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ABSTRACT
Efficient route planning is crucial for modern navigation systems,

yet traditional methods face challenges in scenarios with unknown

or frequently changing traffic dynamics. This paper introduces a

general labeling framework based on the 2-hop cover property, en-

abling robust, metric-independent preprocessing. Using this frame-

work, we propose Customizable Tree Labeling (CTL), a tree-based

method combining three key components: metric-independent pre-

processing with tree hierarchies, metric customization for dynamic

updates, and efficient query algorithms for fast route computation.

To allow trade-offs between customization time, labeling size, and

query performance, we further develop a parameterized customiza-

tion technique by dynamically combining tree labels and shortcut

graphs. Our key contributions include the introduction of a cus-

tomizable labeling framework, a novel tree hierarchy for compact

and scalable representation, and a hybrid query algorithm that inte-

grates labels and shortcuts for fast and accurate route computation.

We conduct extensive experiments on ten large-scale real-world

road networks and a case study on the traffic assignment problem.

Our algorithms achieve query response times significantly faster

than the state-of-the-art methods, while maintaining competitive

customization times and labeling size, making it well-suited for

real-time and dynamic routing applications.

PVLDB Reference Format:
Muhammad Farhan, Henning Koehler, Qing Wang, Jiawen Wang, Moritz

Laupichler, and Peter Sanders. Customization Meets 2-Hop Labeling:

Efficient Routing in Road Networks. PVLDB, 18(10): 3326 - 3338, 2025.

doi:10.14778/3748191.3748198

1 INTRODUCTION
Finding an optimal route between two locations in a road network

is an essential building block in modern mobility applications such

as navigation, logistics, and traffic management [6, 14]. Given a

road network 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of vertices (e.g., in-

tersections) and 𝐸 is the set of edges (e.g., road segments), with
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associated weights𝑤 (𝑒) representing costs, such as distance, time

or fuel consumption, an optimal route between two nodes 𝑠 (source)

and 𝑡 (target) is a path that minimizes the total cost:

𝑝∗ = arg min

𝑝∈𝑃 (𝑠,𝑡 )

∑︂
𝑒∈𝑝

𝑤 (𝑒),

where 𝑃 (𝑠, 𝑡) is the set of all paths from 𝑠 to 𝑡 in𝐺 and

∑︁
𝑒∈𝑝 𝑤 (𝑒) is

the total cost of the path 𝑝 . The notion of “optimal route” depends on
themetric defining the weights𝑤 (𝑒), such as shortest distance, least
travel time, or minimum fuel consumption, and the optimal route 𝑝∗

is the one that achieves theminimum total cost. The choice of metric

varies widely depending on individual user needs and contextual

factors. For instance, while some users prioritize the fastest route

to minimize travel time, others may favor an optimized path that

reduces fuel consumption, toll expenses, or environmental impact.

Example 1.1. Consider the traffic assignment (TA) problem, which
models how traffic flows are distributed across a transportation net-
work to determine optimal routes that minimize travel time while
accounting for congestion. Each edge 𝑒 ∈ 𝐸 has a travel cost deter-
mined by current traffic load. Travelers’ demands are represented as a
set of origin-destination (O-D) pairs {(𝑠𝑖 , 𝑡𝑖 )}, where 𝑠𝑖 and 𝑡𝑖 denote
the origin and destination of a demand, respectively. The goal is to com-
pute optimal routes for all O-D pairs, accounting for congestion caused
by all travelers. Solving the TA problem is central to applications such
as transportation planning, policy-making, and real-time traffic man-
agement, as optimal routes help reduce congestion, delays, and fuel
consumption, improving urban transportation [19, 34, 39, 42, 46]. A
case study on TA will be discussed in Section 10.

Related Work. Traditionally, route planning relies on a single

static cost metric, modeling the road network as a weighted graph

where edge weights represent the cost for traveling along a road seg-

ment. Considering distance as a cost metric, optimal routes are then

defined as the shortest paths between vertices.While Dijkstra’s algo-

rithm [40] can compute these paths, it becomes inefficient for large-

scale road networks, requiring more than one second per query [43].

Such latency is unsuitable for applications demanding responses

within microseconds or nanoseconds. To address this inefficiency,

a wide range of techniques have been developed to accelerate route

planning in road networks. These include goal-directed searchmeth-

ods such as A* and ALT [24, 26], hierarchical techniques such as

Highway Hierarchies (HH) [36] and Contraction Hierarchies (CH)

[21], and labeling-based techniques that precompute vertex labels
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encoding shortest path information [1, 2, 4, 10, 17, 27, 32]. See [5]

for a comprehensive survey. Of particular relevance to this work

are Contraction Hierarchies (CH), which reduce the search space

by contracting vertices in a specific order and introducing short-

cuts, and labeling-based methods, which allow shortest paths to be

efficiently retrieved directly from precomputed labels. Despite their

success, traditional route planning methods fall short when edge

weights are unknown during preprocessing or change frequently

due to dynamic user preferences or traffic updates. These limita-

tions stem from metric-dependent preprocessing, which assumes

fixed edge weights in precomputed structures.

To address the limitations of traditional route planning meth-

ods, customizable speed-up techniques were introduced [8, 12, 16].

These techniques divide preprocessing into two stages: a slow,

metric-independent phase that constructs an auxiliary structure

based on the network topology, and a fast, metric-dependent phase

that customizes this structure for specific metrics. This approach

enables fast customization to metric changes, producing optimized

data for real-time query processing. Two prominent customization

methods are Customizable Route Planning (CRP) [12] and Cus-

tomizable Contraction Hierarchies (CCH) [16]. CRP precomputes

multilevel partition-based overlay graphs using separator-based

techniques, while CCH employs a nested dissection order [23] to

construct and customize CH edges for query answering. Both meth-

ods use metric-independent auxiliary structure, avoiding the need

for full re-computation and making them suitable for scenarios

with frequently changing edge weights. However, their query per-

formance remains suboptimal despite fast customization times. A

recent approach, Customizable Hub Labeling (CHL) [8], extends

the customization paradigm to Hub Labeling (HL) [1, 2]. In particu-

lar, it studies Hierarchical Customizable Hub Labelings (HCuHL),

which materialize CCH search spaces as labels. Conceptually this

is similar to the non-parameterized (𝜃 = 0) version of our approach,

though the paper is theoretical in nature without concrete algo-

rithms, making experimental comparison impossible.

Our Contributions. In this work, we aim to develop an efficient la-

belingmethod to accelerate query responses for route planning. Our

key observations are: (a) Metric-independent phase design: Labeling-
basedmethods require ametric-independent phase to handle scenar-

ios where metrics are unknown during preprocessing. The classical

2-hop cover property [11], however, assumes a single known metric

(e.g., distance) and relies on precomputed shortest paths, making

it inapplicable for direct use in the metric-independent phase. (b)

Customization vs. query performance: Customization and query of-

ten have competing performance needs. For instance, structures

like CCH excel at updating costs (customization) but are less ef-

ficient for query responses. Conversely, labeling-based structures

may require more customization time but support faster queries.

This highlights the need for distinct structures specifically designed

for customization and query phases, respectively. (c) Trade-off con-
trol: Balancing customization and query performance is critical. A

controlled trade-off ensures efficient query response times while

tailoring customization levels to specific application needs. This

balance is essential for real-time applications, where speed depends

on achieving an optimal trade-off.

The contributions and structure of the paper are as follows:
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Figure 1: Framework overview: The preprocessing processes
the road network 𝐺 to 𝐻𝐺 , 𝑆 , and 𝐿𝜃 (blue). The customiza-
tion takes 𝑆 and 𝐿𝜃 , along with a cost metric 𝜔 , as input to
produce 𝑆𝜔 and 𝐿𝜃𝜔 (green). Queries are then executed on the
customized structures 𝑆𝜔 and 𝐿𝜃𝜔 .

(1) A labeling framework (Section 4). We present a labeling frame-

work parameterised by 𝜃 , which governs the extent of labeling, as

depicted in Figure 1. For extreme parameter settings our approach

can either be classified in the framework of [8] as a hierarchical

customizable hub labeling (for 𝜃 = 0), or becomes essentially a

customizable contraction hierarchy (for 𝜃 = ∞).
(2) Customizable tree labeling (Section 5). Building on this frame-

work, we propose customizable tree labeling, which uses a compact

and efficient tree hierarchy as the foundation for a tree labeling

scheme and a shortcut graph scheme in the metric-independent

phase. Shortcut graph customization is then used to efficiently cus-

tomize the tree labeling, enabling highly efficient query responses.

(3) Parameteric customization (Section 6). To balance customiza-

tion and query performance, we design a parametric customization

method. This approach offers a flexible mechanism to adjust the

level of customization in tree labeling, enabling fine-grained control

over the trade-off between customization and query efficiency.

(4) Complexity analysis (Section 7).We compare complexity bounds

of existing approaches and our method, discussing efficiencies in

preprocessing, customization, querying, and storage.

(5) Key variants (Section 8). We introduce several key variants: par-

allel customization for scalable hub labeling, path queries for effi-

cient route reconstruction, and support for directed road networks

with optimized memory usage, enhancing performance and adapt-

ability for diverse routing challenges.

(6) Experimental study (Section 9). We conduct extensive experi-

ments on 10 large real-world road networks, including the entire

USA and Western Europe road networks. Results show our method

significantly outperforms the state-of-the-art CCH in preprocessing

time and is up to 25–35 times faster in finding optimal routes on

the two largest networks.

(7) Case study on traffic assignment (Section 10). We study the traf-

fic assignment problem on Stuttgart’s road network in Germany.

Our method achieves 3–9 times faster query times and overall

runtime compared to state-of-the-art methods, demonstrating its

efficiency for traffic assignment in large urban networks.
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Remark 1.1. Customizable routing differs from scenarios where

only a small fraction of edge weights change, such as traffic varia-

tions or road closures. In such cases, incremental maintenance [18,

22, 29, 33, 44, 45], also referred to as partial customizable routing, is
more appropriate. Customizable routing, by contrast, performs full

metric customization, offering broader adaptability. Experiments

and a detailed discussion can be found in Section 9.3.

2 PROBLEM FORMULATION
Let𝐺 = (𝑉 , 𝐸) represent a road network. A (cost) metric is a function
𝜔 : 𝐸 → R>0 that assigns a positive cost 𝜔 (𝑢, 𝑣) to each edge

(𝑢, 𝑣) ∈ 𝐸, such as travel time. This metric may be initially unknown

or dynamically determined based on the road network’s properties

or external factors. A path is a sequence of distinct vertices 𝑝 =

(𝑣1, 𝑣2, . . . , 𝑣𝑘 ), where (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for all 1 ≤ 𝑖 ≤ 𝑘 − 1. The

cost of a path 𝑝 , given a metric 𝜔 , is 𝜔 (𝑝) = ∑︁𝑘−1
𝑖=1 𝜔 (𝑣𝑖 , 𝑣𝑖+1) . As

previously defined, an optimal route between two vertices 𝑠 and 𝑡

minimizes the total path cost with respect to a metric 𝜔 . We denote

the set of all optimal routes between 𝑠 and 𝑡 in 𝐺 under the metric

𝜔 by 𝑃𝜔
𝐺
(𝑠, 𝑡), and the optimal cost by 𝑑𝜔

𝐺
(𝑠, 𝑡).

We formally define the customizable routing problem.

Definition 2.1 (Customizable Routing). In a road network 𝐺 =

(𝑉 , 𝐸), for any two vertices 𝑠, 𝑡 ∈ 𝑉 , the customziable routing prob-

lem is to efficiently find an optimal route 𝑝 ∈ 𝑃𝜔
𝐺
(𝑠, 𝑡) from 𝑠 to 𝑡

with respect to any given cost metric 𝜔 .

To compute an optimal route from one vertex to another, find-

ing the optimal cost is crucial as it restricts the search space and

ensures correctness during path restriction. Customizable routing

also applies to both directed and undirected graphs. For simplicity,

we first focus on computing optimal cost queries in undirected

graphs, deferring extensions to directed graphs and path queries

to Section 8.

Figure 2: A road network𝐺 , customized with a cost metric 𝜔 .

Example 2.1. Fig. 2 shows a road network 𝐺 = (𝑉 , 𝐸) with 15
vertices and 23 edges. Each 𝑒 ∈ 𝐸 is assigned a cost by a metric
𝜔 . Consider two vertices, 𝑣1 and 𝑣12, connected by multiple paths.
For instance, 𝑝1 = ⟨𝑣1, 𝑣2, 𝑣7, 𝑣9, 𝑣11, 𝑣12⟩ with cost 𝜔 (𝑝1) = 9, and
𝑝2 = ⟨𝑣1, 𝑣5, 𝑣7, 𝑣10, 𝑣15, 𝑣12⟩ with cost 𝜔 (𝑝2) = 10. Among these, 𝑝1
is optimal as it has the minimum cost.

Customizable approaches are ineffective when each query uses a

unique metric, as the cost of customization often outweighs that of

an index-free search. However, customization works when metrics

are frequently reused, such as when the number of distinct metrics

is small and multiple customizations can be stored in memory, or

when updates reflect periodic changes in costs like travel time.

Figure 3: (a) A multilevel overlay graph 𝐻 with two levels
{𝐻1, 𝐻2} for the road network𝐺 in Figure 2, (b) the customized
overlay graph 𝐻2, and (c) the customized overlay graph 𝐻1.

3 EXISTING SOLUTIONS
In this section, we review existing solutions, Customizable Route

Planning (CRP) and Customizable Contraction Hierarchies (CCH).

Customizable Route Planning. Customizable Route Planning

(CRP), introduced by Delling et al. [12], is the first solution to

the customizable routing problem. It separates the road network’s

topology from its metric properties through a three-stage process:

metric-independent preprocessing, metric-dependent customiza-

tion, and query execution.

In preprocessing, CRP builds a multi-level overlay graph 𝐻 by

recursively partitioning the road network 𝐺 . At each level 𝑙 , cells

𝐶𝑙
𝑖
are nested within supercells 𝐶𝑙+1

𝑗
at the next level 𝑙 + 1. The

overlay graph retains only boundary edges, which connect vertices

in different cells, and their endpoints, called boundary vertices.

Shortcuts are added between boundary vertices within each cell

to capture optimal paths. In customization, the overlay graph 𝐻

is adapted to a specific metric 𝜔 by computing shortcuts using

Dijkstra’s algorithm. At the lowest level, shortcuts are computed

within each cell on the original graph. At higher levels, shortcuts

in a cell 𝐶𝑙
𝑖
are computed using shortcuts from level 𝑙 − 1. In query

execution, shortcuts allow the search to avoid irrelevant areas while

maintaining path accuracy.

Example 3.1. Fig. 3 shows the overlay graph 𝐻 for the road network
𝐺 in Fig. 2, consisting of three level-2 cells (top) and seven level-1 cells
(bottom). Blue and green edges indicate level-2 and level-1 boundary
edges, respectively. Each cell contains only boundary vertices, forming
a clique. To answer a query from 𝑣1 to 𝑣12, a bidirectional Dijkstra
search is performed at level 𝑙 (𝑣) for each visited vertex 𝑣 . The search
visits 𝑣5, 𝑣11, and 𝑣7, where 𝑙 (𝑣5) = 0, 𝑙 (𝑣11) = 1, and 𝑙 (𝑣7) = 2. 𝑣5 is
searched on the original graph𝐺 , 𝑣11 on𝐻1, and 𝑣7 on𝐻2.The optimal
path is 𝑝 = (𝑣1, 𝑣2, 𝑣7, 𝑣9, 𝑣11, 𝑣12) with 𝜔 (𝑝) = 9.

Customizable Contraction Hierarchy. Dibbelt et al. [16] intro-
duced Customizable ContractionHierarchies (CCH), extending Con-

traction Hierarchies (CH) [21] to support customizable cost metrics.

CH efficiently answers distance queries in road networks by con-

structing an augmented graph𝐺+ from a given total vertex order 𝜎 .

Shortcuts are added between vertices 𝑣𝑖 and 𝑣𝑘 if there exists a short-

est valley path between them in𝐺 . A valley path 𝑝 = (𝑣1, 𝑣2, . . . , 𝑣𝑘 )
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satisfies 𝜎 (𝑣𝑖 ) < min{𝜎 (𝑣1), 𝜎 (𝑣𝑘 )} for all intermediate vertices.

The cost of a shortcut is the cost of its shortest valley path.

CCH extends CH by decoupling metric-independent preprocess-

ing from metric-dependent customization. It uses a nested dissec-

tion order to create a hierarchy of vertex separators that minimize

partition size. During preprocessing, an augmented graph 𝐺+ is
constructed by adding shortcuts (𝑣𝑖 , 𝑣𝑘 ) between vertices 𝑣𝑖 and 𝑣𝑘
if and only if there exists a valley path between them. In customiza-

tion, actual edge costs are assigned by propagating them through

shortcuts in𝐺+. For a query between 𝑠 and 𝑡 , a bidirectional search

in 𝐺+ ascends from both vertices to their least common ancestor,

the highest-ranked vertex reachable from both, leveraging shortcuts

to bypass intermediate vertices of lower rank.

Example 3.2. Consider the road network in Fig. 2 with nested dissec-
tion order 𝜎 = (𝑣5>𝑣6>𝑣7>𝑣8>𝑣10>𝑣15>𝑣11>𝑣13>𝑣2>𝑣1>𝑣3>𝑣4>𝑣9
>𝑣12>𝑣14). Processing starts with the highest ranked vertex 𝑣5. All
neighbors have lower ranks, enabling valid valley paths through 𝑣5.
For example, shortcut (𝑣6, 𝑣7) is added via path ⟨𝑣6, 𝑣5, 𝑣7⟩. During
customization, the cost of this shortcut is computed as the sum of edge
weights on the valley path, i.e., 𝜔 (𝑣6, 𝑣7) = 𝜔 (𝑣6, 𝑣5) + 𝜔 (𝑣5, 𝑣7) =
1 + 2 = 3. For a query from 𝑣6 to 𝑣11, CCH performs a bidirec-
tional search on the augmented graph. The forward search follows
𝑣6 → 𝑣7 → 𝑣9 using the shortcut, meeting the backward search
𝑣11 → 𝑣9 at 𝑣9. The total path cost is 3 + 2 + 3 = 8.

Discussion. Both CRP and CCH produce compact auxiliary struc-

tures for efficient metric customization, making them suitable for

scenarios with frequent cost updates. However, their query times

remain high due to reliance on bidirectional Dijkstra variants. De-

spite using shortcuts, queries can be slow in shortcut-dense graphs

or when spanning large portion of the network. Query efficiency

also depends on preprocessing quality, such as vertex order in CCH

or partitioning in CRP. Suboptimal preprocessing can lead to ex-

cessive shortcuts or poorly pruned search spaces, further slowing

performance. Consequently, while these methods achieve fast cus-

tomization, their slower queries make them unsuitable for latency-

sensitive applications like real-time navigation.

To improve query performance, labeling is a natural candidate.

However, a recent study by Blum and Storandt [8] showed that sup-

porting edge cost updates under arbitrarymetrics requires hierarchi-

cal customizable hub labeling (CHL) whose minimum average and

maximum label sizes correspond to the minimum average and maxi-

mum search space sizes in CCH.While acceptable for single metrics,

storing labeling for multiple metrics reduces memory available per

metric. In the following (Sections 4 to 6), we will present an efficient

labeling-based solution for customizable routing. Critically our so-

lution can be parameterized to provide a suitable tradeoff between

query speed and label size for meeting application needs, combining

the benefits (but also some drawbacks) of both CCH and CHL.

4 FRAMEWORK OVERVIEW
This section introduces a customizable labeling framework designed

to enhance query performance. Themain challenge lies in designing

a preprocessing strategy that generalizes across diverse metrics

while achieving efficiency in both customization and query phases.

To address this, we introduce a parameterization process for labeling

that balances customization and query efficiency.

We begin by refining the concept of 2-hop labeling [11] for a spe-

cific metric𝜔 . Given a metric𝜔 , a𝜔-labeling of a road network𝐺 =

(𝑉 , 𝐸) assigns each vertex 𝑣 ∈ 𝑉 a label 𝐿(𝑣) containing cost entries
{𝛿𝑣𝑢1

, . . . , 𝛿𝑣𝑢𝑘 }, where 𝑢𝑖 ∈ 𝑉 and 𝛿𝑣𝑢𝑖 = 𝑑𝜔
𝐺
(𝑣,𝑢𝑖 ) for 𝑖 = 1, . . . , 𝑘 .

Definition 4.1 (2-Hop Labeling [11]). A 𝜔-labeling 𝐿 over 𝐺 =

(𝑉 , 𝐸) is a 2-hop labeling if, for any 𝑠, 𝑡 ∈ 𝑉 , the optimal cost 𝑑𝜔
𝐺
(𝑠, 𝑡)

can be computed using their labels 𝐿(𝑠) and 𝐿(𝑡). Formally:

𝑑𝜔
𝐺
(𝑠, 𝑡) = min

𝑣∈𝐿 (𝑠 )∩𝐿 (𝑡 )

{︁
𝛿𝑠𝑣 + 𝛿𝑡𝑣

}︁
,

where 𝐿(𝑠) ∩ 𝐿(𝑡) is the set of common vertices in 𝐿(𝑠) and 𝐿(𝑡).

Parameterization. While 2-hop labelings are highly efficient for

query answering, they tend to suffer from large label sizes, com-

pared to shortcut based approaches like CCH or CRP. We therefore

will employ only a partial 2-hop cover which only maintains part of

the label structure based on a parameter 𝜃 . At one extreme (𝜃 = 0)

we obtain a full 2-hop cover (specifically a hierarchical customizable

hub labeling in the terminology of [8]), at the other (𝜃 = ∞) we
obtain a customizable contraction hierarchy, while any parameter

setting in between provides a tradeoff between these.

Achieving favorable trade-offs can be challenging, particularly

when integrating techniques with differing optimization objectives.

For instance, labeling techniques might achieve a query time of 1𝜇𝑠

with a label size of 100GB, while shortcut-based methods might

provide a 1ms query time with a label size of 100MB. A combined

approach averaging 500 𝜇𝑠 query time and 50GB label size would

often be deemed both slow and large, representing the worst of

both worlds.

Customizable Labeling Framework. Let G represent the set of

all road networks,𝑊 the set of possible cost metrics, D the set of

all data structures independent of any metric, and D𝜔 the set of all

data structures dependent of a metric 𝜔 . Our framework consists

of three key components:

• Preprocessing algorithm: A function G × R → D that maps a

road network𝐺 and parameter 𝜃 to a metric-independent data

structure (𝐿𝜃 , 𝑆). Here, 𝐿𝜃 is a parameterized labeling and satis-

fies the customizable cover property [8] when 𝜃 = 0, and 𝑆 is a

data structure to accelerate customization.

• Customization algorithm: A function D ×𝑊 → D𝜔 that cus-

tomizes a preprocessed data structure (𝐿𝜃 , 𝑆) with respect to a

metric𝜔 ∈𝑊 . The result is a customized data structure (𝐿𝜃𝜔 , 𝑆𝜔 ).
By the customizable cover property, 𝐿𝜃𝜔 is guaranteed to be a

2-hop 𝜔-labeling when 𝜃 = 0.

• Query algorithm: A function D𝜔 × 𝑉 × 𝑉 → R that takes a

customized data structure (𝐿𝜃𝜔 , 𝑆𝜔 ) and two vertices 𝑠, 𝑡 ∈ 𝑉 ,

returning either the optimal cost or an optimal route from 𝑠 to 𝑡

with respect to the metric 𝜔 .

While conceptually straightforward, designing such a metric-

independent data structure while balancing customization effi-

ciency and query performance across varying metrics remains a

challenging task. In particular, metric-independent data structure

must preserve topological structure of road networks without rely-

ing on fixed metrics; customization must efficiently handle large-

scale updates; and queries must remain fast despite varying label

size. In the following we first present a basic non-parameterized
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approach which offers fast query times but suffers from large label-

ing size and customization times (Section 5). This then forms the

basis for our parameterized approach, which balances query time

and labeling size more favorably (Section 6).

5 TREE-BASED CUSTOMIZABLE ROUTING
This section presents a tree-based solution for customizable routing,

enabling efficient preprocessing, customization, and querying. A

key challenge in designing tree-based customizable routing solution

is to support efficient topology-based preprocessing that yields

compact and query-friendly data structures. Traditional labeling-

based methods suffer from large label sizes [1, 2, 8], while shortcut-

based methods [12, 16] favor customization speed at the cost of

slower queries. Our initial tree-based approach presented here falls

into the former category, but also maintains an intermediate short-

cut based structure which is used during customization.

5.1 Metric-Independent Preprocessing
Tree Hierarchy. To efficiently support customizable routing, we

introduce a tree hierarchy, which provides a topology-based repre-

sentation of road networks.

Definition 5.1 (Tree Hierarchy). Let 𝛽 ∈ (0, 0.5). A tree hierarchy

over a road network 𝐺 = (𝑉 , 𝐸) is a binary tree 𝐻𝐺 = (N , E, 𝑓 ),
where N is the set of tree nodes, E is the set of tree edges, and 𝑓 :

𝑉 → N is a total surjective function satisfying two conditions:
(1) Balanced subtrees: For every internal node 𝑁 ∈ N , the left and

right subtrees satisfy:

|𝑇ℓ (𝑁 ) |, |𝑇𝑟 (𝑁 ) | ≤ (1 − 𝛽) · |𝑇ℓ (𝑁 ) ∪𝑇𝑟 (𝑁 ) |,
where 𝑇ℓ (𝑁 ) and 𝑇𝑟 (𝑁 ) are the sets of vertices in the left and
right subtrees of 𝑁 , respectively.

(2) Ancestor separation: For any two vertices 𝑠, 𝑡 ∈ 𝑉 , the set

𝐶𝐴(𝑠, 𝑡) = {𝑣 ∈ 𝑉 | 𝑓 (𝑣) ∈ 𝐴(𝑓 (𝑠)) ∩𝐴(𝑓 (𝑡))}
of their common tree ancestors contains at least one vertex on
each path between 𝑠 and 𝑡 in 𝐺 , where A(·) denotes the set of
ancestor nodes of a tree node.

Fig. 4 shows a tree hierarchy for the road network in Fig. 2,

with the root containing vertices {𝑣7, 𝑣8}. The balanced subtrees

condition keeps the tree compact, ensuring efficiency in label con-

struction and query processing. The ancestor separation condition

enables the use of common ancestors as hubs for 2-hop labeling.

Constructing such a tree hierarchy requires effective graph bi-

partitioning to minimize separator sizes while maintaining bal-

ance. Although this problem is NP-hard, recent heuristics have

demonstrated excellent scalability and performance on large-scale

road networks [13, 17, 38]. In this work, we adopt the recursive bi-

partitioning method from [17], which iteratively identifies balanced

separators to partition the graph.

A hierarchical vertex order ⪯ can be derived from the tree hi-

erarchy 𝐻𝐺 . Specifically, ⪯ is a partial order on the vertices of the

road network 𝐺 : for any vertices 𝑢, 𝑣 ∈ 𝑉 with 𝑓 (𝑢) ≠ 𝑓 (𝑣) we
have 𝑣 ⪯ 𝑢 iff 𝑓 (𝑣) ∈ 𝐴(𝑓 (𝑢)). Vertices mapped to the same tree

node are totally ordered by ⪯, though this order is arbitrary.

We use 𝑎𝑛𝑐 (𝑣) = {𝑤 ∈ 𝑉 | 𝑤 ⪯ 𝑣} to denote the ancestor

vertices of 𝑣 . The rank of a vertex is defined as 𝜏 (𝑣) = |𝑎𝑛𝑐 (𝑣) |.

Although different vertices can have the same rank, the ranks of

ancestor within 𝑎𝑛𝑐 (𝑣) are distinct, running from 1 to 𝜏 (𝑣), and
will be used as indices within labels. The rank of a tree node is the

maximum rank of vertices mapped to it.

Example 5.1. Consider the tree hierarchy shown in Fig. 4. We have
𝑎𝑛𝑐 (𝑣3) = {𝑣7, 𝑣8, 𝑣3} and 𝑎𝑛𝑐 (𝑣5) = {𝑣7, 𝑣8, 𝑣3, 𝑣5}. Their ranks are
𝜏 (𝑣3) = 3, 𝜏 (𝑣5) = 4 and the rank of tree node 𝑓 (𝑣3) is𝑚𝑎𝑥 (3, 4).

Tree Labeling Scheme. Based on the tree hierarchy𝐻𝐺 , we define

the following tree labeling scheme.

Definition 5.2 (Tree Labeling Scheme). Let 𝐻𝐺 be a tree hierarchy
over a road network 𝐺 = (𝑉 , 𝐸). A tree labeling scheme is a tuple
𝐿 = (𝐻𝐺 ,I,T ,𝐶), where:
• I = {I(𝑣) | 𝑣 ∈ 𝑉 }: Each vertex 𝑣 ∈ 𝑉 is assigned a bitstring

identifying the position of node 𝑓 (𝑣) in the tree hierarchy.
• T = {T (𝑣) | 𝑣 ∈ 𝑉 }: Each T (𝑣) = [𝜏 (𝑁1), . . . , 𝜏 (𝑁𝑘 ), 𝜏 (𝑣)] is

a rank array where {𝑁1, . . . , 𝑁𝑘 , 𝑓 (𝑣)} = 𝐴(𝑓 (𝑣)) are the an-
cestor tree nodes of 𝑓 (𝑣).

• 𝐶 = {𝐶 (𝑣) | 𝑣 ∈ 𝑉 }: Each𝐶 (𝑣) is a cost array [𝛿𝑣𝑤1
, . . . , 𝛿𝑣𝑤𝑘

],
where 𝑎𝑛𝑐 (𝑣) = {𝑤1, . . . ,𝑤𝑘 } and 𝛿𝑣𝑤𝑖

indicates a cost value
(not necessarily minimal) for paths between 𝑣 and𝑤𝑖 .

L(𝑣!) L(𝑣")

0	:	3	:	[1,	2,	0]
L(𝑣#$)

1	:	3	:	[6,	5,	0]
L(𝑣%)

1	:	4	:	[2,	3,	4,	0]
L(𝑣&)

0	:	4	:	[6,	6,	6,	0]
L(𝑣#')

0

00	:	5	:	[2,	4,	2,	4,	0]
L(𝑣()

λ ∶ 1 ∶ [0] λ ∶ 2 ∶ [3, 0]
0

01	:	5	:	[5,	4,	4,	2,	0]
L(𝑣#&) 0

10	:	5	:	[3,	4,	3,	1,	0]
L(𝑣#) 0

11	:	5	:	[3,	2,	3,	1,	0]
L(𝑣))

0

000	:	6	:	[2,	6,	4,	2,	2,	0]
L(𝑣#*) 0

010	:	6	:	[6,	3,	5,	3,	1,	0]
L(𝑣#%) 0

101	:	6	:	[2,	5,	4,	2,	1,	0]
L(𝑣') 0

110	:	6	:	[4,	3,	2,	2,	1,	0]
L(𝑣*)

0

0000	:	7	:	[5,	7,	5,	1,	3,	1,	0]
L(𝑣##) hierarchical vertex order ⪯:{︃

7⪯ 8⪯ 10,3; 10⪯ 12⪯ 9,15; 3⪯ 5⪯ 1,6
9⪯ 14⪯ 11; 15⪯ 13; 1⪯ 2; 6⪯ 4

}︃
Figure 4: An illustration of a tree hierarchy 𝐻𝐺 and tree la-
beling Scheme 𝐿 over 𝐺 , where vertices at the first level are
assigned the empty bitstring 𝜆. We only show 𝜏 (𝑣) in place
of T (𝑣) for brevity.

Example 5.2. Fig. 4 shows a tree hierarchy and tree labeling scheme
over an example road network𝐺 depicted in Fig. 2. The label informa-
tion for each vertex 𝑣 is presented under its label 𝐿(𝑣) in the format
I(𝑣) : 𝜏 (𝑣) : C(𝑣). Consider vertex 𝑣15: it is assigned a node identi-
fier I(𝑣15) = 01 as its node is the right child of the left child of the
root. Its ancestors are 𝑎𝑛𝑐 (𝑣15) = {𝑣7, 𝑣8, 𝑣10, 𝑣12, 𝑣15}, resulting in
a rank array T (𝑣15) = [2, 4, 5] and a cost array [5, 4, 4, 2, 0] storing
distances to its ancestors {𝑣7, 𝑣8, 𝑣10, 𝑣12, 𝑣15}.

The tree labeling scheme leverages the structure of the tree

hierarchy 𝐻𝐺 to assign labels that encode both topological and

cost-related information for efficient query processing. The node

identifiers (I) together with the rank arrays (T ) enable efficient

computation of how many common ancestors two vertices have,
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and thus which prefix of the cost arrays (𝐶) to use as hub for 2-hop

cost computation. In fact, I and values in T other than 𝜏 (𝑣) are
only used by GetLcaHeight in Algorithm 3.

Shortcut Graph Scheme. Fast customization requires efficient

path searches. To support this, we utilize a data structure called

shortcut graph scheme. With the hierarchical vertex order ⪯ we ex-

tend the road network by adding shortcuts between vertices where

intermediate vertices have higher ranks than the endpoints.

Definition 5.3 (Shortcut Graph Scheme). Given a road network
𝐺 = (𝑉 , 𝐸) and a tree hierarchy 𝐻𝐺 , the shortcut graph scheme

𝑆 = (𝑉 , 𝐸∗, ⪯) consists of the vertex set 𝑉 , the edge set 𝐸∗ = 𝐸 ∪ 𝐸′
that includes all edges 𝐸 in 𝐺 and shortcuts 𝐸′, and a hierarchical
vertex order ⪯ induced by 𝐻𝐺 . A shortcut (𝑣,𝑢) ∈ 𝐸′ is added if
(𝑣,𝑢) ∉ 𝐸 and there exists a valley path 𝑝 between 𝑣 and 𝑢, meaning
that 𝑣,𝑢 ⪯ 𝑤 for all𝑤 ∈ 𝑉 (𝑝) \ {𝑣,𝑢}.

For each vertex 𝑣 ∈ 𝑉 , we denote its upward neighbors which
ranked lower than 𝑣 as 𝑁 + (𝑣) = {𝑢 | (𝑣,𝑢) ∈ 𝐸∗ ∧ 𝑢 ⪯ 𝑣}, and
downward neighbors which are ranked higher than 𝑣 as 𝑁 − (𝑣) =
{𝑢 | (𝑣,𝑢) ∈ 𝐸∗ ∧ 𝑣 ⪯ 𝑢} in the shortcut graph scheme 𝑆 .

We construct 𝑆 following the method proposed in [33], with

two key modifications: (1) Hierarchical vertex contraction: Vertices
are contracted based on the hierarchical vertex order ⪯, starting
with the highest-ranked vertices (in decreasing order of rank). This

replaces the use of a pre-defined total vertex order. (2) Shortcut
addition: Shortcuts in 𝑆 are added without specifying edge costs.
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Figure 5: (a) An illustration of shortcut graph scheme; (b)
Shortcut graph scheme after customization.

Example 5.3. Fig. 5(a) shows a shortcut graph scheme 𝑆 over an
example road network𝐺 shown in Fig. 2 using the hierarchical vertex
order induced by the tree hierarchy𝐻𝐺 depicted in Fig. 4. Dashed edges
represent shortcuts. A shortcut edge (𝑣1, 𝑣7) in 𝑆 is added because
a valley path ⟨𝑣1, 𝑣2, 𝑣7⟩ between 𝑣1 and 𝑣7 exist in 𝐺 . Note that
⟨𝑣1, 𝑣5, 𝑣7⟩ is not a valley path since 𝑣5 ⪯ 𝑣1. Consider vertex 𝑣1, we
have 𝑁 + (𝑣1) = {𝑣3, 𝑣5, 𝑣7} and 𝑁 − (𝑣1) = {𝑣2}.

5.2 Metric Customization
We describe the customization, which integrates a given cost metric

𝜔 into tree labeling scheme 𝐿 and shortcut graph scheme 𝑆 through

two sequential steps: (1). Customize 𝑆 to 𝑆𝜔 by incorporating the

edge costs of the road network into all shortcuts. (2). Customize 𝐿

to 𝐿𝜔 by computing the cost array for each 𝐶 (𝑣) based on 𝑆𝜔 .

Customizing Shortcut Graph Scheme. The shortcut customiza-
tion property is utilized to customize the costs of shortcuts in 𝑆 .

Algorithm 1: Customizing Shortcut Graph Scheme

1 Function CustomizeS(𝐺 , 𝑆)
2 𝑆𝜔 ← 𝑆

// initialize new edge costs for 𝑆𝜔
3 foreach (𝑢, 𝑣) ∈ 𝐸 do
4 𝜔 (𝑢, 𝑣) ← 𝜔𝐺 (𝑢, 𝑣)

// customize shortcut costs
5 foreach 𝑣 ∈ 𝑉 in descending order of ⪯ do
6 foreach 𝑢 ∈ 𝑁 + (𝑣) do
7 foreach𝑤 ∈ 𝑁 − (𝑣) ∩ 𝑁 − (𝑢) do
8 𝜔 (𝑣,𝑢) ← min{𝜔 (𝑣,𝑢), 𝜔 (𝑤, 𝑣) + 𝜔 (𝑤,𝑢)}

Algorithm 2: Customizing Tree Labeling Scheme

1 Function CustomizeL(𝑆𝜔)
// initialize

2 foreach 𝑣 ∈ 𝑉 do
3 𝐶 (𝑣) ← [∞, . . . ,∞], 𝛿𝑣𝑤 ← 0, s.t.,𝑤 = 𝜏 (𝑣)

// customize label distances
4 foreach 𝑣 ∈ 𝑉 in ascending order of ⪯ do
5 foreach 𝑢 ∈ 𝑁 + (𝑣) do
6 foreach𝑤 s.t.𝑤 ⪯ 𝑢 do
7 𝛿𝑣𝑤 ← min(𝛿𝑣𝑤 , 𝜔 (𝑣,𝑢) + 𝛿𝑢𝑤)

Property 5.1 (Shortcut Customization). Let 𝑆 = (𝑉 , 𝐸∗, ⪯).
For any (𝑣,𝑢) ∈ 𝐸∗\𝐸, the cost𝜔 (𝑣,𝑢) in 𝑆𝜔 = (𝑉 , 𝐸∗, 𝜔, ⪯) satisfies:

𝜔 (𝑣,𝑢) = min{𝜔 (𝑤, 𝑣) + 𝜔 (𝑤,𝑢) | 𝑤 ∈ 𝑁 − (𝑣) ∩ 𝑁 − (𝑢)}.

Specifically, the shortcuts in 𝑆 are customized in descending order

of 𝑣 with respect to ⪯, as described in Algorithm 1. For each upward

neighbor𝑢 ∈ 𝑁 + (𝑣), the algorithm iterates over the common down-

ward neighbors𝑤 of 𝑣 and 𝑢. It checks if the path between 𝑣 and 𝑢

through𝑤 in 𝑆 has a lower cost than the direct path between 𝑣 and

𝑢. If so, it updates 𝜔 (𝑣,𝑢) to reflect the lower cost between 𝑣 and 𝑢

in 𝐺 (Lines 5–7), based on Property 5.1. By construction,𝑤 has a

strictly higher rank than 𝑣 and 𝑢, ensuring that the costs 𝜔 (𝑣,𝑤)
and 𝜔 (𝑤,𝑢) are already computed before 𝜔 (𝑣,𝑢) is updated.

Example 5.4. Fig. 5(b) shows shortcut graph scheme 𝑆 after metric
customization, with weights assigned based on the metric in Fig. 2.
Consider the following shortcuts in the order processed by Algorithm 1:
the cost of (𝑣12, 𝑣14) is computed as 𝜔 (𝑣12, 𝑣14) = 𝜔 (𝑣12, 𝑣11) +
𝜔 (𝑣11, 𝑣14) = 2 using the triangle ⟨𝑣12, 𝑣11, 𝑣14⟩. This is then used
to compute 𝜔 (𝑣12, 𝑣9) = 𝜔 (𝑣12, 𝑣14) + 𝜔 (𝑣14, 𝑣9) = 4 and finally
𝜔 (𝑣12, 𝑣7) = 𝜔 (𝑣12, 𝑣9) + 𝜔 (𝑣9, 𝑣7) = 6.

Customizing Tree Labeling Scheme. To customize the cost ar-

ray [𝛿𝑣𝑤1
, . . . , 𝛿𝑣𝑤𝑘

] for each 𝐶 (𝑣), we apply the following label
customization property. This property ensures efficient computation

of costs using the hierarchical structure of 𝑆𝜔 .
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Property 5.2 (Label Customization). Let 𝑆𝜔 = (𝑉 , 𝐸∗, 𝜔, ⪯) .
For any 𝑣,𝑤 ∈ 𝑉 with𝑤 ⪯ 𝑣 , each cost entry in 𝐶 (𝑣) satisfies:

𝛿𝑣𝑤𝑖
= min

𝑢∈𝑁 + (𝑣)
{𝜔 (𝑣,𝑢) + 𝛿𝑢𝑤𝑖

}, for 1 ≤ 𝑖 ≤ 𝑘.

We customize the cost array 𝐶 (𝑣) for each vertex 𝑣 ∈ 𝑉 in

ascending order of ⪯ using a top-down approach, as detailed in

Algorithm 2. Each cost array 𝐶 (𝑣) is initialized to∞, i.e., 𝛿𝑣𝑤 = ∞
for all 𝑤 ≠ 𝑣 and to self as 0 (Lines 2-3). For each 𝑢 ∈ 𝑁 + (𝑣), we
iterate over all {𝑤 | 𝑤 ⪯ 𝑢}. If a path with lower cost is found,

i.e., 𝛿𝑣𝑤 > 𝜔 (𝑣,𝑢) + 𝛿𝑢𝑤 , we update 𝛿𝑣𝑤 with 𝜔 (𝑣,𝑢) + 𝛿𝑢𝑤 . This
operation leverages Property 5.2. A key observation is that when

processing 𝑣 , the labels for all vertices {𝑤 | 𝑤 ⪯ 𝑣} have already
been processed and thus can be used together with its upward

neighbors to compute 𝐶 (𝑣) without recomputating any 𝐶 (𝑤).

Example 5.5. Consider Fig. 4 and Fig. 5(b). Suppose the costs for all
vertices with ranks lower than 5, namely {𝑣7, 𝑣8, 𝑣3, 𝑣5}, have already
been customized. We now customize the cost array𝐶 (𝑣1) for vertex 𝑣1.
From Fig. 5(b), we know𝑁 + (𝑣1) = {𝑣7, 𝑣5, 𝑣3}. In Algorithm 2, we first
consider 𝑣7 ∈ 𝑁 + (𝑣1) and iterate over {𝑣7} ⪯ 𝑣7 (Line 6). At Line 7,
since 𝜔 (𝑣1, 𝑣7) = 3 and 𝛿𝑢𝑤 = 0 with 𝑢 = 𝑤 = 𝑣7, we compute 𝛿𝑣𝑤 =

3, where 𝑣 = 𝑣1 and 𝑤 = 𝑣7. Next, for 𝑣5 ∈ 𝑁 + (𝑣1), we iterate over
{𝑣7, 𝑣8, 𝑣3, 𝑣5} ⪯ 𝑣5 (Line 6), applying Line 7 to update costs from 𝑣1 to
these vertices. Similarly, for 𝑣3 ∈ 𝑁 + (𝑣1), we iterate over {𝑣7, 𝑣8, 𝑣3} ⪯
𝑣3 (Line 6) and again apply Line 7 to update the corresponding costs.

5.3 Query Processing
We discuss how to efficiently answer route queries using the cus-

tomized tree labeling 𝐿𝜔 . This process leverages tree labels to esti-

mate costs and restrict the search to relevant paths, thereby signif-

icantly enhancing query efficiency. The hierarchical structure of

tree labels is central to this optimization.

Let 𝑠, 𝑡 ∈ 𝑉 be any two vertices and𝐶𝐴(𝑠, 𝑡) their common ances-

tors as per Definition 5.1. Due to the ancestor separation property,

the optimal cost between 𝑠 and 𝑡 can be computed as:

𝑑𝜔
𝐺
(𝑠, 𝑡) = min{𝑑𝜔

𝐺
(𝑠, 𝑟 ) + 𝑑𝜔

𝐺
(𝑡, 𝑟 ) | 𝑟 ∈ 𝐶𝐴(𝑠, 𝑡)}.

Note however that our cost arrays do not store distances in 𝐺 .

Instead, it can be shown that 𝛿𝑣𝑤 = 𝐶 (𝑣) [𝜏 (𝑤)] is computed as the

distance between 𝑣 and𝑤 in the subgraph induced by the vertices

in the sub-tree rooted in 𝑤 . Using the same arguments as in [35]

which takes a similar approach, one can show that

𝑑𝜔
𝐺
(𝑠, 𝑡) = min{𝛿𝑠𝑟 + 𝛿𝑡𝑟 | 𝑟 ∈ 𝑎𝑛𝑐 (𝑠) ∩ 𝑎𝑛𝑐 (𝑡)}.

Observe that the cost values used in this are found at the first ℎ

positions of𝐶 (𝑠),𝐶 (𝑡), where ℎ = |𝑎𝑛𝑐 (𝑠) ∩𝑎𝑛𝑐 (𝑡) |. In Algorithm 3

we compute ℎ as the rank of the lowest common ancestor 𝑙𝑠𝑡 of 𝑠, 𝑡 .

First we proceed as in [17] and obtain the level of its tree node 𝑓 (𝑙𝑠𝑡 )
as the length of the common prefix of the identifiers I(𝑠),I(𝑡),
then look up its rank in either of the rank arrays T (𝑠),T (𝑡).

6 PARAMETRIC CUSTOMIZATION
Balancing customization and query performance is crucial for rout-

ing systems to support a wide range of applications, from real-time

navigation to logistics planning. The tree labeling method intro-

duced in Section 5 enables efficient queries, but computing full

labels for every vertex can be unnecessarily expensive. We observe

Algorithm 3: Query optimal routes

1 Function FindRoute(𝑠, 𝑡)
2 ℎ ← GetLcaHeight(𝑠, 𝑡)

3 𝐶 (𝑠) ← GetCost(𝑠, ℎ); 𝐶 (𝑡) ← GetCost(𝑡, ℎ)

4 return min
ℎ
𝑖=1

𝐶 (𝑠) [𝑖] +𝐶 (𝑡) [𝑖]

that vertices higher in the hierarchy tend to be more central and

are involved in queries more frequently, making full labeling bene-

ficial. In contrast, lower-level vertices contribute less and require

only minimal labeling. To leverage this distinction, we introduce a

parameterized labeling approach that adjusts the level of labeling

based on the hierarchical importance of each vertex and enables

controllable trade-offs between customization and query efficiency.

The labels in 𝐿𝜔 serve as pre-computed optimal routes, avoiding

the need for upward searches in 𝑆𝜔 . The core idea is to combine

partial tree labels in the customized tree labeling 𝐿𝜔 and shortcuts

in the customized shortcut graph 𝑆𝜔 to answer route queries. A

higher degree of labeling in 𝐿𝜔 improves query performance but in-

creases customization time and label size. Conversely, relying more

on searching within 𝑆𝜔 enables faster customization and smaller

label sizes but slows query responses. This interplay between 𝐿𝜔
and 𝑆𝜔 adds design complexity, requiring careful consideration to

ensure accurate routing with minimal computational overhead.

Algorithm 4: Cost computation

1 Function GetCost(𝑣, ℎ)
2 if 𝐶 (𝑣) is not truncated then
3 return 𝐶 (𝑣)

// initialize cost and ancestor arrays of length 𝜏 (𝑣)
4 𝑐 ← [∞, . . . ,∞]; 𝑎 ← [⊥, . . . ,⊥]

// follow 𝑆𝜔 shortcuts upwards while labels are truncated
5 𝑐 [𝜏 (𝑣)] ← 0; 𝑎[𝜏 (𝑣)] ← 𝑣

6 for 𝜏 (𝑤) = 𝜏 (𝑣) down to 1 do
7 𝑤 ← 𝑎[𝜏 (𝑤)]
8 if 𝑤 = ⊥ then
9 continue

10 if 𝐶 (𝑤) is not truncated then
// update 𝑐 using 𝐶 (𝑤)

11 for 𝑖 ∈ [1,min(𝜏 (𝑤) − 1, ℎ)] do
12 𝑑 ← 𝑐 [𝜏 (𝑤)] +𝐶 (𝑤) [𝑖]
13 if 𝑑 ≤ 𝑐 [𝑖] then
14 𝑐 [𝑖] ← 𝑑 ; 𝑎[𝑖] ← ⊥

15 else
// follow 𝑆𝜔 shortcuts

16 foreach (𝑛,𝜔) ∈ 𝑁 + (𝑤) do
17 𝑑 ← 𝑐 [𝜏 (𝑤)] + 𝜔
18 if 𝑑 < 𝑐 [𝜏 (𝑛)] then
19 𝑐 [𝜏 (𝑛)] ← 𝑑 ; 𝑎[𝜏 (𝑛)] ← 𝑛

20 return 𝐶 (𝑣)
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A key challenge here is how exactly to utilize preserved labels

when answering queries for lower-level vertices whose labels have

been truncated. Although it is possible to simply use our shortcut

graph scheme as a fall-back whenever labels are unavailable, such

an approach would result in an unacceptable degradation of query

performance – close to that of plain contraction hierarchies, while

incurring additional space and customization overheads.

Parameterized Labeling. A parameterized labeling, denoted as

𝐿𝜃𝜔 where 𝜃 ∈ N0 is a non-negative integer, modifies 𝐿𝜔 by altering

its cost arrays, truncating those near the bottom of the hierarchy.

Formally, let 𝜋 (𝑣) denote themaximum rank of 𝑣 ’s successors in𝐻𝐺 ,

i.e., 𝜋 (𝑣) = 𝑚𝑎𝑥{𝜏 (𝑢) | 𝑣 ⪯ 𝑢}. The cost arrays in 𝐿𝜃𝜔 are defined

as 𝐶𝜃 = {𝐶𝜃 (𝑣) | 𝑣 ∈ 𝑉 , 𝜋 (𝑣) − 𝜏 (𝑣) ≥ 𝜃 }. Essentially, labels in 𝐿𝜃𝜔
are retained unchanged (𝐶𝜃 (𝑣) = 𝐶 (𝑣)) at the upper levels of the
tree hierarchy, but truncated (𝐶𝜃 (𝑣) = ∅) at the lower levels.

This design of parameterized labeling is further supported by

several observations: (1) Local searches: Vertices at lower levels tend
to have few upward neighbors in 𝑆𝜔 , limiting the effort required

for local searches in 𝑆𝜔 . (2) Vertex distribution:Most vertices appear

in lower levels, so truncating them reduces label size significantly.

(3) Label sizes: Cost arrays make up the bulk of label sizes. Vertices

at lower levels have more ancestors, leading to larger labels.

Example 6.1. Consider Fig. 4, where vertices in dark blue represent
untruncated vertices, while the vertices in light blue are truncated for
𝜃 = 2. Consider for example vertex 𝑣12: we have 𝜋 (𝑣12) − 𝜏 (𝑣12) =
7 − 3 = 4 ≥ 𝜃 , so its full label information consisting of I(𝑣12) =
0,T (𝑣12) = [2, 4] and 𝐶 (𝑣12) = [6, 6, 6, 0] is preserved. In contrast,
for vertex 𝑣1 we have 𝜋 (𝑣1) − 𝜏 (𝑣1) = 6 − 5 = 1 < 𝜃 , so its cost array
is not stored. We still maintain I(𝑣1) = 10 and T (𝑣1) = [2, 4, 5].

Integrated Querying. Using a parameterized labeling 𝐿𝜃𝜔 , we

propose an integrated query algorithm that combines shortcut

exploration and label-based cost lookup. For cases where costs

𝐶 (𝑠) and/or 𝐶 (𝑡) have been truncated due to parameterization,

the algorithm computes these costs using both 𝑆𝜔 and 𝐿𝜃𝜔 . Once

computed, 𝐶 (𝑠) and 𝐶 (𝑡) can be used to find an optimal route as

before. The high-level description is provided in Algorithm 3. At

Line 3, we pass the height ℎ of the lowest common ancestor to

Algorithm 4, since we only require the first ℎ cost values and will

use this fact to limit computational work.

At the core of integrated querying lies cost computation, as

described in Algorithm 4. For a query vertex 𝑣 whose cost has been

truncated (i.e.,𝐶𝜃 (𝑣) = ∅), we perform a combination of online and

offline searches with online search being conducted on the shortcut

graph 𝑆𝜔 and offline search on the truncated hub labeling 𝐿𝜃𝜔 . We

start by initializing a cost array 𝑐 and an ancestor array 𝑎 (Lines

4–5). We then perform an upward search on 𝑆𝜔 until we reach a

vertex whose cost has not been truncated (Lines 15–19). From here,

we replace the remaining steps of the upward search with more

efficient cost lookups in 𝐿𝜃𝜔 (Lines 10–14). Observe that in Lines

11–14 we do not update costs to all ancestors, but only for those up

to height ℎ, as these are the only ones used by Algorithm 3. Note

further that we may skip distance updates for an ancestor𝑤 = ⊥
in Line 9 since in those cases𝑤 was not reached through upward

search in 𝑆𝜔 , and while the ancestor at rank 𝜏 (𝑤) (whose identity is
unknown) may well appear on a shortest path 𝑝 from 𝑣 to another

ancestor, this path must have been considered previously when

processing 𝐶 (𝑤 ′), where𝑤 ′ is the first untruncated ancestor of 𝑣

in 𝑝 . The deletion of ancestors in Line 14, which is done to prevent

needless processing, can be justified in the same way.

If 𝜃 = 0 or the costs of a query pair (𝑠, 𝑡) have not been truncated

(i.e., 𝐶𝜃 (𝑠) ≠ ∅ and 𝐶𝜃 (𝑡) ≠ ∅), integrated querying is reduced to

querying over the full labeling 𝐿𝜔 . Conversely, for𝜃 = ∞, integrated
querying reduces to bidirectional search over 𝑆𝜔 as in CCH.

Example 6.2. Consider a query (𝑣14, 𝑣13), which is answered using
the parameterized labeling 𝐿𝜃𝜔 shown in Fig. 4. Since both 𝐶𝜃 (𝑣14)
and 𝐶𝜃 (𝑣13) are truncated, their costs will be computed up to height
ℎ = 3, the rank of their lowest common ancestor 𝑣12. For 𝑣 = 𝑣14
in Algorithm 4, the computation begins by following the upwards
neighbors {𝑣9, 𝑣12} of 𝑣14 in 𝑆𝜔 as shown in Fig. 5(b). The cost and
ancestor arrays are then updated to 𝑐 = [∞,∞,∞, 2, 2, 0] and 𝑎 =

[⊥,⊥,⊥, 𝑣12, 𝑣9, 𝑣14] in Lines 15–19. In the next iteration (𝑤 = 𝑣9)
we find that 𝐶 (𝑣9) is not truncated, and update the distance array to
𝑐 = [4, 6, 4, 2, 2, 0] in Lines 11–14. This is repeated for𝑤 = 𝑣12 but does
not cause any changes to 𝑐 . For ancestors𝑤 ∈ {𝑣7, 𝑣8, 𝑣10}, 𝑎[𝜏 (𝑤)] is
unknown (⊥), so no further updates are performed. The process of cost
computation for 𝐶 (𝑣13) is similar, with the key difference being that
𝐶𝜃 (𝑣15) is truncated. As a result, upward search in 𝑆𝜔 is performed
during the second iteration. This leads to 𝑎 = [⊥, 𝑣8, 𝑣10, 𝑣12, 𝑣15, 𝑣13]
being almost completely known, with no iterations skipped.

7 COMPLEXITY ANALYSIS
Table 1 summarizes the complexity bounds of existing approaches

and our method. Here, 𝑛 and𝑚 denote the number of vertices and

edges, respectively, and 𝑘 represents the partitioning depth. We

assume 𝑛 ∈ 𝑂 (𝑚).
CRP. We denote by 𝑛𝑝 ,𝑚𝑝 , and 𝑚̂𝑝 the maximum number of

nodes, edges and shortcuts within any partition, and by 𝑛𝑏 ,𝑚𝑏 , and

𝑚̂ the total number of boundary nodes, cross-partition edges and

shortcuts. During preprocessing, CRP constructs the multi-level

graph partition by repeatedly applying the techniques of [13], with

a combined complexity of 𝑂 (𝑚 ·𝑚𝑏 ). During customization, costs

in the overlay graph are updated by running Dijkstra’s algorithm

within partitions from each boundary node, with a total complex-

ity of 𝑂 (𝑛𝑏 ·𝑚𝑝 · log𝑛). Shortest-path queries use a hierarchical

structure to explore the overlay graph efficiently, with a complexity

of 𝑂 ((𝑚𝑝 + 𝑘 · 𝑚̂𝑝 ) · log𝑛). Finally, the space complexity includes

storage for the base graph 𝑂 (𝑚) and overlay graph 𝑂 (𝑚̂), for a
total of 𝑂 (𝑚 + 𝑚̂).
CCH. For CCH, preprocessing involves constructing vertex or-

dering and the CCH graph 𝐺+, with a complexity of 𝑂 (𝑚 · 𝑘).
Customization updates shortcut costs in 𝑂 (𝑚̂ · 𝑑ˆ), where 𝑚̂ is the

number of shortcut edges and 𝑑ˆ is the maximum upward neighbors

in 𝐺+. Queries run in 𝑂 (𝑘 · 𝑑ˆ), and space complexity is 𝑂 (𝑚̂).
CTL. For CTL, 𝑙 is the maximum length of cost arrays in 𝐿, while

𝑚̂ and 𝑑ˆ denote the number of edges and the maximum number

of upward neighbors in 𝑆 , respectively. Although parameter defi-

nitions differ across approaches, they are conceptually equivalent

and similar in size (identical when using the same hierarchies).

During preprocessing, we use the algorithm from [17] to compute

balanced separators with a complexity of 𝑂 (𝑚 · 𝑐), where 𝑐 is the
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Table 1: Comparison of time and space complexity.

Aspect CRP CCH CTL

Preprocessing 𝑂 (𝑚 ·𝑚𝑏 ) 𝑂 (𝑚 · 𝑘) 𝑂 (𝑚 · 𝑘)
Customization 𝑂 (𝑛𝑏 ·𝑚𝑝 · log𝑛) 𝑂 (𝑚̂ · 𝑑ˆ) 𝑂 (𝑙 · 𝑘 · 𝑑ˆ)
Querying 𝑂 ((𝑚𝑝 + 𝑘 · 𝑚̂𝑝 ) log𝑛) 𝑂 (𝑘 · 𝑑ˆ) 𝑂 (𝑘 · 𝑑ˆ)
Memory Size 𝑂 (𝑚 + 𝑚̂) 𝑂 (𝑚̂) 𝑂 (𝑙 · 𝑘)

separator size. Omitting separators between boundary vertices does

not affect the overall complexity. The total size of all separators for

any edge is bounded by 𝑘 , resulting in a preprocessing complex-

ity of 𝑂 (𝑚 · 𝑘) for constructing the hierarchy 𝐻𝐺 . Customization

involves two steps: customizing 𝑆 and 𝐿. Customizing 𝑆 compares

pairs of upward neighbors for each vertex, with a complexity of

𝑂 (𝑚̂ · 𝑑ˆ). Customizing 𝐿, as described in Algorithm 2, processes

cost arrays 𝐶 in 𝑂 (𝑙 · 𝑑ˆ · 𝑘). Querying an optimal route has two

parts. The first completes in 𝑂 (𝜃 · 𝑑ˆ), where 𝜃 is the number of

ancestor vertices with truncated labels reached. The second part

completes in 𝑂 (𝑘 · |𝑉𝑢𝑎 |), where 𝑉𝑢𝑎 is the set of untruncated an-

cestors. Among truncated ancestors, let𝑤 be the one with minimal

depth 𝜏 (𝑤). Every vertex in 𝑉𝑢𝑎 connects to 𝑤 via a valley path

through the starting vertex (denoted 𝑣 in Algorithm 4), making𝑉𝑢𝑎

a subset of𝑤 ’s upward neighbors, with |𝑉𝑢𝑎 | ≤ 𝑑ˆ. Thus, total query

complexity is 𝑂 (𝑘 · 𝑚̂). Finally, space complexity is determined by

𝑂 (𝑙 · 𝑘) for storing the label structure 𝐿 (reducible with truncation),

𝑂 (𝑛 + 𝑚̂) for 𝑆 , and 𝑂 (𝑛 · log𝑛) for 𝐻𝐺 .

8 KEY VARIANTS
Parallel Customization.The customization of tree labeling scheme

can be parallelized as follows. Vertices 𝑣 ∈ 𝑉 are divided into groups

𝐺1, . . . ,𝐺𝑘 based on their rank 𝑖 = 𝜏 (𝑣). These groups are processed
in descending order of 𝑖 for customizing the shortcut graph and in

ascending order of 𝑖 for customizing the labeling, enabling parallel

execution. Synchronization between groups is achieved using a

barrier to align threads. Each thread writes only to the shortcut

and label it is currently processing and reads only from shortcuts

and labels in strictly lower (or upper) groups, avoiding read/write

conflicts and eliminating the need for locks or atomic operations.

This approach parallelizes Line 4 of Algorithms 1 and 2, processing

vertices in increasing order of levels 𝑖 .

Path Queries. To query optimal routes, we track the endpoints

of shortcuts in 𝑆𝜔 that lie on an optimal route while computing

costs in Algorithm 4. These endpoints form a sequence of ances-

tors with decreasing ranks 𝜏 . Rather than storing entire paths, we

only store the preceding shortcut endpoint for each ancestor and

construct the endpoint sequence once a hub vertex on the opti-

mal route is identified. Tracking shortcut endpoints is trivial for

the truncated part of the search (Lines 15-19), where shortcuts in

𝑆𝜔 are explicitly followed. For the untruncated part (Lines 10-14),

where costs in 𝐿𝜃𝜔 are processed, we store an additional path ar-

ray 𝑃 (𝑤) = [𝜌0, . . . , 𝜌𝑘 ] for each untruncated cost 𝐶 (𝑤). Here 𝜌𝑖
denotes the first shortcut endpoint on an optimal route from𝑤 to

its ancestor with rank 𝑖 . Since path arrays can be customized by

following shortcuts in Algorithm 2, customization time is barely

affected, but labeling size doubles.

To construct the tail of the shortcut endpoint sequence, we begin

at a vertex 𝑤0 with an untruncated label and iteratively find the

next endpoint𝑤𝑖+1 = 𝑃 (𝑤𝑖 ) [𝜏 (𝑥)] until reaching the hub vertex 𝑥 .

The decreasing rank of endpoints 𝑤𝑖 ensures their labels remain

untruncated. Note that we do not store the identities of ancestor

vertices in 𝐿𝜃𝜔 , so 𝑥 is unknown until it appears as a shortcut end-

point; only its rank 𝜏 (𝑥) is available beforehand. To construct an
optimal route from the sequence of shortcut endpoints, we proceed

as in [16]. For each shortcut (𝑣,𝑤) in 𝑆𝜔 , we store the downward tri-
angle node 𝑧 used to form (𝑣,𝑤) by concatenating (𝑧, 𝑣) and (𝑧,𝑤),
unpacking the path recursively.

Directed Road Networks. Our method can be easily adapted for

directed road networks by modifying the tree labeling scheme 𝐿,

specifically the cost arrays 𝐶 . For each vertex 𝑣 ∈ 𝑉 , we create

forward and reverse cost arrays to store costs for both directions

during customization with respect to a given metric.

9 EXPERIMENTS
We conducted experiments on a Linux server Intel Xeon W-2175

with 2.50GHz CPU, 28 cores, and 512GB of memory. We imple-

mented the proposed method in C++20 and compiled with the GNU

C++ compiler 11.4.0 using -O3 and -march=native optimizations.

Datasets. We use 10 real-world road networks summarized in

Table 2. Nine are from the US, sourced from the 9th DIMACS Im-

plementation Challenge [15], and one is from Western Europe,

managed by PTV AG [3].

Table 2: Summary of 10 real-world road networks.

Network Region |𝑉 | |𝐸 | 𝑑𝑖𝑎𝑚. Memory

NY New York City 264 346 733 846 720 17 MB

BAY San Francisco 321 270 800 172 721 18 MB

COL Colorado 435 666 1 057 066 1 245 24 MB

FLA Florida 1 070 376 2 712 798 2 058 62 MB

CAL California 1 890 815 4 657 742 2 315 107 MB

EUS Eastern USA 3 598,623 8 778 114 4 461 201 MB

WUS Western USA 6 262 104 15 248 146 4 420 349 MB

CUS Central USA 14 081 816 34 292 496 5 533 785 MB

USA United States 23 947 347 58 333 344 8 440 1.30 GB

EUR Western Europe 18 010 173 42 560 279 3 175 974 MB

Baselines. We compare our method, CTL, against two baseline

methods: Customizable Contraction Hierarchies (CCH) [16], a fully
customizable method, and Incremental Hierarchical 2-Hop Labeling
(IncH2H) [45], a partially customizable method which incrementally

maintains 2-hop labeling for a small set of edgeweight increases and

decreases to support efficient queries.We exclude CRP [12] from our

comparisons, as CCH [7, 16] has been shown to provide better query

performance. We also do not compare against non-customizable ap-

proaches, including goal-directed search techniques [24, 26, 31] and

hierarchical methods [28, 37], as these have been significantly out-

performed in terms of query time by recent non-customizable tech-

niques such as Contraction Hierarchies (CH) [21, 22] and labeling-

based methods [1, 30]. Furthermore, these techniques are consid-

erably slower in terms of customization time when compared to

fully or partially customizable approaches, such as CCH or IncH2H

[7, 16, 45], which are included in our experimental evaluation. All

algorithms were implemented in C++.
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Table 3: Comparison of preprocessing time (PT), customiza-
tion time (CT), query time (QT), and labeling size (LS).

Network PT [s] CT [s] QT [𝜇𝑠] LS [MB]

CTL CCH CTL CCH CTL CCH CTL CCH

NY 2.161 2.732 0.242 0.134 3.535 22.77 49 16

BAY 2.093 3.272 0.176 0.099 3.148 11.07 40 14

COL 3.141 5.074 0.218 0.121 3.356 19.31 57 18

FLA 9.470 14.06 0.636 0.399 4.304 18.11 148 48

CAL 22.03 30.25 1.544 0.820 5.558 36.62 307 86

EUS 58.25 76.91 2.688 1.785 10.62 84.11 474 162

WUS 104.4 149.8 5.041 3.213 11.00 81.37 812 276

CUS 418.3 554.3 22.04 10.58 15.64 318.9 2 388 657

USA 716.6 964.1 33.44 16.37 14.08 401.2 4 135 1 101

EUR 697.4 901.4 30.30 12.84 18.82 643.4 3 720 869

9.1 Performance Comparison
We first compare the performance of our method CTL with CCH

across four metrics: preprocessing time (PT) – the time to construct

metric-independent data structures; customization time (CT) – the

time to customize the preprocessed data structures to a given met-

ric; query time (QT) – the time to retrieve the optimal cost; and

labeling size (LS) – the memory consumed by the precomputed data

structures. For CT, QT, and LS evaluations, we set 𝜃 = 20 for the

five smaller networks and 𝜃 = 100 for the five larger datasets, as

taller tree hierarchies in larger datasets benefit from a higher 𝜃

value. Table 3 summarizes the comparison results.

Preprocessing Time (PT). The preprocessing time of CTL rep-

resent the total time spent on constructing the tree hierarchy 𝐻𝐺

and the shortcut graph 𝑆𝐺 . Before constructing 𝐻𝐺 , we contract

the road network by repeatedly removing degree-one vertices, fol-

lowing a similar approach described in [17]. In comparison, the

preprocessing time for CCH includes the time required to obtain

the vertex ordering and to construct the CCH graph 𝐺+.
As shown in Table 3, the preprocessing time of CTL is smaller

than that of CCH. This is because contracting degree-one vertices

reduces the graph size by up to 30%, significantly improving the

partitioning performance for constructing𝐻𝐺 , particularly on large

networks. In contrast, CCH directly partitions the original graph to

obtain a vertex ordering, which is inherently more time-consuming.

Customization Time (CT). To evaluate customization perfor-

mance, we randomly generated five sets of weights based on travel

times and calculated the average customization time for CTL and

CCH. Compared to CCH, CTL is approximately twice as slow due to

the additional step required to customize the tree labeling 𝐿. How-

ever, this performance gap can be narrowed by selecting larger 𝜃

values. As shown in Fig. 6(c)–(d), the customization time decreases

consistently as 𝜃 increases. Moreover, employing the parallel vari-

ant significantly boosts performance, achieving up to a 5 times

improvement over the sequential version, as illustrated in Fig. 9.

Query Time (QT). After customizing each weight metric, we ran-

domly sampled 1 million query pairs and calculated the average

query time. As shown in Table 3, CTL significantly outperforms

CCH, particularly on large datasets where CTL is up to 34 times

faster. We can also see in Fig. 6(a)–(b), the query time increases

with larger 𝜃 values due to the additional search effort; however

the increase is sublinear. Even with larger 𝜃 values, CTL maintains
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Figure 6: Query time, customization time, and labeling size
under varying parameter 𝜃 .

a significant advantage over CCH. For instance, as illustrated in

Table 3, for the largest datasets, USA and EUR, CTL achieves an

average query time of 14𝜇𝑠 and 19𝜇𝑠 , respectively, compared to

401𝜇𝑠 and 643𝜇𝑠 for CCH.

Labeling Size (LS). In Table 3, we compare the space requirements

of CTL and CCH. We can see that CCH consumes about 3× less

space because it does not compute a labeling, instead relies on

expensive searches at query time over a preprocessed CCH graph

𝐺+. We can also see in Fig. 6(e)–(f) that the increased 𝜃 drastically

reduces the labeling size for CTL, e.g., with 𝜃 = 100, it consumes

only about 4 gigabytes for two largest networks USA and EUR as

shown in Table 3 and provide the best trade-offs between query

time, customization time and labeling size.

9.2 Performance Discussion and Analysis
Varying Parameter 𝜃 . We evaluate the performance of CTL with

varying 𝜃 ∈ {0, 2, 5, 10, 20, 50, 100}, as shown in Fig. 6. Fig. 6(c)-(d)

show a linear decrease in customization time with increasing 𝜃 ,

reducing to half at 𝜃 = 20. Similarly, labeling size follows the same

trend, as seen in Fig. 6(e)–(f). In contrast, query time in Fig. 6(a)–(b)

increases with higher 𝜃 due to greater dependence on the shortcut

graph 𝑆𝐺 for cost computation. However, this increase is sublin-

ear, and even at 𝜃 = 100, query time remains about an order of

magnitude faster than CCH on large networks. For large datasets

like USA and EUR, choosing 𝜃 > 100 can further optimize the

trade-off between customization time, query time, and labeling size,

depending on application requirements.

3335



EUS WUS CUS USA EUR
Datasets

0

5

10

15

20

25

30

Tr
un

c.
 a

nd
 U

nt
ru

nc
. A

nc
.

θ=2
θ=5
θ=10
θ=20
θ=50
θ=100
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Figure 9: Customization performance with increasing the #
of cores on largest three networks.

Pairs Coverage. Fig. 8(a) shows the total number of query pairs

whose labels are untruncated under varying 𝜃 , while Fig. 8(b) il-

lustrates query performance for pairs with truncated labels for

either or both vertices. As 𝜃 increases, the fraction of untruncated

query pairs decreases. For smaller 𝜃 , query performance improves

because a higher proportion of untruncated label costs are used

which are processed more efficiently. Conversely, larger 𝜃 values

result in increased query times, as shown in Fig. 8(b), because the

number of truncated pairs grows, requiring more computations on

the shortcut graph 𝑆𝜔 during queries.

Truncated/Untruncated Ancestors. Fig. 7 presents the average
number of ancestors whose costs are computed using 𝑆𝜔 for trun-

cated vertices (colored parts of bars) and precomputed costs using

𝐿𝜃𝜔 for untruncated vertices (grey parts of bars) during queries.

The results highlight a balance between the use of the shortcut

graph and labeling, with labeling being the dominant factor as pre-

computed costs are utilized most of the time. This dominance of

labeling keeps query times increasing sublinearly with higher 𝜃

values, making CTL much more efficient than CCH for querying.

9.3 Scalability
Scalability w.r.t. # of Cores. Fig. 9 shows the performance of

CTL on three largest networks, CUS, USA, and EUR, by varying

the number of cores from 1 to 8. These networks are well-suited

for parallel processing due to the large number of vertices at each

tree hierarchy level, enabling efficient workload distribution across

cores. CTL achieves near-linear performance improvement with

increasing cores, demonstrating its scalability and effectiveness in

leveraging parallel processing for large-scale networks.

Scalability w.r.t. # of Updates. In Fig. 10, we compare CTL with

the state-of-the-art partial customizable method IncH2H, which

incrementally maintains the H2H-Index [32] to reflect edge cost

updates. We randomly sampled update batches of size 200–1800. For

each batch 𝑖 , we first double the edge costs (𝑎, 𝑏, 𝜔), i.e., 2×𝜔 , to test
IncH2H

+
(cost increases), then revert them to 𝜔 for IncH2H

−
(cost

decreases). We compare these update times with the customization

time of CTL (𝜃 = 20 for small networks, 𝜃 = 100 for large), and with

preprocessing time of IncH2H. As shown in Fig. 10, the update time

of IncH2H grows with batch size, exceeding customization time of

CTL at just 200 updates on most large networks and struggling even

on many small ones. On the EUR dataset, this threshold is reached

at 700 updates. Overall, CTL is better suited for scenarios with

frequent or large-scale updates, such as minute-by-minute changes.

Preprocessing time of IncH2H is over an order of magnitude slower

than the customization time of CTL. Table 5 further shows that

while IncH2H offers fast queries, it suffers from high update times

and large label sizes, making it unsuitable for customizable routing

applications requiring frequent updates and scalable performance.

10 CASE STUDY: TRAFFIC ASSIGNMENT
This section applies the proposed method to the traffic assignment

(TA) problem, a well-known challenge in traffic science and opera-

tions research [19, 34, 39, 46]. TA determines traffic flow patterns

in a road network (Example 1.1) and aims to achieve user equilib-
rium, where no traveler can switch routes to reduce travel time

without impacting others. Based on Wardrop’s first principle [42],

this equilibrium models realistic route choices, making TA essen-

tial for analyzing and optimizing road networks. We solve the TA

problem using the Frank-Wolfe method [20]. Each iteration updates

edge costs, computes shortest paths for all O-D pairs {(𝑠𝑖 , 𝑡𝑖 )}, and
adjusts costs based on the congestion function derived from previ-

ous iterations’ edge loads. The algorithm ensures convergence to

equilibrium and stops when improvements are negligible [39].

Dataset. Following [9], we use the road network of Stuttgart,

Germany, along with four demand sets representing morning peak,

evening peak, full-day, andweek-long travel demands. The Stuttgart

network is treated as undirected, and each demand set is made

symmetrical by including the inverse pair (𝑡𝑖 , 𝑠𝑖 ) for every O-D

pair (𝑠𝑖 , 𝑡𝑖 ). The network comprises |𝑉 | = 134 663 vertices and

|𝐸 | = 324 110 edges. Detailed information on the number of O-D

pairs (including inverse pairs) and time windows for each demand

set is provided in Table 6.
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Table 4: Average running time per iteration of traffic assignment using CCH or CTL for
the S-morn, S-even, S-day, and S-week demand sets. Reported times (in seconds) include
customization (once per iteration), queries (sum over all O-D pairs), and total runtime.

S-morn S-even S-day S-week

Method 𝜃 cust. queries total cust. queries total cust. queries total cust. queries total

CCH – 0.047 11.28 11.33 0.048 12.78 12.82 0.048 143.2 143.2 0.048 878.5 878.6

CTL 0 0.192 1.806 1.999 0.190 2.019 2.209 0.191 17.18 17.38 0.190 89.94 90.13

CTL 2 0.162 2.154 2.316 0.163 2.430 2.594 0.164 21.68 21.85 0.163 115.5 115.7

CTL 5 0.104 2.586 2.691 0.104 2.915 3.019 0.103 26.97 27.07 0.103 148.2 148.3

CTL 10 0.092 2.705 2.796 0.092 3.062 3.154 0.091 28.69 28.78 0.091 159.1 159.2

CTL 20 0.083 2.826 2.909 0.082 3.173 3.255 0.082 30.32 30.41 0.083 169.2 169.3

CTL 50 0.075 2.998 3.073 0.075 3.384 3.459 0.072 34.56 34.63 0.076 183.8 183.8

CTL 100 0.072 3.140 3.212 0.072 3.523 3.595 0.076 32.72 32.80 0.072 195.7 195.8

Table 5: Query time (QT) and la-
beling size (LS) for IncH2H.

Network QT [𝜇s] LS [MB]

NY 0.913 849

BAY 0.841 889

COL 1.018 1 444

FLA 1.019 2 605

CAL 1.333 8 613

EUS 1.683 21 610

WUS 1.702 37 791

CUS 2.483 183 887

USA 3.428 317 961

EUR 3.888 331 354

200 600 1000 1400 1800
# of Updates

10−1

100

Up
da

te
 T

im
e 

(s
) (NY)

200 600 1000 1400 1800
# of Updates

100

(BAY)

IncH2H +

IncH2H −

IncH2H
CTL

200 600 1000 1400 1800
# of Updates

100

(COL)

200 600 1000 1400 1800
# of Updates

100

101
(FLA)

200 600 1000 1400 1800
# of Updates

101

(CAL)

200 600 1000 1400 1800
# of Updates

101

Up
da

te
 T

im
e 

(s
) (EUSA)

200 600 1000 1400 1800
# of Updates

101

102
(WUSA)

200 600 1000 1400 1800
# of Updates

102

103 (CUSA)

200 600 1000 1400 1800
# of Updates

101

102

103
(USA)

200 600 1000 1400 1800
# of Updates

100

101

102

103
(EUR)

Figure 10: Update time analysis of IncH2H with varying numbers of updates for both edge cost increases and decreases,
compared to the reconstruction time of IncH2H and the customization time of CTL.

Table 6: Demand sets for traffic assignment (TA).

Demand set Time window O-D pairs

S-morn Tue, 07:30-08:30am 496 862

S-even Tue, 04:30-05:30pm 560 728

S-day Tue, whole day 6 710 884

S-week whole week 42 496 556

Baselines. Buchhold et al. [9] present the state-of-the-art approach
for TA using CCH. As shown in Section 9, CTL achieves faster query

times than CCH, albeit with slightly higher customization times.

Thus, we expect CTL to be better suited for TA than CCH for

sufficiently large demand sets. We integrate our implementation

of CTL into a TA framework
1
and compare the total time of cus-

tomizing and querying with the state-of-the-art CCH. Since TA

requires path queries, we extend CTL to support path computation

as detailed in Section 8. To evaluate typical running times per itera-

tion,we limited the TA algorithm to 50 iterations per configuration

instead of running it to full convergence. This approach ensures a

fair comparison, as running times per iteration stabilize quickly.

Results. Table 4 demonstrates that CTL consistently outperforms

CCH across all demand sets in total runtime, with query times up

to 8 times faster for 𝜃 = 0. While CTL’s customization times are

higher than CCH’s at lower 𝜃 , the dominance of query efficiency

results in up to 4 times faster total runtimes for smaller sets (S-
morn, S-even) and up to 8 times for larger sets (S-day, S-week). As
𝜃 increases, CTL achieves reduced customization times at a slight

cost to query performance, offering flexible trade-offs that allow

tuning based on specific application needs. For traffic assignment

1
https://github.com/vbuchhold/routing-framework

problems involving larger demand sets, moderate 𝜃 values (e.g.,

20 or 50) effectively balance customization and query efficiency,

enabling significant reductions in total runtime, with query times

as low as 30.32 seconds for S-day and 169.2 seconds for S-week,
facilitating faster iterations in large-scale traffic simulations.

11 CONCLUSION
This paper addresses customizable routing in dynamic road net-

works for efficient real-time route computation. We analyze limi-

tations of existing methods and propose a three-phase approach,

Customizable Tree Labeling (CTL), which offers significantly faster

metric-independent preprocessing and query performance, while

remaining competitive in customization time and label size. CTL

provides two variants: a basic one optimized for query speed, and a

parameterized version that balances preprocessing, customization,

and querying through a novel integrated querying technique. Ex-

periments on 10 large real-world road networks show that our algo-

rithms significantly outperform existing methods in preprocessing

and querying, demonstrating their effectiveness for real-time and

dynamic routing. For future work, we aim to optimize CTL through

parallelization. As customization and query scan cost arrays, they

are well suited for SIMD or GPU acceleration. We also plan to

explore scalable multi-threading, building on recent advances in

parallel CH preprocessing [41] and graph partitioning [25].
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