB .

We have the following observations. ➀ CompressIoTDB improves

performance across all series lengths of the datasets. Compres-
sIoTDB achieves an average speedup of 48.0% compared to IoTDB
and 35.4% compared to Uncompressed. ➁ While IoTDB’s I/O and

decompression overheads grow with data size, CompressIoTDB’s
time-range query (QT1) performance improves with larger datasets,

as late decompression minimizes unnecessary processing, main-

taining stable decompression and data transfer costs. However, for

Uncompressed, the rising I/O costs are offset by avoiding decom-

pression, narrowing CompressIoTDB’s advantage at scale. ➂ Com-
pressIoTDB maintains stable performance for full data queries. For

queries without time-range filters (QT2, QT3), where the amount of

queried data scales with the dataset size, the performance improve-

ment of CompressIoTDB remains consistent relative to IoTDB and

Uncompressed, demonstrating strong scalability. ➃ When series

length reaches 10
9
, IoTDB times out (60s threshold) on queries on

full series (QT2, QT3).

We further conduct experiments on sequence lengths ranging

from 1× 108 to 1× 109. As shown in Table 4, IoTDB fails to support

query types QT2 and QT3 at 7×108 due to scalability constraints. In
contrast, while theUncompressed incurs significant I/O overhead, it

remains functional by avoiding the critical decompression cost. Our

proposed CompressIoTDB, while maintaining data compression

105 106 107 108 109

1

2

Sp
ee

du
p 

Ra
tio QT1

105 106 107 108 109

Series Length
0.5

1.0

1.5

Exceed
Limits

QT2

105 106 107 108 109

1.0

1.5

Exceed
Limits

QT3
Uncompressed IoTDB

Figure 10: Speedup ratios on datasets of varying series length

0.1% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Selectivity

0

1000

2000

La
te

nc
y (

m
s)

CompressIoTDB IoTDB Uncompressed

1.4

1.6

Sp
ee

du
p 

Ra
tio

IoTDB Uncompressed

Figure 11: Performance on queries with multi-selectivity

to conserve storage and memory resources, achieves an average

latency reduction of 7.3% compared toUncompressed. This advance-
ment effectively pushes the upper bound of system performance

by harmonizing efficient compression with rapid query execution.

Table 4: Micro-analysis on datasets of varying series length

Series

Length

QT1 QT2 QT3

Uncomp. IoTDB Uncomp. IoTDB Uncomp. IoTDB

2 × 10
8

1.46 2.02 1.72 1.55 1.47 1.40

5 × 10
8

1.25 1.43 1.35 1.29 1.21 1.20

7 × 10
8

1.21 1.38 1.04 – 1.00 –

1 × 10
9

1.35 2.11 – – – –

Speedup ratios compared to baseline methods; “–” denotes timeout cases.

5.3.3 Evaluation of Queries with Multi-Selectivity. We conduct ex-

periments on a dataset of size 10
8
with a repetition rate of 0.5,

executing time-range queries (QT1) with selectivity ranging from

0.1% to 90%. The latency and speedup ratios, as defined in § 5.3.2,

are illustrated in Figure 11. Our findings are as follows. ➀ As se-

lectivity increases, CompressIoTDB effectively keeps latency from

rising too sharply, maintaining a considerable speedup across all

selectivity. It achieves a 32.4% latency reduction compared to IoTDB
and 28.3% improvement over the Uncompressed baseline, demon-

strating the effectiveness of our method. ➁ Under extreme low

selectivity conditions (0.1%), CompressIoTDB attains a peak 42.9%

latency reduction versus IoTDB. This is because our late decom-

pression effectively limits unnecessary decompression (explained

in detail in § 5.3.2). ➂ At extremely low selectivity, the speedup

over Uncompressed is less pronounced than over IoTDB. This is
because uncompressed data avoids decompression overhead. Al-

though uncompressed storage incurs significant I/O costs, the query

bottleneck remains tied to decompression operations. Thus, our

method, which optimizes decompression efficiency, yields smaller

relative gains in low-selectivity scenarios where decompression

dominates execution time.

5.4 Detailed Analysis
5.4.1 Evaluation of HintIndex. As discussed in § 4.2.2, Compres-
sIoTDB leverages 𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 to record the last accessed position,

avoiding unnecessary traversal of the index from the start during

sequential data access. We conduct an ablation study to evaluate the

3416



QT1 QT2 QT3
Queries

0

5

La
te

nc
y (

s)

CompressIoTDB
CompressIoTDB w/o HintIndex

Figure 12: Effects
of HintIndex

0.1 0.3 0.5 0.7 0.9
Repetition Rate

0

5

Ex
ec

ut
io

n 
Ti

m
e 

(s)

Operator Execution
Series Scan

Chunk Reader Construction
Homomorphic Operator Execution

Figure 13: Execution time breakdown
on datasets of varying repetition rates

performance gains attributed to 𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 . As shown in Figure 12,

𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 provides an average performance improvement of 11.7%.

Furthermore, it can be observed that the absolute time saved by

𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 is positively correlated with the amount of data accessed

during the query. For queries without time-range filters (QT2, QT3),

where the queried data volume is larger, 𝐻𝑖𝑛𝑡𝐼𝑛𝑑𝑒𝑥 provides more

substantial time savings.

5.4.2 Execution Time Breakdown. We evaluate the execution time

for each phase across datasets with varying repetition rates and a

length of 1 × 108, using query “SELECT VARIANCE(*) FROM data”.
The query execution is divided into three phases: chunk reader

construction, series scan, and operator execution. For detailed ex-

planation of query phases, please refer to Appendix G.Figure 13

presents the breakdown of execution time for Uncompressed (left

bar), IoTDB (middle bar), and CompressIoTDB (right bar). The key

observations are as follows.➀Chunk reader speedup: Our approach

delivers a 20.8× average speedup over the Uncompressed by re-

duced data-transfer costs, and a 4.4× speedup over IoTDB thanks

to late decompression that defers decompression to the series scan

phase. ➁ Series scan dominates query execution time. It accounts

for 48.2% of runtime on Uncompressed, 65.0% on IoTDB, and 79.5%

in CompressIoTDB due to its deferred decompression to this phase.

Despite the higher share, we still cut overall latency by 39% ver-

sus IoTDB by skipping light-weight decompression and efficiently

managing auxiliary structure restoration, highlighting the effec-

tiveness of our optimizations. ➂ CompressIoTDB’s homomorphic

operator execution runs 5.5× faster average than Uncompressed.
This speedup increases as the repetition rate increases, reaching

12.1× at a repetition rate of 0.9, underscoring the effectiveness of

CompressIoTDB for homomorphic queries.

5.4.3 Memory Usage. Wemeasure the memory usage of the Comp-

Column structure using the compression ratio (CPR =CompColumn

size/uncompressed size) under the same query and dataset settings

as in § 5.4.2. Table 5 shows IoTDB’s memory use stays stable across

repetition rates, while CompColumn achieves a 20% reduction on

average. However, for CompressIoTDB, a low repetition rate can

result in higher memory usage. This is because, under low repeti-

tion rate, the RLE-compressed data closely resembles raw data, and

additional data structures introduced by CompColumn to manage

compression lead to increased memory overhead. Nevertheless, as

illustrated in Figure 13, even at a repetition rate of 0.1, Compres-
sIoTDB achieves an 22.7% reduction in latency compared to IoTDB,

demonstrating the effectiveness of CompColumn structure.

5.5 Discussion on Capability
We summarize prevalent time series compression schemes, includ-

ing all encoding algorithms implemented in Apache IoTDB, and

Table 5: Memory usage (GB) of CompColumn

Repetition Rate 0.1 0.3 0.5 0.7 0.9 Average

IoTDB 3.08 3.08 3.08 3.08 3.08 3.08

CompressIoTDB 3.90 3.28 2.44 1.69 0.99 2.46

CPR 1.27 1.07 0.79 0.55 0.32 0.80

how they are combined from the basic components (detailed in § 3),

as shown in Table 6. Key observations are outlined below. ➀ Nearly

all these algorithms employ bit-packing to reduce storage overhead.

➁ Many algorithms compress data based on the repeat encoding,

capitalizing on the frequent occurrence of repeated or uniformly

incremental values in time series data. ➂ Several algorithms are op-

timized for the delta-encoding. For delta-encoding-based schemes,

our analysis (Section 3) reveals limited homomorphic support. In the

preceding experiments, due to the delta-based method’s insufficient

support for certain operators, we employed RLE and Dictionary

encoding, compensating for the Dict, Repeat, and Bit-Packing com-

ponents. To evaluate the efficacy of our approach in delta-based

encoding, we implement Ts_2Diff and conduct an evaluation on

aggregation query with expressions: “SELECT AGG(EXP(*)) FROM
data ”, using the same dataset described in Section 5.3.3. Results

show that our method achieves a 43.2% reduction in latency com-

pared to IoTDB and 18.9% to Uncompressed baselines, demonstrat-

ing its performance advantages.

Table 6: Basic components of time series compression
Comp. ZigZag RLE Bitmap Dict. Ts_2Diff Gorilla Chimp RLBE

Dict − − ✓ ✓ − − − −
Delta − − − − ✓ ✓ ✓ ✓
Repeat − ✓ − ✓ − ✓ ✓ ✓
Pack ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Remark:CompressIoTDBmaintains compatibilitywithmainstream

database systems. Detailed discussions and preliminary experimen-

tal results are provided in Appendix F.

6 CONCLUSION
In this paper, we present a novel homomorphic compression frame-

work for time series data. Based on a formal model, we propose

CompressIoTDB. It supports homomorphic computation for key

time series database operators with unified modular design and

system-level optimizations, significantly reducing decompression

overhead and I/O costs. Our experimental results show that Com-
pressIoTDB achieves significant performance improvement.

Supplemental Materials: The code and an appendix are available at

https://github.com/yuxin370/CompressIoTDB/tree/master.

ACKNOWLEDGMENTS
This work is supported by the National Key R&D Program of China

(No. 2024YFB3309601), National Natural Science Foundation of

China (No. 62322213, 62461146205, and 92267203), and Beijing Nova

Program (No. 20230484397 and 20220484137). Yuxin Tang, Feng

Zhang, Jiawei Guan, and Xiaoyong Du are with the Key Labora-

tory of Data Engineering and Knowledge Engineering (MOE), and

School of Information, Renmin University of China. Feng Zhang is

the corresponding author of this paper.

3417

https://github.com/yuxin370/CompressIoTDB/tree/master


REFERENCES
[1] Abadi andDaniel. 2007. Column Stores forWide and Sparse Data., In Conference

on Innovative Data Systems Research. CIDR 2007 - 3rd Biennial Conference on
Innovative Data Systems Research, 292–297.

[2] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E.

Galvez, M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul,

Y. Xing, R. Yan, and S. Zdonik. 2003. Aurora: a data stream management

system. In Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data (San Diego, California) (SIGMOD ’03). Association for

Computing Machinery, New York, NY, USA, 666. https://doi.org/10.1145/

872757.872855

[3] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compres-

sion and execution in column-oriented database systems. In Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data (Chicago,
IL, USA) (SIGMOD ’06). Association for Computing Machinery, New York, NY,

USA, 671–682. https://doi.org/10.1145/1142473.1142548

[4] Colin Adams, Luis Alonso, Benjamin Atkin, John P. Banning, Sumeer Bhola,

Richard W. Buskens, Ming Chen, Xi Chen, Yoo Chung, Qin Jia, Nick Sakharov,

George Talbot, Nick Taylor, and Adam Tart. 2020. Monarch: Google’s Planet-

Scale In-Memory Time Series Database. Proceedings of the VLDB Endowment
13 (2020), 3181 – 3194.

[5] Azim Afroozeh and Peter Boncz. 2023. The FastLanes Compression Layout:

Decoding > 100 Billion Integers per Second with Scalar Code. Proc. VLDB Endow.
16, 9 (May 2023), 2132–2144. https://doi.org/10.14778/3598581.3598587

[6] Azim Afroozeh, Leonardo X. Kuffo, and Peter Boncz. 2023. ALP: Adaptive

Lossless floating-Point Compression. Proc. ACM Manag. Data 1, 4, Article 230
(Dec. 2023), 26 pages. https://doi.org/10.1145/3626717

[7] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. 2015. Succinct: enabling

queries on compressed data. In Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation (Oakland, CA) (NSDI’15). USENIX
Association, USA, 337–350.

[8] Yihao Ang, Qiang Huang, Yifan Bao, Anthony K. H. Tung, and Zhiyong Huang.

2023. TSGBench: Time Series Generation Benchmark. Proc. VLDB Endow. 17, 3
(nov 2023), 305–318. https://doi.org/10.14778/3632093.3632097

[9] Apache IoTDB. 2024. https://iotdb.apache.org/. Accessed: 2025-06-28.

[10] Apache ORC. 2024. https://orc.apache.org/. Accessed: 2025-06-28.

[11] Apache Parquet. 2024. https://parquet.apache.org/. Accessed: 2025-06-28.

[12] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL continuous

query language: semantic foundations and query execution. The VLDB Journal
15, 2 (June 2006), 121–142. https://doi.org/10.1007/s00778-004-0147-z

[13] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S.

Maskey, Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Lin-

ear road: a stream data management benchmark (VLDB ’04). VLDB Endowment,

480–491.

[14] Hillel Avni, Alisher Aliev, Oren Amor, Aharon Avitzur, Ilan Bronshtein, Eli

Ginot, Shay Goikhman, Eliezer Levy, Idan Levy, Fuyang Lu, Liran Mishali,

Yeqin Mo, Nir Pachter, Dima Sivov, Vinoth Veeraraghavan, Vladi Vexler, Lei

Wang, and Peng Wang. 2020. Industrial-strength OLTP using main memory

and many cores. Proc. VLDB Endow. 13, 12 (Aug. 2020), 3099–3111. https:

//doi.org/10.14778/3415478.3415537

[15] Bruno Barbarioli, Gabriel Mersy, Stavros Sintos, and Sanjay Krishnan. 2023.

Hierarchical Residual Encoding for Multiresolution Time Series Compression.

Proc. ACM Manag. Data 1, 1, Article 99 (May 2023), 26 pages. https://doi.org/

10.1145/3588953

[16] Davis Blalock, Samuel Madden, and John Guttag. 2018. Sprintz: Time series

compression for the internet of things. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 2, 3 (2018), 1–23.

[17] Radu Boncea and Ioan Bacivarov. 2016. A system architecture for monitoring

the reliability of iot. In Proceedings of the 15th International Conference on Quality
and Dependability. 143–150.

[18] Martin Burtscher and Paruj Ratanaworabhan. 2007. High Throughput Com-

pression of Double-Precision Floating-Point Data. In 2007 Data Compression
Conference (DCC’07). 293–302. https://doi.org/10.1109/DCC.2007.44

[19] Martin Burtscher and Paruj Ratanaworabhan. 2009. FPC: A High-Speed Com-

pressor for Double-Precision Floating-Point Data. IEEE Trans. Comput. 58, 1
(2009), 18–31. https://doi.org/10.1109/TC.2008.131

[20] Shubham Chandak, Kedar Tatwawadi, Chengtao Wen, Lingyun Wang, Juan

Aparicio Ojea, and Tsachy Weissman. 2020. LFZip: Lossy Compression of Mul-

tivariate Floating-Point Time Series Data via Improved Prediction. In 2020 Data
Compression Conference (DCC). 342–351. https://doi.org/10.1109/DCC47342.

2020.00042

[21] Zheng Chen, Feng Zhang, JiaWei Guan, Jidong Zhai, Xipeng Shen, Huanchen

Zhang,Wentong Shu, and XiaoyongDu. 2023. CompressGraph: Efficient Parallel

Graph Analytics with Rule-Based Compression. Proc. ACM Manag. Data 1, 1,
Article 4 (May 2023), 31 pages. https://doi.org/10.1145/3588684

[22] Giacomo Chiarot and Claudio Silvestri. 2023. Time Series Compression Survey.

ACM Comput. Surv. 55, 10, Article 198 (Feb. 2023), 32 pages. https://doi.org/10.

1145/3560814

[23] Andrew A Cook, Göksel Mısırlı, and Zhong Fan. 2019. Anomaly detection

for IoT time-series data: A survey. IEEE Internet of Things Journal 7, 7 (2019),
6481–6494.

[24] Rui Ding, Qiang Wang, Yingnong Dang, Qiang Fu, Haidong Zhang, and Dong-

mei Zhang. 2015. Yading: Fast clustering of large-scale time series data. Pro-
ceedings of the VLDB Endowment 8, 5 (2015), 473–484.

[25] Xiaoou Ding, Yingze Li, Hongzhi Wang, Chen Wang, Yida Liu, and Jianmin

Wang. 2024. TSDDISCOVER: Discovering Data Dependency for Time Series

Data. In 40th IEEE International Conference on Data Engineering, ICDE 2024,
Utrecht, The Netherlands, May 13-16, 2024. IEEE, 3668–3681. https://doi.org/10.

1109/ICDE60146.2024.00282

[26] Xiaoou Ding, Yichen Song, Hongzhi Wang, Chen Wang, and Donghua Yang.

2024. MTSClean: Efficient Constraint-based Cleaning for Multi-Dimensional

Time Series Data. Proc. VLDB Endow. 17, 13 (2024), 4840–4852. https://www.

vldb.org/pvldb/vol17/p4840-wang.pdf

[27] Xiaoou Ding, Yichen Song, Hongzhi Wang, Donghua Yang, Chen Wang, and

Jianmin Wang. 2024. Clean4TSDB: A Data Cleaning Tool for Time Series

Databases. Proc. VLDB Endow. 17, 12 (2024), 4377–4380. https://doi.org/10.

14778/3685800.3685879

[28] Zengyu Ding, Gang Mei, Salvatore Cuomo, Yixuan Li, and Nengxiong Xu. 2020.

Comparison of estimating missing values in iot time series data using different

interpolation algorithms. International Journal of Parallel Programming 48

(2020), 534–548.

[29] Frank Eichinger, Pavel Efros, Stamatis Karnouskos, and Klemens Böhm. 2015.

A time-series compression technique and its application to the smart grid. The
VLDB Journal 24, 2 (April 2015), 193–218. https://doi.org/10.1007/s00778-014-

0368-8

[30] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. 2012. Query preserving

graph compression. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (Scottsdale, Arizona, USA) (SIGMOD ’12).
Association for Computing Machinery, New York, NY, USA, 157–168. https:

//doi.org/10.1145/2213836.2213855

[31] Chenguang Fang, Shaoxu Song, Haoquan Guan, Xiangdong Huang, ChenWang,

and Jianmin Wang. 2023. Grouping time series for efficient columnar storage.

Proceedings of the ACM on Management of Data 1, 1 (2023), 1–26.
[32] Paolo Ferragina, Rodrigo González, Gonzalo Navarro, and Rossano Venturini.

2009. Compressed text indexes: From theory to practice. ACM J. Exp. Algo-
rithmics 13, Article 12 (Feb. 2009), 31 pages. https://doi.org/10.1145/1412228.

1455268

[33] S. Golomb. 1966. Run-length encodings (Corresp.). IEEE Transactions on Infor-
mation Theory 12, 3 (1966), 399–401. https://doi.org/10.1109/TIT.1966.1053907

[34] Adrián Gómez-Brandón, José R Paramá, Kevin Villalobos, Arantza Illarramendi,

and Nieves R Brisaboa. 2021. Lossless compression of industrial time series

with direct access. Computers in Industry 132 (2021), 103503.

[35] G. Graefe and L.D. Shapiro. 1991. Data compression and database performance.

In [Proceedings] 1991 Symposium on Applied Computing. 22–27. https://doi.org/

10.1109/SOAC.1991.143840

[36] Jiawei Guan, Feng Zhang, Siqi Ma, Kuangyu Chen, Yihua Hu, Yuxing Chen,

Anqun Pan, and Xiaoyong Du. 2023. Homomorphic Compression: Making Text

Processing on Compression Unlimited. Proc. ACM Manag. Data 1, 4, Article 271
(dec 2023), 28 pages. https://doi.org/10.1145/3626765

[37] Shai Halevi. 2017. Homomorphic Encryption. Springer International Publishing,
Cham, 219–276. https://doi.org/10.1007/978-3-319-57048-8_5

[38] Sven Hielke Hepkema, Azim Afroozeh, Lotte Felius, Peter Boncz, and Stefan

Manegold. 2025. G-ALP: Rethinking Light-weight Encodings for GPUs. In

Proceedings of the 21st International Workshop on Data Management on New
Hardware, DaMoN 2025.

[39] Aaron Hurst, Daniel E. Lucani, and Qi Zhang. 2024. PairwiseHist: Fast, Accurate

and Space-Efficient Approximate Query Processing with Data Compression.

Proc. VLDB Endow. 17, 6 (May 2024), 1432–1445. https://doi.org/10.14778/

3648160.3648181

[40] InfluxDB 2024. https://www.influxdata.com/. Accessed: 2025-06-28.

[41] INTERNET OF THINGS MARKET ANALYSIS - 2032. 2024. https:

//www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-

market-100307. Accessed: 2025-06-28.

[42] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2017. Time

Series Management Systems: A Survey. IEEE Transactions on Knowledge and
Data Engineering 29, 11 (2017), 2581–2600. https://doi.org/10.1109/TKDE.2017.

2740932

[43] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2018.

Modelardb: Modular model-based time series management with spark and

cassandra. Proceedings of the VLDB Endowment 11, 11 (2018), 1688–1701.
[44] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2018.

ModelarDB: modular model-based time series management with spark and

cassandra. Proc. VLDB Endow. 11, 11 (July 2018), 1688–1701. https://doi.org/10.

14778/3236187.3236215

[45] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2021.

Scalable Model-Based Management of Correlated Dimensional Time Series in

3418

https://doi.org/10.1145/872757.872855
https://doi.org/10.1145/872757.872855
https://doi.org/10.1145/1142473.1142548
https://doi.org/10.14778/3598581.3598587
https://doi.org/10.1145/3626717
https://doi.org/10.14778/3632093.3632097
https://iotdb.apache.org/
https://orc.apache.org/
https://parquet.apache.org/
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.14778/3415478.3415537
https://doi.org/10.14778/3415478.3415537
https://doi.org/10.1145/3588953
https://doi.org/10.1145/3588953
https://doi.org/10.1109/DCC.2007.44
https://doi.org/10.1109/TC.2008.131
https://doi.org/10.1109/DCC47342.2020.00042
https://doi.org/10.1109/DCC47342.2020.00042
https://doi.org/10.1145/3588684
https://doi.org/10.1145/3560814
https://doi.org/10.1145/3560814
https://doi.org/10.1109/ICDE60146.2024.00282
https://doi.org/10.1109/ICDE60146.2024.00282
https://www.vldb.org/pvldb/vol17/p4840-wang.pdf
https://www.vldb.org/pvldb/vol17/p4840-wang.pdf
https://doi.org/10.14778/3685800.3685879
https://doi.org/10.14778/3685800.3685879
https://doi.org/10.1007/s00778-014-0368-8
https://doi.org/10.1007/s00778-014-0368-8
https://doi.org/10.1145/2213836.2213855
https://doi.org/10.1145/2213836.2213855
https://doi.org/10.1145/1412228.1455268
https://doi.org/10.1145/1412228.1455268
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.1109/SOAC.1991.143840
https://doi.org/10.1109/SOAC.1991.143840
https://doi.org/10.1145/3626765
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.14778/3648160.3648181
https://doi.org/10.14778/3648160.3648181
https://www.influxdata.com/
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://doi.org/10.1109/TKDE.2017.2740932
https://doi.org/10.1109/TKDE.2017.2740932
https://doi.org/10.14778/3236187.3236215
https://doi.org/10.14778/3236187.3236215


ModelarDB+. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE). 1380–1391. https://doi.org/10.1109/ICDE51399.2021.00123

[46] Zbigniew Jerzak and Holger Ziekow. 2014. The DEBS 2014 grand challenge.

In Distributed Event-Based Systems. https://api.semanticscholar.org/CorpusID:

17908409

[47] Yunhong Ji, Wentao Huang, and Xuan Zhou. 2024. HeterMM: applying in-

DRAM index to heterogeneous memory-based key-value stores. Frontiers of
Computer Science 18, 4, Article 184612 (2024). https://doi.org/10.1007/s11704-

024-3713-0

[48] Hao Jiang, Chunwei Liu, Qi Jin, John Paparrizos, andAaron J. Elmore. 2020. PIDS:

attribute decomposition for improved compression and query performance

in columnar storage. Proc. VLDB Endow. 13, 6 (Feb. 2020), 925–938. https:

//doi.org/10.14778/3380750.3380761

[49] Hao Jiang, Chunwei Liu, John Paparrizos, Andrew A. Chien, Jihong Ma, and

Aaron J. Elmore. 2021. Good to the Last Bit: Data-Driven Encoding with

CodecDB. In Proceedings of the 2021 International Conference on Management of
Data (Virtual Event, China) (SIGMOD ’21). Association for Computing Machin-

ery, New York, NY, USA, 843–856. https://doi.org/10.1145/3448016.3457283

[50] Abdelouahab Khelifati, Mourad Khayati, Anton Dignös, Djellel Difallah, and

Philippe Cudré-Mauroux. 2023. TSM-Bench: Benchmarking Time Series Data-

base Systems for Monitoring Applications. Proc. VLDB Endow. 16, 11 (jul 2023),
3363–3376. https://doi.org/10.14778/3611479.3611532

[51] Xenophon Kitsios, Panagiotis Liakos, Katia Papakonstantinopoulou, and Yan-

nis Kotidis. 2023. Sim-Piece: Highly Accurate Piecewise Linear Approxima-

tion through Similar Segment Merging. Proc. VLDB Endow. 16, 8 (April 2023),
1910–1922. https://doi.org/10.14778/3594512.3594521

[52] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L.

Wolf, Paolo Costa, and Peter R. Pietzuch. 2016. SABER: Window-Based Hybrid

Stream Processing for Heterogeneous Architectures. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan, Georgia Koutrika, and

Sam Madden (Eds.). ACM, 555–569. https://doi.org/10.1145/2882903.2882906

[53] Raghavendra Kumar, Pardeep Kumar, and Yugal Kumar. 2020. Time series data

prediction using IoT and machine learning technique. Procedia computer science
167 (2020), 373–381.

[54] Ruiyuan Li, Zheng Li, Yi Wu, Chao Chen, and Yu Zheng. 2023. Elf: Erasing-

Based Lossless Floating-Point Compression. Proc. VLDB Endow. 16, 7 (March

2023), 1763–1776. https://doi.org/10.14778/3587136.3587149

[55] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.

Chimp: efficient lossless floating point compression for time series databases.

Proc. VLDB Endow. 15, 11 (July 2022), 3058–3070. https://doi.org/10.14778/

3551793.3551852

[56] Chunbin Lin, Etienne Boursier, and Yannis Papakonstantinou. 2020. Plato:

approximate analytics over compressed time series with tight deterministic

error guarantees. Proc. VLDB Endow. 13, 7 (March 2020), 1105–1118. https:

//doi.org/10.14778/3384345.3384357

[57] Chunwei Liu, Hao Jiang, John Paparrizos, and Aaron J. Elmore. 2021. Decom-

posed bounded floats for fast compression and queries. Proc. VLDB Endow. 14,
11 (July 2021), 2586–2598. https://doi.org/10.14778/3476249.3476305

[58] Rui Liu and Jun Yuan. 2019. Benchmark Time Series Database with IoTDB-

Benchmark for IoT Scenarios. CoRR abs/1901.08304 (2019). arXiv:1901.08304

http://arxiv.org/abs/1901.08304

[59] Yi Liu, Sahil Garg, Jiangtian Nie, Yang Zhang, Zehui Xiong, Jiawen Kang, and

M Shamim Hossain. 2020. Deep anomaly detection for time-series data in in-

dustrial IoT: A communication-efficient on-device federated learning approach.

IEEE Internet of Things Journal 8, 8 (2020), 6348–6358.
[60] Stephen Makonin, Bradley Ellert, Ivan V. Bajić, and Fred Popowich. 2016. Elec-

tricity, water, and natural gas consumption of a residential house in Canada from

2012 to 2014. Scientific Data 3 (2016). https://api.semanticscholar.org/CorpusID:

1406747

[61] Hossein Maserrat and Jian Pei. 2010. Neighbor query friendly compression of

social networks. In Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (Washington, DC, USA) (KDD ’10).
Association for Computing Machinery, New York, NY, USA, 533–542. https:

//doi.org/10.1145/1835804.1835873

[62] More google cluster data. 2011. https://ai.googleblog.com/2011/11/more-google-

cluster-data.html. Accessed: 2025-06-28.

[63] Abdullah Mueen, Suman Nath, and Jie Liu. 2010. Fast approximate correla-

tion for massive time-series data. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. 171–182.

[64] Hussain Nizam, Samra Zafar, Zefeng Lv, Fan Wang, and Xiaopeng Hu. 2022.

Real-time deep anomaly detection framework for multivariate time-series data

in industrial iot. IEEE Sensors Journal 22, 23 (2022), 22836–22849.
[65] Open TSDB 2024. http://opentsdb.net/. Accessed: 2025-06-28.

[66] Gennady Pekhimenko, Chuanxiong Guo, Myeongjae Jeon, Peng Huang, and

Lidong Zhou. 2018. TerseCades: Efficient Data Compression in Stream Process-

ing. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 307–320. https://www.usenix.org/conference/atc18/

presentation/pekhimenko

[67] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin

Meza, and Kaushik Veeraraghavan. 2015. Gorilla: a fast, scalable, in-memory

time series database. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1816–1827. https:

//doi.org/10.14778/2824032.2824078

[68] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David

Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,

GuyM. Lohman, TimMalkemus, ReneMueller, Ippokratis Pandis, Berni Schiefer,

David Sharpe, Richard Sidle, Adam Storm, and Liping Zhang. 2013. DB2 with

BLU acceleration: so much more than just a column store. Proc. VLDB Endow. 6,
11 (Aug. 2013), 1080–1091. https://doi.org/10.14778/2536222.2536233

[69] Vijayshankar Raman and Garret Swart. 2006. How to wring a table dry: entropy

compression of relations and querying of compressed relations. In Proceedings
of the 32nd International Conference on Very Large Data Bases (Seoul, Korea)
(VLDB ’06). VLDB Endowment, 858–869.

[70] P. Ratanaworabhan, Jian Ke, andM. Burtscher. 2006. Fast lossless compression of

scientific floating-point data. InData Compression Conference (DCC’06). 133–142.
https://doi.org/10.1109/DCC.2006.35

[71] Galen Reeves, Jie Liu, Suman Nath, and Feng Zhao. 2009. Managing massive

time series streams with multi-scale compressed trickles. Proc. VLDB Endow. 2,
1 (Aug. 2009), 97–108. https://doi.org/10.14778/1687627.1687639

[72] Sean Rhea, Eric Wang, Edmund Wong, Ethan Atkins, and Nat Storer. 2017.

Littletable: A time-series database and its uses. In Proceedings of the 2017 ACM
International Conference on Management of Data. 125–138.

[73] Kunihiko Sadakane. 2003. New text indexing functionalities of the compressed

suffix arrays. J. Algorithms 48, 2 (Sept. 2003), 294–313. https://doi.org/10.1016/

S0196-6774(03)00087-7

[74] Yasushi Sakurai, Yasuko Matsubara, and Christos Faloutsos. 2015. Mining and

forecasting of big time-series data. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 919–922.

[75] Arnaldo Sgueglia, Andrea Di Sorbo, Corrado Aaron Visaggio, and Gerardo

Canfora. 2022. A systematic literature review of IoT time series anomaly

detection solutions. Future Generation Computer Systems 134 (2022), 170–186.
[76] Xinyang Shen, Xiaofei Liao, Long Zheng, Yu Huang, Dan Chen, and Hai Jin.

2024. ARCHER: a ReRAM-based accelerator for compressed recommendation

systems. Frontiers of Computer Science 18, 5, Article 185607 (2024). https:

//doi.org/10.1007/s11704-023-3397-x

[77] Eugene Siow, Thanassis Tiropanis, Xin Wang, and Wendy Hall. 2018. Tritandb:

Time-series rapid internet of things analytics. arXiv preprint arXiv:1801.07947
(2018).

[78] Julien Spiegel, Patrice Wira, and Gilles Hermann. 2018. A Comparative Ex-

perimental Study of Lossless Compression Algorithms for Enhancing Energy

Efficiency in Smart Meters. In 2018 IEEE 16th International Conference on Indus-
trial Informatics (INDIN). 447–452. https://doi.org/10.1109/INDIN.2018.8471921

[79] TPCx-IoI. 2024. https://www.tpc.org/tpcx-iot/. Accessed: 2025-06-28.

[80] Chen Wang, Jialin Qiao, Xiangdong Huang, Shaoxu Song, Haonan Hou, Tian

Jiang, Lei Rui, Jianmin Wang, and Jiaguang Sun. 2023. Apache IoTDB: A Time

Series Database for IoT Applications. Proc. ACM Manag. Data 1, 2, Article 195
(June 2023), 27 pages. https://doi.org/10.1145/3589775

[81] Peng Wang, Haixun Wang, and Wei Wang. 2011. Finding semantics in time

series. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data. 385–396.

[82] Zhiqi Wang, Jin Xue, and Zili Shao. 2021. Heracles: an efficient storage model

and data flushing for performance monitoring timeseries. Proc. VLDB Endow.
14, 6 (Feb. 2021), 1080–1092. https://doi.org/10.14778/3447689.3447710

[83] Welch. 1984. A Technique for High-Performance Data Compression. Computer
17, 6 (1984), 8–19. https://doi.org/10.1109/MC.1984.1659158

[84] Jinzhao Xiao, Yuxiang Huang, Changyu Hu, Shaoxu Song, Xiangdong Huang,

and Jianmin Wang. 2022. Time series data encoding for efficient storage: a

comparative analysis in Apache IoTDB. Proc. VLDB Endow. 15, 10 (jun 2022),

2148–2160. https://doi.org/10.14778/3547305.3547319

[85] Yang Yang, Qiang Cao, and Hong Jiang. 2019. EdgeDB: An efficient time-series

database for edge computing. IEEE Access 7 (2019), 142295–142307.
[86] Zhongguo Yang, Irshad Ahmed Abbasi, Fahad Algarni, Sikandar Ali, and

Mingzhu Zhang. 2021. An iot time series data security model for adversarial

attack based on thermometer encoding. Security and Communication Networks
2021, 1 (2021), 5537041.

[87] Zehai Yang and Shimin Chen. 2023. MOST: Model-Based Compression with

Outlier Storage for Time Series Data. Proc. ACM Manag. Data 1, 4, Article 250
(dec 2023), 29 pages. https://doi.org/10.1145/3626737

[88] Yuanyuan Yao, Lu Chen, Ziquan Fang, Yunjun Gao, Christian S. Jensen, and

Tianyi Li. 2024. Camel: Efficient Compression of Floating-Point Time Series.

Proc. ACM Manag. Data 2, 6, Article 227 (Dec. 2024), 26 pages. https://doi.org/

10.1145/3698802

[89] Xinyang Yu, Yanqing Peng, Feifei Li, Sheng Wang, Xiaowei Shen, Huijun Mai,

and Yue Xie. 2020. Two-Level Data Compression using Machine Learning

in Time Series Database. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). 1333–1344. https://doi.org/10.1109/ICDE48307.2020.00119

3419

https://doi.org/10.1109/ICDE51399.2021.00123
https://api.semanticscholar.org/CorpusID:17908409
https://api.semanticscholar.org/CorpusID:17908409
https://doi.org/10.1007/s11704-024-3713-0
https://doi.org/10.1007/s11704-024-3713-0
https://doi.org/10.14778/3380750.3380761
https://doi.org/10.14778/3380750.3380761
https://doi.org/10.1145/3448016.3457283
https://doi.org/10.14778/3611479.3611532
https://doi.org/10.14778/3594512.3594521
https://doi.org/10.1145/2882903.2882906
https://doi.org/10.14778/3587136.3587149
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.14778/3384345.3384357
https://doi.org/10.14778/3384345.3384357
https://doi.org/10.14778/3476249.3476305
http://arxiv.org/abs/1901.08304
https://api.semanticscholar.org/CorpusID:1406747
https://api.semanticscholar.org/CorpusID:1406747
https://doi.org/10.1145/1835804.1835873
https://doi.org/10.1145/1835804.1835873
https://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://ai.googleblog.com/2011/11/more-google-cluster-data.html
http://opentsdb.net/
https://www.usenix.org/conference/atc18/presentation/pekhimenko
https://www.usenix.org/conference/atc18/presentation/pekhimenko
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2536222.2536233
https://doi.org/10.1109/DCC.2006.35
https://doi.org/10.14778/1687627.1687639
https://doi.org/10.1016/S0196-6774(03)00087-7
https://doi.org/10.1016/S0196-6774(03)00087-7
https://doi.org/10.1007/s11704-023-3397-x
https://doi.org/10.1007/s11704-023-3397-x
https://doi.org/10.1109/INDIN.2018.8471921
https://www.tpc.org/tpcx-iot/
https://doi.org/10.1145/3589775
https://doi.org/10.14778/3447689.3447710
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.14778/3547305.3547319
https://doi.org/10.1145/3626737
https://doi.org/10.1145/3698802
https://doi.org/10.1145/3698802
https://doi.org/10.1109/ICDE48307.2020.00119


[90] Yuchen Yuan, Xiaoyue Feng, Bo Zhang, Pengyi Zhang, and Jie Song. 2024. JAPO:

learning join and pushdown order for cloud-native join optimization. Frontiers
of Computer Science 18, 6, Article 186614 (2024). https://doi.org/10.1007/s11704-

024-3937-z

[91] Aoqian Zhang, Shaoxu Song, Jianmin Wang, and Philip S Yu. 2017. Time series

data cleaning: From anomaly detection to anomaly repairing. Proceedings of
the VLDB Endowment 10, 10 (2017), 1046–1057.

[92] Feng Zhang, Lin Yang, Shuhao Zhang, Bingsheng He, Wei Lu, and Xiaoyong

Du. 2020. FineStream: Fine-Grained Window-Based Stream Processing on CPU-

GPU Integrated Architectures. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 633–647. https://www.usenix.org/

conference/atc20/presentation/zhang-feng

[93] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Wenguang Chen. 2018.

Zwift: A Programming Framework for High Performance Text Analytics on

Compressed Data. In Proceedings of the 2018 International Conference on Super-
computing (Beijing, China) (ICS ’18). Association for Computing Machinery,

New York, NY, USA, 195–206. https://doi.org/10.1145/3205289.3205325

[94] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong Du. 2022.

POCLib: A High-Performance Framework for Enabling Near Orthogonal Pro-

cessing on Compression. IEEE Transactions on Parallel and Distributed Systems
33, 2 (2022), 459–475. https://doi.org/10.1109/TPDS.2021.3093234

[95] Feng Zhang, Chenyang Zhang, Jiawei Guan, Qiangjun Zhou, Kuangyu Chen,

Xiao Zhang, Bingsheng He, Jidong Zhai, and Xiaoyong Du. 2025. Breaking the

Edge: Enabling Efficient Neural Network Inference on Integrated Edge Devices.

IEEE Transactions on Cloud Computing (2025). https://doi.org/10.1109/TCC.

2025.3559346

[96] Yu Zhang, Feng Zhang, Hourun Li, Shuhao Zhang, and Xiaoyong Du. 2023.

CompressStreamDB: Fine-Grained Adaptive Stream Processing without De-

compression. In 2023 IEEE 39th International Conference on Data Engineering
(ICDE). 408–422. https://doi.org/10.1109/ICDE55515.2023.00038

[97] Yu Zhang, Feng Zhang, Hourun Li, Shuhao Zhang, Xiaoguang Guo, Yuxing

Chen, Anqun Pan, and Xiaoyong Du. 2024. Data-Aware Adaptive Compression

for Stream Processing. IEEE Transactions on Knowledge and Data Engineering
36, 9 (2024), 4531–4549. https://doi.org/10.1109/TKDE.2024.3377710

[98] Xin Zhao, Jialin Qiao, XiangdongHuang, ChenWang, Shaoxu Song, and Jianmin

Wang. 2024. Apache TsFile: An IoT-Native Time Series File Format. Proc. VLDB
Endow. 17, 12 (Nov. 2024), 4064–4076. https://doi.org/10.14778/3685800.3685827

[99] Yu Zheng, Xiuwen Yi, Ming Li, Ruiyuan Li, Zhang Shan, Eric Chang, and Tianrui

Li. 2015. Forecasting Fine-Grained Air Quality Based on Big Data. Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2015). https://api.semanticscholar.org/CorpusID:12440971

[100] Yunyue Zhu and Dennis Shasha. 2003. Query by humming: a time series

database approach. In Proc. of SIGMOD. 675.

3420

https://doi.org/10.1007/s11704-024-3937-z
https://doi.org/10.1007/s11704-024-3937-z
https://www.usenix.org/conference/atc20/presentation/zhang-feng
https://www.usenix.org/conference/atc20/presentation/zhang-feng
https://doi.org/10.1145/3205289.3205325
https://doi.org/10.1109/TPDS.2021.3093234
https://doi.org/10.1109/TCC.2025.3559346
https://doi.org/10.1109/TCC.2025.3559346
https://doi.org/10.1109/ICDE55515.2023.00038
https://doi.org/10.1109/TKDE.2024.3377710
https://doi.org/10.14778/3685800.3685827
https://api.semanticscholar.org/CorpusID:12440971

	Abstract
	1 Introduction
	2 Motivation
	2.1 Problem Definition
	2.2 Revisiting Existing Compression Solutions
	2.3 Compressed Time Series Data Direct Processing in Apache IoTDB

	3 Theoretical Framework for Time Series Data
	3.1 Definition of Homomorphic Query on Time Series Data
	3.2 Properties of Homomorphic Query

	4 CompressIoTDB
	4.1 Overview of System Modules
	4.2 Data Structure Module
	4.3 Operator Module
	4.4 Optimization Module

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Evaluation
	5.3 Macro-Benchmark Evaluation
	5.4 Detailed Analysis
	5.5 Discussion on Capability

	6 Conclusion
	Acknowledgments
	References

