
Data Imputation with Limited Data Redundancy Using Data Lakes
Chenyu Yang
HKUST(GZ)

Guangzhou, China
cyang662@connect.hkust-gz.edu.cn

Yuyu Luo∗
HKUST(GZ)/HKUST
Guangzhou, China

yuyuluo@hkust-gz.edu.cn

Chuanxuan Cui
Renmin University of China

Beijing, China
2022104187@ruc.edu.cn

Ju Fan
Renmin University of China

Beijing, China
fanj@ruc.edu.cn

Chengliang Chai
Beijing Institute of Technology

Beijing, China
ccl@bit.edu.cn

Nan Tang
HKUST(GZ)/HKUST
Guangzhou, China

nantang@hkust-gz.edu.cn

ABSTRACT
Data imputation is essential for many data science applications.
Existing methods rely heavily on sufficient data redundancy from
within-table values. However, many real-world datasets often lack
such data redundancy, necessitating external data sources. In this
paper, we introduce a retrieval-augmented imputation framework,
LakeFill, which combines large language models (LLMs) and data
lakes to address this challenge. Unlike existing “table-level” re-
trieval methods designed for question answering, which retrieve
data in the granularity of tables, LakeFill performs fine-grained
“tuple-level” retrieval, optimized specifically for data imputation at
the tuple level. It encodes (possibly incomplete) tuples to capture
nuanced similarities and differences, enabling effective identifica-
tion of candidate tuples. A novel reranking method that integrates
checklist-based training data annotation with stratified training
group construction further refines the retrieved tuples. Finally, a
reasoner with a novel two-stage confidence-aware imputation en-
sures reliable imputation results. Extensive experiments show that
LakeFill significantly outperforms state-of-the-art methods for
data imputation when there is limited data redundancy.

PVLDB Reference Format:
Chenyu Yang, Yuyu Luo, Chuanxuan Cui, Ju Fan, Chengliang Chai, and
Nan Tang. Data Imputation with Limited Data Redundancy Using Data
Lakes. PVLDB, 18(10): 3354 - 3367, 2025.
doi:10.14778/3748191.3748200

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/HKUSTDial/Retrieval_Augmented_Imputation.

1 INTRODUCTION
Data quality is a critical aspect of effective data analysis. Missing
values are a common challenge [9, 17, 18, 44] for data quality man-
agement. Having a lot of missing values can drastically affect the
quality of downstream applications, such as SQL queries [36, 37, 42],

*Yuyu Luo is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.
doi:10.14778/3748191.3748200

web form analytics [75, 76], data visualization [45, 47, 77], and other
analytical processes [80, 87], compromising their accuracy, relia-
bility, and overall effectiveness. We broadly categorize existing
missing value imputation solutions into two types: (1) with enough
data redundancy from within-table values [10, 31, 52, 83], or (2) lim-
ited data redundancy from within-table values, for which external
knowledge must be leveraged [20, 21, 25, 38].
(1) With enough data redundancy. The presence of similar or
repeating data values or patterns enables these methods to extract
patterns, dependencies, and relationships, facilitating the imputa-
tion of missing values, using (a) integrity constraints [10, 15, 16], (b)
statistical methods [12, 22, 31], (c) machine learning [52, 63, 65, 67],
or (d) deep learning models [14, 54, 79].
(2) Limited data redundancy. In scenarios with limited data re-
dundancy, there have been traditional rule-based methods using
reference tables or knowledge graphs, as well as recent advances
in employing large language models (LLMs).

(a) User-provided external sources and rules: Certain fix [21]
uses user-defined rules on the reference table to repair the data.
KATARA [19] proposes table patterns, whichmap a table to a knowl-
edge graph based on the table semantics through crowdsourcing,
and uses these patterns as rules for cleaning. However, both studies
have high human cost, from rule definition to data repair.

(b) Directly prompting LLMs. LLMs have been used to impute
missing values, either through fine-tuning (e.g., TURL [20], Table-
GPT [38]) or in-context learning (e.g., GPT [57]). However, for data
imputation that requires precise answers, LLMs may suffer from
hallucination and lack interpretability.

(c) Retrieval-Augmented Generation (RAG) with LLMs. RAG not
only improves the accuracy of LLMs but also enables users to trace
the origins of the imputed values, enhancing transparency. How-
ever, current RAG methods for data imputation, such as RATA [25],
often operate at a coarse-grained “table-level”, rather than more
fine-grained “tuple-level” retrieval, which can limit their effective-
ness for missing value imputation.
Missing value imputation using data lakes: what are needed?
In practice, imputing missing values for one tuple often requires
information from one or a few relevant tuples.

Example 1. [Incomplete tuple.] As shown in Figure 1, BoB Riley
has missing values in District, Party, and Birth Date attributes.

[Impute with data lake.] We need to find 𝑇1 to impute his missing
District and Party values, and 𝑇2 to impute his Birth Date value.

3354

https://doi.org/10.14778/3748191.3748200
https://github.com/HKUSTDial/Retrieval_Augmented_Imputation
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748200
https://www.acm.org/publications/policies/artifact-review-and-badging-current

328
Rank Representative

Bob Riley

Representative State
Bob Riley Alabama NA

District
List of living former members of the U.S. HOR

Party
R AL-3

District
T1: List of Members of the U.S. HOR in the 107th Congress

Party
NA

Birth Date
NA

… … … …

Governor Term of office Date of Birth
October 3, 1944 (age 69)

T2: List of Governors of Alabama Living Former Governors

January 3, 1997
Seniority Date

…
missing Bill Shuster R PA-09 May 15, 2001

Bob Riley 2003-2011
… … …

﹜400+

Incomplete tuple

Relevant tables in the data lake

﹜10+

State Incumbent Opponents
Bob Riley (Republican) 49.2%

T3: United States Gubernatorial Elections, 2002

Alabama Don Siegelman
… … …

Democratic
Party

…

Figure 1: Imputing a tuple’s missing values may require tu-
ples scattered across multiple tables.

Note that, 𝑇1 contains 400+ tuples, only the “Bob Riley” tuple pro-
vides the necessary information for the given incomplete tuple. 2

Given a target table with many incomplete tuples, each requires
tuple(s) from possibly different tables. Therefore, it is more natural
to index data lakes at the tuple level. This could provide more
precise and context-specific information, thereby enhancing the
accuracy of the imputation compared to table-level retrieval.
Challenges. There are three main challenges with tuple-level RAG
over a data lake for data imputation.

(C1) Retrieval: Encoding complete/incomplete tuples with
heterogeneous schemas. Different from indexing tuples in one
huge table, indexing tuples in data lakes face challenges like varying
schemas, diverse textual representations, and missing values.

(C2)Reranking: computing tuple relevance in different gran-
ularity. Relying solely on tuple embedding similarity for retrieval
may fall short, as embeddings often compress data that overlooks
the fine-grained contextual relevance needed for imputation.

(C3) Ensuring the accuracy of LLMs with RAG. Even after
reranking, the reranked tuples may also contain noisy tuples, i.e.,
those tuples that are irrelevant.
Contributions. Our main contributions are summarized below.
(1) The LakeFill framework.We introduce LakeFill, a Retrieve-
Rerank-Reason framework optimized for imputing missing values
using data lakes. The Retriever designs tuple-level encoding for
data lake tuples, effectively handling heterogeneous data and cap-
turing imputation intent (Challenge 1). The Reranker is optimized
with token-level methods (Challenge 2). To improve the accuracy,
Reasoner devises a novel confidence-aware approach for further
performance improvement (Challenge 3). (Section 2)
(2) Retriever: Tuple imputation-aware representation learn-
ing.We employ contrastive learning and carefully designed synthe-
sized training data to learn tuple embeddings that capture both the

imputation intent and the nuanced similarities and dissimilarities
among heterogeneous data. (Section 3)
(3) Reranker: Checklist-based training data annotation for
token-level reranker. We propose a novel approach that gen-
erates high-quality reranking data by integrating checklist-based
annotation with stratified training group construction, enabling
more accurate identification of retrieved tuples. (Section 4)
(4) Reasoner: Confidence-aware inference for imputation.We
devise a novel two-stage confidence-aware imputation approach
for accurate and confidence-aware data imputation. (Section 5)
(5) Experiments. We conducted extensive experiments on six
datasets, showing that LakeFill significantly outperforms existing
methods with limited data redundancy using data lakes. (Section 6)

2 AN OVERVIEW OF LAKEFILL

Data imputationwith data lakes.Adata lake L = {D1, D2, . . . , D𝑘 }
is a collection of 𝑘 tables, each of which may have a distinct schema.
A relational table D consists of a schema, which is a set of attributes
𝑅(D) = {𝐴1, 𝐴2, . . . , 𝐴𝑛}, defining the columns of the table, a set of
tuples {𝑡1, 𝑡2, . . . , 𝑡𝑚}, and a textual caption. An incomplete tuple
𝑡 is a tuple that contains one or more missing values. Given an
incomplete tuple 𝑡 and a data lake L, the problem of data imputation
using data lakes involves repairing 𝑡 by retrieving relevant tuples
from L. The goal is to ensure that the repaired tuple 𝑡 ′ matches its
ground truth counterpart 𝑡g.
LakeFill overview.We propose LakeFill, which employs a clas-
sical Retrieve-Rerank-Reason framework for data imputation, as
shown in Figure 2(a). Given an incomplete tuple 𝑡 with missing
values and a data lake 𝐿 as input, LakeFill outputs a completed
tuple 𝑡 ′ by identifying and reasoning over retrieved tuples from 𝐿.
Retriever. This step retrieves relevant tuples for 𝑡 from 𝐿. Using
a pre-trained tuple encoder enc(·), all tuples in 𝐿 are encoded into
vectors and stored in a vector database V. Given 𝑡 , LakeFill encodes
it as enc(𝑡) and performs a similarity search to retrieve the top-𝐾
most similar tuples from enc(𝑡).
Reranker. This step refines the top-𝐾 retrieved tuples by recalculat-
ing their relevance to 𝑡 using a finer-grained comparison, ensuring
that the selected top-𝑘 tuples (𝑘 ≪ 𝐾) are the most relevant.
Reasoner. This step leverages LLMs (e.g., GPTs) to effectively im-
pute missing values in 𝑡 by considering the top-𝑘 retrieved tuples.

Existing approaches have the following limitations that prevent
their direct application to our problem:
(1) Lack of an effective retriever for tuple-level imputation. Previous
tuple embedding methods [39, 70, 73], fail to capture the complex
connections between an incomplete tuple and relevant tuples in
a data lake. Thus, we learn tuple-level imputation-aware rep-
resentation (Retriever), pretrained using synthesized training
data, as shown in Figure 2(b).
(2) Lack of fine-grained identification of relevant tuples. Existing
methods often use simple rules without considering domain
knowledge or contextual nuances [25, 46]. This approach overlooks
the fine-grained understanding necessary for accurate matching.
To enable the reranker to accurately identify relevant tuples,
precise training data is required. However, manual annotation

3355

top-K Tuples from Retriever

 Augmentation
 Operators

Pre-training
data lake

- delete_cap
- shuffle_attr
- replace_value
- …

- complete tuple
- incomplete tuple

Entity
Linking

Training Incomplete Tuples Checklist
- Existence
- Relevance
- Consistency

- Existence: Yes
- Relevance: Fully Relevant
- Consistency: Fully Consistent

- Existence: Yes
- Relevance: Fully Relevant
- Consistency: Partially Consistent

- Existence: No
- Relevance: Somewhat Relevant
- Consistency: Not Consistent

- Existence: No
- Relevance: Not Relevant
- Consistency: Not Consisent

Score: 4 t, (t1, t2, t3)
t, (t2, t3, t4)

relevantirrelevant

incomplete tuple t

data lake L with many tuples

NA

vector database encoder

search(enc(t))

index(L)

Retriever Reranker Reasoner

top-K top-k tuple with filled value

rank(t, top-K) impute(t, top-k)

Negative Tuples

Anchor Tuples Positive Tuples

NA

NA

t1

t2

t3

t4

t

annotator
Score: 3

t1

t2

t3

t4

Training Data Groups

Train
Reranker

(a) An overview of LakeFill

(b) Training data synthesis and encoder training

Nora Ephron1989 When Harry Met Sally …
screenwritersyear film

6 [MASK]When Harry Met Sally …
year# film

film
City Lights

screenwriters
Charles Chaplin

year
1931

year
194922 George CurkorAdam’s Rib

director# film

anchor

positive

negative

closer in vector space

Train Encoder

top-k tuples from Reranker

incomplete tuple Stage 1: Strict Mode filled tuple with
high confidence

filled tuple with
lower confidence

Low confidence or Reject to answer

Stage 2: Relaxed Mode
- Strictly Review
xRetrieved Tuples
- Allow Rejection
- Score Confidence
- Threshold Filtering

- Plausible Inference

- Reduced Constraint

conf. >
threshold

(c) Methodology of Reranker training

(d) Inference for imputation

Figure 2: An overview of LakeFill.

is time-consuming. We propose using LLM annotation with
an evaluation checklist to construct training data for
token-level Reranker, as shown in Figure 2(c).
(3) Lack of reliability in inference for imputation. Reasoner must
accurately derive missing values from top-𝑘 retrieved tuples, but
retrieved tuplesmay lack the correct answer. To address this, we pro-
pose a two-stage confidence-aware imputation for Reasoner
to ensure the reliability of imputed values while enhancing overall
imputation accuracy, as shown in Figure 2(d).

3 RETRIEVER: LEARNING IMPUTATION-AWARE
TUPLE REPRESENTATION

3.1 Contrastive Learning for Tuple Encoding
We employ contrastive learning within a Siamese network, leverag-
ing its dual-encoder structure and shared weights for training. Each
training sample is either an (Anchor, Positive) pair for closer tuple
embeddings or an (Anchor, Negative) pair for farther embeddings.
Contrastive Loss. We optimize the contrastive loss function

to maximize the similarity between (Anchor, Positive) pairs while
minimizing the similarity between (Anchor, Negative) pairs.

We construct a batch B of training examples for 𝑁 anchors, 𝑥𝑖
(𝑖 = [1, 𝑁]). For each anchor 𝑥𝑖 , we construct one positive pair
(𝑥𝑖 , 𝑦+𝑖) and 𝑀 negative pairs (𝑥𝑖 , 𝑦−𝑖, 𝑗) (𝑗 = [1, 𝑀]). In total, there
are 𝑁 × (𝑀 + 1) positive and negative samples in a batch B, we
denote the collection of them as 𝑌 , i.e., 𝑌 =

∑𝑁
𝑖=1 (𝑦+𝑖 +∑𝑀

𝑗=1 𝑦
−
𝑖, 𝑗
).

In the training process, we use the in-batch negative strategy [33],
i.e., for an anchor 𝑥𝑖 , we consider all the other 𝑦 in a batch except
𝑦+
𝑖
as its negatives, including both the original negatives of 𝑥𝑖 , the

negative and positive samples of other anchors in the batch. This
strategy effectively trains the encoder by providing a larger pool
of negatives without additional computational cost, resulting in
𝑁 × (𝑀 + 1) − 1 negatives for each anchor 𝑥𝑖 . We optimize the
contrastive loss L as the negative log-likelihood of positive pairs:

L = − 1
𝑁

𝑁∑︁
𝑖=1

log
exp(𝑠𝑖𝑚(𝑥𝑖 , 𝑦+𝑖))

exp(𝑠𝑖𝑚(𝑥𝑖 , 𝑦+𝑖))︸ ︷︷ ︸
positive pair similarity

+
∑︁

𝑦𝑘 ∈𝑌,𝑦𝑘≠𝑦+
𝑖

exp(𝑠𝑖𝑚(𝑥𝑖 , 𝑦𝑘))︸ ︷︷ ︸
negative pairs similarity

3356

Table 1: Tuple augmentation operators.

Consider a sample tuple with a caption and attribute/value pairs:
Caption: “Harrisburg, Pennsylvania, Sports”

(club: Harrisburg . . ., league: USL Soccer, venue: Skyline . . .)
Type Operator Example

Caption
delete_cap Harrisburg, NA, Sports
replace_cap Harrisburg, Pennsylvania, Athletic
shuffle_cap Pennsylvania, Harrisburg, Sports

Attribute shuffle_attr new attribute order: (league, venue, club)
delete_attr new attribute set: (club, venue)

Value replace_val (Harrisburg . . ., United Soccer League, Skyline . . .)
empty_val (Harrisburg . . ., NA, Skyline . . .)

where 𝑠𝑖𝑚(𝑥,𝑦) = enc(𝑥) · enc(𝑦), which calculates the similarity
between the embeddings of the anchor tuple 𝑥 and either the posi-
tive or negative 𝑦. We use dot product as the similarity function.
Minimizing this loss increases the similarity between anchors and
their corresponding positives, while simultaneously reducing their
similarity to negatives.

3.2 Training Data Synthesis
Effectively training a tuple encoder with contrastive learning re-
quires extensive training data. We propose to employ tuple augmen-
tation operators and a three-step process for synthesizing training
data. Our approach employs nuanced rules to ensure data diversity
and heterogeneity while capturing a wide range of relevant cases
to simulate real-world scenarios.
Tuple Augmentation Operators. Tuple augmentation operators
transform a tuple into its “equivalent” form. These systematically
designed operators will be used to construct training data that
simulates the diverse and heterogeneous nature of data lakes.

Our data augmentation operators in Table 1 are designed to
augment a tuple from three aspects: caption, attribute, or value.
Synthesizing Anchor Tuples.We construct two types of anchors:
(1)Without missing values.We sample a complete tuple from the
data lake that has no missing entries, enabling the encoder to learn
complete semantic representations.
(2)With missing values. To help the model learn the intent of im-
putation, we sample tuples and deliberately mask 30% of the cells
containing significant information (e.g., country names like “USA”)
with [MASK] symbol, while avoiding masking meaningless cells
(e.g., “-” or “?”). Using [MASK] helps differentiate these tuples from
those with naturally occurring missing data in the data lake.

We synthesize anchor tuples in a 70/30 ratio of complete to
masked tuples, which our experiments show yields superior results.
Synthesizing Positive Tuples. To create positive samples for an
anchor tuple 𝑥𝑖 , we employ two distinct strategies.
(1)With tuple augmentation.We augment the anchor tuple 𝑥𝑖 using
our designed tuple augmentation operations to generate positive
tuples while maximizing the diversity.
(2)With entity linking.We identify tuples from other tables withe
the same subject entity as 𝑥𝑖 through entity linking, then augment-
ing them. They often differ significantly in schema and values.
Synthesizing Negative Tuples. We generate negative samples
for each anchor tuple, categorized into two types:

(1) Easy negatives. Easy negatives are randomly selected tuples from
other tables, due to the in-batch negative strategies, we do not need
to construct them deliberately.
(2) Hard negatives. Hard negatives are tuples within the same table
as the anchor tuple but represent distinct entities. Although hard
negative tuples are quite similar to the anchor tuple since they
are in the same table, they crucially represent different entities.
This distinction is essential as it challenges the encoder to learn
more discriminative and meaningful representations, enabling it to
distinguish between similar but different tuples [48]. All negative
samples are augmented as well to increase diversity.
Training Data Summary. For our training and development sets,
we randomly select a subset of tables from the corresponding set of
the WikiTables-TURL dataset [20] to construct them. In summary,
our training set includes 282,862 anchor tuples from 41,260 tables,
and the development set contains 9,460 anchor tuples from 775
tables. Each anchor tuple pairs with 1 positive and 7 negatives.
Notably, our encoder, trained on this dataset, has shown strong
generalization capabilities.

4 RERANKER: NOISE-ROBUST RERANKING VIA
CHECKLIST-BASED DATA ANNOTATION

The Retriever often retrieves relevant tuples in top-𝐾 set only
when 𝐾 is sufficiently large (e.g.,, 𝐾 = 100), which complicates
subsequent reasoning. Therefore, a Reranker is required to prior-
itize relevant tuples within a smaller candidate subset. However,
building such a model faces the challenge of obtaining accurately
annotated training data. Unlike the heuristics strategies used in
retrieval, training data of reranking requires precise annotations
using domain knowledge.

We propose a noise-robust reranking approach that automati-
cally constructs training data by combining: (1) a multi-dimensional
evaluation checklist for fine-grained annotation, and (2) stratified
training groups with contrastive learning to mitigate labeling er-
rors. Instead of binary judgments (relevant or irrelevant), LLMs
assess candidates across existence, relevance, and logical consis-
tency. Based on these nuanced assessments, we assign labels and
scores, construct training groups, and train the reranker to distin-
guish subtle differences within groups, rather than relying solely on
absolute labels. We now detail this checklist-based data annotation
process and our constructed training groups.
Checklist-based Training Data Annotation. Given an incom-
plete tuple in the training set, we aim to label at least 𝑛− 1 negative
candidates and at least one positive candidate to form a training
group of size 𝑛. We retrieve the top-𝐾 (𝐾 ≥ 𝑛) candidates using the
Retriever and sequentially evaluate each (incomplete tuple, candi-
date tuple) pair with GPT-4o as annotator. The process terminates
early once required samples are labeled, reducing computational
cost and time. If no positive candidate is found after evaluating 𝐾
candidates, the incomplete tuple is discarded. Leveraging the high
retrieval performance of our Retriever, when 𝐾 = 30 and 𝑛 = 16,
our method ensures that over 90% of the incomplete tuples in the
original training set obtain sufficient training data and are retained.

For each pair, the LLM evaluates it using a checklist with three
dimensions, as shown in Figure 3. Unlike binary relevance labels,

3357

National Railway Museum
name town/city

N/A N/A
region type

Railway

 list of museums in north yorkshire

Australian Railway
Historical Society

name location
Williamtown

North
Melbourne

suburbs

region type

Railway

 list of museums in victoria (australia)

Existence

Relevance

Logical
Consistency

Incomplete
Tuple

It provides the town/city value ("Shildon") and implicitly
addresses the region ("CountyDurham") …
[Response] Yes

Evaluation Checklist

Candidate
Tuple

The candidate tuple discusses the National Railway
Museum, a related entity to the one in the query …
[Response] Somewhat Relevant

… it aligns logically with … However, the specific
reference may cause minor geographical confusion …
[Response] Partially Consistent

Figure 3: Evaluation checklist for reranking training data.

the checklist guides LLMs to provide fine-grained assessments,
leading to a more accurate and nuanced judgment:
Existence: Check whether the candidate tuple contains at least one
of the missing attributes that need to be filled in the incomplete
tuple. Options: Yes or No.
Relevance: Evaluate the degree of relevance between the candidate
tuple and the incomplete tuple. Options: Highly Relevant, Some-
what Relevant, Not Relevant.
Logical Consistency: Evaluate whether the missing values in the
query tuple can be logically inferred from the candidate tuple with-
out contradictions. Options: Fully Consistent, Partially Consis-
tent, Not Consistent.

After the LLM completes the annotation, we assign a label for
each candidate tuple based on the following criteria:
(1) Existence: it is crucial for imputation since a candidate tuple
that does not include any of the required missing attributes cannot
contribute to filling the incomplete tuple. Thus, if the candidate is
labeled No, it is directly classified as a negative. If labeled Yes, it
proceeds to the next evaluation steps as a potential positive.
(2) Relevance and Logical Consistency: Each dimension is scored
as 0 (lowest), 1 (moderate), or 2 (highest). For candidates marked
as Yes in Existence, we calculate the combined score of these two
dimensions: (a) If the combined score is 2 or higher, the candidate
is labeled as a positive; (b) otherwise, it is labeled as a negative.
Theoretical Justification of Checklist-based Annotation. To
support our design, we provide a theoretical justification that our
checklist-based annotation can achieve lower error rates than bi-
nary annotation.

Theorem 4.1. Consider a binary classification task where a candi-
date tuple is labeled relevant or irrelevant. In checklist-based annota-
tion, each candidate is evaluated on𝑚 dimensions. Each dimension 𝑠𝑖
provides a score, and The total score, 𝑆 =

∑𝑚
𝑖=1 𝑠𝑖 , is compared against

a threshold 𝜏 to determine the label.

For any given annotation task, there exists a checklist with 𝑚
evaluation dimensions such that: (1) Each dimension 𝑠𝑖 is discrim-
inative: 𝐸 [𝑠𝑖 |𝑦 = 1] > 𝐸 [𝑠𝑖 |𝑦 = 0], ∀𝑖 ∈ {1, . . . ,𝑚}; (2)
The dimensions are conditionally independent given the label
𝑦: 𝑃 (𝑠1, . . . , 𝑠𝑚 |𝑦) = ∏𝑚

𝑖=1 𝑃 (𝑠𝑖 |𝑦) . Furthermore, there always exists
a threshold 𝜏 that simultaneously reduces the false-positive rate (FPR)
and false-negative rate (FNR) compared to binary relevance annota-
tion:

𝜖′𝐹𝑃 < 𝜖𝐹𝑃 , 𝜖′𝐹𝑁 < 𝜖𝐹𝑁 ,

where 𝜖𝐹𝑃 = 𝑃 (𝑦 = 1|𝑦 = 0), 𝜖𝐹𝑁 = 𝑃 (𝑦 = 0|𝑦 = 1) are the FPR
and FNR for binary relevance annotation, and 𝜖′

𝐹𝑃
= 𝑃 (𝑆 ≥ 𝜏 |𝑦 = 0),

𝜖′
𝐹𝑁

= 𝑃 (𝑆 < 𝜏 |𝑦 = 1) are the rates for checklist-based annotation.

Proof. Let 𝑆1 ∼ 𝑃 (𝑆 | 𝑦 = 1) and 𝑆0 ∼ 𝑃 (𝑆 | 𝑦 = 0) denote the
total score distributions for relevant and irrelevant candidates under
checklist-based annotation. To ensure checklist-based annotation
reduces the false-positive and false-negative rates, it suffices to find
a threshold 𝜏 that:
𝜖′𝐹𝑃 = 𝑃 (𝑆 ≥ 𝜏 | 𝑦 = 0) < 𝜖𝐹𝑃 , 𝜖′𝐹𝑁 = 𝑃 (𝑆 < 𝜏 | 𝑦 = 1) < 𝜖𝐹𝑁 . (1)
This is equivalent to:

𝑄0 (1 − 𝜖𝐹𝑃) < 𝜏 < 𝑄1 (𝜖𝐹𝑁) (2)
where 𝑄0 (·) and 𝑄1 (·) are the quantile functions of 𝑆0 and 𝑆1, re-
spectively. A sufficient condition for such a 𝜏 to exist is: 𝑄0 (1 −
𝜖𝐹𝑃) < 𝑄1 (𝜖𝐹𝑁). Under the assumptions of the theorem, i.e., the
discriminative property and conditional independence of dimen-
sions, the score distributions satisfy:

𝜇1 =
𝑚∑︁
𝑖=1

𝐸 [𝑠𝑖 | 𝑦 = 1], 𝜇0 =
𝑚∑︁
𝑖=1

𝐸 [𝑠𝑖 | 𝑦 = 0], (3)

𝜎21 =

𝑚∑︁
𝑖=1

Var(𝑠𝑖 | 𝑦 = 1), 𝜎20 =

𝑚∑︁
𝑖=1

Var(𝑠𝑖 | 𝑦 = 0) . (4)

By the Central Limit Theorem, when 𝑚 is sufficient to large,
the total scores approximately follow normal distributions: 𝑆1 ∼
𝑁 (𝜇1, 𝜎21), 𝑆0 ∼ 𝑁 (𝜇0, 𝜎20) Thus, the quantiles in Equation (2) are
approximated as:
𝑄0 (1 − 𝜖𝐹𝑃) ≈ 𝜇0 + 𝑧1−𝜖𝐹𝑃𝜎0, 𝑄1 (𝜖𝐹𝑁)≈ 𝜇1 − 𝑧1−𝜖𝐹𝑁 𝜎1 (5)

where 𝑧𝑝 denotes the 𝑝-th quantile of the standard normal dis-
tribution. Thus, inequality (2) is satisfied if: 𝜇1 − 𝜇0 > 𝑧1−𝜖𝐹𝑃𝜎0 +
𝑧1−𝜖𝐹𝑁 𝜎1 .Note that this equation is guaranteed to hold under either
of the following sufficient conditions: (i) when the number of check-
list dimensions𝑚 is sufficiently large, the score gap 𝜇1 − 𝜇0 = Θ(𝑚)
grows faster than the standard deviation terms 𝜎𝑦 = 𝑂 (

√
𝑚); or

(ii) when each dimension is strongly discriminative and has low
variance, even for small𝑚.

Therefore, there exists a checklist with𝑚 dimensions that satis-
fies the conditions in the theorem, and a corresponding threshold 𝜏
such that 𝜖′

𝐹𝑃
< 𝜖𝐹𝑃 , 𝜖′

𝐹𝑁
< 𝜖𝐹𝑁 ,which completes the proof. □

Construct Stratified Training Groups for Contrastive Train-
ing. After annotation, each incomplete tuple is paired with 𝑥 pos-
itives and 𝑦 negatives (𝑥 ≥ 1, 𝑦 ≥ 𝑛 − 1). While many meth-
ods [23, 60] directly model reranking as a binary classification task
(positive or negative), we propose stratified training groups with
contrastive learning to better handle annotation noise. Even with

3358

the checklist, LLM judgments are not always precise. For example,
as shown in Figure 3, an irrelevant candidate may be labeled as
“positive” with a score of 2. Directly training on these noisy labels
may propagate annotation errors. Our key insight is that while
individual labels may be noisy, the relative ranking among candi-
dates by score are more reliable: higher-scored candidates tend to
be more relevant. We therefore organize candidates into stratified
groups that preserve score-based orderings, allowing the model to
learn relative differences more effectively.

Specifically, for an incomplete tuple 𝑡 , we organize its anno-
tated candidates into groups. For a positive candidate 𝑃𝑖 with
score 𝑠 (𝑃𝑖), we construct the corresponding training group as:
𝐺𝑖 = {(𝑡, 𝑃𝑖), {(𝑡, 𝑃 𝑗) | 𝑠 (𝑃 𝑗) < 𝑠 (𝑃𝑖)}, {(𝑡, 𝑁𝑘)} , where 𝑃 𝑗 are
positives with scores lower than 𝑠 (𝑃𝑖), and 𝑁𝑘 are sampled nega-
tives. The total size of each group is 𝑛. To construct each group, we
begin by including 𝑃𝑖 and its lower-scored positives, then sample
enough negative candidates to reach the required group size 𝑛. As
a result, each incomplete tuple will have 𝑥 training groups.

We use a BERT-based reranker model. The incomplete tuple and
candidate tuple are serialized and concatenated before being fed
into the BERT model. The output of the first token [CLS] is then
passed through a linear layer to obtain a score. For each training
group, we apply contrastive loss, where the goal is to maximize the
positive candidate score 𝑃𝑖 while minimizing all the other negative
candidates in the group. This stratified grouping approach allows
the reranker to learn subtle differences between tuples with varying
scores, preferring tuples that are more logically consistent and
relevant to the incomplete tuple.

5 REASONER: CONFIDENCE-AWARE INFERENCE
After obtaining the top-𝑘 reranked results, the process advances
to the pivotal stage of data imputation using LLMs as Reasoner.
Unlike LLMs used without external knowledge [49, 71, 74, 84, 85],
the RAG paradigm adopted by LakeFill grounds the generation
on retrieved content and has been shown to reduce hallucina-
tions [24, 72]. However, even with RAG, hallucinations can still
occur [59, 86], especially when the top-𝑘 retrieved results include
noisy or irrelevant tuples despite reranking, or when themodel over-
relies on its parametric knowledge, overriding the retrieved context
and introducing contradictions [69]. Tomitigate the negative impact
of irrelevant tuples, we propose a Two-Stage Confidence-Aware
Imputation framework, as shown in Figure 4. It is based on the
hypothesis that encouraging LLMs to strictly review retrieved evi-
dence and minimize the reliance on internal parametric knowledge
can substantially improve precision, which we empirically validate
in Section 6.3.

Our core idea is to prioritize precision over overall impu-
tation accuracy. In the first stage, the LLM is required to base
its decision solely on the retrieved tuples, strictly reviewing the
evidence to produce a confident imputed value or to reject imputa-
tion if the evidence is insufficient. However, relying only on this
strict, evidence-driven mode inevitably reduces overall accuracy,
as many imputations may not meet the confidence threshold. To
address this, we introduce a second stage: a relaxed mode that
allows the LLM to make plausible but less rigorously grounded in-
ferences, thereby improving overall imputation accuracy at the cost

of reduced precision. This two-stage design allows users to make
informed trade-offs: leverage the strict mode for high-precision,
evidence-backed values, and then fall to the relaxed mode for higher
imputation when needed. Specifically, given top-𝑘 retrieved tuples
𝑅 and incomplete tuple 𝑡 , the imputation function I is defined as:

I(𝑅, 𝑡) =
{
(𝑣, 𝑐𝑠) if 𝑐𝑠 ≥ 𝜏 (Stage 1)
(𝑣𝑟 , 𝑐𝑟) otherwise (Stage 2)

where 𝜏 is the confidence threshold, 𝑣 and 𝑣𝑟 denote imputed values
from the first and second stage respectively, with confidence scores
𝑐𝑠 = LLMstrict (𝑅, 𝑡) and 𝑐𝑟 = min(LLMrelaxed (𝑅, 𝑡), 𝜏). Notably, we
adopt verbalized confidence scores [78], where the LLM is explic-
itly prompted to estimate its own confidence in the form of output
tokens, i.e., a score between 0 and 1. This simple yet effective ap-
proach allows us to measure the model’s self-assessed certainty.
We further discuss the rationale and empirically demonstrate the
reliability of these scores later.
Stage 1: Evidence-Driven Strict Mode. First, LLMs review the
retrieved tuples from the three dimensions used in reranking (exis-
tence, relevance, logical consistency) and operates under the fol-
lowing constraints: (1) Rejection mechanism: Automatically refuses
imputation when retrieval evidence is insufficient for confident rea-
soning. (2) Confidence score: Assigns confidence scores [0,1] based
on evidence completeness. (3) Threshold filtering: Allows users to
set strict thresholds to accept only high-confidence imputations.
Stage 2: Relaxed Completion Mode. For cases rejected in Stage
1 (insufficient evidence or low confidence), it activates: (1) Plausi-
ble inference: Allows LLM to fill missing values through plausible
inference. (2) Reduced constraints: Accepts weaker logical consis-
tency requirements. (3) Differentiated marking: Labels results with
“[Relaxed]” tags for traceability.

As the confidence threshold 𝜏 increases, the precision of the first
stage improves due to stricter filtering, but overall accuracy tends
to decline as more values are filled in the relaxed mode. However,
thresholds that are too low may sometimes introduce unreliable
results that are less accurate than the model’s internal knowledge.
Our empirical observations show that LLMs typically assign scores
≥ 0.9 to reliable imputations, so we set 𝜏 = 0.9 by default.
Reliability of Confidence Score. A key requirement for our im-
putation framework is that the LLM’s verbalized confidence score
reflects the likelihood of a correct imputation. In our setting, this
score is not purely derived from the model’s internal knowledge.
Instead, it also reflects the quality of retrieved evidence, making it
more grounded and less prone to overconfidence.

To assess the reliability of these scores, we evaluate their cal-
ibration—that is, whether a confidence score 𝑐 corresponds to a
𝑐-level probability of being correct. We introduce the Expected
Calibration Error (ECE) [78] to measure this alignment, defined
as the expected gap between predicted confidence and actual accu-
racy: ECE = E𝑐 [|Pr[correct | 𝐶 = 𝑐] − 𝑐 |] . In practice, we divide
samples into 𝑀 bins based on their confidence scores and com-
pute: ECE ≈ ∑𝑀

𝑚=1
|𝐵𝑚 |
𝑛 · |acc(𝐵𝑚) − conf(𝐵𝑚) | , where acc(𝐵𝑚)

and conf(𝐵𝑚) are the average imputation accuracy and confidence
score in bin 𝐵𝑚 .

3359

Table 2: Statistics of mvBench (Tab. : Tables; Tup. : Tuples; Attrs: Attributes).

Incomplete Tuples Data Lake Avg. Relevant Tup.Datasets #-Tab. #-Tup. #-Tab. #-Tup. #-Relevant Tup./#-Tup. Part of Missing Attrs #-Training
Tup.

WikiTuples (WT) 665 6,887 207,912 2,674,164 3.98 Party, Director, Team, ... 100
Show Movie (SM) 1 30 3 19,586 1 Age Rating 6

Cricket Players (CP) 1 213 2 94,164 1.38 Nationality, Batting Style 20
Education (ED) 2 654 17 11,132 4 Address, Zipcode, Phone 30
Zomato (ZM) 1 529 16 468,252 3.48 Location 30

FIFA World Cup (FF) 1 696 14 118,251 1.44 Home / Away Team Goals 30

Stage 1: The goal is to evaluate whether missing values [NA] in the incomplete
tuple can be accurately imputed using retrieved tuples …
1. Review the tuples and evaluate each retrieved tuple from the following
dimension …
2. If sufficient information exists, …. with confidence score …. Otherwise, reject to
impute missing values ……

Stage 2: Based on the retrieved tuples and your own knowledge, what’s the most
likely value for the [NA] cell in the incomplete tuple below. ……

position
Defensive end

Confidence: 0.95
Julius

Peppers

Player 2012 team
Chicago Bears
Confidence: 1.0

Reject to
imputation

2013 team

position
Defensive

end
Julius

Peppers

Player 2012 team
Chicago Bears New York Giant

Confidence: 0.5

2013 team

Figure 4: Two-Stage Confidence-Aware Imputation.

To demonstrate the reliability of our verbalized confidence score,
we evaluate its ECE across multiple datasets. Additionally, we com-
pare it against two widely adopted probability-based baselines,
following [13]: Length-Normalized Score and Entropy-Based Score,
both of which are mapped into the [0, 1] using exponential trans-
formation to serve as confidence scores. The details are shown in
Section 6.3.

6 EXPERIMENTS
6.1 Datasets
Although existing datasets [25, 52, 55] for data imputation provide
missing data and their corresponding ground truth, they mostly
lack: (1) large data lakes containing massive tables that can assist
in filling missing values, or (2) labeled relevant tuples or tables
that facilitate the imputation of missing values. To overcome these
limitations, we introduce mvBench, a large-scale benchmark con-
taining 9,009 incomplete tuples and 3.39 million tuples from the
data lake for missing value imputation with data lakes. To enable a
fine-grained evaluation of the retrieval module, we further provide
relevant tuples annotated by human experts for incomplete tuples.
Dataset Statistics. mvBench comprises six datasets collected from
real-world scenarios, varying in scales, domains, and sources. Ta-
ble 2 summarizes the statistics. The WikiTuples dataset is con-
structed based on WikiTables-TURL [20], with incomplete tuples
from the test set and the data lake from the train set. Show Movie
and Cricket Player datasets are adapted from RetClean [11]. While
the incomplete tables and data lakes are from RetClean, since rele-
vant tuples were not provided, we manually annotated them. The
Education dataset, constructed from the Chicago Data Portal [5],

focuses on Chicago schools. For Zomato and FIFA, their incomplete
tuples are sourced from previous works [41, 55, 66]. We construct
their data lakes by collecting domain-related tables from Kaggle,
and manually annotate the tuples that are relevant for imputation.
For each dataset, a subset of incomplete tuples is randomly sam-
pled to form the training set for the reranker (see “#Training Tup.”
column of Table 2), while the remaining serves as the test set.
Relevant Tuple Annotation. The annotation of relevant tuples
involves two steps: Candidate Tuples Construction to quickly filter
out potential relevant tuples from data lakes, and Expert Annotation
to ensure that the relevant tuples contain information to fill missing
values, ensuring label accuracy.
Candidate Tuples Construction. For an incomplete tuple, we first
create a candidate set by selecting tuples that could potentially help
in imputing its missing values. We use explicit information, such
as similar cell values or cells linking to the same entity, to establish
effective filtering rules.
Expert Annotation. We present each incomplete tuple with its can-
didates to a human expert to judge whether the candidate can fill at
least onemissing value in the incomplete tuple, i.e., be identified as a
relevant tuple. This manual process is time-consuming and requires
specific domain knowledge, thus we hire 10 PhD students as our
“human experts” to annotate labels. To reduce the cost, we primarily
focus on cases where the candidate set comprises 10 or fewer tuples.
In total, over 200 human hours and approximately $1, 000 were
spent on curating relevant tuple labels for each incomplete tuple.
Remark. We do not use human-annotated relevant tuples for train-
ing LakeFill, they are mainly used to evaluate annotation quality
and retrieval performance Our Retriever is trained on synthetic
data rather than mvBench. For Reranker, we use checklist-based
annotation to synthesize training data for incomplete tuples in the
training set, eliminating the need for manual labeling.

6.2 Experimental Setting
6.2.1 Baseline Methods. We evaluate LakeFill from three aspects:
performance on data imputation, retrieval, and reranking. For each
aspect, we compare LakeFill against different SOTA methods.
Baselines forReasoner (Data Imputation). LakeFill focuses on
data imputation in scenarios with limited data redundancy, thus, we
compare LakeFill with methods leveraging external knowledge.
Since rule-based methods [19, 21] rely on human-defined rules,
they are unsuitable for using data lakes for imputation.

3360

(1) LLMwithout Retrieval [56]: We directly employ GPT-4o mini [2]
and GPT-4o [1] for data imputation without using a retriever.
(2) LLM with BM25 retriever: To investigate the impact of a weaker
retrieval method in our framework, we adopt BM25 [64] to retrieve
tuples for LLMs.
(3) LM with fine-tuning: TURL [20] is one of the state-of-the-art
pre-trained tabular models on table-related tasks. It can perform
data imputation when the missing cell content can be linked to an
entity seen during pre-training.
(4) Table-based retrieval: RATA [25] focuses on table-level retrieval
to impute missing values, aiming to retrieve entire tables from the
data lake rather than individual tuples.

For baselines (1) and (2), we compare baselines (1) and (2) with
LakeFill in Exp-1. Due to differences in settings, baselines (3) and
(4) cannot be directly applied to all datasets; hence, their compar-
isons are discussed separately in Exp-2.
Baselines for Retriever. We compare our Retriever against sev-
eral baselines. The first two methods have zero-shot capabilities
and are thus applied directly. For the third method, we retrain it
using the same synthesized data in Section 3.2 for a fair evaluation.
(1) BM25 [64] is the most commonly-used sparse retrieval method.
(2) Contriever [29] is an unsupervised retriever that excels in few-
shot and zero-shot passage retrieval.
(3) DPR-scale [61] is a dense retriever pre-trained on 65 million
questions for passage retrieval.
(4) BERT with masked language modeling (MLM) task (i.e., model
trained on individual tuples). To assess the effectiveness of con-
trastive learning for tuple representation in retrieval, we train a
BERT-based tuple encoder using individual tuples, following the
language modeling task [58, 70]. Specifically, 30% of cells are ran-
domly masked, and the model predicts the missing values.
(5) Sudowoodo [73] is a state-of-the-art entity matching method.
For each dataset, we pretrain the model using the training set and
10,000 randomly selected tuples from the data lake and incomplete
tuples. Pretraining is conducted for 3 epochs, followed by 40 epochs
of fine-tuning.
Baselines for Reranker. Existing reranking methods broadly fall
into two types: fine-tuned and prompt-based methods. We adopt
this categorization for our baseline design.

Fine-tuned models require supervised training. In our setting,
we use the positive/negative labels from the annotation phase for
their training. We include three representative approaches:
(1) monoBERT [60] is a BERT-based model which concatenates two
tuples and use the [CLS] token representation to compute reranking
scores. We initialize it with the provided parameters [6].
(2) monoT5 [23] is a generative model that outputs “true” or “false”
tokens to indicate relevance between an incomplete tuple and a
retrieved one. It is initialized with pre-trained parameters from [8].
(3) RankLLaMA [50] is a fine-tuned LLaMA-based model for point-
wise reranking. We fine-tuned both LLaMA2-7B [7] and LLaMA3-
8B [3], resulting in two variants: RankLLaMA2 and RankLLaMA3.

Prompt-based methods leverage large language models (LLMs)
without fine-tuning. We explore two common paradigms:

Table 3: Exact Match (EM) Accuracy of Data Imputation
across Datasets. “Tup.” denotes Tuples.

Reasoner Retriever WT SM ED CP ZM FF
w/o 0.63 0.75 0.119 0.904 0.0 0.475

w/ tup. (BM25) 0.679 0.75 0.908 0.905 0.754 0.543GPT-4o
mini w/ tup. (LakeFill) 0.881 0.875 0.977 0.921 0.914 0.927

w/o 0.809 0.75 0.112 0.938 0.0 0.484
w/ tup. (BM25) 0.815 0.833 0.928 0.932 0.758 0.551GPT-4o

w/ tup. (LakeFill) 0.907 0.917 0.978 0.97 0.924 0.948

(1) Pairwise [62]: The LLM compares pairs of tuples to determine
which one is more relevant and aggregates preferences via a bubble-
sort-like process.
(2) Listwise [51, 68]: Given an incomplete tuple 𝑡 and a list of can-
didates, we ask LLM to generate a reranked list based on relevance
to 𝑡 . Due to input limitations, we adopt a sliding window strategy
with a window size of 30 and a step size of 14 [68].

For each prompting paradigm, we evaluate three LLMs: GPT-4o
mini, GPT-4o, and LLaMA3-70B, yielding 6 prompt-based configu-
rations in total.

6.2.2 Evaluation Metrics. We evaluate the end-to-end performance
of LakeFill for data imputation using Exact Match (EM) Accu-
racy [30], which considers a generated value correct if it matches
any acceptable answer after normalization. The performance of
the Retriever is assessed using recall@K (R@K), the propor-
tion of relevant tuples within the top-K results. For the Reranker,
following [34], we report success@k (S@k), the percentage of
incomplete tuples for which top-𝑘 retrieved tuples contains at least
one relevant tuple.

6.2.3 Environment and hyper-parameters. Both Retriever and
Reranker use BERT-base-uncased model (110M) [4] as the base
framework. We set the batch size to 16 and train it for 2 epochs
using AdamW optimizer [43]. Training takes approximately 7 hours
on 4 RTX 4090 GPUs. Models are saved every 10,000 steps, and the
one with the lowest development set loss is selected. Reranker is
initialized with parameters pre-trained on the MS MARCO passage
dataset [23]. For Reasoner, we utilize GPT-4o mini and GPT-4o
with a temperature setting of 0.3, the default confidence threshold
is 0.9. All experiments are conducted on an Ubuntu 22.04 server
equipped with 8 RTX 4090 GPUs.

6.3 Evaluation for Data Imputation
Exp-1: How does LakeFill compare with LLMs without re-
trieval and with weaker retrieval methods? We evaluate the
effectiveness of LakeFill in end-to-end data imputation by com-
paring it to two baselines: (1) LLMs without retrieval, which rely
solely on internal parametric knowledge; and (2) LLMs augmented
with a weaker retrieval method, specifically BM25. In all cases, both
LakeFill and the baseline methods use GPT-4o mini or GPT-4o as
the reasoner. For settings involving retrieval, the top-5 retrieved
tuples, along with the incomplete tuple, are sent to the LLM.

As shown in Table 3, LakeFill significantly improves imputa-
tion accuracy compared to LLMs in isolation. When relying solely
on their internal knowledge, LLMs often produce suboptimal re-
sults, even on relatively familiar domains such as Wikipedia. The

3361

challenge is further amplified in specialized domains such as Educa-
tion, which includes fine-grained information about public schools,
and Zomato, where the Location attribute requires detailed ad-
dresses, not just province data. In such cases, GPT-4o mini and
GPT-4o yield accuracies as low as 0.119 and 0.112, or even 0. In
contrast, LakeFill effectively integrates the reasoning capabilities
of LLMs with knowledge from retrieved tuples, achieving substan-
tially higher performance. Excluding the outlier cases of Education
and Zomato, LakeFill achieves average accuracy gains of 21.1%
over GPT-4o-mini and 19% over GPT-4o.

The results underscore the importance of an effective retriever.
As shown in Table 5, BM25 consistently underperforms compared
to our Retriever across all datasets. While BM25 shows notable re-
sult in the Education dataset, where LLMs lack prior knowledge, its
improvements elsewhere are limited. In the Cricket Player dataset,
it even harms performance, likely due to introducing irrelevant or
noisy tuples that increase the LLMs’ reasoning burden. Additionally,
GPT-4o generally outperforms GPT-4o mini due to its advanced
reasoning capabilities, except on the Cricket Player dataset with-
out retrieved tuples, where both models lack domain knowledge.
Interestingly, when retrieval-augmented imputation is applied, the
performance gap between GPT-4o and GPT-4o mini narrows. These
findings show that effective retrieval can enable smaller models to
bridge the knowledge gap and achieve performance closer to that
of larger models, highlighting the strength of our framework in
enhancing imputation accuracy.
Finding 1. LakeFill significantly outperforms baseline LLMs and
those with weaker retrieval methods, enhancing data imputation ac-
curacy across various domains and compensating for the knowledge
gaps of less advanced language models on data imputation.

Exp-2: How does LakeFill compare with fine-tuned language
models and table-based RAG methods? We further discuss the
differences and advantages of LakeFill compared to the other two
types of data imputation methods: a fine-tuned language model
without retrieval and table-based RAG. Given their different set-
tings, we discuss them separately:
LakeFill v.s. TURL (fine-tuned LM). We compare LakeFill with
TURL [20] on the WikiTuples dataset, which is derived from
TURL’s test set. TURL first retrieves candidate entities based on
co-occurrence in training tables and then reranks them using a fine-
tuned LM, while LakeFill directly generates an imputed value. To
ensure a fairer comparison, we report Precision@k (i.e., whether
the ground truth appears in the top-𝑘 candidates) for both models.
Since LakeFill generates a single imputed value per incomplete
tuple, it achieves P@1 = P@5 = 0.907, whereas TURL achieves P@1
= 0.788 and P@5 = 0.967.

TURL achieves a higher P@5 due to its candidate list obtained
from training data, where each missing value in WikiTuples ap-
pears at least three times, and TURL is explicitly trained to capture
entity relationships within this dataset. These favorable conditions
give TURL a strong advantage, likely making its performance an
upper bound. However, TURL performs worse in P@1, which better
reflects scenarios requiring a single imputed value. This highlights
LakeFill ’s practical effectiveness, especially considering it uses
only 7% of TURL’s training data. Moreover, TURL is restricted

0.881
0.907

WikiTuples Show Movie

0.875
0.917

Education

0.978

Cricket Players

Threshold

Zomato FIFA

0.914
0.924

0.927

0.948
0.921

0.97

1.0

0.9

0.8

0.7

0.6
0.7 0.8

1.00

0.95

0.90

0.85

0.9

0.7 0.8 0.9 1.0

1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0

0.7 0.8 0.9 1.00.7 0.8 0.9 1.0

1.0

0.8

0.6

0.4

0.2

1.00

0.98

0.96

0.94

0.92

1.0

0.9

0.8

0.7 0.92

0.94

0.96

0.98

1.00

Figure 5: Impact of confidence thresholds on imputation
precision and ratio.

to only imputing values that could be linked to an entity in its
pre-constructed entity vocabulary, making it inapplicable to our
other datasets, whereas LakeFill generalizes easily across datasets
without such constraints.
LakeFill (tuple retrieval) v.s. RATA (table retrieval). RATA [25] is
the state-of-the-art retrieval-augmented imputation model. While it
focuses on table-level retrieval, our task requires more fine-grained
retrieval at the tuple level. Additionally, its definition of the relevant
table is different from ours. Thus, it’s hard to adopt RATA on our
datasets. To provide a comparison, following RATA’s setting, we
evaluate LakeFill on RATA’s EntiTables dataset using MRR (Mean
Reciprocal Rank) metric. For LakeFill, we define a special form of
MRR@1: MRR is 1 if the imputed value is correct, and 0 if incorrect.

We apply LakeFill’s Retriever without additional training,
achieving an MRR@10 of 0.552, a 17.7% improvement over RATA’s
0.375. We then feed the top-10 retrieved tuples to GPT-4o mini,
yielding an MRR@1 of 0.415, significantly exceeding RATA’s re-
ported results (MRR@10: 0.343). This is attributed to LakeFill’s
tuple-based retrieval, which provides more relevant information for
imputation tasks. Despite requiring more storage space than RATA
(30G v.s. 14G on EntiTables), LakeFill justifies its larger footprint
by providing much better results, demonstrating its efficiency and
effectiveness in handling complex data imputation challenges.

The improvement in imputation accuracy is not as significant
as the retrieval performance because RATA’s definition of relevant
tuples is simplistic: a table is considered relevant merely if contain-
ing the missing value, regardless of inferential logic. However, our
Reasoner applies logical inference to filter out such superficially
relevant tuples that do not contribute to reliable imputation.
Finding 2. LakeFill demonstrates significant advantages over
table-based retrieval methods and fine-tuned language models in
adaptability and imputation performance. While its storage require-
ments are higher, LakeFill strikes an acceptable balance be-
tween storage and performance, making it highly effective when
high imputation performance is prioritized.

Exp-3: Can confidence thresholds enhance imputation re-
liability? This experiment evaluates whether confidence scores
from LLMs can enhance imputation reliability by filtering out low-
confidence predictions. Since reliable imputation demands not just

3362

Table 4: Calibration of different methods. Metric: ECE. ⇓:
Calibration error decreased compared to the ‘relaxed’ mode.

Dataset Mode Model Verbalized Length-Norm Entropy
gpt-4o-mini 0.0592 ⇓ 0.0947 0.083strict gpt-4o 0.0198 ⇓ 0.1034 0.1783
gpt-4o-mini 0.0922 0.1632 0.1435WT

relaxed gpt-4o 0.0348 0.1472 0.2312
gpt-4o-mini 0.015 ⇓ 0.0945 0.1442strict gpt-4o 0.0112 ⇓ 0.1345 0.2087
gpt-4o-mini 0.08 0.014 0.032CP

relaxed gpt-4o 0.0338 0.1206 0.1777
gpt-4o-mini 0.0017 ⇓ 0.057 0.0638strict gpt-4o 0.0036 ⇓ 0.1593 0.14
gpt-4o-mini 0.0546 0.0275 0.0384ED

relaxed gpt-4o 0.0317 0.1271 0.1676
gpt-4o-mini 0.0333 0.0413 0.0828strict gpt-4o 0.053 ⇓ 0.1264 0.1653
gpt-4o-mini 0.03 0.0858 0.0712ZM

relaxed gpt-4o 0.09 0.1096 0.1937
gpt-4o-mini 0.035 ⇓ 0.0192 0.0045strict gpt-4o 0.0283 ⇓ 0.0888 0.1601
gpt-4o-mini 0.0433 0.1074 0.0872FF

relaxed gpt-4o 0.125 0.161 0.207

high accuracy but also trustworthy individual values, we focus on
precision (correctness of filled values) and imputation ratio (pro-
portion of missing values imputed).

We apply strict mode with varying confidence thresholds (0.7,
0.8, 0.9, 1.0), using the top-5 retrieved tuples as input to GPT-4o
mini and GPT-4o. Values below the threshold are discarded, and we
measure the resulting precision and imputation ratio (Figure 5). We
also include the overall precision after performing two stages with
0.9 threshold as the baseline. From Figure 5, we observe that the
precision in strict mode consistently exceeds the baseline, improv-
ing as the threshold increases, while the imputation ratio decreases.
At thresholds of 0.7 to 0.9, the differences in precision and ratio are
minimal, as many confidence scores from GPT-4o and GPT-4o mini
are ≥ 0.9, otherwise they are likely to be rejected, supporting 0.9
as a reasonable default. At threshold 1.0, precision generally im-
proves significantly, though this results in a decline in imputation
ratio. To ensure higher precision, selecting only imputations with
1.0 confidence in strict mode yields an average precision improve-
ment of 5.1% and 3.6% for GPT-4o mini and GPT-4o over baseline,
respectively, at the cost of reduced imputation ratio.
Finding 3. Our confidence thresholding successfully identifies high-
reliability imputations, with GPT-4o mini and GPT-4o achieving
precision improvements of 5.1% and 3.6% over the baseline.

Exp-4: Are Verbalized Confidence Scores Well-Calibrated?
Threshold filtering is only effective if confidence scores are well-
calibrated, i.e., accurately reflecting the likelihood of a correct impu-
tation. Thus, to more precisely quantify the reliability of verbalized
confidence scores and further justify our decision to use them,
we measure the Expected Calibration Error (ECE) of three types
of confidence scores: our verbalized score, length-normalized and
entropy-based score. A lower ECE indicates stronger alignment
between predicted confidence and actual correctness.

We use each dataset’s training set as the calibration set, sending
incomplete tuples and their top-5 retrieved tuples into the LLM

Table 5: Performance of retriever. Metric: Recall@100.

WT SM ED CP ZM FF
BM25 0.295 0.792 0.743 0.902 0.756 0.612

Contriever 0.449 0.042 0.628 0.074 0.085 0.704
DPR-scale 0.468 0.458 0.143 0.048 0.153 0.366

BERT w/ MLM 0.243 0.0 0.0 0.0 0.041 0.0
Sudowoodo 0.567 0.417 0.974 0.987 0.249 0.433

LakeFill’s Retriever 0.943 1.0 0.992 1.0 0.972 0.902

Table 6: Recall@100 of retriever v.s. training datasets.

Training Datasets WT SM ED CP ZM FF
LakeFill 0.943 1.0 0.992 1.0 0.981 0.902
w/ complete tuples 0.94 0.958 0.985 1.0 0.954 0.835Anchor w/ missing values 0.949 1.0 0.977 0.966 0.981 0.908

Positives w/o tuples
from other tables 0.924 1.0 0.962 0.967 0.973 0.749

Negatives w/ augmented anchor
without masked cells 0.851 0.833 0.93 1.0 0.949 0.881

for imputation under strict and relaxed modes respectively. The
Show Movie dataset is excluded due to its small size. As shown
in Table 4, verbalized scores consistently achieve the lowest ECE,
confirming their superior calibration and suitability for threshold-
based filtering. This may stem from the fact that, in the RAG setting,
verbalized scores are more grounded in retrieved evidence than
parametric knowledge, which is the common source of hallucina-
tion. Furthermore, we observe that ECE is lower under the strict
mode compared to the relaxed mode, suggesting that rigorous as-
sessment of retrieved tuples leads to more accurate confidence
estimation.
Finding 4. Our verbalized confidence scores are better calibrated
than other probability-based methods.

6.4 Evaluation for Retriever
Exp-5: How does our Retriever compare with baselines? Ta-
ble 5 shows that our Retriever achieves the highest recall and
success rates on all datasets. The results indicate that: (1) Retrievers
designed for passage retrieval tasks, i.e., Contriever and DPR-scale,
are not very effective for our task. (2) Contrastive learning is crucial
for an effective tuple encoder for retrieval. LakeFill’s Retriever
and BERT with MLM task share the same base model and training
corpus, but the latter performs worst across all datasets, indicating
its unsuitability for our scenario. (3) Our task differs from entity
matching, as tuples describing the same entity are not necessarily
relevant tuples.
Finding 5. Our Retriever, leveraging contrastive learning, outper-
forms baselines in both recall and success rate across all datasets,
demonstrating its superior effectiveness and generalization.

Exp-6: What is the impact of synthesizing training data on
Retriever?We evaluate the effectiveness of our synthesized train-
ing data and identify key factors in its construction, focusing on
the anchor, positives, and negatives. The retrieval results, measured
by recall@100, are presented in Table 6.

3363

Table 7: Performance of reranker. Metric: S@5.

WT SM ED CP ZM FF
(1) Comparision with fine-tuned models (Full Data)

monoBERT 0.781 0.875 0.982 1 0.99 0.979
monoT5 0.903 0.875 0.987 1 0.972 0.979
Rankllama2-7b 0.905 0.75 0.987 0.974 0.974 0.965
Rankllama3-8b 0.888 0.333 0.962 0.964 0.99 0.773
LakeFill’s Reranker 0.907 0.917 0.986 0.995 0.998 0.979
(2) Comparision with prompting-based methods (Partial Data)

GPT-4o-mini (pair) 0.82 0.875 0.995 0.994 0.995 0.83
GPT-4o-mini (list) 0.875 0.917 0.995 0.989 0.995 0.775
GPT-4o (pair) 0.86 0.917 0.995 1 0.99 0.81
GPT-4o (list) 0.88 0.917 0.995 1 0.99 0.78
LLaMA3-70B (pair) 0.86 0.917 0.995 1 0.985 0.845
LLaMA3-70B (list) 0.88 0.917 0.995 1 0.995 0.775
LakeFill’s Reranker 0.905 0.917 0.995 0.994 1.0 0.97

Table 8: Performance of reranker that trained on the human-
annotated training data. Metric: S@5. underline: Within 1%
compared to LLM-annotated data.

Reranker WT SM ED CP ZM FF
monoBERT 0.771 0.875 0.984 1 0.98 0.979
monoT5 0.918 0.875 0.989 1 0.974 0.979
RankLLaMA2-7b 0.898 0.75 0.986 0.974 0.98 0.97
RankLLaMA3-8b 0.852 0.375 0.986 0.964 0.972 0.941
LakeFill’s Reranker 0.895 0.917 0.981 1 0.99 0.979

(1) Anchor Tuples: We use two types of anchor tuples: complete
tuples and those with masked cells (i.e., simulating missing values
to be filled). To show that combining these two types of anchor
tuples yields better results, we construct datasets using only one
type of them. From row 1 to 3, it is evident that combining both
types improves retriever’s performance on most datasets.
(2) Positive Tuples: Unlike traditional methods [73] that only con-
sider augmented anchors as positives, we include relevant tuples
from other tables in our synthesized data. Removing such positives
(row 4) leads to a significant performance decline, highlighting the
importance of diverse positive samples with various heterogeneous
attributes, which aligns with real-world scenarios.
(3) Negative Tuples:We further explore using hard negatives, specif-
ically, anchor variants with the key attribute removed, i.e., tuples
that are nearly identical to the anchor but omit the key information
needed for imputation. We add this type of hard negative to the
training data and report the corresponding result in row 5. We
observe that this causes the sharpest drop in performance, proba-
bly because such cell-level variations are hard to distinguish very
accurately in the embedding space.
Finding 6. The data synthesizing method for our Retriever is
very effective, with the combination of anchor tuples, positives
and negatives proving crucial. Notably, synthesizing positive and
negative samples has a more pronounced impact on performance
than variations in anchor tuple construction.

Table 9: Performance of reranker trained on the annotated
data with only the highest score as positive (Metric: S@5).

WT SM ED CP ZM FF
monoBERT 0.612 0.875 0.984 1 0.992 0.953
monoT5 0.909 0.875 0.989 1 0.872 0.979
RankLLaMA2-7b 0.842 0.708 0.902 0.974 0.946 0.952
RankLLaMA3-8b 0.835 0.417 0.899 0.606 0.459 0.919
LakeFill 0.847 0.875 0.897 1.0 0.996 0.974

6.5 Evaluation for Reranker
Exp-7: How does the Reranker comparewith baselines?We an-
alyze fine-tuned and prompt-based reranking methods, evaluating
fine-tuned models on the full dataset and prompt-based methods on
a sampled subset due to cost constraints. Table 7 shows the results
and we make the following observations.

(1) Compared to fine-tuned baselines, Reranker consistently
achieves the best or comparable performance across most datasets
when trained on our annotation data. While RankLLaMA models
perform well on the Education dataset, they underperform on oth-
ers, likely due to limited training data, which makes it difficult for
large models to be fully well trained. As previously noted [32], their
advantage as rerankers is not always evident. RankLLaMA2 shows
more stable performance than RankLLaMA3, likely because rerank-
ing requires discriminative scoring rather than general instruction-
following, the latter being LLaMA3’s strength.

(2) Compared to prompt-based methods, Reranker performs
comparably on several datasets and significantly outperforms them
on FIFA, which contains many candidates from the same domain
with similar schemas, requiring fine-grained distinction. Listwise
prompting struggles in such settings due to the need to rank
many similar tuples at once, while pairwise prompting, though
slightly better, still lags behind Reranker. Moreover, prompt-based
rerankers suffer from high computational cost. As shown in Ta-
ble 10, listwise prompting takes about 30s per tuple and pairwise
over 160s for top-100 reranking, over 80× slower than our light-
weight, locally deployed Reranker (0.17s), making prompt-based
approaches impractical for real-time use.
Finding 7. Our Reranker achieves better or comparable perfor-
mance to baselines and offers substantial runtime advantages
over prompt-based methods.

Exp-8: Can LLM-annotated data via evaluation checklist
serve as an effective substitute for human annotations?We
compare LLM-annotated data (via our checklist) with human-
annotated data. As shown in Table 8, both monoT5 and LakeFill
achieve strong performance. Furthermore, in most datasets, perfor-
mance differences between models trained on LLM- and human-
annotated data remain within 1%, indicating the high quality and
reliability of our automatic annotations. On WikiTuples, monoT5
shows a larger drop under LLM-annotated data, possibly due to
its reliance on binary classification and lack of robustness to label
noise. In contrast, LakeFill benefits from our contrastive training
strategy, which better captures fine-grained relevance distinctions
and even leads to slight improvements over human annotations.

3364

To further assess robustness of our construction method to label
noise, we experiment with a simplified strategy by labeling only
the highest-scoring tuple as positive and treating the rest as neg-
atives. As shown in Table 9, this leads to noticeable performance
drops across models, likely because some top-scoring tuples are
still irrelevant. This confirms that our training group construction
method provides more informative supervision by preserving the
relative ranking among tuples.
Finding 8. Our LLM-annotated data with stratified construc-
tion strategy achieves comparable performance with human-
annotated data.

Exp-9: Is Using an Evaluation Checklist Essential for Ac-
curate Data Labeling? To validate the theoretical advantage of
checklist-based annotation in Section 4, we empirically compare
its labeling quality with binary relevance annotation. For the lat-
ter, we directly provide incomplete tuples and candidate tuples to
GPT-4o. GPT-4o then analyzes whether the candidate can fill in the
missing values in the incomplete tuple and labels it as relevant or
irrelevant with an explanation. We asked LLM to label 100 training
tuples of WikiTuples with 1 positive and 7 negatives. Note that
this setup is artificial, as in real scenarios we wouldn’t know the
positives, but we aim to analyze the labeling performance here. The
agreement rate between these labels and human annotations was
80.6%, while using the evaluation checklist annotations achieved
over 95% agreement. This confirms that our proposed checklist
leads to substantially more accurate labels, consistent with our
theoretical analysis.
Finding 9. Using the evaluation checklist for labeling ensures
much higher accuracy in identifying relevant candidates, achiev-
ing an agreement rate of over 95%, compared to 80.6% directly using
GPT-4o on WikiTuples dataset.

6.6 Efficiency and Resource Analysis
We evaluate the run-time performance of LakeFill and some base-
lines in retrieval and reranking stages on WikiTuples datasets. The
results are shown in Table 10.

Table 10 (a) summarizes the retriever performance. All methods
use the IndexFlatL2 type, which performs an exact search without
compression. BM25 is fast to index since it avoids dense encoding,
but suffers from high query-time latency. Sudowoodo, which per-
forms blocking without indexing, is the slowest. RATA retrieves
at the table level, reducing index size and retrieval time to about
half of LakeFill, but at the expense of precision. LakeFill offers
a good trade-off between accuracy and efficiency. Notably, if we
switch LakeFill to use HNSW [53] index, retrieval time can be
further reduced to 0.017 seconds per query with only a slight drop
(~5%) in recall@100. Table 10 (b) reports reranking performance.
LakeFill achieves the highest efficiency due to its small model
size. Among prompt-based methods, we report GPT-4o as represen-
tative, as other LLMs exhibit similar API latency. These methods
are over 80× slower than LakeFill, making them impractical. In
the imputation stage, LakeFill takes 7.49 seconds per incomplete
tuple when querying GPT-4o with top-5 retrieved tuples.

Table 10: Retriever/reranker runtime on WikiTuples.

Method Index Time
(Index Size)

Retrieve Time
(GPU Usage)

BM25 130s
(12.74 GB)

29.96 s/q
(cpu only)

Sudowoodo – 214.9 s/q
(2060MiB)

DPR_scale 7127.24 s
(7.65 GB)

0.88 s/q
(1432MiB)

RATA 1306.57s
(5.83 GB)

0.415 s/q
(934MiB)

LakeFill
8047.1 s
(9.15GB)

0.808 s/q
(936MiB)

(a) Retriever Performance.

Model Rerank Time
(GPU Usage)

GPT-4o (list) 29.6 s/q
GPT-4o (pair) 165 s/q

monoT5 0.53 s/q
(2860MiB)

Rankllama2 4.23 s/q
(14616MiB)

Rankllama3 3.99 s/q
(16592MiB)

LakeFill
0.37 s/q

(2268MiB)

(b) Reranker Performance.

7 RELATEDWORK
Data imputation with limited data redundancy has gained attention
with the advancement of LLMs. While some studies have applied
LLMs directly to data imputation through in-context learning [57]
or training models [38, 82], ensuring high accuracy and reliabil-
ity remains a challenge. Retrieval-Augmented Generation (RAG),
introduced by [35], involves retrieving relevant documents from ex-
ternal sources to generate answers. RAG has been adopted for many
table-related tasks [25, 27], but the utilization of RAG in data impu-
tation remains relatively unexplored. Previous imputation works
incorporating retrieval ideas have limitations in addressing the chal-
lenges of imputation with limited redundancy. Some approaches
retrieve information from the same table [40] or use simple match-
ing [81], still relying on the table’s inherent redundancy and failing
to handle heterogeneous data. Others utilize external sources like
master data [21, 28] or knowledge bases [19, 26], but require expert
involvement, making them unsuitable for large-scale data lakes.
RATA [25] employs a table-level retrieval for data imputation, but
its coarse-grained retrieval is insufficient.

8 CONCLUSION
We introduce LakeFill for addressing data imputation in data
lakes. LakeFill integrates a pre-trained retriever capable of identi-
fying relevant tuples, a fine-tuned reranker to calculate fine-grained
relevance, and a reasoner that applies in-context learning for the
reliable imputation process. Our experiments demonstrate the ex-
ceptional effectiveness of LakeFill, surpassing various baselines
andmarkedly improving uponmethods that depend solely on LLMs.

ACKNOWLEDGMENTS
This work is partly supported by Guangdong provincial project
2023CX10X008, the NSF of China (62402409), Guangdong Basic and
Applied Basic Research Foundation (2023A1515110545), Guangzhou
Basic and Applied Basic Research Foundation (2025A04J3935), and
Guangzhou-HKUST(GZ) Joint Funding Program (2025A03J3714).
Ju Fan is supported by the NSF of China (62436010 and 62441230).
Chengliang Chai is supported by the NSF of China (62472031),
the National Key Research and Development Program of China
(2024YFC3308200), Beijing Nova Program, CCF-Baidu Open Fund
(CCF-Baidu202402), and Huawei.

3365

REFERENCES
[1] Aug 06, 2024. GPT-4o. https://platform.openai.com/docs/models#gpt-4o.
[2] Jul 18, 2024. GPT-4o mini. https://platform.openai.com/docs/models#gpt-4o-

mini.
[3] July 23, 2024. Llama-3-8b. https://huggingface.co/meta-llama/Llama-3.1-8B.
[4] Jun 30, 2023. bert-base-uncased. https://huggingface.co/bert-base-uncased.
[5] Jun 30, 2023. Chicago Data Portal. https://data.cityofchicago.org/.
[6] May 29, 2020. monobert-large-msmarco. https://huggingface.co/castorini/

monobert-large-msmarco.
[7] Nov 14, 2023. Llama-2-7b. https://huggingface.co/meta-llama/Llama-2-7b.
[8] October 17, 2021. monot5-base-msmarco-10k. https://huggingface.co/castorini/

monot5-base-msmarco-10k.
[9] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas,

Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016. De-
tecting Data Errors: Where are we and what needs to be done? Proc. VLDB
Endow. 9, 12 (2016), 993–1004.

[10] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.
Addison-Wesley. http://webdam.inria.fr/Alice/

[11] Mohammad Shahmeer Ahmad, Zan Ahmad Naeem, Mohamed Eltabakh, Mourad
Ouzzani, and Nan Tang. 2023. RetClean: Retrieval-Based Data Cleaning Using
Foundation Models and Data Lakes. arXiv preprint arXiv:2303.16909 (2023).

[12] Naomi S. Altman. 1992. An Introduction to Kernel and Nearest-Neighbor Non-
parametric Regression. The American Statistician 46 (1992), 175–185. https:
//api.semanticscholar.org/CorpusID:17002880

[13] Yavuz Faruk Bakman, Duygu Nur Yaldiz, Baturalp Buyukates, Chenyang Tao,
Dimitrios Dimitriadis, and Salman Avestimehr. 2024. MARS: Meaning-Aware
Response Scoring for Uncertainty Estimation in Generative LLMs. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.).
Association for Computational Linguistics, Bangkok, Thailand, 7752–7767. https:
//doi.org/10.18653/v1/2024.acl-long.419

[14] Felix Biessmann, Tammo Rukat, Phillipp Schmidt, Prathik Naidu, Sebastian
Schelter, Andrey Taptunov, Dustin Lange, and David Salinas. 2019. DataWig:
Missing value imputation for tables. Journal of Machine Learning Research 20,
175 (2019), 1–6.

[15] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-
etsidis. 2007. Conditional Functional Dependencies for Data Cleaning. In
ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007. 746–755.
https://doi.org/10.1109/ICDE.2007.367920

[16] Bernardo Breve, Loredana Caruccio, Vincenzo Deufemia, Giuseppe Polese, et al.
2022. RENUVER: A Missing Value Imputation Algorithm based on Relaxed
Functional Dependencies.. In EDBT. 1–52.

[17] Chengliang Chai, Nan Tang, Ju Fan, and Yuyu Luo. 2023. Demystifying Artificial
Intelligence for Data Preparation. In SIGMOD Conference Companion. ACM,
13–20.

[18] Chengliang Chai, Jiayi Wang, Yuyu Luo, Zeping Niu, and Guoliang Li. 2023. Data
Management for Machine Learning: A Survey. IEEE Trans. Knowl. Data Eng. 35,
5 (2023), 4646–4667.

[19] Xu Chu, JohnMorcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang, and
Yin Ye. 2015. Katara: A data cleaning system powered by knowledge bases and
crowdsourcing. In Proceedings of the 2015 ACM SIGMOD international conference
on management of data. 1247–1261.

[20] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. Turl: Table
understanding through representation learning. ACM SIGMOD Record 51, 1
(2022), 33–40.

[21] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. 2012. Towards
certain fixes with editing rules and master data. The VLDB journal 21 (2012),
213–238.

[22] Alireza Farhangfar, Lukasz A. Kurgan, and Witold Pedrycz. 2007. A Novel
Framework for Imputation of Missing Values in Databases. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans 37, 5 (2007),
692–709. https://doi.org/10.1109/TSMCA.2007.902631

[23] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. Rethink training of BERT
rerankers in multi-stage retrieval pipeline. In Advances in Information Retrieval:
43rd European Conference on IR Research, ECIR 2021, Virtual Event, March 28–April
1, 2021, Proceedings, Part II 43. Springer, 280–286.

[24] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi
Dai, Jiawei Sun, Meng Wang, and Haofen Wang. 2024. Retrieval-Augmented
Generation for Large Language Models: A Survey. arXiv:2312.10997 [cs.CL]
https://arxiv.org/abs/2312.10997

[25] Michael Glass, Xueqing Wu, Ankita Rajaram Naik, Gaetano Rossiello, and Alfio
Gliozzo. 2023. Retrieval-Based Transformer for Table Augmentation. In Find-
ings of the Association for Computational Linguistics: ACL 2023, Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Computational
Linguistics, Toronto, Canada, 5635–5648.

[26] Shuang Hao, Nan Tang, Guoliang Li, and Jian Li. 2017. Cleaning relations using
knowledge bases. In 2017 IEEE 33rd International Conference on Data Engineering
(ICDE). IEEE, 933–944.

[27] Jonathan Herzig, Thomas Mueller, Syrine Krichene, and Julian Eisenschlos. 2021.
Open Domain Question Answering over Tables via Dense Retrieval. In Proceed-
ings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. 512–519.

[28] Matteo Interlandi and Nan Tang. 2015. Proof positive and negative in data
cleaning. In 2015 IEEE 31st International Conference on Data Engineering. IEEE,
18–29.

[29] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bo-
janowski, Armand Joulin, and Edouard Grave. 2021. Unsupervised dense infor-
mation retrieval with contrastive learning. arXiv:2112.09118 (2021).

[30] Gautier Izacard and Edouard Grave. 2020. Leveraging passage retrieval with
generative models for open domain question answering. arXiv:2007.01282 (2020).

[31] JoséM Jerez, IgnacioMolina, Pedro J García-Laencina, Emilio Alba, Nuria Ribelles,
Miguel Martín, and Leonardo Franco. 2010. Missing data imputation using
statistical andmachine learningmethods in a real breast cancer problem. Artificial
intelligence in medicine 50, 2 (2010), 105–115.

[32] Yuelyu Ji, Zhuochun Li, Rui Meng, and Daqing He. 2024. ReasoningRank: Teach-
ing Student Models to Rank through Reasoning-Based Knowledge Distillation.
arXiv:2410.05168 [cs.CL] https://arxiv.org/abs/2410.05168

[33] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

[34] Omar Khattab, Christopher Potts, and Matei Zaharia. 2021. Relevance-guided
supervision for openqa with colbert. Transactions of the association for computa-
tional linguistics 9 (2021), 929–944.

[35] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[36] Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. 2024. The
Dawn of Natural Language to SQL: Are We Fully Ready? Proc. VLDB Endow. 17,
11 (2024), 3318–3331.

[37] Boyan Li, Jiayi Zhang, Ju Fan, Yanwei Xu, Chong Chen, Nan Tang, and Yuyu
Luo. 2025. Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search. In
Forty-Second International Conference on Machine Learning, ICML 2025, Vancouver,
Canada, July 13-19, 2025. OpenReview.net.

[38] Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang,
Danielle Rifinski Fainman, Dongmei Zhang, and Surajit Chaudhuri. 2023. Table-
gpt: Table-tuned gpt for diverse table tasks. arXiv preprint arXiv:2310.09263
(2023).

[39] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep entity matching with pre-trained language models. Proc. VLDB
Endow. 14, 1 (2020). https://doi.org/10.14778/3421424.3421431

[40] Zhixu Li, Lu Qin, Hong Cheng, Xiangliang Zhang, and Xiaofang Zhou. 2015. TRIP:
An interactive retrieving-inferring data imputation approach. IEEE Transactions
on Knowledge and Data Engineering 27, 9 (2015), 2550–2563.

[41] Lei Liu, So Hasegawa, Shailaja Keyur Sampat, Maria Xenochristou, Wei-Peng
Chen, Takashi Kato, Taisei Kakibuchi, and Tatsuya Asai. 2024. AutoDW: Au-
tomatic Data Wrangling Leveraging Large Language Models. In Proceedings of
the 39th IEEE/ACM International Conference on Automated Software Engineering
(Sacramento, CA, USA) (ASE ’24). Association for Computing Machinery, New
York, NY, USA, 2041–2052. https://doi.org/10.1145/3691620.3695267

[42] Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju
Fan, Guoliang Li, Nan Tang, and Yuyu Luo. 2025. A Survey of Text-to-SQL in the
Era of LLMs: Where are we, and where are we going? arXiv:2408.05109 [cs.DB]
https://arxiv.org/abs/2408.05109

[43] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[44] Yuyu Luo, Chengliang Chai, Xuedi Qin, Nan Tang, and Guoliang Li. 2020. Inter-
active Cleaning for Progressive Visualization through Composite Questions. In
ICDE. IEEE, 733–744.

[45] Yuyu Luo, Xuedi Qin, Chengliang Chai, Nan Tang, Guoliang Li, and Wenbo Li.
2022. Steerable Self-Driving Data Visualization. IEEE Trans. Knowl. Data Eng. 34,
1 (2022), 475–490.

[46] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. DeepEye: Towards
Automatic Data Visualization. In ICDE. IEEE Computer Society, 101–112.

[47] Yuyu Luo, Nan Tang, Guoliang Li, Jiawei Tang, Chengliang Chai, and Xuedi Qin.
2022. Natural Language to Visualization by Neural Machine Translation. IEEE
Trans. Vis. Comput. Graph. 28, 1 (2022), 217–226.

[48] Yuyu Luo, Yihui Zhou, Nan Tang, Guoliang Li, Chengliang Chai, and Leixian
Shen. 2023. Learned Data-aware Image Representations of Line Charts for
Similarity Search. Proc. ACM Manag. Data 1, 1 (2023), 88:1–88:29.

[49] Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. 2023. Query
Rewriting in Retrieval-Augmented Large Language Models. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, Houda
Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational
Linguistics, Singapore, 5303–5315. https://doi.org/10.18653/v1/2023.emnlp-

3366

https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#gpt-4o-mini
https://platform.openai.com/docs/models#gpt-4o-mini
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/bert-base-uncased
https://data.cityofchicago.org/
https://huggingface.co/castorini/monobert-large-msmarco
https://huggingface.co/castorini/monobert-large-msmarco
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/castorini/monot5-base-msmarco-10k
https://huggingface.co/castorini/monot5-base-msmarco-10k
http://webdam.inria.fr/Alice/
https://api.semanticscholar.org/CorpusID:17002880
https://api.semanticscholar.org/CorpusID:17002880
https://doi.org/10.18653/v1/2024.acl-long.419
https://doi.org/10.18653/v1/2024.acl-long.419
https://doi.org/10.1109/ICDE.2007.367920
https://doi.org/10.1109/TSMCA.2007.902631
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2410.05168
https://arxiv.org/abs/2410.05168
https://doi.org/10.14778/3421424.3421431
https://doi.org/10.1145/3691620.3695267
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://doi.org/10.18653/v1/2023.emnlp-main.322

main.322
[50] Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. 2023. Fine-

Tuning LLaMA for Multi-Stage Text Retrieval. arXiv:2310.08319 [cs.IR] https:
//arxiv.org/abs/2310.08319

[51] Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and Jimmy Lin. 2023. Zero-Shot
Listwise Document Reranking with a Large Language Model. arXiv preprint
arXiv:2305.02156 (2023).

[52] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective error cor-
rection via a unified context representation and transfer learning. Proceedings of
the VLDB Endowment 13, 12 (2020), 1948–1961.

[53] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (April 2020), 824–836. https://doi.
org/10.1109/TPAMI.2018.2889473

[54] John T McCoy, Steve Kroon, and Lidia Auret. 2018. Variational autoencoders for
missing data imputation with application to a simulated milling circuit. IFAC-
PapersOnLine 51, 21 (2018), 141–146.

[55] Yinan Mei, Shaoxu Song, Chenguang Fang, Haifeng Yang, Jingyun Fang, and
Jiang Long. 2021. Capturing semantics for imputation with pre-trained language
models. In 2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 61–72.

[56] Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré. 2022. Can
Foundation Models Wrangle Your Data? 16, 4 (Dec. 2022), 738–746. https:
//doi.org/10.14778/3574245.3574258

[57] Avanika Narayan, Ines Chami, Laurel J. Orr, and Christopher Ré. 2022. Can
Foundation Models Wrangle Your Data? Proc. VLDB Endow. 16, 4 (2022), 738–746.
https://doi.org/10.14778/3574245.3574258

[58] Mona Nashaat, Aindrila Ghosh, James Miller, and Shaikh Quader. 2021. TabRe-
former: Unsupervised Representation Learning for Erroneous Data Detection.
ACM/IMS Transactions on Data Science 2, 3 (2021), 1–29.

[59] Cheng Niu, Yuanhao Wu, Juno Zhu, Siliang Xu, KaShun Shum, Randy Zhong,
Juntong Song, and Tong Zhang. 2024. RAGTruth: A Hallucination Corpus for
Developing Trustworthy Retrieval-Augmented Language Models. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.).
Association for Computational Linguistics, Bangkok, Thailand, 10862–10878.
https://doi.org/10.18653/v1/2024.acl-long.585

[60] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[61] Barlas Oguz, Kushal Lakhotia, Anchit Gupta, Patrick Lewis, Vladimir Karpukhin,
Aleksandra Piktus, Xilun Chen, Sebastian Riedel, Scott Yih, Sonal Gupta, and
Yashar Mehdad. 2022. Domain-matched Pre-training Tasks for Dense Re-
trieval. In Findings of the Association for Computational Linguistics: NAACL
2022. Association for Computational Linguistics, Seattle, United States. https:
//doi.org/10.18653/v1/2022.findings-naacl.114

[62] Zhen Qin, Rolf Jagerman, Hui, et al. 2023. Large language models are effective
text rankers with pairwise ranking prompting. arXiv:2306.17563 (2023).

[63] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-
Clean: Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10,
11 (2017), 1190–1201.

[64] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[65] Patrick Royston and Ian RWhite. 2011. Multiple imputation by chained equations
(MICE): implementation in Stata. Journal of statistical software 45 (2011), 1–20.

[66] Vraj Shah and Arun Kumar. 2019. The ML Data Prep Zoo: Towards Semi-
Automatic Data Preparation for ML. In Proceedings of the 3rd International Work-
shop on Data Management for End-to-End Machine Learning (Amsterdam, Nether-
lands) (DEEM’19). Association for Computing Machinery, New York, NY, USA,
Article 11, 4 pages. https://doi.org/10.1145/3329486.3329499

[67] Daniel J Stekhoven and Peter Bühlmann. 2012. MissForest—non-parametric
missing value imputation for mixed-type data. Bioinformatics 28, 1 (2012), 112–
118.

[68] Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin
Chen, Dawei Yin, and Zhaochun Ren. 2023. Is ChatGPT Good at Search? Investi-
gating Large Language Models as Re-Ranking Agents. arXiv:2304.09542 [cs.CL]

[69] ZhongXiang Sun, Xiaoxue Zang, Kai Zheng, Jun Xu, Xiao Zhang, Weijie Yu,
Yang Song, and Han Li. 2025. ReDeEP: Detecting Hallucination in Retrieval-
Augmented Generation via Mechanistic Interpretability. In The Thirteenth Inter-
national Conference on Learning Representations. https://openreview.net/forum?
id=ztzZDzgfrh

[70] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Samuel
Madden, and Mourad Ouzzani. 2021. RPT: Relational Pre-trained Transformer
Is Almost All You Need towards Democratizing Data Preparation. Proc. VLDB
Endow. 14, 8 (2021), 1254–1261.

[71] Nan Tang, Chenyu Yang, Ju Fan, Lei Cao, Yuyu Luo, and Alon Y. Halevy. 2024.
VerifAI: Verified Generative AI. In CIDR. www.cidrdb.org.

[72] Nan Tang, Chenyu Yang, Zhengxuan Zhang, Yuyu Luo, Ju Fan, Lei Cao, Sam
Madden, and Alon Y. Halevy. 2024. Symphony: Towards Trustworthy Question
Answering and Verification using RAG over Multimodal Data Lakes. IEEE Data
Eng. Bull. 48, 4 (2024), 135–146.

[73] Runhui Wang, Yuliang Li, and Jin Wang. 2023. Sudowoodo: Contrastive self-
supervised learning for multi-purpose data integration and preparation. In 2023
IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 1502–1515.

[74] XintaoWang, Qianwen Yang, Yongting Qiu, Jiaqing Liang, Qianyu He, Zhouhong
Gu, Yanghua Xiao, and Wei Wang. 2023. KnowledGPT: Enhancing Large
Language Models with Retrieval and Storage Access on Knowledge Bases.
arXiv:2308.11761 [cs.CL] https://arxiv.org/abs/2308.11761

[75] Yifan Wu, Lutao Yan, Leixian Shen, Yinan Mei, Jiannan Wang, and Yuyu Luo.
2025. ChartCards: A Chart-Metadata Generation Framework for Multi-Task
Chart Understanding. CoRR abs/2505.15046 (2025).

[76] Yifan Wu, Lutao Yan, Yizhang Zhu, Yinan Mei, Jiannan Wang, Nan Tang, and
Yuyu Luo. 2025. Boosting Text-to-Chart Retrieval through Training with Syn-
thesized Semantic Insights. CoRR abs/2505.10043 (2025).

[77] Yupeng Xie, Yuyu Luo, Guoliang Li, and Nan Tang. 2024. HAIChart: Human and
AI Paired Visualization System. Proc. VLDB Endow. 17, 11 (2024), 3178–3191.

[78] Daniel Yang, Yao-Hung Hubert Tsai, and Makoto Yamada. 2024. On Verbalized
Confidence Scores for LLMs. arXiv:2412.14737 [cs.CL] https://arxiv.org/abs/
2412.14737

[79] Jinsung Yoon, James Jordon, and Mihaela Schaar. 2018. Gain: Missing data
imputation using generative adversarial nets. In International conference on
machine learning. PMLR, 5689–5698.

[80] Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi
Chen, Mingchen Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng,
Bang Liu, Yuyu Luo, and Chenglin Wu. 2025. AFlow: Automating Agentic
Workflow Generation. In ICLR. OpenReview.net.

[81] Shuo Zhang and Krisztian Balog. 2019. Auto-completion for data cells in rela-
tional tables. In Proceedings of the 28th ACM International Conference on Informa-
tion and Knowledge Management. 761–770.

[82] Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. 2023. TableLlama: Towards
Open Large Generalist Models for Tables. arXiv preprint arXiv:2311.09206 (2023).

[83] Yunfan Zhang, Changlun Li, Yuyu Luo, and Nan Tang. 2024. Sketch-
Fill: Sketch-Guided Code Generation for Imputing Derived Missing Values.
arXiv:2412.19113 [cs.CL] https://arxiv.org/abs/2412.19113

[84] Zhengxuan Zhang, Zhuowen Liang, Yin Wu, Teng Lin, Yuyu Luo, and Nan
Tang. 2025. DataMosaic: Explainable and Verifiable Multi-Modal Data Analytics
through Extract-Reason-Verify. CoRR abs/2504.10036 (2025).

[85] Zhengxuan Zhang, Yin Wu, Yuyu Luo, and Nan Tang. 2024. MAR: Matching-
Augmented Reasoning for Enhancing Visual-based Entity Question Answering.
In EMNLP. Association for Computational Linguistics, 1520–1530.

[86] Zhengxuan Zhang, Yin Wu, Yuyu Luo, and Nan Tang. 2025. Fine-Grained
Retrieval-Augmented Generation for Visual Question Answering. CoRR
abs/2502.20964 (2025).

[87] Yizhang Zhu, Shiyin Du, Boyan Li, Yuyu Luo, and Nan Tang. 2024. Are Large
Language Models Good Statisticians?. In NeurIPS.

3367

https://doi.org/10.18653/v1/2023.emnlp-main.322
https://arxiv.org/abs/2310.08319
https://arxiv.org/abs/2310.08319
https://arxiv.org/abs/2310.08319
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.14778/3574245.3574258
https://doi.org/10.14778/3574245.3574258
https://doi.org/10.14778/3574245.3574258
https://doi.org/10.18653/v1/2024.acl-long.585
https://doi.org/10.18653/v1/2022.findings-naacl.114
https://doi.org/10.18653/v1/2022.findings-naacl.114
https://doi.org/10.1145/3329486.3329499
https://arxiv.org/abs/2304.09542
https://openreview.net/forum?id=ztzZDzgfrh
https://openreview.net/forum?id=ztzZDzgfrh
https://arxiv.org/abs/2308.11761
https://arxiv.org/abs/2308.11761
https://arxiv.org/abs/2412.14737
https://arxiv.org/abs/2412.14737
https://arxiv.org/abs/2412.14737
https://arxiv.org/abs/2412.19113
https://arxiv.org/abs/2412.19113

	Abstract
	1 Introduction
	2 An Overview of LakeFill
	3 Retriever: Learning Imputation-Aware Tuple Representation
	3.1 Contrastive Learning for Tuple Encoding
	3.2 Training Data Synthesis

	4 Reranker: Noise-Robust Reranking via Checklist-based Data Annotation
	5 Reasoner: Confidence-aware Inference
	6 Experiments
	6.1 Datasets
	6.2 Experimental Setting
	6.3 Evaluation for Data Imputation
	6.4 Evaluation for Retriever
	6.5 Evaluation for Reranker
	6.6 Efficiency and Resource Analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

