
Chimera: Mitigating Ownership Transfers in Multi-Primary
Shared-Storage Cloud-Native Databases

Chunyue Huang
Renmin University of China

Beijing, China
huangcy@ruc.edu.cn

Shuang Liu
Renmin University of China

Beijing, China
shuang.liu@ruc.edu.cn

Xinyi Zhang
Renmin University of China

Beijing, China
xinyizhang.info@ruc.edu.cn

Wenhao Li
Renmin University of China

Beijing, China
ruclwh@ruc.edu.cn

Wei Lu∗
Renmin University of China

Beijing, China
lu-wei@ruc.edu.cn

Xiaoyong Du
Renmin University of China

Beijing, China
duyong@ruc.edu.cn

ABSTRACT
Cloud-native database systems with multi-primary shared-storage
architecture have emerged due to their superior performance over
primary-secondary architecture on write-intensive workload sce-
narios. However, these systems face performance degradation as the
proportion of shared data increases, adversely affecting their Cost-
Performance Ratio (CPR). In this paper, we identify frequent page
ownership transfers between primaries as a key factor contribut-
ing to these performance bottlenecks. To address this challenge,
we propose Chimera, a multi-primary database system that em-
ploys a two-phase transaction scheduling mechanism, combined
with a delay-fetch ownership transfer strategy to effectively re-
duce the overhead of ownership transfers. Extensive experiments
on SmallBank and TPC-C benchmarks demonstrate that Chimera
outperforms existing schedule methods for multi-primary systems,
achieving performance gains of 1.86× ∼19.03× on throughput.

PVLDB Reference Format:
Chunyue Huang, Shuang Liu, Xinyi Zhang, Wenhao Li, Wei Lu,
and Xiaoyong Du. Chimera: Mitigating Ownership Transfers in
Multi-Primary Shared-Storage Cloud-Native Databases. PVLDB, 18(10):
3368-3381, 2025.
doi:10.14778/3748191.3748201

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/HuangDunD/Chimera.

1 INTRODUCTION
Recently, multi-primary architectures for cloud databases have
attracted significant research interest. Compared to traditional
primary-secondary architecture [1, 26, 50], they offer improved
write scalability and fault tolerance, making them well-suited for
write-intensive cloud-native applications. Existing multi-primary

* Wei Lu is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.
doi:10.14778/3748191.3748201

Figure 1: A motivating example. Poor transaction scheduling
leads to frequent page ownership transfers.

architectures can generally be categorized into two types: shared-
nothing and shared-storage. In the shared-nothing architectures
[10, 20, 47, 55], data is partitioned across nodes (also called pri-
maries), with each partition managed exclusively by a single pri-
mary. Transactions involving only one partition are treated as local
transactions and handled directly by the corresponding primary.
However, it faces challenges with cross-partition transaction pro-
cessing, necessitating the two-phase commit (2PC) [6] for consis-
tency, which introduces potential performance bottlenecks.

In the shared-storage architecture [14, 27, 54], data is stored
in the storage layer, and primaries can process any transaction
without restrictions. When a primary 𝑁 handles a read (𝑅(𝑥)) or
write (𝑊 (𝑥)) operation on data item 𝑥 for a transaction 𝑇 , the
process involves these steps: ❶ 𝑂𝑇 (𝑥 .𝑝): Transfer ownership of
the page 𝑥 .𝑝 , where 𝑥 resides, to 𝑁 if it doesn’t already have it. ❷
𝐿𝑇 (𝑥 .𝑝): Acquire the latch on page 𝑥 .𝑝 , ❸ 𝑅(𝑥 .𝑝): Read page 𝑥 .𝑝 , ❹
𝐿𝐾 (𝑥): Acquire a shared (for read) or exclusive (for write) lock on 𝑥 ,
❺𝑅(𝑥)/𝑊 (𝑥): Perform 𝑅(𝑥) or𝑊 (𝑥) on 𝑥 , and ❻𝑈𝐿(𝑥 .𝑝): Release
the latch on page 𝑥 .𝑝 . As page 𝑥 .𝑝 is not bound to any specific
primary, the remote operation 𝑂𝑇 (𝑥 .𝑝) is frequently invoked.

Page ownership transfers are costly in shared-storage archi-
tectures primarily because they require coordination through the
Global Page Lock Manager (GPLM). When a primary 𝑁 requests
ownership of a page 𝑥 .𝑝 via 𝑂𝑇 (𝑥 .𝑝), the GPLM instructs the cur-
rent owner to release it and grants ownership to 𝑁 . This process,
along with synchronizing page data, involves four network round-
trip times (RTTs) (detailed in Section 2). To illustrate, we conduct
an experimental study over the SmallBank benchmark [3] using
the multi-primary architecture implemented in [27]. The results,
reported in Table 1, show that when the ownership transfer rate is

3368

https://doi.org/10.14778/3748191.3748201
https://github.com/HuangDunD/Chimera
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748201
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Effect of ownership transfer on performance.

The Percentage of Ownership Transfers 5% 15% 25% 35% 45%

Throughtput 1.0x 0.37x 0.24x 0.18x 0.15x

45%, the throughput is 85% lower compared to when the transfer
rate is 5%. Experimental results from several commercial systems
have similarly demonstrated a significant decline in performance
as the proportion of shared data increases [14, 27, 54]. This is fun-
damentally attributed to the frequent transfer of ownership.

Existing methods to reduce page ownership transfers primarily
depend on data partitioning, which assigns co-accessed pages to
the same primary(i.e., the pages in this partition have an affinity
with the primary). Transactions are then routed to the primary
that holds most of the pages accessed according to the partition-
ing strategy. However, challenges arise in shared-storage designs
where cross-node page accesses can disrupt consistency between
actual page owners and their affinity-assigned nodes. Specifically,
the existing “first-come, first-served” (FCFS) transaction scheduling
strategy could lead to frequent and substantial transfers of page
ownership among different nodes, a phenomenon we refer to as the
“ping-pong” effect. Take Figure 1 as an example. The pages accessed
by each transaction are marked with slashed rectangles. 𝑃1 and
𝑃2 are assigned to primary 𝑁1 while 𝑃3 and 𝑃4 are assigned to pri-
mary 𝑁2, and transactions are routed to different primaries based
on the assignment. However, the problem of frequent transfers of
ownership has not beenmitigated due to poor scheduling of transac-
tions, resulting in eight ownership transfers. In contrast, a different
scheduling strategy (discussed later in Figure 5) results in only two
ownership transfers. Therefore, we argue that a judicious trans-
action scheduling strategy is crucial for reducing the number
of ownership transfers, yet remains overlooked in existing
literature on multi-primary shared-storage databases.

To further reduce the number of ownership transfers and address
the gaps in existing research, we formally define the transaction
scheduling problem in multi-primary databases. Let 𝑁 .T be the
collection of transactions executed on primary 𝑁 . ∀𝑇 ∈ 𝑁 .T , let
𝑝𝑜𝑡 (𝑇) be the number of pages not owned by node 𝑁 during the
time 𝑁 executes 𝑇 . Given a set of primaries N , the number of
page ownership transfers is quantified as Σ𝑁 ∈N (Σ𝑇 ∈𝑁 .T𝑝𝑜𝑡 (𝑇)).
Intuitively, a primary 𝑁 should retain ownership of its current page
𝑃 as long as possible to process as many transactions routed to
𝑁 accessing 𝑃 before the ownership of 𝑃 is transferred to other
nodes. However, while the intuition reduces the number of page
ownership transfers for 𝑃 , it may make transactions routed to other
nodes accessing 𝑃 to wait for the ownership. Given this dilemma,
we formalize that an ideal transactions scheduling strategy should
maximize database throughput by minimizing the total number of
ownership transfers, Σ𝑁 ∈N (Σ𝑇 ∈𝑁 .T𝑝𝑜𝑡 (𝑇)) while ensuring that
the latency of executing each transaction remains reasonable.

Solving the transaction scheduling problem is non-trivial for
several reasons. First, predicting future transactions is inherently
difficult, making it hard to determine how long a primary should
keep ownership of its pages to avoid the “ping-pong” effect while
preventing blocking on other nodes. For example, it is hard to de-
cide whether a primary 𝑁 should release ownership of 𝑃 when

other nodes need it, as future transactions routed to 𝑁 may access
𝑃 . Second, acquiring page ownership has global effects, causing
transactions on the other primaries to wait. Even worse, in a multi-
primary database, each primary schedules transactions indepen-
dently, without visibility into the transactions scheduled on other
nodes. This lack of coordination makes it more difficult to achieve
global optimization of page ownership transfers.

Given the challenges above, we propose Chimera, a shared-
storage cloud-native database system that adopts a generic multi-
primary design while specifically focusing on solving the transac-
tion scheduling problem without assuming knowledge of future
transactions or having visibility into transactions on other nodes. To
achieve this, Chimera employs a two-phase transaction schedul-
ing (short for 2PS) mechanism, which divides transaction execution
into two alternating phases: the partitioned phase and the global
phase. For clarity, transactions that access pages affiliated with
a single primary are referred to as intra-node transactions, while
transactions accessing pages across multiple primaries are referred
to as inter-node transactions. In the partitioned phase, each primary
retains ownership of pages within its affinity partition, and only
intra-node transactions are scheduled, maximizing the number of
transactions performed on pages already residing in each primary
without ownership transfers. The inter-node transactions are de-
ferred to the global phase for execution. A well-designed switching
mechanism ensures that the latency of transactions stays close to
group commit [15] latency and remains imperceptible to users.

Additionally, we introduce a delay-fetch ownership transfer
(short for delay-fetch) mechanism in the global phase where pri-
maries compete for ownership of pages necessary for processing
inter-node transactions to avoid the “ping-pong” effect. Specifically,
for any operation of node 𝑁 accessing a page 𝑃 owned by other
nodes, the system delays acquiring ownership of 𝑃 until either a
sufficient number of operations targeting 𝑃 have accumulated, or
a predefined timeout is reached. After 𝑁 acquires ownership of
the delayed page 𝑃 , all operations targeting this page during the
delay period can be scheduled within a single ownership cycle,
thereby reducing ownership transfers significantly. To achieve fine-
grained scheduling, we designed a proactive transaction switching
algorithm, ensuring that transaction operations are fully executed
without unnecessary blocking. We leverage coroutines to imple-
ment the suspend-and-resume mechanism of transaction for this
algorithm. The primary contributions are summarized below:
• We identify the frequent page ownership transfer as a primary

factor limiting the performance of multi-primary database sys-
tems in cloud-native shared-storage architectures.

• In order to reduce the frequent page ownership transfer cost, we
introduce Chimera, which employs a novel two-phase transac-
tion scheduling mechanism, eliminating ownership transfers for
intra-node transactions processed in the partitioned phase.

• We propose a delay-fetch ownership transfer mechanism that
groups the operations accessing the same pages, further reducing
the ownership transfers in the global phase.

• We present a theoretical analysis demonstrating that Chimera
effectively reduces the ownership transfer cost. Experimental
results showcase its superior performance and scalability com-
pared to existing scheduling algorithms.

3369

2 BACKGROUND
In this section, we shall describe how primaries correctly read and
write pages in a multi-primary cloud-native database.

2.1 Hierarchical Page Locking Mechanism
In the single-primary database architecture, latch (a local short-
term page lock) is commonly used to prevent other threads from
reading/writing a page while one thread is writing to it. Before
a thread operates on a page, the thread competes for the latch of
this page to ensure that no conflicting operations are performed.
When the system scales to a multi-primary architecture, latches
alone cannot resolve conflicts caused by concurrent operations
from multiple primaries, as a latch is maintained in a primary’s
local memory and is not visible to other primaries. Therefore, the
global page lock is introduced to coordinate the concurrent accesses
to one page by multiple primaries.

Most multi-primary database systems employ a hierarchical
page-lock mechanism to avoid conflicts among multiple primaries
accessing pages concurrently [14, 54]. This model comprises a
Global Page Lock Manager (GPLM), a global component respon-
sible for managing page ownership across primaries, and a Local
Page Lock Manager (LPLM), maintained within each primary to
manage latches among local threads. When a transaction within
a primary needs to read or write a page, the node must hold the
ownership of the page, and then it can compete for the latch. Only
then can the read/write operation be performed.

Figure 2 illustrates an example of two primaries 𝑁1 and 𝑁2,
concurrently accessing pages in a multi-primary architecture. Each
primary maintains its own LPLM and buffer pool. The LPLM keeps
track of the latch and ownership status of pages within the latch
and global lock fields, respectively. The buffer pool caches pages
like most centralized databases [28, 35]. The GPLM is deployed on
a meta server to track the ownership of each page across nodes. For
example, 𝑁1 and 𝑁2 hold the shared ownership of 𝑃1 in Figure 2.
Suppose a transaction on 𝑁2 is attempting to write to 𝑃101. It first
checks with its LPLM and detects that the global lock is 0, indicating
that 𝑁2 does not hold ownership of 𝑃101. Consequently, it must
request the exclusive ownership on 𝑃101 from GPLM (➀) via a
network message. When GPLM receives the request, it tracks that
𝑃101 is now owned by 𝑁1 (indicated by its Lock field), and when
𝑁1 releases the ownership, the GPLM grants ownership of 𝑃101
to 𝑁2 (➃) and informs 𝑁2 of the successful ownership granting,
accompanied by the page validity information of 𝑃101 from GVT
(➄), which will be described in detail in the next subsection.

There are two strategies for releasing the ownership of a page.
A straightforward strategy is to release ownership as soon as the
primary no longer needs the page, which we refer to as Eager-
Release in this paper. For example, when a transaction releases
its latch on 𝑃101(➁), it checks the reference of 𝑃101 indicating the
number of pending read/write operations on 𝑃101 within the node.
If the reference count reaches zero, 𝑁1 releases the ownership of
𝑃101 back to GPLM(➂-a) instantly. Another strategy is called Lazy-
Release, where the ownership is not released voluntarily by the
primary holding the ownership of the page. If another primary
requests it, GPLM notifies the current holding node to release the
ownership. For example, assume that before 𝑁2 requests ownership

Figure 2: Concurrent page access in multiple primaries.

of 𝑃101, 𝑁1 releases the latch on 𝑃101 and the reference count of 𝑃101
drops to zero. At this point, the ownership of 𝑃101 on 𝑁1 becomes
available for release, but it is still temporarily retained by 𝑁1. If 𝑁1
reads/writes 𝑃101 again, 𝑁1 can compete for the latch directly with-
out acquiring ownership from GPLM.When 𝑁2 requests ownership
of 𝑃101 from GPLM, the GPLM receives the request and notifies
𝑁1 to release the ownership on 𝑃101(➂-b). Since Lazy-Release sig-
nificantly reduces the number of remote ownership requests, it is
widely adopted by most systems. Therefore, the discussions in this
paper are based on this strategy.

2.2 Distributed Cache Coherence
When a transaction obtains page ownership and writes to the page,
the corresponding pages in the buffer pools of other nodes become
stale. Distributed cache coherence protocols are used to ensure that
all nodes can access the latest data. Cache coherence is typically
maintained through two main approaches: snooping-based and
directory-based protocols. Snooping-based cache coherence pro-
tocols [2, 38, 43] rely on extensive broadcasting and are well-suited
for buses in multi-core processors. However, in multi-primary sys-
tems where multiple nodes are connected via a network, increasing
nodes significantly raises network overhead due to broadcasting.

In multi-primary cloud-native databases, most systems use the
directory-based cache coherence protocol [27, 54], which keeps
track of the state of cache entities at a designated location known
as the meta server. The nodes access the directory, a structure we
refer to as the Global Valid Table (GVT), to determine whether the
cached entity is invalid. As shown in Figure 2, recall that when 𝑁1
writes 𝑃101 and subsequently releases the ownership of the page,
the cached page of 𝑃101 in the buffer pools of 𝑁2 becomes stale.
Therefore, 𝑁1 clears the set of currently valid nodes in the GVT and
assigns its node id in the Valid field of 𝑃101 when releasing the own-
ership. This makes nodes that access this page later aware that the
latest page is located on 𝑁1. When GPLM grants 𝑁2 the exclusive
ownership of 𝑃101, GPLM sends the set of valid nodes with the latest
of 𝑃101 to 𝑁2 (➄). If 𝑁2 is not included in this set, 𝑁2 synchronizes
the latest page with any valid node (➅). If the valid set is empty,

3370

it means that no primary caches the latest version in its buffer
pool, prompting a synchronization request to be sent to the storage
layer. The process by which a primary requests ownership and is
subsequently granted ownership, along with the synchronization
of the page, is referred to as an ownership transfer.

3 ARCHITECTURE OVERVIEW
Chimera is amulti-primary, cloud-native OLTP database that adopts
the compute-storage disaggregated architecture. As depicted in
Figure 3, Chimera consists of a shared storage layer that stores
data pages and logs, a meta server maintaining the GPLM and
GVT, multiple primaries for transaction execution, a transaction
router for forwarding transactions to primaries, and a coordinator
responsible for scheduling the phase of all nodes and ensuring
fault tolerance. The components of Chimera are interconnected via
TCP/IP-based Local-Area-Network (LAN) within a data center. In
the following, we describe each component of Chimera in detail.
Transaction Router. The transaction router is responsible for re-
ceiving transactions from clients on the fly and routing them to
a primary for processing. To enable efficient transaction routing,
Chimera establishes affinity between data and primaries by logi-
cally partitioning the database using range partitioning. Each page
only stores tuples that belong to the same partition. The number
of partitions matches the number of primaries with the partition-
ing strategy defined by users or adaptive workload-aware meth-
ods [12, 39, 40, 62]. The router maintains partition meta, where each
partition 𝑃𝑎𝑟𝑖 is uniquely affiliated with a primary 𝑁𝑖 . Upon receiv-
ing a transaction, the router identifies its accessed partitions. If the
transaction accesses only one partition, it is classified as an intra-
node transaction and forwarded to the primary affiliated with this
partition. Conversely, if the transaction spans multiple partitions,
it is classified as an inter-node transaction and forwarded to one
of the primaries associated with the accessed partitions.

Chimera assumes that at least one key in the read/write set is
known, rather than requiring the entire read/write set to be pre-
acknowledged [17, 18, 45, 48, 63]. This design is particularly friendly
to transactions with internal read-write dependencies. The trans-
action router utilizes the exposed keys to determine the partitions
accessed by a transaction. While this may misclassify inter-node
transactions as intra-node transactions, the correctness of the sys-
tem remains unaffected, as explained in Section 4. The transaction
router can scale out without performance bottlenecks.
Coordinator. Chimera proposes a two-phase transaction schedul-
ingmechanism, which divides the system execution into partitioned
phases and global phases, executing in interleaving. The coordina-
tor is responsible for synchronizing phase states across all primaries
and adjusting phase durations in Chimera, as detailed in Section
4. Additionally, it monitors the heartbeat of each primary. In the
event of a primary failure, the coordinator detects the issue and
informs the remaining active nodes to recover and ensure consis-
tency. Further details are provided in Section 7. The coordinator can
be deployed on one or multiple physical machines and maintains
high availability through Paxos or Raft protocols.
Primary nodes. A primary in Chimera can execute any trans-
action and access all database pages. The transaction execution
process in a primary follows the two-phase transaction scheduling

Distributed Shared Storage

Meta Server (GPLM & GVT)

LPLM

Bufferpool

...

T1:W(x);W(y); T2:W(x);W(z);
...

Coordinator

Transaction Router
Phase

Scheduler §4

Heartbeat

Detection §7 Transaction Route

TCP/IP Based Lccal-Area-Network

primary 𝑵𝟏 2PS Mechanism§4

Partitioned phaseGlobal phase

LPLM

Delay-Fetch mechanism §5

Phase Switch

LPLM

Bufferpool

primary 𝑵𝟐

Phase Switch

…

Partition Meta
𝑘𝑒𝑦 ∈ 0,100 :𝑃𝑎𝑟1 → 𝑁1

𝑘𝑒𝑦 ∈ 100,200 : 𝑃𝑎𝑟2 → 𝑁2

Figure 3: The architecture of Chimera.

mechanism, which transits between the partitioned phases and
global phases interleavingly (detailed in Section 4). The primary
executes transactions using the MV2PL [5, 16] protocol, a variant
of the MVCC [53] protocol, and each tuple in pages maintains the
row lock. When a transaction has taken ownership and latch of
a page, and is going to read or write a tuple, it acquires the row
lock on this tuple. If another transaction already holds the row
lock, the system follows a No-Wait deadlock prevention policy [4],
immediately aborting the transaction. The row lock is held until the
transaction is committed. Additionally, each primary maintains a
local page lock manager (LPLM), which manages the latches of the
node. Chimera introduces a delay-fetch ownership transfer mecha-
nism to reduce the ownership transfer frequency during the global
phase, which is detailed in Section 5.
Meta Server. To manage page ownership and ensure cache coher-
ence, Chimera employs a meta server and includes the global page
lock manager (GPLM) and the global valid table (GVT), as described
in Section 2. The meta server can be distributed by partitioning the
metadata. As metadata updates are performed alongside ownership
transfers during transaction execution, rather than at the granular-
ity of entire transactions, the updates do not involve cross-partition
operations. This design enables the meta server to scale out without
introducing coordination overhead.
Distributed Shared Storage. The shared storage pool comprises
nodes equipped with high-capacity SSDs, providing data access
interfaces for primaries. Chimera ensures high availability by main-
taining multiple replicas and employing Paxos [25] or Raft [37]
protocols for data replication. Following the Log is the database
principle [50], primaries persist write-ahead logs (WALs) to the
storage layer before committing transactions. Storage nodes asyn-
chronously replay these logs to update pages, minimizing network
I/O by avoiding direct page flushing.

Similar to many high-performance transactional databases [33,
44, 60], Chimera is primarily designed for stored procedure-based
transactions, though it also supports long-running and interactive
transactions, as explained in Section 4.4. Chimera defaults to seri-
alizable isolation and also supports read-committed isolation. The
brief proof of serializability is provided in Section 7.1.

3371

Figure 4: Chimera divides the system into the partitioned
phase and the global phase

4 TWO-PHASE TRANSACTION SCHEDULING
MECHANISM

This section explains how the two-phase transaction scheduling
(2PS) mechanism in Chimera helps reduce ownership transfers be-
tween intra-node and inter-node transactions. Chimera divides the
system into two alternating phases: the partitioned phase and the
global phase, with the system starting in the partitioned phase.
Algorithm 1 describes the detailed steps of our 2PS algorithm. Each
primary in Chimera includes a phase-switching thread to man-
age transitions between two phases and multiple worker threads
responsible for executing transactions. The two phases last for
dynamically determined durations, with the partitioned phase run-
ning for 𝑡𝑝 ms and the global phase for 𝑡𝑔 ms, as detailed in Section
4.3. Upon startup, the primary initializes its resources and the phase-
switching thread notifies the coordinator of its readiness to enter
the partitioned phase (line 4). Once all primaries report readiness,
the coordinator responds to the sysEpoch function and signals
them to commence the partitioned phase.

4.1 Partitioned Phase
Receiving the coordinator’s message indicates that each primary
is allowed to enter the partitioned phase. Before execution, each
primary requests from the GPLM to acquire ownership of all pages
indicated by its affinity partition yet it does not currently own. At
the same time, it requests from the GVT the set of pages that have
already been invalidated within its partition (line 5). After that, the
node transitions its state to 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑 (line 6) and can read and
write to pages within its affinity partition freely. Worker threads
detect this state change and begin executing transactions (line 23).

During the partitioned phase, the primary processes only intra-
node transactions, similar to shared-nothing systems handling non-
distributed transactions. If a transaction, incorrectly identified by
the router, accesses a page outside its affinity partition, it is aborted
and deferred for re-execution in the global phase. As shown in the
Figure 4, pages 𝑃1 and 𝑃2 (blue) are affiliated with 𝑁1, while 𝑃3
and 𝑃4 (green) are affiliated with node 𝑁2. During the partitioned
phase, 𝑁1 executes transactions that only access 𝑃1 and 𝑃2 (e.g., 𝑇1,
𝑇5, 𝑇10), whereas other transactions (e.g., 𝑇3, 𝑇8) are deferred to the
global phase for execution.

Since the logical partitions handled by each primary are non-
overlapping, there are no page conflicts between nodes during the
partitioned phase. This allows primaries to execute transactions

Algorithm 1: 2PS Mechanism
1 Function PhaseSwitchThread():
2 𝑒𝑝𝑜𝑐ℎ_𝑖𝑑 ← 0, node.phase← 𝑝ℎ𝑎𝑠𝑒 :: 𝑖𝑛𝑖𝑡 ;
3 while node.is_running do
4 𝑒𝑝𝑜𝑐ℎ_𝑖𝑑 ← sysEpoch (𝑒𝑝𝑜𝑐ℎ_𝑖𝑑) ; // sys all nodes

5 invalid_page_set← requestPagesInPartition ();
6 node.phase← 𝑝ℎ𝑎𝑠𝑒 :: 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑 ;
7 sleep(𝑡𝑝) ; // run intro-node txns for 𝑡𝑝 ms

8 node.phase← 𝑝ℎ𝑎𝑠𝑒 :: 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔;
9 waitAllWorkersStop ();

10 𝑒𝑝𝑜𝑐ℎ_𝑖𝑑 ← sysEpoch (𝑒𝑝𝑜𝑐ℎ_𝑖𝑑);
11 node.phase← 𝑝ℎ𝑎𝑠𝑒 :: 𝑔𝑙𝑜𝑏𝑎𝑙 ;
12 sleep(𝑡𝑔) ; // run inter-node txns for 𝑡𝑔 ms

13 node.phase← 𝑝ℎ𝑎𝑠𝑒 :: 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔;
14 waitAllWorkersStop ();
15 releasePagesOutPartition ();
16 end
17 return
18 Function WorkerThread():
19 while node.is_running do
20 if node.phase = 𝑝ℎ𝑎𝑠𝑒 :: 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 then
21 stopThisThread ();
22 else if node.phase = 𝑝ℎ𝑎𝑠𝑒 :: 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑 then
23 runIntraNodeTxns () ; // exec a intra-node txn

24 else if node.phase = 𝑝ℎ𝑎𝑠𝑒 :: 𝑔𝑙𝑜𝑏𝑎𝑙 then
25 runInterNodeTxns () ; // exec a inter-node txn

26 end
27 end
28 return

locally without requiring page ownership transfers or encountering
newly generated page invalidations. During this phase, when an
intra-node transaction accesses a page, it does not need to check the
global lock field in the LPLM. Instead, it only verifies whether the
page is in the invalidated set. If it is, the primary synchronizes the
page to the latest version, removes it from the invalidated set, and
then competes for the latch to perform read or write operations us-
ing theMV2PL protocol. Notably, the invalidated set allows pages to
be synchronized only when necessary, which reduces unnecessary
data page transfer overhead.

After running the partitioned phase for 𝑡𝑝 milliseconds, the
phase-switching thread transitions the phase state to switching
(line 8) and waits for all worker threads to complete their current
transactions (line 9). Once the worker threads finish their ongoing
transactions, they pause and wait for the system to transition to
the next phase (line 21).

4.2 Global Phase
Once the coordinator receives readinessmessages from all primaries
to enter the global phase, it notifies them to start the global phase
(line 11). Any transactions, including those initially marked as
inter-node transactions by the router or identified as a inter-node
transaction during execution in the partitioned phase, are handled

3372

during the global phase. Unlike the partitioned phase, primaries in
this phase can access any page across all logical partitions. At the
start of the global phase, primaries only own the pages within their
affinity partition. As shown in Figure 4, both 𝑁1 and 𝑁2 can process
transactions that operate on any partitions during the global phase.
When 𝑇4 needs to access 𝑃1, it checks the global lock status of 𝑃1
in the LPLM on 𝑁2. Since 𝑇3 on 𝑁1 has just written 𝑃1 and holds
ownership, 𝑁2 must request GPLM to transfer exclusive ownership
of 𝑃1 from 𝑁1 and synchronize the page. After that,𝑇4 writes tuples
on 𝑃1. Subsequently, both 𝑇8 and 𝑇7 follow the same process to
write 𝑃1. When the global phase runs for 𝑡𝑔 milliseconds and all
worker threads have stopped, the primary releases ownership of all
locally held pages outside its partition and updates the GVT table
if it was operated during the ownership period (line 15).

The 2PS mechanism eliminates the ownership transfers for intra-
node transactions, as the ownership of pages accessed by these
transactions does not transfer during the partitioned phase. As
shown in Figure 1, eight ownership transfers occur during the
execution of ten transactions. However, in Figure 4, intra-node and
inter-node transactions do not interfere with each other, resulting
in only four ownership transfers.

4.3 Dynamic Phase Durations
In Chimera, the durations of the partitioned phase (𝑡𝑝 ms) and the
global phase (𝑡𝑔 ms) are dynamically determined, while the total
iteration time remains fixed. As shown in Equation 1, the partitioned
phase and the global phase each constitute an epoch, and their
combined durations form the iteration time, denoted as 𝑒 . The value
of 𝑒 is adjustable and can be configured by users. Its default value is
aligned with the group commit interval set by the system, such as
the binlog_group_commit_sync_delay parameter in MySQL. Group
commit is a strategy commonly adopted by most databases [15],
where a group of transactions in a specified interval is delayed and
committed in batch, amortizing the cost of flushing Write-Ahead
Log (WAL). This ensures the blocking time for most transactions
remains below or near the group commit latency, preventing a
noticeable increase in perceived latency.

𝑡𝑝 + 𝑡𝑔 = 𝑒 (1)
𝛼𝑝𝑡𝑝

C −
𝛼𝑔𝑡𝑔

1 − C = 0 (2)

The coordinator in Chimera periodically collects each primary’s
throughput in the partitioned phase, 𝛼𝑝 , and in the global phase, 𝛼𝑔 ,
as well as the ratio of intra-node transactions, C. Thesemetrics allow
the coordinator to calculate and communicate the appropriate dura-
tions for both phases to all primaries according to Equation 2. The
principal goal is to align the ratio of transactions executed in the two
phases with the actual workload distribution. This minimizes the
risk of certain transactions being deferred across multiple epochs
before execution. Phase switching in the system is a strongly syn-
chronized operation among primaries. However, since each phase
typically lasts hundreds of milliseconds, the switching overhead has
minimal impact on system performance. Note that transactions are
assumed to arrive randomly and uniformly, with any transaction
being executed before the end of the subsequent phase. Thus, the
latency of transactions between partitioned and global phases is

symmetric. To reduce logging overhead, Chimera adopts the group-
commit approach, where at the end of each partitioned and global
phase, all transactions from that epoch are committed across all
partitions. Therefore, the expected transaction latency is 1

2𝑒 .

4.4 Support for Long-Running Transactions
Chimera supports both long-running stored procedures and interac-
tive transactions that may span multiple phases. When the system
enters the phase::switching state, denoted as 𝑡𝑠 , worker threads are
granted additional time, 𝑡Δ, to complete ongoing transactions. The
duration is approximately the execution time of a short transaction,
ensuring that most short transactions can finish within 𝑡𝑠 +𝑡Δ. After
this moment, any remaining transactions are then suspended and
resume only when the corresponding phase begins in the next cycle.
Transactions in the next phase that access tuples held by suspended
transactions will abort, avoiding system blocking. This behavior is
inherent under the default No-Wait deadlock prevention strategy.
When extended to Wait-Die, each primary can broadcast its list
of suspended transactions during the phase switch, enabling each
primary to recognize transactions suspended on other nodes.

We implement the suspend-and-resume mechanism using corou-
tines. Each thread contains two coroutines: 𝐶𝑜𝑟𝑜0 handles intra-
node transactions during the partitioned phase, while another corou-
tine,𝐶𝑜𝑟𝑜1, processes transactions in the global phase. Phase checks
are inserted at the end of page operations. If the current time ex-
ceeds 𝑡𝑠 + 𝑡Δ, the worker thread halts the execution and signals its
readiness to transition to the next phase. In the subsequent phase,
the worker thread switches to another coroutine to execute transac-
tions. The previously suspended coroutine resumes processing after
the next transition. Notably, in the next section, we use multiple
coroutines,𝐶𝑜𝑟𝑜1..𝑛 , to process transactions during the global phase.
Similarly, the system transitions to the next phase and switches to
𝐶𝑜𝑟𝑜0 only when all coroutines, 𝐶𝑜𝑟𝑜1..𝑛 , are suspended.

5 DELAY-FETCH OWNERSHIP TRANSFER
MECHANISM

Although the 2PS mechanism eliminates the transfer of ownership
for intra-node transactions, frequent transfers remain noticeable
during the global phase. As illustrated in Figure 4, transactions 𝑇3,
𝑇4,𝑇8, and𝑇7 alternately access 𝑃1 between two primaries, resulting
in three ownership transfers.

To address this issue, Chimera incorporates a delay-fetch own-
ership transfer mechanism, which delays the timing of fetching a
page to further reduce the frequency of ownership transfers. Specif-
ically, when a primary encounters a page ownership miss while
processing transactions, Chimera does not instantly request the
ownership from the GPLM. Instead, the request is added to a re-
quest set, which is maintained by each primary and shared among
its worker threads. The deferred transaction sends its ownership
request to the GPLM when the number of accumulated requests
reaches a certain threshold or a timeout occurs. This approach
leverages the delay window to group more transactions operating
on the same page, ensuring that these operations can be completed
within a single ownership cycle.

The delay-fetch mechanism operates during transaction execu-
tion, making it challenging to yield the CPU and efficiently handle

3373

Algorithm 2:Delay-Fetch Ownership Transfer Mechanism
1 Function LockPage(lock_mode):
2 𝑒𝑛𝑡𝑒𝑟, 𝑙𝑜𝑐𝑘_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝑓 𝑎𝑙𝑠𝑒;
3 while ¬𝑒𝑛𝑡𝑒𝑟 do
4 if 𝑖𝑠_𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑_𝑟𝑒𝑙𝑒𝑎𝑠𝑒 then Yield () ;
5 else
6 𝑒𝑛𝑡𝑒𝑟 ← 𝑡𝑟𝑢𝑒;
7 𝑟𝑒 𝑓 ← 𝑟𝑒 𝑓 + 1 ;
8 end
9 end

10 while ¬𝑙𝑜𝑐𝑘_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 do
11 if global_lock covers lock_mode then
12 𝑙𝑜𝑐𝑘_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← LockLocal ();
13 if lock_success then 𝑟𝑒 𝑓 ← 𝑟𝑒 𝑓 - 1 ;
14 else
15 if ¬𝑖𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑠𝑒𝑡 then
16 𝑡𝑠_𝑑𝑑𝑙 ← 𝑡 .𝑛𝑜𝑤 () + 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ;
17 𝑖𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑠𝑒𝑡 ← true;
18 else if 𝑟𝑒 𝑓 > 𝑟𝑒 𝑓𝑡ℎ𝑜𝑙𝑑 or 𝑡 .𝑛𝑜𝑤 () > 𝑡𝑠_𝑑𝑑𝑙 then
19 LockRemote () ;
20 else Yield () ;
21 end
22 end
23 return

other transactions during the delay period. Traditional techniques
rely on an excessive number of worker threads (e.g., 256 worker
threads on a 12-core CPU) and the operating system controlled
schedule, potentially leading to excessive and random thread con-
text switching and significantly degrading system performance. To
address this, we designed a proactive transaction-switching algo-
rithm to ensure efficient system operation during the delay period.

Algorithm 2 describes how a transaction acquires the page lock
when accessing a page under the delay-fetch mechanism. When
accessing a page, the transaction calls LockPage() (line 1) with the
desired lock mode (e.g., shared or exclusive). First, it initializes two
key variables: 𝑒𝑛𝑡𝑒𝑟 , indicating whether the operation can proceed,
and 𝑙𝑜𝑐𝑘_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 , tracking lock acquisition status (line 2). If the
page has not yet been notified to release ownership, the operation
proceeds to the locking process and increases the page counter, 𝑟𝑒 𝑓
(lines 5–7). Next, the algorithm checks whether the current node has
held the corresponding ownership (line 11), if so, it attempts to grant
the latch locally (line 12). Upon success, the page counter 𝑟𝑒 𝑓 of the
corresponding page is decremented (line 13). Otherwise, it needs to
acquire global page ownership from the GPLM. If the page is not yet
in the request set, the transaction adds it to the set and calculates
the timeout threshold, 𝑡𝑠_𝑑𝑑𝑙 (lines 15-17) for this request. If the
page is already in the request set, the transaction checks whether
𝑟𝑒 𝑓 has reached the threshold, 𝑟𝑒 𝑓𝑡ℎ𝑜𝑙𝑑 , or the current time has
exceeded 𝑡𝑠_𝑑𝑑𝑙 . If either condition is met, a remote lock request is
issued (lines 18-19). Otherwise, we proactively perform a context
switch (i.e. Yield()) to process another transaction (line 20).

To prevent starvation, if other nodes request ownership of this
page (𝑖𝑠_𝑛𝑜𝑡𝑖 𝑓 𝑖𝑒𝑑_𝑟𝑒𝑙𝑒𝑎𝑠𝑒 = 𝑇𝑟𝑢𝑒), further locking attempts from

Figure 5: Chimera utilizes the delay-fetch mechanism to re-
duce ownership transfers further.

this node on the page are not permitted during the current own-
ership cycle. The algorithm switches to the next transaction to
process (line 4). This step is necessary because other active trans-
actions will not resume execution unless we proactively switch.
A potential deadlock scenario occurs when a suspended transac-
tion has acquired page ownership but has not resumed. If another
node subsequently requests the page, the request is blocked since
ownership is only released when 𝑟𝑒 𝑓 reaches zero.
Implementation. To implement this proactive transaction switch-
ing algorithm, we leverage coroutines to suspend and resume trans-
actions. Specifically, we allocate multiple coroutines, 𝐶𝑜𝑟𝑜1..𝑛 , for
each worker thread, with each coroutine bound to a transaction exe-
cution function. Within a worker thread, these coroutines are orga-
nized in a circular linked list. The collaboration of these coroutines
is managed by a coroutine scheduler. When a transaction switch is
triggered, the current coroutine yields to the next coroutine in the
list, ensuring that all transactions have an equal opportunity to be
scheduled. Notably, the Yield() process in the algorithm aligns per-
fectly with the coroutine switching interface (i.e. yield(fun())),
making the implementation surprisingly seamless.

Example 5.1. Figure 5 provides a concrete example of the delay-
fetch mechanism. During the global phase, 𝐶𝑜𝑟𝑜1 on 𝑁2 begins
executing 𝑇4, which first attempts to write to 𝑃1. However, as 𝑁2
does not currently hold ownership of 𝑃1, 𝐶𝑜𝑟𝑜1 performs a context
switch (i.e., yield) and adds 𝑃1 to the local request set instead of
immediately issuing a remote request. The coroutine scheduler
then switches to 𝐶𝑜𝑟𝑜2 to process 𝑇7. Since 𝑁2 holds ownership of
𝑃4, 𝑇7 locks the target tuple and updates it. Later, 𝑇7 also attempts
to write to 𝑃1, but since 𝑃1 is already in the request set and has
not timed out, the scheduler switches back to 𝐶𝑜𝑟𝑜1. When 𝐶𝑜𝑟𝑜1
resumes, it finds the ownership request for 𝑃1 has timed out and
issues a request to the GPLM. Once ownership of 𝑃1 is acquired, 𝑇4
attempts to write 𝑃1 and 𝑃4. If the target tuple is locked by another
transaction, 𝑇4 follows the No-Wait policy and aborts to ensure
serializability. After 𝑇4 finishes, the scheduler switches back to
𝐶𝑜𝑟𝑜2 to process its 𝑃1 operation in𝑇7. Ownership of 𝑃1 is retained
until both transactions complete their operations on it.

□

Conditional Delay. The delay-fetch mechanism has two poten-
tial problems. First, the delay-fetch mechanism does not benefit
all pages uniformly. For instance, delaying access to "cold" pages

3374

may fail to group subsequent transactions targeting the same page.
Second, setting an excessively high threshold for the expected refer-
ence count or timeout can cause all coroutines in a worker thread to
enter a delayed state, leading to CPU idling. To address these chal-
lenges, Chimera employs a conditional delay strategy. Specifically,
each primary periodically collects page access frequency statistics
and identifies the topH most frequently accessed pages to apply
the delay-fetch mechanism. The reference threshold is set toK , and
the timeout value is determined empirically. Assuming a primary
hasW worker threads, each equipped with Q coroutines.

H · K −W · (Q − 1) ≤ 0 (3)

Equation 3 provides the relationship governing this process. The
maximum number of transactions managed by the coroutines isW·
Q, while the maximum number of transactions triggering the delay-
fetch mechanism isH · K . This equation ensures that, under most
conditions, at leastW transactions will not enter the delay state,
allowing the system to receive and process transactions consistently.
Meanwhile, the conditional delay mechanism selectively applies the
delay-fetch strategy to hot pages, ensuring that delaying ownership
acquisition for these pages is generally beneficial.

6 ANALYSIS OF OWNERSHIP TRANSFERS
REDUCTION

In this section, we analyze the reduction in ownership transfers
achieved by the 2PS and delay-fetch mechanism. Consider a system
with N primaries (𝑁1...𝑛). For a given page 𝑃𝑖 , letM denote the
total number of operations performed on 𝑃𝑖 within one iteration.
The proportion of intra-node transactions is C, and for inter-node
transactions, each primary accesses 𝑃𝑖 with equal probability.

Assume 𝑃𝑖 has an affinity with node 𝑁1. Operations by an intra-
node transaction on 𝑃𝑖 at 𝑁1 are denoted as 𝑁 P1 , while those per-
formed by an inter-node transaction at any node 𝑁𝑖 are denoted
as 𝑁 G

𝑖
. The sequence of operations on 𝑃𝑖 can be represented as:

[𝑁 P1 , 𝑁
G
2 , 𝑁

G
1 , 𝑁

G
3 , . . .]. Two operations are considered an owner-

ship transfer if they are adjacent but executed on different nodes.
As a result, (C + 1−C

N)M represent the number of operations on
𝑃𝑖 performed by𝑁1, whichwe abbreviate as𝑂1, and (1−C) (N−1)𝑁

M
denote the total operations by 𝑁2...𝑛 , denoted as𝑂2...𝑛 . We evaluate
the worst-case scenario for different scheduling strategies.

FCFS Scheduling.

• Case 1: 𝑂1 ≥ 𝑂2...𝑛 . In this arrangement, the worst schedule
occurs when the operations of 𝑁 G2...𝑛 alternate with those of
𝑁 P1 and 𝑁 G1 . The sequence of operations follows the pattern
[𝑁 P1 , 𝑁

P
1 , 𝑁

G
2 , 𝑁

G
1 , 𝑁

G
3 , 𝑁

P
1 , . . .]. Therefore, the number of

ownership transfers is approximately:

TFCFS =
2(1 − C)(N − 1)

N · M (4)

• Case 2:𝑂1 < 𝑂2...𝑛 . In this case, since the probabilities of each
primary accessing 𝑃𝑖 in inter-node transactions are equal, the
number of nodes satisfies N ≥ 3. Under worst-case schedul-
ing, the operation sequence can alternate sequentially among
𝑁2...𝑛 , like [𝑁 G2 , 𝑁

G
3 , . . . , 𝑁

G
𝑛 , 𝑁

G
2 , . . .]. And then𝑁

P
1 and𝑁 G1

operations are interspersed within this sequence. This implies
that each consecutive operation triggers an ownership transfer.
Hence, the total number of ownership transfers is given by:

TFCFS = (C +
1 − C
N)M + ((1 − C)(N − 1)N)M =M (5)

Add 2PS Scheduling. With the introduction of the 2PS mechanism,
ownership transfers for 𝑁 P1 are eliminated entirely. To simplify the
analysis, we disregard minor ownership operations that may occur
during phase transitions. For 𝑁 G1 , . . . , 𝑁

G
𝑁
, the worst-case scenario

resembles Case 2 under the FCFS scheduling strategy, where own-
ership rotates sequentially among all primaries. Consequently, the
total number of ownership transfers can be expressed as:

T+2PS = (1 − C)M (6)

Add Delay-Fetch Scheduling. When the delay-fetch mechanism is
further introduced, for operations 𝑁 G1 , . . . , 𝑁

G
𝑁
, we assume that the

coroutine mechanism captures up to K operations accessing the
same page. Thus, within a single ownership cycle, the minimum
number of operations that can be executed is K . Consequently, the
number of ownership transfers can be expressed as:

T+2PS+delay-fetch =
(1 − C)M
K , (𝐾 ≥ 1) (7)

Based on the above formula, we derive the following inequality:

TFCFS ≥ T+2PS ≥ T+2PS+delay-fetch (8)

This theoretically demonstrates that the 2PS and delay-fetch mech-
anism can separately reduce the number of ownership transfers.

7 DISCUSSION
7.1 Correctness
Physical consistency. In Chimera, primaries must hold page own-
ership and synchronize pages to the latest before read/write opera-
tions, ensuring the physical consistency of serializing page modifi-
cations among primaries. At the end of global phases, pages that do
not belong to the affinity partition of the primary are released and
GVT is updated, with the coordinator ensuring strong synchroniza-
tion of phase transitions. During the partitioned phase, primaries
exclusively own pages and retrieve the set of invalid pages from
GVT within their partitions, restricting access by other nodes. In
the global phase, primaries access the GPLM and GVT to acquire
ownership and valid information for pages they do not own and
update them upon releasing ownership. Since all operations on
any page are completed within a single phase, Chimera ensures
physical consistency even for long-running transactions.
Serializability Both the partitioned and global phases employ the
MV2PL concurrency control algorithm which guarantees serializ-
ability. The serial order of transactions corresponds to the order in
which row locks are acquired. In the global phase, the ownership
acquisition is delayed, but transactions do not acquire row locks
until they have obtained page ownership, thereby it does not affect
the serializable scheduling of transactions.

3375

7.2 Fault Tolerance
Leveraging the multi-primary architecture, Chimera can continue
processing transactions on the remaining live primaries even if
some nodes fail. The coordinator tracks the status of all primaries
within the cluster. Upon detecting a node failure, the system redis-
tributes the pages of the logical partition owned by the failed node
to active nodes and updates the router accordingly.

For page ownership held by a failed node, the GPLM periodi-
cally monitors and proactively releases ownership, enabling other
primaries to re-acquire it as needed. Chimera employs the WAL
logging technique, utilizing the Logical Log Sequence Number
(LLSN) [54], to establish a partial order for logs related to the same
page across different primaries. Redo/Undo logs are forced to flush
at two critical points. First, logs are flushed to disk before transac-
tions are committed. If a primary caching the latest page fails, other
primaries can replay committed transactions using the redo log.
Second, when a primary releases page ownership or evicts a page
from the buffer pool, any relevant redo/undo logs must be flushed
to disk. This process ensures that, before any primary modifies a
page, all previous logs of changes made by other nodes to that page
have been safely persisted. In the event of a node failure, the surviv-
ing primaries can use the LLSN to undo uncommitted transactions
from the failed node, thus maintaining database consistency.

8 EVALUATION
8.1 Experimental Setup
8.1.1 Setup. We evaluate our system on nine machines in an En-
hanced Data Rate (EDR) cluster. Eight nodes serve as primaries,
each equipped with 16-core 2.30 GHz virtual Intel(R) Xeon(R) Gold
5218 CPUs and 40GB of DRAM. An additional node, equipped with
32 cores of the same CPU model and 80GB of DRAM, is used to
deploy the GPLM, GVT, and storage services. The network between
nodes delivers over 10 Gbits/s throughput as measured using iperf.
The nodes communicate via bRPC[7]. Boost.coroutine2 from Boost
1.63.0 is used to manage coroutines. In our experiment, we deploy
12 worker threads on each node.

8.1.2 Workloads. We evaluate our algorithms using two widely-
used OLTP benchmarks, Smallbank [3] and TPC-C [49].
Smallbank. SmallBank is a popular benchmark for evaluating
OLTP systems. It simulates a banking environment with opera-
tions typical of financial transactions and consists of five primary
transactions. In our evaluation, we set the number of accounts to
300,000, some of which are designated as hotspots. The proportion
of hotspot accounts is adjustable, while their access frequency is
fixed at 80%. Real-world workloads often exhibit spatial locality
in data access patterns [13, 42]. To simulate this characteristic, we
prioritize placing hot data items on the same page by default. Under
this layout, the range of hotspot items and hotspot pages is roughly
equal. Hotspot pages are evenly distributed across primaries.
TPC-C. The TPC-C workload is a well-established benchmark de-
signed to evaluate the performance of OLTP systems. It consists of
nine tables and five kinds of transactions, simulating a warehouse-
centric order processing application. In our experiments, we follow
the standard transaction mix as defined by the TPC-C benchmark,
with the number of warehouses set to 48. We adjust the default ratio

of remote accesses to vary the proportion of intra-node transactions.
Following the settings of existing work [19, 47, 54], we assume that
our evaluation is performed under load balancing across primaries;
otherwise, dynamic repartitioning techniques [12, 39, 46, 62] can
be used to adjust the affinity between data and primaries.

8.1.3 Multi-Primary systems. To enable fair comparison, we im-
plemented the following multi-primary systems in C++ within a
unified code framework. We process transactions using the read-
committed isolation level across all methods.
Eager-Release: This strategy is the most straightforward page
ownership acquisition algorithm in shared-storage multi-primary
systems. The primary requires ownership from GPLM before oper-
ations and reverts it back to GPLM once no longer needed.
Lazy-Release: This strategy is employed by PolarDB-MP and Tau-
rus MM. Instead of immediately releasing ownership when the
primary is not actively operating on the pages, ownership is re-
tained until another primary requests it. Both the Eager-Release and
Lazy-Release strategies employ the FCFS scheduling algorithm.
Two-Phase Commit (2PC): 2PC is an atomic commit protocol
for shared-nothing architectures. To ensure a fair comparison, we
decouple the system into compute and storage layers. Each primary
exclusively accesses a data partition. In distributed transactions, the
coordinator forwards remote read/write operations to the relevant
primary and commits the transactions using 2PC.
Leap: Leap [29] follows a design philosophy similar to Lazy-Release,
acquiring ownership only when a miss occurs. However, unlike
Lazy-Release, Leap acquires ownership at the tuple level rather than
pages. Additionally, it maintains only exclusive ownership globally,
without shared ownership.
Chimera: This is the system proposed in this paper, as described in
Sections 3 and 4. In Chimera, the iteration duration is configured
to be 100 ms, and each worker thread has 16 coroutines. Further
details will be provided in Section 8.4.

8.2 Performance Comparison
8.2.1 Throughput of each approach. We first compare Chimera
with standard approaches using SmallBank and TPC-C workloads,
varying the percentage of intra-node transactions. We report the
throughput of committed transactions in Figures 6(a)-(d). For Small-
Bank, as the proportion of intra-node transactions increases, the
performance of all methods except Eager-Release improves, with
Chimera consistently leading. At the 10% intra-node transaction
ratio, Chimera achieves 2.16x throughput of Lazy-Release under a
1% hotspot range. However, for 10% and 100% hotspot ranges, the
improvement is less pronounced, as only 10% intra-node transac-
tions limit the reduction in ownership transfers. In contrast, for
highly concentrated hotspots, the delay-fetch mechanism captures
more same-page accesses, resulting in greater performance gains.

Once the intra-node transaction ratio exceeds 30%, Chimera out-
performs all other systems across hotspot ranges, achieving 1.33-
3.38x higher throughput than Lazy-Release. The peak gain appears
at the 1% hotspot ratio and 50% intra-node transactions, where 2PS
and delay-fetch jointly contribute. Notably, Chimera performs even
better than under dispersed hotspots, as delay-fetch becomes more
effective in concentrated access. Leap achieves 1.48–1.80x Lazy-
Release’s performance at the 1% hotspot range but remains similar

3376

 Leap Chimera

% of intra-node transactions
10 30 50 70 90

0

50

100

150

200

250

300

T
h
ro

u
g
h
p
u
t
(K

T
P

S
)

% of intra-node transactions

(b) SmallBank Hotspot Range=10% (c) SmallBank Hotspot Range=100%

10 30 50 70 90

0

10

20

30

40

50

60

(a) SmallBank Hotspot Range=1%

T
h
ro

u
g
h
p
u
t
(K

T
P

S
)

% of intra-node transactions

Figure 6: Performance comparison of each approach on SmallBank and TPC-C

10 30 50 70 90

1%

10%

100%

P
e
rc

e
n
ta

g
e
 o

f
O

w
n
e
rs

h
ip

 T
ra

n
s
fe

rs

% of intra-node transactions

10 30 50 70 90

1%

10%

100%

P
e
rc

e
n
ta

g
e
 o

f
O

w
n
e
rs

h
ip

 T
ra

n
s
fe

rs

 Eager-Release Lazy-Release Leap Chimera

% of intra-node transactions% of intra-node transactions

10 30 50 70 90

1%

10%

100%

P
e
rc

e
n
ta

g
e
 o

f
O

w
n
e
rs

h
ip

 T
ra

n
s
fe

rs

(b) SmallBank Hotspot Range=10% (c) SmallBank Hotspot Range=100%

10 30 50 70 90

1%

10%

100%

P
e
rc

e
n
ta

g
e
 o

f
O

w
n
e
rs

h
ip

 T
ra

n
s
fe

rs

% of intra-node transactions

(a) SmallBank Hotspot Range=1% (d) TPC-C

Figure 7: Percentage of ownership transfers of each approach on SmallBank and TPC-C

otherwise, benefiting from tuple-level ownership granularity that
reduces contention. Eager-Release suffers from high network over-
head and limited scalability due to immediate ownership release.
While 2PC scales better, its two-phase communication incurs higher
overhead than Lazy-Release. Overall, Chimera delivers performance
improvements ranging from 1.86x to 19.03x over Eager-Release and
2PC. Under TPC-C, the New Order transactions dominate and fre-
quently update the District table, leading to a high frequency of
ownership transfers. Since Leap enforces exclusive ownership for
all accesses, even for reads, it underperforms Lazy-Release. Across
various intra-node transaction ratios, Chimera demonstrates signif-
icantly better performance than the baseline systems, achieving up
to 3.17x the throughput of Lazy-Release, 8.93x that of 2PC, 9.24x
that of Leap, and 13.31x that of Eager-Release.

8.2.2 Percentage of ownership transfers of each approach. Since
2PC does not involve ownership transfers, we compare the percent-
age of ownership transfers among Eager-Release, Lazy-Release, Leap,
and Chimera, as shown in Figure 7(a)-(d). Eager-Release requests
ownership from the GPLM and releases it immediately, resulting in
an almost 100% transfer ratio. Under SmallBank, Chimera consis-
tently exhibits a lower transfer ratio than Lazy-Release and Leap.
Specifically, at 10% intra-node transaction ratio and 1% hotspot
range, Lazy-Release reaches its highest transfer ratio of 47.2%, while
Chimera remains at 24.2%. As the intra-node transaction ratio in-
creases, all methods exhibit a declining trend. At 90% intra-node
transactions, both Leap and Lazy-Release reduce their transfer ratios
below 10%, while Chimera maintains a 39.8%–50.8% lower trans-
fer ratio than Lazy-Release and 62.2%–68.1% lower than Leap. For
TPC-C, Chimera achieves a 9.18%–83.6% reduction in ownership
transfers compared to Lazy-Release and Leap.

8.2.3 Latency of each approach. We analyze the latency of each
approach, as shown in Table 2, which reports the 50th and 90th per-
centile latencies under a workload with 50% intra-node transactions.

Table 2: Latency (ms) of each approach: P50 / P90

Eager-Release Lazy-Release 2PC Leap Chimera
SmallBank 55.6/96.1 55.4/95.4 56.6/91.7 54.3/94.4 17.2/123.2
TPC-C 84.5/130.8 76.4/118.9 82.8/123.72 90.6/145.9 30.8/152.7

All methods use the group commit mechanism. For the SmallBank
workload, Eager-Release, Lazy-Release, 2PC, and Leap exhibit uni-
form transaction processing rates, resulting in a 50th percentile
latency of approximately 50 ms and a 90th percentile latency of
around 90 ms. In contrast, Chimera benefits from the conflict-free
process of partitioned phases, enabling it to achieve lower 50th
latency. However, due to the possibility of deferred execution, its
90th-percentile latency can exceed that of other methods. Under
TPC-C, where contention and ownership transfers are more fre-
quent, overall latency increases. While Chimera ’s 90th percentile
latency is slightly higher than other methods, typically within tens
of milliseconds, this remains acceptable in cloud environments.

8.2.4 Throughtput of each approach with long-running transactions.
We evaluate the impact of mixing a certain proportion of long-
running transactions into short-running transactions on system
performance. The length of a long transaction is set to be 10 times
that of a short transaction. We vary the proportion of long transac-
tions and report performance in Figure 8(a). When the proportion
of long transactions is 0%, Chimera achieves 1.53-3.97x the per-
formance of other systems. As the proportion increases, Chimera
’s performance gradually decreases. However, even at 25%, it still
maintains 1.01-3.56x the throughput of other systems. Since long
transactions are typically rare in real-world scenarios, especially in
OLTP systems, Chimera retains an advantage over other systems.

8.2.5 Throughput of each approach with random hotspot distribu-
tion. We evaluate throughput under different hotspot distributions
in SmallBank, where hotspot accounts are randomly spread across

3377

 Leap Chimera

(a) Performance with long-running transactions (b) Performance under random hotspot distribution

10 30 50 70 90

0

20

40

60

80

100

120

140

160

180

200

T
h
ro

u
g
h
p
u
t
(K

T
P

S
)

% of intra-node transactions

Figure 8: Performance comparison with long-running trans-
actions and under random hotspot distribution

pages. In our implementation, each page stores 56 tuples, so with a
1% hotspot range, about half of the pages are hot, but most of them
contain only 1∼2 hotspot accounts. The results are presented in
Figure 8(b). When the intra-node transaction ratio is low, Chimera
shows little advantage. As the ratio increases, it achieves only up
to 1.26x Lazy-Release ’s throughput, less than its gains under the
default hotspot distribution. This is because the dispersed hotspot
pages hinder the delay-fetch mechanism from capturing multiple
accesses to the same page. Moreover, increased contention on in-
dividual data items within the same page raises the likelihood of
transaction aborts, further limiting Chimera ’s benefit.

8.3 Batch/Epoch-Based Database Comparison
We implemented Calvin[48] and Star[33] in our prototype system
for comparative evaluation. Unlike Chimera and other standard
methods, Calvin requires collecting a batch of transactions and
determining their execution order before processing. In our imple-
mentation, each node employs a sequencer thread for transaction
ordering and a scheduler thread for execution coordination, while
the remaining CPU cores serve as worker threads. Star follows
an asymmetric replication shared-nothing architecture, where a
"super node" maintains a full replica. Like Chimera, Star employs
an epoch-based two-phase execution model, but only a single pri-
mary exclusively processes all distributed transactions in the second
phase. To ensure a fair comparison, we decouple Star into storage
and compute layers, allocating equal memory resources to each
primary node and maintaining the full replica at the storage layer.

We report the results on SmallBank workloads under hotspot
ranges of 10% and 100%, with varying percentages of intra-node
transactions, in Figure 9(a) and 9(b). Calvin’s performance remains
unaffected as the intra-node ratio increases due to its fixed transac-
tional messaging pattern. It requires only a single round of read-
write set synchronization when sub-transactions across nodes have
dependencies. However, its throughput is constrained compared
to Chimera, as it relies on a single scheduler, whereas Chimera
allows worker threads to compete for locks in parallel, achieving
1.15–10.75x Calvin’s throughput. When the hotspot range is 100%,
Star achieves only 0.42–0.73x of Chimera’s throughput due to the
limited computational power, memory, and network I/O capacity
of a single primary node. In contrast, Chimera leverages a logical
shared memory pool across multiple primaries for higher efficiency.
At the 1% hotspot range, Star improves performance by avoid-
ing ownership transfers and caching most accessed pages locally.
Nonetheless, Chimera maintains a slight performance advantage
due to the effectiveness of delay-fetch mechanisms.

 Star Chimera

% of intra-node transactions

Figure 9: Compare with batch/epoch-based database

8.4 Analysis of Chimera
8.4.1 Sensitivity Analysis. We analyze the impact of iteration du-
ration and the number of coroutines on throughput. As shown in
Figure 10, throughput increases rapidly as the iteration duration
grows from 10 ms, and then the growth rate slows significantly
around 100 ms. Based on this observation, we set 100 ms as the
iteration duration for high performance and low latency. As shown
in Figure 11, throughput increases rapidly as the number of corou-
tines rises from 1, eventually leveling off after reaching 20, with a
peak improvement of 2.28x compared to a single coroutine.

8.4.2 Ablation Study. This experiment examines the effects of the
2PS and delay-fetch mechanisms on system performance. We imple-
mented three variants: Chimera(PS), Chimera(DF), and Chimera.
Chimera(PS) extends Lazy-Release with the 2PS mechanism, while
Chimera(DF) incorporates the delay-fetch mechanism. The full
Chimera algorithm combines both mechanisms. As shown in Figure
12, Chimera(DF) greatly improves throughput at lower intra-node
ratios, achieving 1.47–1.64x over Lazy-Release. This improvement
stems from most transactions being inter-node, which causes high
contention for page access. Chimera(DF) reduces ownership trans-
fers by effectively grouping transactions that access the same pages.
As the intra-node transaction ratio increases, Chimera(DF)’s ben-
efits decline, while Chimera(PS) shows greater performance im-
provements, achieving 1.97–2.68x the throughput of Lazy-Release
due to the increased elimination of ownership transfers for intra-
node transactions. Combining both mechanisms, Chimera reaches
2.16–3.17x the throughput of Lazy-Release strategy, 1.35-1.98x that
of Chimera(PS), and 1.31-2.68x that of Chimera(DF).

8.4.3 Performance impact of misclassifying transactions. Figure 13
shows Chimera’s throughput under known and partially unknown
read/write sets varying intra-node ratios. The results show that
performance degradation remains within 10% across all intra-node
transaction ratios. This is because the throughput of partitioned
phases significantly exceeds that of global phases. At low intra-node
transaction ratios, the cost of speculative execution and rollback
misclassified inter-node transactions is negligible compared to the
execution overhead in the global phase. At high intra-node ratios,
fewer transactions are misclassified. Thus, transactions with un-
known read/write sets have minimal impact on overall performance.

8.5 Scalability Experiment
In this experiment, we study the scalability of Chimera. We report
the result in Figure 14. We set the intra-node transaction ratio to
50%. As the number of primary nodes increases, Chimera at 8 nodes

3378

0 50 100 150 200 250 300 350

20

40

60

T
h
ro

u
g
h
p
u
t
(K

T
P

S
)

Iteration time (ms)

 Throughput

Figure 10: Overhead of
phase transitions

0 4 8 12 16 20 24 28 32

10

15

20

25

T
h
ro

u
g
h
p
u
t
(K

T
P

S
)

coroutine num

 Throughput

Figure 11: Throughput
varying coroutine number

has 2.34x throughput greater than Chimera at 2 nodes. For Lazy-
Release, performance peaks at four nodes but then declines as the
number of nodes grows, primarily due to the increased frequency of
page ownership transfers, which degrades performance. In contrast,
Eager-Release begins with relatively low performance and scales
nearly linearly. However, as the node number increases, a single
GPLM may become a bottleneck due to the need to request locks
from the GPLM for every operation. For 2PC, performance plateaus
between 6 and 8 nodes, likely due to the storage service bottleneck
caused by the high overhead of remote log writes.

9 RELATEDWORK
This section reviews related work on transaction processing of
multi-primary database systems.
Shared-Nothing database systems. Shared-nothing systems pro-
vide linear scalability but suffer performance drops in distributed
transactions due to 2PC and replica synchronization [10, 20, 23, 47,
55]. Consequently, some works [24, 34, 58, 60, 61] combine 2PC
with replica synchronization to minimize network round-trips and
reduce the overhead of distributed transactions. Additionally, some
approaches, such as Schism [12] and Sword [39], reduce distributed
transactions by analyzing historical workloads to optimize data par-
titioning and migration. These methods are orthogonal to Chimera
and can be integrated to enhance page-primary affinity, increasing
the ratio of intra-node transactions. Star [33] employs the asym-
metric replication, relying on a single node with the full replica for
processing all cross-partition transactions. While it avoids 2PC, its
performance is constrained by the limited memory, network I/O,
and lack of parallel processing of a single instance in the cloud. In
contrast, Chimera maintains parallelism, offers higher fault toler-
ance, and better adapts to workloads with temporal locality [8, 29].
Shared-Storage database systems. Unlike shared-nothing multi-
primary database systems, another class of multi-primary databases
adopts a shared-storage architecture that allows each primary to
access all data. Traditional systems [9, 21], are based on non-cloud
environments and rely on specialized hardware, leading to a high to-
tal cost of ownership (TCO). In contrast, recent work[14, 27, 50, 54]
leverages the elasticity of cloud resources to reduce database con-
struction costs. These systems employ either pessimistic or opti-
mistic strategies to detect and resolve concurrent update conflicts
at the page level, with most relying on RDMA two-sided verbs to
expedite ownership acquisition, page synchronization, or log replay.
However, RDMA technology [22, 51, 56, 57, 59, 60, 64] is costly and
generally limited to a single data center, which poses a significant
challenge to high availability and cloud service providers’ network
conditions. Tell [31] and LEAP [29] maintain data ownership at the

 Chimera(DF) Chimera

% of intra-node transactions

Figure 12: Performance of ablation experiments

10 30 50 70 90

0

100

200

300

T
h
ro
u
g
h
tp
u
t(
K
T
P
S
)

% of intra-node transactions

 know read/write set partially unknown read/write set

Figure 13: Impact of
unknown read/write sets

2 4 6 8

0

10

20

30

40

50

T
h
ro

u
g
h
p
u
t
(K

T
P

S
)

Node Number

 Eager-Release Lazy-Release 2pc Chimera

Figure 14: Scalability
experiment on SmallBank

tuple level, but still suffer from performance degradation due to
frequent migrations, a challenge that Chimera effectively mitigates.
Full replica database systems.Another category of multi-primary
systems deploys multiple full replicas across nodes. Some stud-
ies [30, 32, 36, 48] adopt deterministic execution, ensuring that
each replica processes transactions in the same pre-determined or-
der to achieve replica consistency. Other works [11, 52, 63] leverage
Conflict-Free Replicated Data Types (CRDTs) [41] to merge conflicts
without coordination, supporting low-latency reads and writes in
geo-distributed environments. However, these methods often re-
lax consistency levels, and the CRDT merge rules are hard-coded,
limiting their applicability to specific scenarios where strong trans-
actional consistency is required.

10 CONCLUSION
In this paper, we identify frequent page ownership transfers as a key
bottleneck limiting the performance of multi-primary databases.
To address this challenge, we propose Chimera, a multi-primary,
shared-storage, cloud-native database designed to optimize frequent
ownership transfers and enhance system throughput. Chimera
adopts a two-phase transaction scheduling mechanism that alter-
nates between partitioned and global phases. In the partitioned
phase, intra-node transactions are aggregated to reduce ownership
transfers. In the global phase, Chimera employs a delay-fetch own-
ership transfer mechanism to maximize operations on a page within
a single ownership cycle. These strategies together alleviate trans-
fer overhead in multi-primary systems. Evaluation on SmallBank
and TPC-C benchmarks shows that Chimera outperforms other
approaches in most scenarios.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China under Grant Nos. 62441230, 62472429, 62461146205. We
thank the reviewers for their constructive suggestions and Zhanhao
Zhao, Hongyao Zhao, and Huicong Xu for their discussions. We
also thank Public Computing Cloud (Renmin University of China).

3379

REFERENCES
[1] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernan-

dez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam,
Umar Farooq Minhas, Naveen Prakash, Vijendra Purohit, Hugh Qu, Chai-
tanya Sreenivas Ravella, Krystyna Reisteter, Sheetal Shrotri, Dixin Tang, and
Vikram Wakade. 2019. Socrates: The New SQL Server in the Cloud. In Proceed-
ings of the 2019 International Conference on Management of Data (Amsterdam,
Netherlands) (SIGMOD ’19). Association for Computing Machinery, New York,
NY, USA, 1743–1756. https://doi.org/10.1145/3299869.3314047

[2] Russell R. Atkinson and Edward M. McCreight. 1987. The dragon processor.
SIGPLAN Not. 22, 10 (oct 1987), 65–69. https://doi.org/10.1145/36205.36185

[3] Smallbank benchmark. 2021. https://hstore.cs.brown.edu/documentation/
deployment/benchmarks/smallbank/.

[4] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-
tributed Database Systems. ACM Comput. Surv. 13, 2 (June 1981), 185–221.
https://doi.org/10.1145/356842.356846

[5] Philip A. Bernstein and Nathan Goodman. 1983. Multiversion concurrency
control—theory and algorithms. ACM Trans. Database Syst. 8, 4 (Dec. 1983),
465–483. https://doi.org/10.1145/319996.319998

[6] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. 1987. Concurrency
control and recovery in database systems. Addison-Wesley Longman Publishing
Co., Inc., USA.

[7] Apache bRPC. 2024. https://brpc.apache.org/.
[8] Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee, Kenneth A.

Ross, and Christian A. Lang. 2010. SSD bufferpool extensions for database
systems. Proceedings of the VLDB Endowment (Sep 2010), 1435–1446. https:
//doi.org/10.14778/1920841.1921017

[9] Sashikanth Chandrasekaran and Roger Bamford. 2003. Shared cache-the fu-
ture of parallel databases. In Proceedings 19th International Conference on Data
Engineering (Cat. No. 03CH37405). IEEE Computer Society, 840–840. https:
//doi.org/10.1109/ICDE.2003.1260883

[10] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (aug 2013), 22 pages. https:
//doi.org/10.1145/2491245

[11] Redis CRDT. 2022. https://redis.io/blog/diving-into-crdts/.
[12] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: a

workload-driven approach to database replication and partitioning. Proc. VLDB
Endow. 3, 1–2 (sep 2010), 48–57. https://doi.org/10.14778/1920841.1920853

[13] Shaul Dar, Michael J. Franklin, Björn Þór Jónsson, Divesh Srivastava, and Michael
Tan. 1996. Semantic Data Caching and Replacement. In Proceedings of the 22th
International Conference on Very Large Data Bases (VLDB ’96). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 330–341.

[14] Alex Depoutovitch, Chong Chen, Per-Ake Larson, Jack Ng, Shu Lin, Guanzhu
Xiong, Paul Lee, Emad Boctor, Samiao Ren, Lengdong Wu, Yuchen Zhang, and
Calvin Sun. 2023. Taurus MM: Bringing Multi-Master to the Cloud. Proc. VLDB
Endow. 16, 12 (aug 2023), 3488–3500. https://doi.org/10.14778/3611540.3611542

[15] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R
Stonebraker, and David A. Wood. 1984. Implementation techniques for main
memory database systems. SIGMOD Rec. 14, 2 (June 1984), 1–8. https://doi.org/
10.1145/971697.602261

[16] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The notions of
consistency and predicate locks in a database system. Commun. ACM 19, 11 (nov
1976), 624–633. https://doi.org/10.1145/360363.360369

[17] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking serializable multiversion
concurrency control. Proc. VLDB Endow. 8, 11 (jul 2015), 1190–1201. https:
//doi.org/10.14778/2809974.2809981

[18] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. 2017. High perfor-
mance transactions via early write visibility. Proc. VLDB Endow. 10, 5 (jan 2017),
613–624. https://doi.org/10.14778/3055540.3055553

[19] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. 2017.
An evaluation of distributed concurrency control. Proc. VLDB Endow. 10, 5 (Jan.
2017), 553–564. https://doi.org/10.14778/3055540.3055548

[20] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, WanWei, Cong Liu, Jian Zhang, Jianjun Li,
XuelianWu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron,
Liquan Pei, and Xin Tang. 2020. TiDB: a Raft-based HTAP database. Proc. VLDB
Endow. 13, 12 (aug 2020), 3072–3084. https://doi.org/10.14778/3415478.3415535

[21] J. W. Josten, C. Mohan, I. Narang, and J. Z. Teng. 1997. DB2’s use of the coupling
facility for data sharing. IBM Systems Journal 36, 2 (Jan 1997), 327–351. https:
//doi.org/10.1147/sj.362.0327

[22] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design guidelines
for high performance RDMA systems. In Proceedings of the 2016 USENIX Con-
ference on Usenix Annual Technical Conference (Denver, CO, USA) (USENIX ATC

’16). USENIX Association, USA, 437–450. https://www.usenix.org/conference/
atc16/technical-sessions/presentation/kalia

[23] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-store: a high-performance,
distributed main memory transaction processing system. Proc. VLDB Endow. 1, 2
(Aug. 2008), 1496–1499. https://doi.org/10.14778/1454159.1454211

[24] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete.
2013. MDCC: multi-data center consistency. In Proceedings of the 8th ACM
European Conference on Computer Systems (Prague, Czech Republic) (EuroSys
’13). Association for Computing Machinery, New York, NY, USA, 113–126. https:
//doi.org/10.1145/2465351.2465363

[25] Leslie Lamport. 2019. Time, clocks, and the ordering of events in a distributed
system. Association for Computing Machinery, New York, NY, USA, 179–196.
https://doi.org/10.1145/3335772.3335934

[26] Feifei Li. 2019. Cloud-native database systems at Alibaba: opportunities and
challenges. Proc. VLDB Endow. 12, 12 (Aug. 2019), 2263–2272. https://doi.org/10.
14778/3352063.3352141

[27] Guoliang Li, Wengang Tian, Jinyu Zhang, Ronen Grosman, Zongchao Liu, and
Sihao Li. 2024. GaussDB: A Cloud-Native Multi-Primary Database with Compute-
Memory-Storage Disaggregation. Proc. VLDB Endow. 17, 12 (2024). https:
//doi.org/10.14778/3685800.3685806

[28] Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo
Li, Tianqing Wang, and Shifu Li. 2021. openGauss: an autonomous database
system. Proc. VLDB Endow. 14, 12 (July 2021), 3028–3042. https://doi.org/10.
14778/3476311.3476380

[29] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and
Zhengkui Wang. 2016. Towards a Non-2PC Transaction Management in
Distributed Database Systems. In Proceedings of the 2016 International Con-
ference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 1659–1674.
https://doi.org/10.1145/2882903.2882923

[30] Yu-Shan Lin, Ching Tsai, Tz-Yu Lin, Yun-Sheng Chang, and Shan-Hung Wu.
2021. Don’t Look Back, Look into the Future: Prescient Data Partitioning and
Migration for Deterministic Database Systems. In Proceedings of the 2021 Inter-
national Conference on Management of Data (Virtual Event, China) (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 1156–1168.
https://doi.org/10.1145/3448016.3452827

[31] Simon Loesing, Markus Pilman, Thomas Etter, and Donald Kossmann. 2015. On
the Design and Scalability of Distributed Shared-Data Databases. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data (Mel-
bourne, Victoria, Australia) (SIGMOD ’15). Association for ComputingMachinery,
New York, NY, USA, 663–676. https://doi.org/10.1145/2723372.2751519

[32] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: a fast and practical
deterministic OLTP database. Proc. VLDB Endow. 13, 12 (July 2020), 2047–2060.
https://doi.org/10.14778/3407790.3407808

[33] Yi Lu, Xiangyao Yu, and Samuel Madden. 2019. STAR: scaling transactions
through asymmetric replication. Proc. VLDB Endow. 12, 11 (July 2019), 1316–1329.
https://doi.org/10.14778/3342263.3342270

[34] Sujaya Maiyya, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2019.
Unifying consensus and atomic commitment for effective cloud datamanagement.
Proc. VLDB Endow. 12, 5 (Jan. 2019), 611–623. https://doi.org/10.14778/3303753.
3303765

[35] Bruce Momjian. 2001. PostgreSQL: introduction and concepts. Vol. 192. Addison-
Wesley New York. https://doi.org/10.5555/359414

[36] Cuong D. T. Nguyen, Johann K. Miller, and Daniel J. Abadi. 2023. Detock: High
Performance Multi-region Transactions at Scale. Proc. ACM Manag. Data 1, 2,
Article 148 (June 2023), 27 pages. https://doi.org/10.1145/3589293

[37] Diego Ongaro and John Ousterhout. 2014. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference (Philadelphia, PA) (USENIX ATC’14). USENIX As-
sociation, USA, 305–320. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/ongaro

[38] Mark S. Papamarcos and Janak H. Patel. 1984. A low-overhead coherence solution
for multiprocessors with private cache memories. SIGARCH Comput. Archit.
News 12, 3 (jan 1984), 348–354. https://doi.org/10.1145/773453.808204

[39] Abdul Quamar, K. Ashwin Kumar, and Amol Deshpande. 2013. SWORD: scalable
workload-aware data placement for transactional workloads. In Proceedings of
the 16th International Conference on Extending Database Technology (Genoa, Italy)
(EDBT ’13). Association for Computing Machinery, New York, NY, USA, 430–441.
https://doi.org/10.1145/2452376.2452427

[40] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboulnaga,
and Michael Stonebraker. 2016. Clay: fine-grained adaptive partitioning for
general database schemas. Proc. VLDB Endow. 10, 4 (nov 2016), 445–456. https:
//doi.org/10.14778/3025111.3025125

[41] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-Free Replicated Data Types. In Stabilization, Safety, and Security of Dis-
tributed Systems, Xavier Défago, Franck Petit, and Vincent Villain (Eds.). Springer

3380

https://doi.org/10.1145/3299869.3314047
https://doi.org/10.1145/36205.36185
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://doi.org/10.1145/356842.356846
https://doi.org/10.1145/319996.319998
https://brpc.apache.org/
https://doi.org/10.14778/1920841.1921017
https://doi.org/10.14778/1920841.1921017
https://doi.org/10.1109/ICDE.2003.1260883
https://doi.org/10.1109/ICDE.2003.1260883
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245
https://redis.io/blog/diving-into-crdts/
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.14778/3611540.3611542
https://doi.org/10.1145/971697.602261
https://doi.org/10.1145/971697.602261
https://doi.org/10.1145/360363.360369
https://doi.org/10.14778/2809974.2809981
https://doi.org/10.14778/2809974.2809981
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.14778/3055540.3055548
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.1147/sj.362.0327
https://doi.org/10.1147/sj.362.0327
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/3335772.3335934
https://doi.org/10.14778/3352063.3352141
https://doi.org/10.14778/3352063.3352141
https://doi.org/10.14778/3685800.3685806
https://doi.org/10.14778/3685800.3685806
https://doi.org/10.14778/3476311.3476380
https://doi.org/10.14778/3476311.3476380
https://doi.org/10.1145/2882903.2882923
https://doi.org/10.1145/3448016.3452827
https://doi.org/10.1145/2723372.2751519
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.14778/3342263.3342270
https://doi.org/10.14778/3303753.3303765
https://doi.org/10.14778/3303753.3303765
https://doi.org/10.5555/359414
https://doi.org/10.1145/3589293
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/773453.808204
https://doi.org/10.1145/2452376.2452427
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.14778/3025111.3025125

Berlin Heidelberg, Berlin, Heidelberg, 386–400. https://doi.org/10.1007/978-3-
642-24550-3_29

[42] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. 1994. Cache Conscious
Algorithms for Relational Query Processing. In Proceedings of the 20th Inter-
national Conference on Very Large Data Bases (VLDB ’94). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 510–521.

[43] Hanan Shukur, Subhi Zeebaree, Rizgar Zebari, Omar Ahmed, Lailan Haji, and
Dildar Abdulqader. 2020. Cache coherence protocols in distributed systems.
Journal of Applied Science and Technology Trends 1, 2 (2020), 92–97. https:
//doi.org/10.38094/jastt1329

[44] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. 2007. The end of an architectural era: (it’s time
for a complete rewrite). In Proceedings of the 33rd International Conference on Very
Large Data Bases (Vienna, Austria) (VLDB ’07). VLDB Endowment, 1150–1160.
http://www.vldb.org/conf/2007/papers/industrial/p1150-stonebraker.pdf

[45] Michael Stonebraker and Ariel Weisberg. 2013. The VoltDB Main Memory
DBMS. IEEE Data Eng. Bull. 36, 2 (2013), 21–27. http://sites.computer.org/debull/
A13june/VoltDB1.pdf

[46] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store: fine-
grained elastic partitioning for distributed transaction processing systems. Proc.
VLDB Endow. 8, 3 (Nov. 2014), 245–256. https://doi.org/10.14778/2735508.2735514

[47] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1493–1509. https://doi.org/10.1145/3318464.3386134

[48] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J. Abadi. 2012. Calvin: fast distributed transactions for par-
titioned database systems. In Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data (Scottsdale, Arizona, USA) (SIG-
MOD ’12). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/2213836.2213838

[49] TPC-C. 2024. http://www.tpc.org/tpcc/.
[50] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,

Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Ten-
giz Kharatishvili, and Xiaofeng Bao. 2017. Amazon aurora: Design consid-
erations for high throughput cloud-native relational databases. In Proceedings
of the 2017 ACM International Conference on Management of Data. 1041–1052.
https://doi.org/10.1145/3035918.3056101

[51] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Deconstructing
RDMA-enabled Distributed Transactions: Hybrid is Better!. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). USENIX
Association, Carlsbad, CA, 233–251. https://www.usenix.org/conference/osdi18/
presentation/wei

[52] Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein. 2021.
Anna: A KVS for Any Scale. IEEE Trans. on Knowl. and Data Eng. 33, 2 (Feb.
2021), 344–358. https://doi.org/10.1109/TKDE.2019.2898401

[53] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An em-
pirical evaluation of in-memory multi-version concurrency control. Proc. VLDB
Endow. 10, 7 (mar 2017), 781–792. https://doi.org/10.14778/3067421.3067427

[54] Xinjun Yang, Yingqiang Zhang, Hao Chen, Feifei Li, Bo Wang, Jing Fang,
Chuan Sun, and Yuhui Wang. 2024. PolarDB-MP: A Multi-Primary Cloud-
Native Database via Disaggregated Shared Memory. In Companion of the 2024
International Conference on Management of Data (Santiago AA, Chile) (SIG-
MOD/PODS ’24). Association for Computing Machinery, New York, NY, USA,
295–308. https://doi.org/10.1145/3626246.3653377

[55] Zhenkun Yang, Chuanhui Yang, Fusheng Han, Mingqiang Zhuang, Bing Yang,
Zhifeng Yang, Xiaojun Cheng, Yuzhong Zhao, Wenhui Shi, Huafeng Xi, et al.
2022. OceanBase: a 707 million tpmC distributed relational database system.
Proceedings of the VLDB Endowment 15, 12 (2022), 3385–3397. https://doi.org/10.
14778/3554821.3554830

[56] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The End of
a Myth: Distributed Transactions Can Scale. Proc. VLDB Endow. 10, 6 (feb 2017),
685–696. https://doi.org/10.14778/3055330.3055335

[57] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The End of
a Myth: Distributed Transactions Can Scale. Proc. VLDB Endow. 10, 6 (feb 2017),
685–696. https://doi.org/10.14778/3055330.3055335

[58] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,
and Dan R. K. Ports. 2018. Building Consistent Transactions with Inconsistent
Replication. ACM Trans. Comput. Syst. 35, 4, Article 12 (Dec. 2018), 37 pages.
https://doi.org/10.1145/3269981

[59] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2022. FORD: Fast One-sided
RDMA-based Distributed Transactions for Disaggregated Persistent Memory.
In 20th USENIX Conference on File and Storage Technologies (FAST 22). USENIX
Association, Santa Clara, CA, 51–68. https://www.usenix.org/conference/fast22/
presentation/zhang-ming

[60] Qian Zhang, Jingyao Li, Hongyao Zhao, Quanqing Xu, Wei Lu, Jinliang Xiao,
Fusheng Han, Chuanhui Yang, and Xiaoyong Du. 2023. Efficient Distributed
Transaction Processing in Heterogeneous Networks. Proc. VLDB Endow. 16, 6
(Feb. 2023), 1372–1385. https://doi.org/10.14778/3583140.3583153

[61] Zihao Zhang, Huiqi Hu, Xuan Zhou, and Jiang Wang. 2022. Starry: multi-master
transaction processing on semi-leader architecture. Proc. VLDB Endow. 16, 1
(Sept. 2022), 77–89. https://doi.org/10.14778/3561261.3561268

[62] Qiushi Zheng, Zhanhao Zhao, Wei Lu, Chang Yao, Yuxing Chen, Anqun Pan,
and Xiaoyong Du. 2024. Lion: Minimizing Distributed Transactions Through
Adaptive Replica Provision. In 2024 IEEE 40th International Conference on Data
Engineering (ICDE). IEEE, 2012–2025. https://doi.org/doi:10.1109/ICDE60146.
2024.00161

[63] Weixing Zhou, Qi Peng, Zijie Zhang, Yanfeng Zhang, Yang Ren, Sihao Li, Guo
Fu, Yulong Cui, Qiang Li, Caiyi Wu, Shangjun Han, Shengyi Wang, Guoliang Li,
and Ge Yu. 2023. GeoGauss: Strongly Consistent and Light-Coordinated OLTP
for Geo-Replicated SQL Database. Proc. ACM Manag. Data 1, 1, Article 62 (may
2023), 27 pages. https://doi.org/10.1145/3588916

[64] Tobias Ziegler, Jacob Nelson-Slivon, Viktor Leis, and Carsten Binnig. 2023. Design
Guidelines for Correct, Efficient, and Scalable Synchronization using One-Sided
RDMA. Proc. ACM Manag. Data 1, 2, Article 131 (June 2023), 26 pages. https:
//doi.org/10.1145/3589276

3381

https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.38094/jastt1329
https://doi.org/10.38094/jastt1329
http://www.vldb.org/conf/2007/papers/industrial/p1150-stonebraker.pdf
http://sites.computer.org/debull/A13june/VoltDB1.pdf
http://sites.computer.org/debull/A13june/VoltDB1.pdf
https://doi.org/10.14778/2735508.2735514
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/2213836.2213838
http://www.tpc.org/tpcc/
https://doi.org/10.1145/3035918.3056101
https://www.usenix.org/conference/osdi18/presentation/wei
https://www.usenix.org/conference/osdi18/presentation/wei
https://doi.org/10.1109/TKDE.2019.2898401
https://doi.org/10.14778/3067421.3067427
https://doi.org/10.1145/3626246.3653377
https://doi.org/10.14778/3554821.3554830
https://doi.org/10.14778/3554821.3554830
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.1145/3269981
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://doi.org/10.14778/3583140.3583153
https://doi.org/10.14778/3561261.3561268
https://doi.org/doi: 10.1109/ICDE60146.2024.00161
https://doi.org/doi: 10.1109/ICDE60146.2024.00161
https://doi.org/10.1145/3588916
https://doi.org/10.1145/3589276
https://doi.org/10.1145/3589276

	Abstract
	1 Introduction
	2 Background
	2.1 Hierarchical Page Locking Mechanism
	2.2 Distributed Cache Coherence

	3 Architecture Overview
	4 Two-Phase Transaction Scheduling Mechanism
	4.1 Partitioned Phase
	4.2 Global Phase
	4.3 Dynamic Phase Durations
	4.4 Support for Long-Running Transactions

	5 Delay-Fetch ownership transfer MECHANISM
	6 Analysis of Ownership Transfers Reduction
	7 Discussion
	7.1 Correctness
	7.2 Fault Tolerance

	8 Evaluation
	8.1 Experimental Setup
	8.2 Performance Comparison
	8.3 Batch/Epoch-Based Database Comparison
	8.4 Analysis of Chimera
	8.5 Scalability Experiment

	9 Related work
	10 Conclusion
	Acknowledgments
	References

