
Twisted Twin: A Collaborative and Competitive Memory
Management Approach in HTAP Systems

Jiani Yang

Zhejiang University &

Zhejiang Key Laboratory of

Big Data Intelligent

Computing

jianiyang_cs@zju.edu.cn

Sai Wu

Zhejiang University &

Zhejiang Key Laboratory of

Big Data Intelligent

Computing

wusai@zju.edu.cn

Yong Wang

Huawei

wangyong308@huawei.com

Dongxiang Zhang

Zhejiang University

zhangdongxiang@zju.edu.cn

Yifei Liu

Zhejiang University

liuyifei0@zju.edu.cn

Xiu Tang

Zhejiang University

tangxiu@zju.edu.cn

Gang Chen

Zhejiang University

cg@zju.edu.cn

ABSTRACT
Many GaussDB customers, particularly small and medium-sized

enterprises (SMEs), require high transaction throughput with oc-

casional analytical queries. HTAP systems that deploy both OLTP

and OLAP engines on a single server to manage hybrid workloads

have become increasingly popular among customers for achiev-

ing high cost-efficiency and data freshness. However, co-locating

these systems can lead to resource contention, particularly for mem-

ory, potentially degrading overall system performance and causing

Service-Level Agreements (SLA) violations. To address this issue,

we propose 𝑇 2
(Twisted Twin), an adaptive memory management

approach that dynamically allocates memory between OLTP and

OLAP components. This approach ensures OLTP meets SLA while

optimizing the efficiency of OLAP query processing. However, this

is non-trivial, as memory allocation triggers a cascade of effects,

including in-memory column selection and data synchronization,

both critical in HTAP systems. To overcome these challenges, we in-

troduce a Bayesian optimization framework tailored for fluctuating

workloads that adjusts memory allocation responsively. Experi-

ments conducted on the real-world HTAP system, GaussDB-HTAP,

demonstrate the effectiveness and efficiency of 𝑇 2
.

PVLDB Reference Format:
Jiani Yang, Sai Wu, Yong Wang, Dongxiang Zhang, Yifei Liu, Xiu Tang,

and Gang Chen. Twisted Twin: A Collaborative and Competitive Memory

Management Approach in HTAP Systems. PVLDB, 18(10): 3312 - 3325,

2025.

doi:10.14778/3748191.3748197

1 INTRODUCTION
Popular HTAP (Hybrid Transactional/Analytical Processing) sys-

tems [9, 21, 29, 33, 48] employ two specialized engines with dedi-

cated data stores to handle transactional and analytical workloads,

with periodic data synchronization between the two. However, the

underlying storage architectures and synchronization mechanisms

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.

doi:10.14778/3748191.3748197

Figure 1: The Impact of Buffer Allocation Between Row Store
and Column Store (HyBench)

vary across these systems. After several years of marketing HTAP

systems, we have observed that many GaussDB [22] customers,

particularly small and medium-sized enterprises (SMEs), primar-

ily require high transaction throughput with occasional analytical

queries. Simultaneously, these customers want to avoid the risks

associated with outdated data impacting decision-making.

To meet these needs, GaussDB has co-located OLTP and OLAP

systems within the same machine, similar to other widely used

HTAP commercial systems (eg. Oracle [27], SQL Server [29], PolarDB-

IMCI [48]). It employs a row-native architecture that persists row-

oriented data while utilizing in-memory column stores as secondary

storage. Updates are written to an in-memory delta table, ensuring

complete data freshness. However, this architecture suffers from

poor performance isolation [30, 39, 41], raising concerns among

customers about a severe drop in OLTP throughput, which may

critically disrupt business operations and service responsiveness.

Therefore, we aim to identify an approach that ❶ ensures OLTP

performance meets the Service-Level Agreement (SLA), and ❷ op-

timizes OLAP queries as much as possible.

Memory allocation remains a critical factor influencing the per-

formance of HTAP systems. As shown in Figure 1, the x-axis denotes

the memory partition ratio between OLTP and OLAP components.

TPS (transactions per second) measures transactional throughput,

while QPS (queries per second) reflects analytical query perfor-

mance. Each configuration was executed repeatedly to confirm the

robustness of the observed trends. The solid lines in the figure rep-

resent the averaged results, and the dashed lines indicate individual

runs. The results show that increasing memory allocation enhances

3312

https://doi.org/10.14778/3748191.3748197
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748197

the performance of both components, albeit in a nonlinear manner.

For OLTP workloads, additional memory helps retain hot records

in memory, thereby reducing I/O overhead. For OLAP workloads,

allocating more memory to the column store increases the likeli-

hood of columnar data being cached, reducing the need to fall back

to the row store during analytical query execution.

This trade-off highlights the memory competition between the

OLTP and OLAP components in the HTAP system, which behave

like twisted twins, each competing for memory to optimize its

performance. However, in real-world applications the peak periods

of OLTP and OLAP typically do not coincide. This creates a collab-

orative opportunity to improve memory utilization by adjusting

memory allocation dynamically to achieve goals ❶ and ❷.

There exists extensive research on memory allocation in tradi-

tional database systems [35, 42, 44, 52]. However, no established

methods specifically address memory allocation for the two sub-

systems of HTAP. In fact, it is non-trivial task:

1) For the OLTP system, it is difficult to manually determine

how much memory should be allocated to meet SLA requirements.

For the OLAP system, both the amount of memory allocated and

the selection of which columns to load into memory under this

memory constraint directly impact OLAP performance.

2)The interference betweenOLTP andOLAPmakes the situation

even more complex. Insufficient memory allocation for OLAP may

prevent analytical queries from accessing data in the in-memory

column store, resulting in increased disk I/O, which in turn affects

OLTP performance. Besides, data updates between OLTP and OLAP

components must be periodically synchronized, which also affects

both systems. Frequent synchronizations can reduce transactional

query throughput, while infrequent ones force analytical queries

to read from delta tables, thereby degrading OLAP’s performance.

3) Given that OLTP and OLAP workloads typically exhibit stag-

gered peak resource demands, it is essential to reallocate memory

when workload shifts, which expands the problem’s search space.

Moreover, loading new columns from disk into column store incurs

additional costs that must be considered during reallocation, further

complicating the problem in dynamic scenarios.

In this paper, we introduce𝑇 2
(Twisted Twin), an adaptive mem-

ory management approach for HTAP systems to address the above

challenges. Given the complexity of the system and the numer-

ous influencing factors, we design a comprehensive optimization

framework. Specifically, we identify three critical modules in HTAP

systems that require optimization: column selection, data synchro-

nization, and memory allocation. To reduce the problem’s search

space, we propose a two-layer solution. First, we optimize memory

management for static workloads. Then, for dynamic workloads,

we decompose them into discrete static workloads and apply the

static approach at appropriate times. In summary, this paper makes

the following key contributions:

• We adopt a Bayesian optimization framework to efficiently allo-

cate memory while optimizing column selection and data syn-

chronization strategies within the loop. This framework intro-

duces a lightweight yet effective algorithm to provide a holistic

solution for static workloads.

• We developed an adaptive memory management strategy for

dynamic hybrid workloads, using a time-series prediction model

to forecast query patterns and a heuristic algorithm to optimize

reorganization timing, improving memory utilization.

• We built 𝑇 2
on GaussDB and evaluated its performance using

HTAP benchmarks. Our results demonstrate that𝑇 2
outperforms

existing solutions by dynamically adjusting key components.

The paper is organized as follows: Section 2 presents the de-

sign of𝑇 2
and defines the memory management problem. Section 3

discusses static workload handling, while Section 4 covers optimiza-

tion for dynamic workloads. Section 5 evaluates our system with

HTAP benchmarks, Section 6 reviews related work, and Section 7

concludes the paper. To improve readability, we provide a list of

symbols in the technical report
1
.

2 OVERVIEW
In this section, we first provide an overview of the GaussDB-HTAP

system, clearly defining our problem and overall objective. We then

present the system design of 𝑇 2
to achieve the defined objective.

2.1 Design of GaussDB-HTAP
As mentioned, our target users mainly require OLTP processing

with occasional lightweight OLAP queries. To address this, we use

GaussDB as a case study and integrate OLAP components into the

original GaussDB to enhance its HTAP capabilities. The resulting

system is referred to as GaussDB-HTAP.

The architecture of GaussDB-HTAP, shown in Figure 2, features

a router that directs queries to either the OLAP or OLTP modules

based on their processing requirements and characteristics. Specifi-

cally, transactional queries are routed to the Row Execution Engine,

while analytical queries are sent to the Vector Execution Engine.

To support these modules, the buffer pool is divided into two com-

ponents: a row store buffer that caches all data, and a column store

buffer that stores a user-specified subset of columns in columnar

format for efficient OLAP processing. For transactional queries, the

row engine retrieves data from either the row store buffer or disk

as needed. For analytical queries, vector engine initially attempts to

fetch data from the column store buffer. If the required data is not

available in the column store, the query falls back to retrieving data

from the row store buffer or disk. The data in the column store buffer

is not persisted to disk and is rebuilt after each GaussDB-HTAP

restart. Like many other HTAP systems (e.g., [27, 29, 40]), we use

delta tables to record incremental changes in the row store, such as

inserts, updates, and deletions, which are periodically synchronized

with the column store (see 3.2 for details).

Although 𝑇 2
was developed based on GaussDB’s system archi-

tecture and data synchronization techniques, the core ideas and

methodologies we propose are equally applicable to other systems

[27, 29, 48] that utilize row store as primary storage, supplemented

by an in-memory column store to optimize OLAP performance. In

our technical report, we provide a more detailed discussion on how

𝑇 2
can be applied to other HTAP systems.

2.2 Problem Definition
Our approach prioritizes meeting the service level agreement (SLA)

of the OLTP workload while enhancing the efficiency of the OLAP

1
Technical Report:https://yplusone.github.io/files/TwistedTwin_tech_report.pdf

3313

https://yplusone.github.io/files/TwistedTwin_tech_report.pdf

Transactional Queries Analytical Queries

Router

Transactional Queries Analytical Queries

Row Execution Engine Vector Execution Engine

Row Store Buffer Column Store Buffer

Buffer Pool

Table Table Table

Disk

Delta Table

GaussDB-HTAP Auto Memory Management

Workload Forcaster

OLTP OLAP

Column
Selection

Data Sync
 Strategy

History
Log

Trigger
Reallocation

Section 4

Bayesian Optimization

OLTP OLAP

Performance Estimator

Performance
Metrics

Section 3

Memory Allocation

Section 3.2

Section 3.1
Section 3.3

1

23

5

4

Figure 2: Architecture of GaussDB-HTAP System and Auto Memory Management Algorithm 𝑇 2

workload. In this paper, we focus on dynamically adjusting memory

allocation between the two buffers to achieve our goal. Let M
total

represent the total memory available for the whole buffer pool. The

memory allocation must satisfy the following constraint:

Mrow +M
col

≤ M
total

,

where Mrow and M
col

denote the memory allocated to the row

and column store buffers, respectively. Let𝑊 (𝐶) denote the size of
selected column set 𝐶 in the column store. Naturally, we have:

𝑊 (𝐶) ≤ M
col
.

A strong dependency is observed between the transactional through-

put of the system andMrow, which we model through the function

POLTP (Mrow). A comprehensive discussion of other contributing

parameters is provided in Section 3.3.1.

2.2.1 Static Workload. In the static scenario, the SLA threshold

of the OLTP workload is fixed as 𝜃 . The objective is to guarantee

service responsiveness by ensuring that the system’s TPS, repre-

sented by POLTP (Mrow), remains greater than or equal to 𝜃 . With

this constraint, the focus shifts to optimizing OLAP workloadWap

by efficiently utilizing the remaining memory resources. The cost

of executing the analytical workload is denoted by CostWap
(𝐶),

and the cost of reading and synchronizing delta tables is given by

CostΔ (𝐶,K). Here,K represents the data synchronization strategy.

The static scenario yields the following optimization problem:

Minimize CostWap
(𝐶) + CostΔ (𝐶,K)

Subject to P𝑂𝐿𝑇𝑃 (Mrow) ≥ 𝜃,
Mrow +M

col
≤ M

total
,

𝑊 (𝐶) ≤ M
col
.

(1)

The solution is to develop an algorithm that determines the optimal

memory allocations Mrow and M
col

, selects the appropriate set

of columns 𝐶 , and chooses the data synchronization strategy K to

minimize the total cost while satisfying the constraints on OLTP.

2.2.2 Dynamic Workload. In real-world scenarios, TPS require-

ments and OLAP workloads often fluctuate over time (e.g., by hour

or day), making static memory allocation insufficient. When OLTP

load is low, more memory can be allocated to OLAP; when OLTP

demand is high, the system should prioritize OLTP throughput.

To capture such dynamics, we divide time into equal-sized win-

dows 𝑡0, 𝑡1, ..., 𝑡𝑛 and adapt memory allocation in each window

accordingly. However, triggering dynamic memory reallocation in-

curs a switching cost, as new columns must be loaded from disk into

the column store buffer. We denote this switching cost as Cost
𝑡𝑖
switch

.

Frequent modifications to the column store content can lead to sub-

stantial overhead. Therefore, the main objective is to minimize the

overall cost, as described below:

Min.

∑︂
𝑡𝑖
CostW′

ap
(𝑡𝑖) (𝐶𝑡𝑖) + CostΔ (𝐶𝑡𝑖 ,K) + F(𝑡𝑖) · Cost𝑡𝑖

switch
(2)

This dynamic scenario introduces two key components beyond

the static case: (1) a workload predictor that estimates future OLTP

and OLAP demands, denoted as 𝜃 ′𝑡𝑖 and W′
ap
(𝑡𝑖), respectively. The

system must ensure that the OLTP SLA is satisfied in each interval

by meeting the constraint P𝑂𝐿𝑇𝑃 (M𝑡𝑖
row

) ≥ 𝜃 ′𝑡𝑖 . (2) a reallocation
strategy 𝐹 (𝑡𝑖) that determines whether memory should be reallo-

cated at the beginning of each time window.

We designed the algorithm for OLTP-prioritized HTAP systems,

which is the most common usage scenario. However, the framework

is flexible: it can be adapted to OLAP-prioritized settings by modi-

fying constraints (e.g., bounding OLAP latency while optimizing

TPS). These extensions are further discussed in the technical report.

2.3 Design of 𝑇 2

Solving the optimization problem is challenging due to the non-

linear relationships between variables, constraints, and objectives.

To approach an optimal solution efficiently, we design a workflow

with the following components: To solve the optimization problem

in a static scenario, we design three modules. The first, ❶ Column
Selection, identifies the optimal column set 𝐶 within the memory

constraint M
col

. The second, ❷ Data Synchronization Strategy,
uses a cost-based model to determine the optimal timing for data

synchronization and estimates the additional cost, CostΔ. This cost

is then integrated into the Column Selection module to account

for the impact of data updates. Finally, ❸ Memory Allocation

3314

Sort

Merge Join

Index Scan
order

Seq Scan
orderline

Sort

 Select
ol_w_id,
ol_d_id,
ol_o_id,
ol_delivery_d

 from
orderline

 where
ol_delivery_d<?;

subquery

Seq Scan
orderline

Column Scan
orderline

HashAggregate

Figure 3: Example Plan Tree for Q12 in CH-benCHmark [11],
and Extracting Scanning Queries from Leaf Nodes

allocates memory between Mrow and M
col

, based on Bayesian

optimization. This module also includes a performance estimator

to predict the performance of both OLTP and OLAP workloads,

guiding the optimization process and achieving goals of 𝑇 2
.

To solve the optimization problem in a dynamic scenario, we first

need the ❹ Workload Forecaster to predict the characteristics of

OLTP and OLAP workloads using a time-series prediction network.

The predicted characteristics will be used by components ①, ②,

and ③. Additionally, they will guide the ❺ Trigger Reallocation
module in determining the optimal time for memory reallocation.

This triggers the algorithm for the static scenario problem, which

reallocates memory and updates the selected columns.

3 𝑇 2 FOR STATIC WORKLOADS
In this section, we address the static workload scenario from Sec-

tion 2.2.1. Under a static workload, memory allocated to the OLAP

component is fixed, and our objective is to select the most valuable

columns for the column store. This selection process must account

for two critical factors: 1) the impact of selected columns on query

performance, and 2) the additional costs of updating these columns.

We can model the column selection challenge in HTAP systems

as analogous to the knapsack problem, where each column repre-

sents an item, the total memory capacity is the knapsack’s limit, and

the impact of a column on query performance reflects the item’s

value. However, our scenario introduces complexities beyond the

classical knapsack problem, as columns are interdependent. These

interactions substantially enlarge the search space and complicate

both modeling and solution. Additionally, accounting for the cost

of updating columns further complicates the problem, making it

even more difficult to model and resolve. We begin by addressing

the first challenge.

3.1 Column Selection with No Updates
In GaussDB-HTAP, users explicitly load specific columns into the

column store buffer using statements such as "ALTER TABLE or-

derline COLVIEW(ol_w_id, ol_d_id)". This manual process requires

users to decide which columns to load, which can be labor-intensive.

Moreover, column choices based on intuition or experience may

not lead to optimal performance improvements.

A key challenge in column selection is that the performance ben-

efit depends on the presence of a complete set of columns required

by a query. Column selection typically follows an all-or-nothing

principle: a query can only benefit from a "Column Scan" when

all required columns are present in the column store buffer. As

illustrated in Figure 3, a "Seq Scan" (i.e., a full table scan on the row

store) can be replaced by a more efficient "Column Scan" only if all

four referenced columns are loaded into column store. Otherwise,

the query must fall back to accessing data from the row store.

We have developed an integer programming model specifically

designed to address the column selection problem in HTAP systems.

The primary goal of this model is to enhance the execution effi-

ciency of OLAP queries by selecting the most appropriate columns.

Thus, the model aims to minimize the total execution time for all

queries within a given OLAPworkload. The workloadWap consists

of a set of queries, represented asWap = 𝑄1, 𝑄2, . . . , 𝑄𝑠 . The small-

est logical caching unit in the column store buffer is a column, and

the full set of𝑀 columns is denoted as 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 = 𝐶1,𝐶2, . . . ,𝐶𝑀 .

Since changes in the leaf nodes of a query plan do not impact

non-leaf nodes, we can focus exclusively on the "seq scan" node

in the execution plan. Therefore, the queries in the workload Wap

can be decomposed into 𝐾 subqueries, each corresponding to a leaf

node, retrieving data from a single table. We define a quintuple for

each subquery 𝑞𝑙 as (𝑞𝑙 ,𝐺𝑙 , 𝑓𝑙 , cost
𝑞𝑙
row

, cost
𝑞𝑙
col

), where 0 < 𝑙 ≤ 𝐾 . In

this context, 𝑞𝑙 represents the subquery responsible for data scan-

ning and filtering. For example, a sequential scan on the orderline

table can be extracted as a subquery. The variable 𝑓𝑙 denotes the

execution frequency of subquery 𝑞𝑙 . The columns involved in sub-

query 𝑞𝑙 form a group𝐺𝑙 . costrow and cost
col

represent the costs of

retrieving data through row store sequential scan and column scan,

respectively. This benefit can either be estimated by the database

or measured through actual query execution.

We define 𝑥𝑚 as the decision variable indicating whether column

𝐶𝑚 is selected. Subquery 𝑞𝑙 can perform a column scan if and only

if all columns in 𝐺𝑙 are selected. Therefore, the objective can be

formulated as:

Minimize

∑︂𝐾

𝑙=1

(︃
cost

𝑞𝑙
col

(Π𝑚∈𝐺𝑙 𝑥𝑚) + cost𝑞𝑙
row

(1−Π𝑚∈𝐺𝑙 𝑥𝑚)
)︃
· 𝑓𝑙

Additionally, the total memory size of the selected columns must

not exceed the limitM
col

:∑︂𝑀

𝑚=1

(𝑤𝑚𝑥𝑚) ≤ M
col
, where 𝑥𝑚 ∈ {0, 1} for each𝑚.

Here,𝑤𝑚 represents the memory usage of column 𝐶𝑚 . The above

objective function is non-linear, which complicates the problem-

solving process. In fact, the column selection problem is NP-hard,

as we show in the following proof:

Proof. The Maximum Diversity Problem (MDP) involves find-

ing a clique with maximum edge weight in a graph, constrained

by a maximum number of nodes, with non-negative edge weights.

The MDP is known to be NP-hard [18]. We reduce the MDP to the

column selection problem to demonstrate the latter’s complexity.

Consider a special case of the column selection problem where each

query involves exactly two columns. We can represent this scenario

as a complete graph G = (𝑉 , 𝐸) where:
• Each column corresponds to a node in 𝑉 , with weight of 1.

• Suppose each subquery only involves two columns. An edge

(𝑖, 𝑗) ∈ 𝐸 exists between two nodes 𝐶𝑖 and 𝐶 𝑗 if they are in-

volved in the same query, and the edge weight cost
𝑞
row

− cost
𝑞

col

represents the performance gain of storing both columns 𝐶𝑖 and

𝐶 𝑗 in column storage. For columns not involved in the same

query, the edge weight is 0.

3315

Row Group Delete BitmapDelta Table
CTID(Page, Offset)

Column Store Buffer

Page Page Page

Row Store

Memory

Disk

Page

CTID(Page, Offset)

Figure 4: Delta Table Working Mechanism

The column selection problem is to select a subset of columns

such that the total performance gain (sum of edge weights) is maxi-

mized, subject to the memory constraintM
col

. This is equivalent to

imposing a constraint on the number of nodes in the selected clique.

This special case of the column selection problem is equivalent to

the MDP. Since MDP is NP-hard, the column selection problem is

also NP-hard by reduction. Hence, the problem is NP-hard. □

Since the column selection problem can be reduced to the MDP,

it inherits the same level of complexity, making dynamic program-

ming solutions equally impractical. In this paper, following the

approach of Glover and Wolsey [19], we can linearize this nonlin-

ear problem by introducing new decision variables. Specifically,

we replace the product of variables in the objective function with

a new set of decision variables, 𝑧𝑙 , to indicate whether query 𝑞𝑙
is scanning from column storage. When 𝑧𝑙 = 1, all columns in 𝐺𝑙
must be present in column storage for the query to benefit. The

objective can be simplified as:

Minimize

∑︂𝐾

𝑙=1

(︁
cost

𝑞𝑙
col
𝑧𝑙 + cost

𝑞𝑙
row

(1 − 𝑧𝑙)
)︁
· 𝑓𝑙 (3)

This transformation needs additional linear constraints to ensure

that the new variables 𝑧𝑙 = Π𝑚∈𝐺𝑙 𝑥𝑚 :∑︂
𝑚∈𝐺𝑙

𝑥𝑚 ≥ |𝐺𝑙 | · 𝑧𝑙 , 0 < 𝑙 ≤ 𝐾

Specifically, 𝑧𝑙 = 1 only if all 𝑥𝑚 for𝑚 ∈ 𝐺𝑙 are equal to 1, thus

satisfying the constraint

∑︁
𝑚∈𝐺𝑙 𝑥𝑚 ≥ |𝐺𝑙 | · 𝑧𝑙 . As a result, we have

transformed the nonlinear model into a linear one. Although the

decision space has expanded, this approach enables more effective

optimization while maintaining feasibility.

3.2 Adaptive Data Synchronization Strategy
Next, we address the second challenge: accounting for the additional

costs incurred by updates to the selected columns. To tackle this,

we introduce our data synchronization system.

Most existing HTAP systems use delta tables to minimize the

impact of updates on the in-memory column store. While delta

tables help reduce the overhead of updating the column store, they

also introduce additional costs associated with reading the data.

Figure 4 illustrates the mechanism of the delta table and col-

umn storage. Data is loaded into memory by organizing it into

row groups, with columns stored contiguously in an array format

within each group, forming a Column Unit (CU). Each row group

has an associated delta table that tracks changes to the data, includ-

ing updated, inserted, or deleted tuples (UID operations). To track

these changes, the delta table uses a CTID (Tuple Identifier), which

consists of a block number and tuple offset. The CTID uniquely

identifies a tuple’s physical location in row storage.

During a column scan, the delta table is accessed, and the CTID

helps locate the tuple’s position, enabling quick data retrieval and

merging with the CU’s column data. The complete column vector

is then passed to the next operator. In this design of delta table

(e.g., [27, 29, 40]), the cost of reading the delta table Cost
read

and

synchronization Costsync, are proportional to the amount of data

in the delta table, 𝑁 , i.e., Cost
read

∝ 𝑁 , Costsync ∝ 𝑁 .

One of the key decisions in HTAP systems is determining the

optimal timing for data synchronization. In𝑇 2
, we ensure snapshot

consistency for OLAP queries. Thus, for a query at timestamp 𝑡𝑖 , we

load data from the delta table up to 𝑡𝑖 . Since the cost is proportional

to the size of the delta table, it is crucial to prevent excessive data

accumulation, which can significantly degrade the performance of

in-memory column reads. Regular synchronization and merging

of delta table data into columnar storage are essential to maintain

performance. However, selecting the right synchronization fre-

quency presents a major challenge. Synchronizing too frequently

can negatively impact transactional performance, while infrequent

synchronization can degrade the performance of column reads.

To address this challenge, we have established a synchronization

threshold. When the data in the delta table exceeds a threshold

𝛼 , a synchronization process is triggered. The key problem is de-

termining the optimal value for 𝛼 . In this paper, we conduct cost

estimations for the delta table and aim to identify the optimal 𝛼 .

3.2.1 Cost Model for Delta Table. For both reading and synchroniz-
ing the delta table, the operations are proportional to the number

of records in the table, with a complexity of 𝑂 (𝑛). Therefore, we
use a linear model to estimate the costs for both:

Cost
read

(𝑡) =𝑤0𝑁 (𝑡) +𝑤1

Costsync (𝑡) =𝑤2𝑁 (𝑡) +𝑤3

Here 𝑁 (𝑡) represents the number of records in delta table at time 𝑡 .

By measuring the time taken to perform reading and synchronizing

operations on delta tables with different row counts, we can obtain

some samples to derive the coefficients by fitting these samples

with linear regression to get specific values of𝑤0,𝑤1,𝑤2,𝑤3.

3.2.2 Pick the Synchronization Threshold. We model the problem

by selecting a time period [0,𝑇] and assume that data updates are

uniformly distributed within this period. The number of records

in the delta table grows linearly at a constant rate
𝑏
𝑇
, where 𝑏 is

the total number of UID operations or update records in delta table

during [0,𝑇]. A synchronization occurs whenever the number of

records reaches the threshold 𝛼 , resulting in
𝑏
𝛼 synchronization

events during [0,𝑇].
The cost of each synchronization is𝑤2𝛼 +𝑤3, leading to a total

𝑏
𝛼 times synchronization cost:

Costsync =
𝑏

𝛼
× (𝑤2𝛼 +𝑤3)

We assume that read events are uniformly distributed over the

period, with a total of 𝜈 delta table reads during [0,𝑇]. Since the
expected number of records in the delta table is

𝛼
2
(for further

reasoning, refer to the technical report), the expected cost of one

3316

time reading during each synchronization cycle is:

𝐸 [Cost
read

(𝑡)] = 𝑤0𝛼

2

+𝑤1

Thus, the total cost of reading delta table during [0,𝑇] is:

Cost
read

= 𝜈 ×
(︂𝑤0𝛼

2

+𝑤1

)︂
The overall cost is the sum of synchronization and read costs:

CostΔ =
𝑏

𝛼
(𝑤2𝛼 +𝑤3) + 𝜈

(︂𝑤0𝛼

2

+𝑤1

)︂
(4)

We derive the optimal 𝛼 by setting the derivative of CostΔ to zero:

𝑑CostΔ

𝑑𝛼
= −𝑏𝑤3

𝛼2
+ 𝜈𝑤0

2

= 0

Solving the equation, we get the synchronization threshold 𝛼 :

𝛼 =

√︄
2𝑏𝑤3

𝜈𝑤0

This threshold 𝛼 minimizes the total cost introduced by delta table,

which can be adjusted based on data update and read rates to

optimize the synchronization process. The time period [0,𝑇] can
be determined in real scenarios, provided that the frequency of UID

operations and reading requests remains relatively stable.

While our model assumes uniform distributions of updates and

reads, we also analyze its robustness under skewed access patterns.

In the worst case where reads always access the full 𝛼 records, the

total cost increases moderately, and the deviation remains bounded.

Detailed derivations and empirical evidence under skewed work-

loads are provided in the technical report.

3.2.3 Data update effect. To account for the effect of data updates

in column selection, we introduce a penalty term into the objective

function of Equation 3. After determining the optimal synchro-

nization threshold 𝛼 , the total costs associated with the delta table,

denoted as CostΔ, can be computed. These costs, incurred from

both reading and synchronizing the delta table, act as a penalty for

not selecting frequently updated columns.

Substitute the 𝛼 =

√︂
2𝑏𝑤3

𝜈𝑤0

into the Equation 4, we can get the

update cost for table 𝑗 :

Cost
𝑗

Δ = 𝑏 𝑗𝑤2 +
√︂

2𝑏 𝑗𝑤3𝜈 𝑗𝑤0 + 𝜈 𝑗𝑤1, 0 < 𝑗 ≤ 𝐽 (5)

Let 𝐽 denote the total number of tables, where 𝑏 𝑗 represents the

number of UID operations on table 𝑗 , and 𝜈 𝑗 denotes the number

of accesses to delta table 𝑗 . If any column from a table is selected, a

delta table must be prepared for that table to handle UID operations,

which incurs a cost CostΔ. To account for this, we introduce an

additional decision variable, 𝑢 𝑗 , to indicate whether the columns

of table 𝑗 are loaded into memory. To ensure that the penalty is

only applied when columns from a table are selected, we add a

corresponding constraint. The overall optimization model is as

follows:

Minimize

∑︂𝐾

𝑙=1

(︃
cost

𝑞𝑙
col
𝑧𝑙 + cost

𝑞𝑙
row

(1 − 𝑧𝑙)
)︃
· 𝑓𝑙 +

∑︂𝐽

𝑗=1

Cost
𝑗

Δ · 𝑢 𝑗

Subject to

∑︂𝑀

𝑚=1

𝑤𝑚𝑥𝑚 ≤ M
col
,∑︂

𝑚∈𝐺𝑙
𝑥𝑚 ≥ |𝐺𝑙 | · 𝑧𝑙 , 0 < 𝑙 ≤ 𝐾,

𝑢 𝑗 ≥ 𝑥𝑚, for all𝑚 ∈ 𝑆 𝑗 , and 0 < 𝑗 ≤ 𝐽

𝑥𝑚 ∈ {0, 1}, 0 <𝑚 ≤ 𝑀.

(6)

Column Selection
Approx Solver

AP Workload

Performance Estimator

1 0 1 1 1 0 0 0 1Selected
Columns

Workload
Feature

Update<< TPS
8000

TPS
12000

Unmet
Bad Sample

Update<<

OLAP
Cost

Gaussian
Process

Sample

OLTP OLAP

Figure 5: 𝑇 2 Workflow for Static Workload Optimization

where 𝑆 𝑗 denotes the set of columns in table 𝑗 . This constraint

ensures that 𝑢 𝑗 is activated (set to 1) if any column𝑚 from table 𝑗

is selected, incurring the additional delta table cost.

The model defined in Equation 6 is an integer programming

model, which can be solved using exact methods such as branch-

and-bound. These methods, when applied via solvers like CBC [15],

are effective for small workloads (e.g., CH-benCHmark [11], Hy-

Bench [51]), often delivering exact solutions within seconds. How-

ever, as the problem’s dimensions, represented by 𝑀 and 𝐾 , grow,

the computational and memory requirements for finding exact solu-

tions can increase exponentially. In large-scale scenarios, heuristic

and approximation algorithms [26, 31, 43] are typically employed

to find near-optimal solutions within a reasonable timeframe. We

also present an approximate solver tailored to the column selection

problem in Section 3.3.2.

However, the parameter M
col

is user-defined in the current

model. Our goal is to develop a method that allows the model to

automatically determine the optimal value ofM
col

for the HTAP

system. We discuss our proposed solution below.

3.3 Bayesian Optimization for Memory
Allocation

The key of our memory allocation algorithm is to achieve the goal

defined in Section 2.2.1 by determining the values of M
col

and

Mrow within the constraint of limited memory. However, the re-

lationship between memory allocation and system performance

in OLTP and OLAP workloads is complex, with non-linear and

counterintuitive effects. This makes it difficult to optimize memory

allocation without getting stuck in local optima. Additionally, eval-

uating performance is computationally expensive due to the need

for invoking the column selector.

To address this, we adopt a Bayesian optimization framework

[16], which efficiently explores the memory allocation space by

balancing exploitation and exploration, leading to a near-optimal

solution without exhaustive evaluations. Figure 5 illustrates the

workflow of the 𝑇 2
algorithm for optimizing static workloads:

Step 1:Collect initial memory allocation samplesM
col

and evaluate

their objective function valuesU(M
col

).
Step 2: Use the initial observations to build a Gaussian Process

model as a surrogate model that approximatesU(M
col

).

3317

Step 3: Use an acquisition function, such as Expected Improvement

(EI) [23], to select the next memory allocation M′
col

for evaluation,

balancing exploration and exploitation.

Step 4: EvaluateU(M′
col

) and update the surrogate model.

Step 5: Repeat Steps 2-4 until convergence, ultimately finding the

optimalM∗
col

that minimizes the total cost of OLAPwhile satisfying

the TPS constraint.

Given that the total memory allocated for the buffer pool is

fixed, M
col

is treated as the variable, while Mrow is derived as

M
total

−M
col

. Allocating more memory does not adversely affect

the performance of either row store or column store buffers. Within

the framework of Bayesian optimization, a major challenge remains:

how to define and efficiently determine the influence ofM
col

and

Mrow on OLTP and OLAP systems in order to achieve the objective

outlined in Section 2.2.

3.3.1 Performance Estimator. Firstly, we define the objective func-
tion of U(M

col
):

U =

⎧⎪⎪⎨⎪⎪⎩
CostWap

(𝐶) + CostΔ (𝐶,K), if P(Wap,𝐶,Mrow) ≥ 𝜃,

𝜆 ·
(︃
𝜃 − P(Wap,𝐶,Mrow)

)︃
, if P(Wap,𝐶,Mrow) < 𝜃 .

Here, CostWap
(𝐶) + CostΔ (𝐶,K) represents the total OLAP cost,

including both the query execution cost and the overhead of han-

dling delta tables. The function P𝑂𝐿𝑇𝑃 (Wap,𝐶,Mrow) extends the
simplified model by incorporating additional influencing factors,

such as the concurrent OLAP workload and selected columns, to

estimate OLTP throughput more accurately.

This objective aligns with the system goal defined in Section 2.2:

to satisfy the user’s target OLTP TPS while minimizing OLAP query

cost. When resource constraints make it infeasible to fully meet the

TPS target 𝜃 , the optimization seeks to approximate it as closely as

possible. To enforce this behavior, we introduce 𝜆 as a sufficiently

large penalty coefficient, which ensures that configurations leading

to large TPS shortfalls are strongly discouraged.

As discussed in earlier sections, the cost of OLAP queries can be

estimated either by the database optimizer or through actual query

execution. The cost associated with CostΔ can be estimated using

the cost model we proposed in Section 3.2. However, estimating

the TPS for OLTP remains a challenge.

The traditional approach [46] uses logarithmic regression to

model the relationship betweenMrow and TPS. However, this is in-

sufficient in HTAP scenarios, where the execution of OLAP queries

can also significantly affect TPS. If analytical queries need to re-

trieve data from the row store, they may cause transactional queries

to experience longer wait times due to I/O requests.

To better capture such interference, we construct a richer feature

space to train our TPS prediction model. Each sample is represented

as a tuple <Mrow,Wap,𝐶>, whereMrow and𝐶 denote thememory

allocated to the row store and the columns loaded into the column

store. From Wap, we extract two feature vectors: scanseq, with
scanseq [𝑗] indicating the number of sequential scans on table 𝑗 ,

and scan
index

, with scan
index

[𝑘] indicating the number of index

scans on index 𝑘 . These features quantify the impact of OLAP

queries on OLTP performance.

We explored several regression models that are well-suited for

capturing nonlinear relationships. Experimental results (Table 6)

3

2

2
1
3

1

2

3

2

Table A Table B

Figure 6: Graph Construction for Column Combination Sim-
ilarity and Community Detection

show that tree-based models achieve significantly higher accuracy

under the same feature set, and GBT offers the best trade-off be-

tween prediction accuracy and inference efficiency. Therefore, we

adopt GBT as the TPS prediction model.

Our approach assumes a stable runtime environment, such as

a standalone deployment or a resource-isolated container, where

external resource contention is minimal.

The model P is trained using historical execution data, with

additional samples generated via simulations during idle periods,

enabling accurate predictions of TPS under the current system

state. However, during the Bayesian optimization process, we must

evaluateU(M
col

) multiple times, with each evaluation requiring

the selected column set 𝐶 , which necessitates solving Equation 6, a

process that is inherently time-consuming. Therefore, it is crucial

to find a more efficient method to obtain the selected column set.

3.3.2 Approximate Solver for Column Selection. In column selec-

tion problems, the number of columns 𝑀 and tables 𝐽 is fixed

and relatively small, while the number of subqueries, 𝐾 , can be

large. Consequently, assigning a decision variable to each column

combination 𝐺𝑙 rapidly increases problem size, as each introduces

an additional constraint, complicating computational complexity.

Therefore, it is essential to reduce the dimensionality of 𝐾 .

Observations of column selection solutions indicate that similar

column combinations are often selected concurrently. This insight

allows for a reduction in the solution space by grouping similar col-

umn combinations before their input into the solver. As illustrated

in Figure 6, we construct a graph to encapsulate the similarity be-

tween column combinations. The vertex set𝑉 consists of all unique

column combinations, where each vertex 𝑣𝑙 ∈ 𝑉 represents a col-

umn combination𝐺𝑙 . The similarity between 𝑣𝑙 and 𝑣𝑙 ′ is quantified

by the number of shared columns |𝐺𝑙 ∩𝐺𝑙 ′ |. Vertices are intercon-
nected if the similarity is positive, with edges weighted by this

similarity. Given that column combinations from different tables

do not share columns, vertices from different tables are not linked.

To simplify the dimensionality of 𝐾 , we group similar column

combinations to form a union, representing all grouped column

combinations. Spectral clustering [47] is applied to determine the

community partitions of the graph, identifying 𝐾 ′
communities.

In the figure, vertex colors differentiate the communities. From

another perspective, this approach groups similar subqueries into

the same community. Consequently, in the optimization problem,

a single decision variable per community suffices to determine

whether all queries within that community will perform a column

scan, effectively reducing the dimension of 𝐾 to 𝐾 ′
.

By limiting the number of communities 𝐾 ′
, we can control the

problem size within a certain range, thereby keeping the solving

3318

Time

Merge

Figure 7: Illustration of Time Interval Merging
time within limits. Additionally, during the Bayesian optimization

process, since the column selection approx solver needs to be called

repeatedly, we can pre-determine the community partitions. This

way, the community detection algorithm only needs to be invoked

once during the entire Bayesian optimization process, further re-

ducing the solver overhead.

4 𝑇 2 FOR DYNAMICWORKLOADS
4.1 Approach Overview
Real-world application workloads fluctuate over time, rendering

static models ineffective as they may provide outdated results.

While one solution is to periodically invoke the static model, this

approach is both passive and inefficient.

In this section, we present our solution for managing dynamic

workloads. To address these varying demands, we employ an ad-

vanced time series prediction model, PatchTST [32], to forecast

future workloads. For OLTP queries, we predict the total num-

ber of requests, without distinguishing between individual queries.

However, for OLAP queries, we forecast the request rates for each

query template 𝑄𝑠 , as the performance characteristics of different

templates can vary significantly. Let 𝑅
(𝑄𝑠)
ℎ

denote the request rate

for template 𝑄𝑠 at time interval ℎ. The model input consists of a

historical sequence spanning the past ℎ time intervals.

Rh = {𝑅 (𝑄𝑠)
1

, 𝑅
(𝑄𝑠)
2

, . . . , 𝑅
(𝑄𝑠)
ℎ

}𝐿𝑠=1

where 𝐿 denotes the total number of query templates. Our goal is to

predict the query request rates for the upcoming time periods ℎ +𝛾 :
𝑅̂
(𝑄𝑠)
ℎ+1

, 𝑅̂
(𝑄𝑠)
ℎ+2

, . . . , 𝑅̂
(𝑄𝑠)
ℎ+𝛾 , 0 < 𝑠 ≤ 𝐿. PatchTST enables simultaneous

forecasting of multiple time series for {𝑄1, ..., 𝑄𝐿}, allowing us to
leverage the relationships between different query templates, which

improves the accuracy of predictions for all OLAP query templates.

With the predictions, we can obtain all necessary parameters for

Equation 6, including query frequencies 𝑓 , UID operation rates 𝑏,

and delta table read rates 𝑣 . A straightforward approach is to invoke

the static model at the start of each new timewindow to perform the

necessary adjustments. However, this basic solution overlooks the

I/O overheads introduced by these adjustments, which can result

in suboptimal performance.

We illustrate this issue in Figure 7. Each rectangle represents a

time interval, with its height indicating the value of M
col

(the size

of the memory buffer for the column store), which fluctuates as

OLTP requests change over time. In each time window, 𝑇 2
selects

the optimal columns for the predicted OLAP workloads using the

static model. However, this can lead to suboptimal results when

considering multiple time intervals.

For example, if column 𝐶𝑚 is selected by our model at time

𝑡𝑖 , then discarded and replaced by another column 𝐶𝑚¯ at time

𝑡𝑖+1, the I/O costs of discarding and loading 𝐶𝑚 and 𝐶𝑚¯ introduce

unnecessary overhead. Worse, if at time 𝑡𝑖+2, column 𝐶𝑚 is again

deemed beneficial to keep in the column store, we end up in an

inefficient cycle of repeatedly loading and discarding column 𝐶𝑚 .

One possible solution is to merge multiple time intervals and

optimize for the entire period. We propose a dynamic reallocation

trigger algorithm to adaptively merge time intervals. This algorithm

adapts memory allocation more efficiently by continuously moni-

toring workload changes and reallocating memory resources only

when significant shifts are detected, minimizing both I/O overhead

and the risk of suboptimal memory usage.

4.2 Dynamic Reallocation Trigger Algorithm
The dynamic problem can be reduced to the multi-period knapsack

problem [14], which is known to be strongly NP-hard. Due to space

limitations, we omit the formal proof. Furthermore, this problem

becomes even more complex because each time the re-optimization

process is applied, there is a switching cost, the cost incurred by

loading columns that were not present in the previous interval,

denoted as Cost
switch

:

Cost
𝑡𝑖
switch

=
∑︂

𝑇𝑗 ∈𝑇𝑎𝑏𝑙𝑒𝑠 (Δ𝐶𝑡𝑖)
Costrow (𝑇𝑗)

where Δ𝐶𝑡𝑖 = 𝐶𝑡𝑖 \ 𝐶𝑡𝑖−1
represent the set of columns present in

interval 𝑡𝑖 but not in interval 𝑡𝑖−1, and 𝑇𝑎𝑏𝑙𝑒𝑠 (Δ𝐶𝑡𝑖) be a function
that returns a set of unique tables containing columns in Δ𝐶𝑡𝑖 .
Costrow (𝑇𝑗) denotes the cost for performing full table scan on table

𝑇𝑗 from row store, which is the main cost for loading columns of

table 𝑇𝑗 . The challenge is to determine when it is worth incurring

the switching cost to reorganize. This decision is encapsulated by

the function F(𝑡𝑖) introduced in Equation 2.

To address this challenge, we extend the heuristic algorithm from

[49] and propose a greedy algorithm that incrementally merges

adjacent intervals based on potential cost savings. The key idea

is to gradually merge intervals to identify local optimal solutions,

continuing this process until intervals with significantly different

query patterns are encountered.

We define the function S(𝑡𝑖) to calculate the total cost of OLAP

and the switch cost during the time period 𝑡𝑖 (or across a group of

time intervals):

S(𝑡𝑖) = U(M𝑡𝑖
col

) + Cost
𝑡𝑖
switch

Algorithm 1 presents our pseudocode. The variable 𝜙 denotes

groups of time intervals. Initially, each interval is its own group.

We evaluate potential savings by merging adjacent intervals. As

depicted in Figure 7, we group interval 𝑡𝑖 with 𝑡𝑖+1, calculate the

new cost S(𝑡𝑖 ∪ 𝑡𝑖+1), and compare it to the cost when the intervals

are separate. This difference is considered as a cost saving. If merg-

ing the intervals results in positive savings, the pair is added to a

max-heap as a candidate for merging, as executed in the function

CalculateAndPushSavings(𝜙, 𝑖, 𝐻).
The algorithm iteratively merges the pair of intervals with the

highest potential savings, updates the group list, recalculates sav-

ings for adjacent intervals, and adjusts the heap accordingly. This

process continues until no further profitable merges are possible, at

which point the final set of merged intervals is returned. The output

𝜙 represents the grouped time intervals. Since the boundaries of

these groups dictate when memory reorganizations should occur,

3319

Benchmark SF Size 𝐽 𝑀 #AP #Gen

HyBench 100x 129G 8 68 13 1000

CH-benCHmark 500x 57G 12 108 22 1000

Table 1: Benchmark Specifications, detailing scale factor (SF),
total size, number of tables (𝐽), columns (𝑀), analytical query
templates (#AP) and generated queries (#Gen).

we use the function F(𝑡𝑖) from Equation 2 to determine whether a

reorganization is necessary at the start of each interval 𝑡𝑖 .

Each invocation of CalculateAndPushSavings(𝜙, 𝑖, 𝐻) triggers
the static algorithm described in Section 3 to compute U(M𝑡𝑖

col
).

The resulting memory allocation forM
col

andMrow, along with

the selected column set𝐶 for interval 𝑡𝑖 , can then be cached. When

triggers reorganizations, we can retrieve solution from the cache.

Then these changes can be applied to the database using the relevant

tuning tools provided by the database.

In this way, 𝑇 2
offers an approximate solution to Equation 2

for dynamic workloads, optimizing memory allocation between

OLTP and OLAP tasks. Although this approach may not always

yield a globally optimal solution due to the complexity of dynamic

workloads, it still outperforms static optimization.

Algorithm 1 Greedy Merge Intervals with Max-Heap

1: Initialize interval groups 𝜙 = [[1], [2], . . . , [𝑛]]
2: Initialize an empty max-heap 𝐻 , to store merge savings

3: procedure CalculateAndPushSavings(𝜙 , 𝑖 , 𝐻)
4: 𝑠𝑎𝑣𝑖𝑛𝑔 = S(𝜙 [𝑖]) + S(𝜙 [𝑖 + 1]) − S(𝜙 [𝑖] ∪ 𝜙 [𝑖 + 1])
5: if 𝑠𝑎𝑣𝑖𝑛𝑔 > 0 then
6: Push (𝑠𝑎𝑣𝑖𝑛𝑔, 𝑖, 𝑖 + 1) into 𝐻
7: end ifreturn 𝐻
8: end procedure
9: for 𝑖 = 1 to 𝑛 − 1 do
10: 𝐻 = CalculateAndPushSavings(𝜙, 𝑖, 𝐻)
11: end for
12: while not 𝐻 .isEmpty() do
13: (𝑠𝑎𝑣𝑖𝑛𝑔, 𝑖, 𝑗) = 𝐻 .popMax()

14: Merge groups: 𝜙 [𝑖] = 𝜙 [𝑖] ∪ 𝜙 [𝑗]
15: Remove 𝜙 [𝑗] from the list 𝜙

16: for 𝑗 ∈ {𝑖 − 1, 𝑖 + 1} and 1 ≤ 𝑗 ≤ 𝑛 do
17: 𝐻 = CalculateAndPushSavings(𝜙, 𝑗, 𝐻)
18: end for
19: end while
20: return 𝜙

5 EXPERIMENT
In this section, we evaluate the performance of 𝑇 2

, built on the

GaussDB-HTAP. Our experiments underscore the importance of

integrating a memory management algorithm to optimize perfor-

mance in HTAP systems. We first assess the overall performance

of 𝑇 2
through a one-day workload simulation. Following this, we

conduct a detailed analysis of the effectiveness of its key modules:

performance estimator, dynamic algorithm, column selection and

memory allocation.

5.1 Experimental Setup
5.1.1 Configurations. The experiments were conducted on a server

equipped with an Intel(R) Xeon(R) Gold 6161 CPU operating at

2.20GHz, 503GB memory, 7.3T SSD. We integrated our tool into

centralized GaussDB-HTAP, running on EulerOS.

5.1.2 Benchmark. We construct our benchmarks by combining

real-world query arrival rate patterns with synthetic workloads.

Specifically, we extract OLTP and OLAP query rates from real

anonymized database logs. Due to privacy concerns, we cannot use

the actual queries or data directly. Instead, we simulate realistic

hybrid workloads by issuing synthetic queries according to the

real-world arrival rate distributions.

Table 1 summarizes the two synthetic benchmarks used: Hy-

Bench [51] and CH-benCHmark [11]. HyBench emulates banking

workloads in HTAP settings and includes 18 transactions and 13

analytical queries. We use a scale factor of 100x and focus on the

transactional and analytical components. CH-benCHmark com-

bines the transactional workload of TPC-C with analytical queries

adapted from TPC-H. We use a scale factor of 500x.

To evaluate the effectiveness of 𝑇 2
, we not only used work-

loads generated by standard benchmarks but also incorporated

synthetic queries to simulate fluctuating query patterns over time.

We adopted a typical aggregation query template:

select agg_func(t.a), t.b, ..., from t where t.c > $1 group by t.b;

Here, the tables and columns are randomly selected from the bench-

mark schemas. We generate 1,000 such queries for each benchmark,

resulting in CH-benCHmark-Gen and HyBench-Gen workloads.

During the experiments, transactional queries are issued at a

fixed Requests Per Second (RPS), following patterns derived from

the real workload. For example, when the RPS was set to 5,000,

the system dynamically adjusted the sleep intervals between query

dispatches to maintain a steady rate of 5,000 queries per second.

Similarly, the timing and volume of analytical queries also follow

the real-world OLAP query rate curve.

5.1.3 Metric. To assess the system’s ability to handle OLTP de-

mands under varying load conditions, we introduce the Fulfill-
ment Ratio (FR) metric. FR quantifies how effectively the system

satisfies incoming query requests and is defined as:

𝐹𝑅 = 𝑇𝑃𝑆/𝑅𝑃𝑆
where TPS is the number of transactional queries completed per

second, and RPS is the incoming transactional demand. FR reflects

system performance: FR = 1 means full demand is met, while FR <

1 indicates the system cannot handle all incoming requests.

For OLAP workloads, we define the metric Impr to quantify the

improvement in analytical query execution time, comparing the

performance of the HTAP-enabled system (GaussDB-HTAP) with

the original system (GaussDB), which lacks HTAP capabilities:

𝐼𝑚𝑝𝑟 = (𝑇𝐺𝑎𝑢𝑠𝑠𝐷𝐵 −𝑇𝐺𝑎𝑢𝑠𝑠𝐷𝐵−𝐻𝑇𝐴𝑃)/𝑇𝐺𝑎𝑢𝑠𝑠𝐷𝐵 × 100%

The original GaussDB uses only row-format storage with a single

row store buffer and does not support column store or column se-

lection/eviction. In contrast, GaussDB-HTAP introduces a separate

column store buffer alongside the row store buffer, enabling manual

column loading and efficient OLAP execution.

5.1.4 Comparison Approaches. As no prior work fully manages

memory contents, we evaluate several column selection and mem-

ory allocation methods. For column selection, we consider:

3320

HyBench(M
total

= 80𝐺)

Method

Static-7:1 Static-1:1 Static-1:7 STMM 𝑇 2
-static 𝑇 2

-dynamic

FR Impr FR Impr FR Impr FR Impr FR Impr FR Impr

HAMCS 1.00 13.56% 1.00 22.20% 0.912 23.11% 1.00 27.95% 1.00 28.06% 1.00 35.88%

IPNC 1.00 15.74% 1.00 32.12% 0.936 39.41% 1.00 34.98% 1.00 36.45% 1.00 48.70%

GACC 1.00 12.03% 1.00 40.62% 0.940 44.29% 1.00 39.38% 1.00 42.49% 1.00 50.28%

𝑇 2
-CS-Approx 1.00 16.39% 1.00 49.33% 0.953 60.03% 1.00 46.97% 1.00 49.92% 1.00 65.90%

𝑇 2
-CS 1.00 18.13% 1.00 51.36% 0.956 60.69% 1.00 51.17% 1.00 54.44% 1.00 67.07%

CH-benCHmark(M
total

= 30𝐺)

Method

Static-7:1 Static-1:1 Static-1:7 STMM 𝑇 2
-static 𝑇 2

-dynamic

FR Impr FR Impr FR Impr FR Impr FR Impr FR Impr

HAMCS 1.00 15.38% 1.00 23.72% 0.872 34.62% 1.00 25.39% 1.00 27.42% 1.00 48.08%

IPNC 1.00 5.77% 1.00 33.97% 0.865 52.56% 1.00 34.84% 1.00 35.52% 1.00 47.44%

GACC 1.00 18.59% 1.00 33.33% 0.841 54.49% 1.00 35.27% 1.00 37.24% 1.00 44.62%

𝑇 2
-CS-Approx 1.00 20.14% 1.00 36.84% 0.887 62.93% 1.00 37.21% 1.00 41.78% 1.00 71.29%

𝑇 2
-CS 1.00 22.35% 1.00 39.26% 0.891 63.75% 1.00 38.25% 1.00 45.24% 1.00 74.36%

Table 2: Overall Performance Evaluation of Combined Memory Allocation and Column Selection Methods

Figure 8: Performance of OLTP and OLAPWorkloads During a One-Day Simulation (HyBenchMtotal = 80G)

1) HAMCS. Heatmap Automated Memory Column Selection,

used in commercial HTAP systems like Oracle DUAL [33] and

SQL Server [29], dynamically adjusts in-memory columns based

on access frequency, retaining hot columns and evicting cold ones.

2) IPNC. The Integer Programming without Correlation (IPNC)

method [3] transforms the column selection problem into a 0/1

knapsack problem. It based on the assumption of independence and

does not account for correlations between multiple columns.

3) GACC. We develop the Greedy Algorithm for Column Com-

binations (GACC), a heuristic that selects columns with the highest

benefit-to-memory ratio under memory constraints (see technical

report for pseudocode).

4) 𝑇 2-CS. This algorithm, detailed in Section 3.1, utilizes CBC

[15] to solve the optimization model.𝑇 2-CS-Approx. is the approx-
imation version of 𝑇 2

proposed in Section 3.3.2.

For memory allocation, we examine the following methods:

1) Static-Mrow:Mcol. This approach employs a fixed memory

allocation. In our experiments, we evaluate allocation ratios of 7:1,

1:1, and 1:7 for the memory of row and column store buffers.

2) STMM. The Self-Tuning Memory Manager (STMM) [42] used

in IBM DB2 [36], adaptively optimizes memory usage across DBMS

caches. While it does not target columnar caches, we adapt its

principles to enable dynamic memory allocation between row and

column buffers. To our knowledge, no existing method addresses

this specific objective.

3) 𝑇 2-static. This approach indicates the memory allocation

described in Section 3.3, where Bayesian optimization is used to

determine the optimal values forMrow andM
col

.

4)𝑇 2-dynamic. This approach refers to the dynamic memory al-

location method outlined in Section 4, which allows for the dynamic

adjustment of both memory allocation and selected columns.

GaussDB-HTAP offers tuning tools to adjust memory for row

and column buffers, load and discard columns, and trigger data

synchronization. We implemented these comparative methods and

used the tuning tools to interact with GaussDB-HTAP.

5.2 Overall Performance
In this experiment, we simulated a day-long hybrid workload sce-

nario, dividing the day into 60 intervals, each representing a real-

time duration of 24 minutes, to evaluate the effectiveness of our

proposed approach. We extracted realistic hybrid workload pat-

terns, such as RPS for OLTP and OLAP query request rates, from

GaussDB logs, and performed data anonymization before conduct-

ing the experiment to ensure privacy protection. Both OLTP and

OLAP workloads exhibit tidal-like patterns, with fluctuations be-

tween day and night, which allowed us to adjust memory allocation

between the two components accordingly.

For the OLTP tests in HyBench and CH-benCHmark, we used

the original benchmark queries. The OLAP queries were generated

from query templates, consisting of both the original benchmark

templates and our synthetic templates, with a 22:78 ratio for CH-

benCHmark and 13:87 for HyBench. Random queries were uni-

formly generated from these templates and continuously fed to the

database for processing.

3321

Metric GaussDB Static-7:1 Static-4:4 Static-1:7 STMM 𝑇 2

Mrow (G) 80.00 70.00 40.00 10.00 40.07 22.73

M
col

(G) 0.00 10.00 40.00 70.00 39.93 57.27

Hit Ratio (%) 98.22 98.32 97.68 91.38 97.67 95.33

I/O Impr (%) 0.00 14.20 35.22 77.35 35.34 72.97

Table 3: Memory Footprint of experiments on HyBench

M
total

5G 15G 30G 60G

STMM

M
col

2.55 7.53 15.01 29.95

FR 0.59 0.70 0.98 1.00

Impr 15.98% 20.08% 18.18% 36.78%

𝑇 2
-static

M
col

0.02 0.11 9.12 32.06

FR 0.85 0.93 1.00 1.00

Impr 1.13% 1.64% 16.49% 39.33%

𝑇 2
-dynamic

FR 0.86 0.95 1.00 1.00

Impr 7.78% 11.89% 22.54% 53.69%

Table 4: Evaluation with VaryingMtotal(HyBench)

Table 2 presents the results of a day-long simulation, combining

various memory allocation methods with different column selec-

tion strategies. The horizontal axis represents memory allocation

techniques, and the vertical axis lists column selection methods.

For both 𝑇 2
-static and 𝑇 2

-dynamic, when combined with different

column selection methods, the column selection algorithm replaces

the column selection solver in the Bayesian optimization process.

Once the memory allocation is determined, the selected column

method is also used to choose the columns. The table records the FR

and Impr metrics to evaluate performance for both OLTP and OLAP

workloads. The results show that all approaches achieve improve-

ments over the original GaussDB, as indicated by the positive Impr

values. However, when the memory allocation ratio is set to 1:7, the

methods fail to meet the OLTP SLA (with 𝐹𝑅 < 1), highlighting the

importance of choosing appropriate memory allocation strategies

to ensure OLTP requirements are met. By comparing different mem-

ory allocation methods with the same column selection strategy,

the 𝑇 2
-static method outperforms all other static approaches, and

𝑇 2
-dynamic further amplifies the advantages of the𝑇 2

approach in

both the HyBench and CH-benCHmark scenarios. In the column

selection method comparison, the optimal version, 𝑇 2
-CS, and its

approximate version,𝑇 2
-CS-Approx, outperform all other methods.

Table 3 presents the memory allocation and key performance

metrics on HyBench. Both STMM and 𝑇 2
support fine-grained

memory control, which is critical. Because small differences in

column-store allocation can determine column loading feasibility

and affect many queries. The table also includes cache hit rates

and I/O improvement metrics, which reflect OLAP query I/O sav-

ings. As expected, the hit ratio correlates with Mrow, while the

improvement in I/O increases withM
col

.

Figure 8 illustrates the behavior of OLTP and OLAP workloads

during the experiment. The bars represent TPS, while the line graph

shows the total query latency for OLAP queries in each interval.

Different background colors distinguish between the nighttime and

daytime workloads. Notably, by dynamically adjusting the memory

configuration, we can significantly accelerate OLAP workloads

during the night, when there are fewer OLTP requests, allowing

more memory to be allocated to the column store. During the day,

most of the memory is allocated to the OLTP module, and while the

Workload HAMCS IPNC GACC 𝑇 2
-CS-Approx 𝑇 2

-CS

HyBench 102.35 155.75 103.21 168.4 230.18

CH-benCHmark 81.13 137.36 104.68 143.15 193.82

Table 5: Execution Time (s) Comparison of DifferentMethods
with 𝑇 2-dynamic Memory Allocation Strategy

Model Log Reg. RF SVR MLP GBT
Training(ms) 47.67 674.64 13.31 1223.75 245.13

Inference(ms) 0.01 0.27 0.10 0.04 0.04

MAE(TPS) 1276.87 563.04 1889.10 2008.90 556.16
MARE 13.72% 5.34% 23.38% 19.33% 5.23%

Table 6: Comparing Algorithms for TPS Prediction

dynamic strategy still outperforms the static approach, the margin

of improvement is smaller.

We evaluate the performance of 𝑇 2
under reduced M

total
, as

shown in Table 4. When memory is tight, the model prioritizes

OLTP throughput, allocating most memory to the row store and

maintaining high FR. Compared to STMM,𝑇 2
achieves higher FR in

low-memory settings, demonstrating its OLTP-aware optimization.

Table 5 presents the running times of different column selection

methods combined with 𝑇 2
-dynamic. While 𝑇 2

-CS-Approx and

𝑇 2
-CS are not the most efficient methods, they are still sufficiently

fast for practical use, as the algorithm can determine memory man-

agement actions for the upcoming 24 hours.

5.3 Evaluation of Different Components
5.3.1 Effect of Performance Estimator. We compare GBT [17] with

several regression models, including Logarithmic Regression [46],

Random Forest (RF) [4], Support Vector Regression (SVR) [13], and

Multi-layer Perceptron (MLP) [37]. All models are trained on the

same dataset with identical features. The evaluation metrics are

Mean Absolute Error (MAE) and Mean Absolute Relative Error

(MARE). As shown in Table 6, tree-based models (RF and GBT)

outperform others in accuracy. GBT achieves the lowest MAE and

MARE, along with fast training and inference time, making it suit-

able for real-time use. This evaluation is conducted under a stable

runtime environment, as assumed by our system design. We refer

readers to our technical report for detailed robustness experiments

under disturbed conditions.

5.3.2 Effect of Dynamic Algorithm. In this experiment, we validate

the importance of Algorithm 1. As shown in Figure 9, we compare

our dynamic reallocation approach with the static approach, as

well as with approaches that trigger reallocation every 1, 6, and 12

intervals (each representing 24 minutes). Following the experiment

setting in Section 5.2, we test the average query processing time

and column loading time for each interval. The percentages in the

figure represent the percentage reduction in total time relative to

the static algorithm. Static or infrequently updated methods reduce

I/O for column loading but can’t adapt to changing query patterns,

leading to suboptimal OLAP performance. Conversely, frequent ad-

justments incur high I/O overhead. Our dynamic approach balances

these extremes, optimizing both performance and I/O costs.

5.3.3 Effect of Column Selection. In this experiment, we evaluate

the performance of our proposed column selection algorithm. As

3322

Figure 9: Effect of Reallocation Trigger Algorithm

Method

Hybench CH-benCHmark

Max loss Max Time Max loss Max Time

HAMCS -41.29% 0.003s -25.99% 0.00s

IPNC -8.42% 0.08s -19.49% 0.17s

GACC -7.62% 18.17s -7.17% 8.69s

𝑇 2
-CS-Approx -2.55% 10.10s -3.49% 9.06s

𝑇 2
-CS - 45.58s - 65.93s

Table 7: Degradation and Execution Time Analysis of Differ-
ent Column Selection Algorithms

shown in Table 7, since 𝑇 2
provides the optimal solution, we use it

as the baseline for comparison. "Max loss" denotes the largest reduc-

tion in time savings relative to the optimal method 𝑇 2
, measured

as a percentage of the query time on row store. "Max time" indi-

cates the maximum execution time under different memory sizes

for M
col

. Although some competing methods occasionally achieve

performance similar to that of𝑇 2
, they are prone to getting trapped

in local optima, leading to a higher max loss. To ensure a more

controllable execution time for solving the integer programming

formulation in our column selection, we propose 𝑇 2
-CS-Approx.

As the results show, 𝑇 2
-CS-Approx delivers the least performance

degradation while maintaining a controlled execution time.

5.3.4 Effect of Memory Competition. To evaluate the impact of

memory competition between row and column buffers, we com-

pared 𝑇 2
with fixed memory allocation ratios under varying RPS

loads of 9,000 and 13,000. The tested ratios were 1 : 7, 3 : 5, 5 : 3, and

7 : 1, representing different memory distributions between the row

and column buffers. The total memory available was set to 40GB

and 80GB. Performance was measured by the average execution

time of OLAP workloads and the Fulfillment Ratio (FR), with OLAP

queries as described in Section 5.2. As shown in Figure 10, when

RPS reaches 9,000 or 13,000 and Mrow is insufficient, the FR drops

below 1, potentially violating SLA requirements. Under these high-

load conditions, 𝑇 2
optimally adjusts memory allocation ratios to

meet OLTP requirements while minimizing OLAP execution times,

for both M
total

= 40GB and 80GB.

Figure 10: Comparative Analysis of 𝑇 2 Versus Fixed Ratio
Memory Allocation (HyBench)

6 RELATEDWORK
HTAP Architectures. HTAP systems can be categorized based

on their storage architectures [41]. Row-native systems, such as

SQL Server, Oracle, and PolarDB-IMCI [27, 29, 48], primarily store

data in a row format, supplemented by a secondary in-memory

column store. Column-native systems, like SAP HANA and Mem-

SQL [10, 40], store data in columns with in-memory delta stores

for updates. Row-native architectures, including GaussDB-HTAP,

prioritize OLTP workloads but face challenges related to column

selection and memory allocation when adapting to OLAP queries.

This paper emphasizes the need for adaptive memory management

in such systems to improve OLAP handling and overall perfor-

mance. Although different HTAP systems have design differences,

𝑇 2
can be ported across them with minor modifications.

Column Selection and Index Recommendation. Systems

like SQL Server, Oracle, and PolarDB-IMCI [27, 29, 48] construct

in-memory column stores for HTAP applications. Oracle Dual [33]

dynamically manages columnar data based on access frequency,

keeping frequently accessed columns and evicting less-used ones.

Approaches like [3] treat column selection as a knapsack problem,

but neglect the interdependencies between columns. Similarly, re-

search on index recommendation shares common ground with our

scenario. Some studies frame the problem as a knapsack problem

[7, 12], but unlike column selection, it lacks the ’all-or-none’ feature.

Learning-based methods [25, 28, 34, 50] are often costly to train

and challenging to transfer across different datasets.

Automatic Database Tuning. Automatic database tuning has

been extensively studied in previous works, such as tuning systems

[2, 6, 45], index advisor [8, 24, 38], and automatic view advisor

[1, 5, 20]. However, there is no previous work on HTAP system

tuning, particularly with regard to memory allocation between

columnar and row-based storage. Our work fills this critical gap by

introducing the first automated tool for optimizing HTAP systems.

7 CONCLUSION
In this paper, we introduce𝑇 2

, an adaptivememorymanagement ap-

proach that better aligns with user-side requirements in HTAP sys-

tems, prioritizing OLTP queries while optimizing OLAP queries.𝑇 2

adjusts memory allocation between OLTP and OLAP to efficiently

balance two workloads, featuring a column selection strategy and a

data synchronization module. The column selection strategy identi-

fies the most valuable columns for OLAP queries to be maintained

in the in-memory column store, while the synchronization module

optimizes the timing for merging updated data from the OLTP sys-

tem with the in-memory column store. By dynamically allocating

memory, optimizing column selection, and synchronizing data, 𝑇 2

ensures OLTP SLA compliance while enhancing OLAP performance.

Our experiments show that 𝑇 2
outperforms both traditional OLTP

systems and static memory allocation methods, demonstrating its

effectiveness in real-world HTAP scenarios.

ACKNOWLEDGMENTS
This work has been supported by Zhejiang Province "Jianbing"

Key R&D Project of China (No.2025C01010), CCF-Huawei Populus

Grove Fund (No.CCF-HuaweiDB2022007).

3323

REFERENCES
[1] Rafi Ahmed, Randall G. Bello, Andrew Witkowski, and Praveen Kumar. 2020.

Automated Generation of Materialized Views in Oracle. Proc. VLDB Endow. 13,
12 (2020), 3046–3058. https://doi.org/10.14778/3415478.3415533

[2] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.

Automatic Database Management System Tuning Through Large-scale Machine

Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih

Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM,

1009–1024. https://doi.org/10.1145/3035918.3064029

[3] Martin Boissier, Rainer Schlosser, and Matthias Uflacker. 2018. Hybrid Data

Layouts for Tiered HTAP Databases with Pareto-Optimal Data Placements. In

34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France,
April 16-19, 2018. IEEE Computer Society, 209–220. https://doi.org/10.1109/ICDE.

2018.00028

[4] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (2001), 5–32. https:

//doi.org/10.1023/A:1010933404324

[5] Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, and Val Tannen. 2023.

DBSP: Automatic Incremental ViewMaintenance for Rich Query Languages. Proc.
VLDB Endow. 16, 7 (2023), 1601–1614. https://doi.org/10.14778/3587136.3587137

[6] Baoqing Cai, Yu Liu, Ce Zhang, Guangyu Zhang, Ke Zhou, Li Liu, Chunhua

Li, Bin Cheng, Jie Yang, and Jiashu Xing. 2022. HUNTER: An Online Cloud

Database Hybrid Tuning System for Personalized Requirements. In SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA, USA, June
12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM,

646–659. https://doi.org/10.1145/3514221.3517882

[7] Alberto Caprara, Matteo Fischetti, and Dario Maio. 1995. Exact and Approximate

Algorithms for the Index Selection Problem in Physical Database Design. IEEE
Trans. Knowl. Data Eng. 7, 6 (1995), 955–967. https://doi.org/10.1109/69.476501

[8] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index

Selection Tool for Microsoft SQL Server. In VLDB’97, Proceedings of 23rd Interna-
tional Conference on Very Large Data Bases, August 25-29, 1997, Athens, Greece,
Matthias Jarke, Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky, Peri-

cles Loucopoulos, and Manfred A. Jeusfeld (Eds.). Morgan Kaufmann, 146–155.

http://www.vldb.org/conf/1997/P146.PDF

[9] Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang, Mingyi Zhang, Kui

Wei, Lixun Cao, Dan Zou, Yang Liu, Lei Zhang, Rui Shi, Wei Ding, Kai Wu,

Shangyu Luo, Jason Sun, and Yuming Liang. 2022. ByteHTAP: ByteDance’s

HTAP System with High Data Freshness and Strong Data Consistency. Proc.
VLDB Endow. 15, 12 (2022), 3411–3424. https://doi.org/10.14778/3554821.3554832

[10] Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, and

Michael Andrews. 2016. The MemSQL Query Optimizer: A modern optimizer

for real-time analytics in a distributed database. Proc. VLDB Endow. 9, 13 (2016),
1401–1412. https://doi.org/10.14778/3007263.3007277

[11] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan

Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel Poess,

Kai-Uwe Sattler, Michael Seibold, Eric Simon, and Florian Waas. 2011. The

mixed workload CH-benCHmark. In Proceedings of the Fourth International
Workshop on Testing Database Systems (Athens, Greece) (DBTest ’11). Association
for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.

org/10.1145/1988842.1988850

[12] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. 2011. CoPhy: A

Scalable, Portable, and Interactive Index Advisor for Large Workloads. Proc.
VLDB Endow. 4, 6 (2011), 362–372. https://doi.org/10.14778/1978665.1978668

[13] Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alexander J. Smola,

and Vladimir Vapnik. 1996. Support Vector Regression Machines. In Advances in
Neural Information Processing Systems 9, NIPS, Denver, CO, USA, December 2-5,
1996, Michael Mozer, Michael I. Jordan, and Thomas Petsche (Eds.). MIT Press,

155–161. http://papers.nips.cc/paper/1238-support-vector-regression-machines

[14] Bruce H. Faaland. 1981. Technical Note - The Multiperiod Knapsack Problem.

Oper. Res. 29, 3 (1981), 612–616. https://doi.org/10.1287/OPRE.29.3.612

[15] J. Forrest and the CBC team. [n. d.]. CBC (COIN-OR Branch-and-Cut). https:

//doi.org/10.5281/zenodo.1334726

[16] Peter I. Frazier. 2018. A Tutorial on Bayesian Optimization. CoRR abs/1807.02811

(2018). arXiv:1807.02811 http://arxiv.org/abs/1807.02811

[17] Jerome H. Friedman. 2001. Greedy function approximation: A gradient boosting

machine. The Annals of Statistics 29, 5 (2001), 1189 – 1232. https://doi.org/10.

1214/aos/1013203451

[18] Jay B. Ghosh. 1996. Computational aspects of the maximum diversity problem.

Oper. Res. Lett. 19, 4 (1996), 175–181. https://doi.org/10.1016/0167-6377(96)00025-
9

[19] Fred W. Glover and Eugene Woolsey. 1974. Technical Note - Converting the

0-1 Polynomial Programming Problem to a 0-1 Linear Program. Oper. Res. 22, 1
(1974), 180–182. https://doi.org/10.1287/OPRE.22.1.180

[20] Yue Han, Guoliang Li, Haitao Yuan, and Ji Sun. 2023. AutoView: An Autonomous

Materialized View Management System With Encoder-Reducer. IEEE Trans.
Knowl. Data Eng. 35, 6 (2023), 5626–5639. https://doi.org/10.1109/TKDE.2022.

3163195

[21] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu

Tang, Yuxing Zhou, Menglong Huang, WanWei, Cong Liu, Jian Zhang, Jianjun Li,

XuelianWu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron,

Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-based HTAP Database. Proc. VLDB
Endow. 13, 12 (2020), 3072–3084. https://doi.org/10.14778/3415478.3415535

[22] Huawei. 2024. GaussDB: Next-Generation Distributed Database. https://www.

huaweicloud.com/intl/en-us/product/gaussdb.html Accessed: June 16, 2024.

[23] Donald R. Jones, Matthias Schonlau, and William J. Welch. 1998. Efficient Global

Optimization of Expensive Black-Box Functions. J. Glob. Optim. 13, 4 (1998),

455–492. https://doi.org/10.1023/A:1008306431147

[24] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic

mirror in my hand, which is the best in the land? An Experimental Evaluation

of Index Selection Algorithms. Proc. VLDB Endow. 13, 11 (2020), 2382–2395.

http://www.vldb.org/pvldb/vol13/p2382-kossmann.pdf

[25] Jan Kossmann, Alexander Kastius, and Rainer Schlosser. 2022. SWIRL: Selection

of Workload-aware Indexes using Reinforcement Learning. In Proceedings of
the 25th International Conference on Extending Database Technology, EDBT 2022,
Edinburgh, UK, March 29 - April 1, 2022, Julia Stoyanovich, Jens Teubner, Paolo
Guagliardo, Milos Nikolic, Andreas Pieris, Jan Mühlig, Fatma Özcan, Sebastian

Schelter, H. V. Jagadish, and Meihui Zhang (Eds.). OpenProceedings.org, 2:155–

2:168. https://doi.org/10.48786/EDBT.2022.06

[26] Sebon Ku and Bogju Lee. 2001. A set-oriented genetic algorithm and the knapsack

problem. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE
Cat. No.01TH8546), Vol. 1. 650–654 vol. 1. https://doi.org/10.1109/CEC.2001.

934453

[27] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,

Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, Juan

Loaiza, Neil MacNaughton, Vineet Marwah, Niloy Mukherjee, Atrayee Mullick,

Sujatha Muthulingam, Vivekanandhan Raja, Marty Roth, Ekrem Soylemez, and

Mohamed Zaït. 2015. Oracle Database In-Memory: A dual format in-memory

database. In 31st IEEE International Conference on Data Engineering, ICDE 2015,
Seoul, South Korea, April 13-17, 2015, Johannes Gehrke, Wolfgang Lehner, Kyuseok

Shim, Sang Kyun Cha, and Guy M. Lohman (Eds.). IEEE Computer Society, 1253–

1258. https://doi.org/10.1109/ICDE.2015.7113373

[28] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep

Reinforcement Learning. In CIKM ’20: The 29th ACM International Conference
on Information and Knowledge Management, Virtual Event, Ireland, October 19-
23, 2020, Mathieu d’Aquin, Stefan Dietze, Claudia Hauff, Edward Curry, and

Philippe Cudré-Mauroux (Eds.). ACM, 2105–2108. https://doi.org/10.1145/

3340531.3412106

[29] Per-Åke Larson, Adrian Birka, Eric N. Hanson, Weiyun Huang, Michal

Nowakiewicz, and Vassilis Papadimos. 2015. Real-Time Analytical Process-

ing with SQL Server. Proc. VLDB Endow. 8, 12 (2015), 1740–1751. https:

//doi.org/10.14778/2824032.2824071

[30] Elena Milkai, Yannis Chronis, Kevin P. Gaffney, Zhihan Guo, Jignesh M. Patel,

and Xiangyao Yu. 2022. How Good is My HTAP System?. In Proceedings of
the 2022 International Conference on Management of Data (Philadelphia, PA,

USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,

1810–1824. https://doi.org/10.1145/3514221.3526148

[31] Nima Moradi, Vahid Kayvanfar, and Majid Rafiee. 2022. An efficient population-

based simulated annealing algorithm for 0-1 knapsack problem. Eng. Comput.
38, 3 (2022), 2771–2790. https://doi.org/10.1007/S00366-020-01240-3

[32] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2023.

A Time Series is Worth 64 Words: Long-term Forecasting with Transformers.

In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net. https://openreview.net/forum?

id=Jbdc0vTOcol

[33] Oracle. 2021. Oracle. Database In-Memory Guide. Public Documentation 21c. https:
//docs.oracle.com/en/database/oracle/oracle-database/21/dbimr/index.html 71–

88.

[34] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata

Borovica-Gajic. 2021. DBA bandits: Self-driving index tuning under ad-hoc,

analytical workloads with safety guarantees. In 37th IEEE International Confer-
ence on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE,
600–611. https://doi.org/10.1109/ICDE51399.2021.00058

[35] Wendy Powley, Patrick Martin, Nailah Ogeer, and Wenhu Tian. 2005. Autonomic

buffer pool configuration in PostgreSQL. In Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, Waikoloa, Hawaii, USA, October
10-12, 2005. IEEE, 53–58. https://doi.org/10.1109/ICSMC.2005.1571121

[36] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David

Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,

Guy M. Lohman, Tim Malkemus, Rene Mueller, Ippokratis Pandis, Berni Schiefer,

David Sharpe, Richard Sidle, Adam Storm, and Liping Zhang. 2013. DB2 with

BLU acceleration: so much more than just a column store. Proc. VLDB Endow. 6,
11 (Aug. 2013), 1080–1091. https://doi.org/10.14778/2536222.2536233

[37] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning

representations by back-propagating errors. Nature 323 (1986), 533–536. https:

3324

https://doi.org/10.14778/3415478.3415533
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1109/ICDE.2018.00028
https://doi.org/10.1109/ICDE.2018.00028
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.14778/3587136.3587137
https://doi.org/10.1145/3514221.3517882
https://doi.org/10.1109/69.476501
http://www.vldb.org/conf/1997/P146.PDF
https://doi.org/10.14778/3554821.3554832
https://doi.org/10.14778/3007263.3007277
https://doi.org/10.1145/1988842.1988850
https://doi.org/10.1145/1988842.1988850
https://doi.org/10.14778/1978665.1978668
http://papers.nips.cc/paper/1238-support-vector-regression-machines
https://doi.org/10.1287/OPRE.29.3.612
https://doi.org/10.5281/zenodo.1334726
https://doi.org/10.5281/zenodo.1334726
https://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1807.02811
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/0167-6377(96)00025-9
https://doi.org/10.1016/0167-6377(96)00025-9
https://doi.org/10.1287/OPRE.22.1.180
https://doi.org/10.1109/TKDE.2022.3163195
https://doi.org/10.1109/TKDE.2022.3163195
https://doi.org/10.14778/3415478.3415535
https://www.huaweicloud.com/intl/en-us/product/gaussdb.html
https://www.huaweicloud.com/intl/en-us/product/gaussdb.html
https://doi.org/10.1023/A:1008306431147
http://www.vldb.org/pvldb/vol13/p2382-kossmann.pdf
https://doi.org/10.48786/EDBT.2022.06
https://doi.org/10.1109/CEC.2001.934453
https://doi.org/10.1109/CEC.2001.934453
https://doi.org/10.1109/ICDE.2015.7113373
https://doi.org/10.1145/3340531.3412106
https://doi.org/10.1145/3340531.3412106
https://doi.org/10.14778/2824032.2824071
https://doi.org/10.14778/2824032.2824071
https://doi.org/10.1145/3514221.3526148
https://doi.org/10.1007/S00366-020-01240-3
https://openreview.net/forum?id=Jbdc0vTOcol
https://openreview.net/forum?id=Jbdc0vTOcol
https://docs.oracle.com/en/database/oracle/oracle-database/21/dbimr/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/dbimr/index.html
https://doi.org/10.1109/ICDE51399.2021.00058
https://doi.org/10.1109/ICSMC.2005.1571121
https://doi.org/10.14778/2536222.2536233
https://api.semanticscholar.org/CorpusID:205001834

//api.semanticscholar.org/CorpusID:205001834

[38] Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable

Multi-attribute Index Selection Using Recursive Strategies. In 35th IEEE Interna-
tional Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019.
IEEE, 1238–1249. https://doi.org/10.1109/ICDE.2019.00113

[39] Sijie Shen, Rong Chen, Haibo Chen, and Binyu Zang. 2021. Retrofitting High

Availability Mechanism to Tame Hybrid Transaction/Analytical Processing. In

15th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2021, July 14-16, 2021, Angela Demke Brown and Jay R. Lorch (Eds.). USENIX

Association, 219–238. https://www.usenix.org/conference/osdi21/presentation/

shen

[40] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh, and

Christof Bornhövd. 2012. Efficient transaction processing in SAPHANA database:

the end of a column store myth. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May
20-24, 2012, K. Selçuk Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano, and

Ariel Fuxman (Eds.). ACM, 731–742. https://doi.org/10.1145/2213836.2213946

[41] Haoze Song, Wenchao Zhou, Heming Cui, Xiang Peng, and Feifei Li. 2024. A

survey on hybrid transactional and analytical processing. VLDB J. 33, 5 (2024),
1485–1515. https://doi.org/10.1007/S00778-024-00858-9

[42] Adam J. Storm, Christian Garcia-Arellano, Sam Lightstone, Yixin Diao, and Mah-

eswaran Surendra. 2006. Adaptive Self-tuning Memory in DB2. In Proceedings of
the 32nd International Conference on Very Large Data Bases, Seoul, Korea, Septem-
ber 12-15, 2006, Umeshwar Dayal, Kyu-Young Whang, David B. Lomet, Gustavo

Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-Kuk

Kim (Eds.). ACM, 1081–1092. http://dl.acm.org/citation.cfm?id=1164220

[43] Javid Taheri, Shaghayegh Sharif, Xing Penju, and Albert Y. Zomaya. 2012. Par-

alleled Genetic Algorithm for Solving the Knapsack Problem in the Cloud.

In 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and In-
ternet Computing, 3PGCIC 2012, Victoria, BC, Canada, November 12-14, 2012,
Fatos Xhafa, Leonard Barolli, and Kin Fun Li (Eds.). IEEE, 303–308. https:

//doi.org/10.1109/3PGCIC.2012.54

[44] Wenhu Tian, Patrick Martin, and Wendy Powley. 2003. Techniques for auto-

matically sizing multiple buffer pools in DB2. In Proceedings of the 2003 con-
ference of the Centre for Advanced Studies on Collaborative Research, October
6-9, 2003, Toronto, Ontario, Canada, Darlene A. Stewart (Ed.). IBM, 294–302.

https://dl.acm.org/citation.cfm?id=961367

[45] Immanuel Trummer. 2022. DB-BERT: A Database Tuning Tool that "Reads

the Manual". In SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and

Amr El Abbadi (Eds.). ACM, 190–203. https://doi.org/10.1145/3514221.3517843

[46] Thin-Fong Tsuei, Allan N. Packer, and Keng-Tai Ko. 1997. Database buffer size

investigation for OLTP workloads. In Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data (Tucson, Arizona, USA) (SIG-
MOD ’97). Association for Computing Machinery, New York, NY, USA, 112–122.

https://doi.org/10.1145/253260.253279

[47] Ulrike von Luxburg. 2007. A tutorial on spectral clustering. Stat. Comput. 17, 4
(2007), 395–416. https://doi.org/10.1007/S11222-007-9033-Z

[48] Jianying Wang, Tongliang Li, Haoze Song, Xinjun Yang, Wenchao Zhou, Feifei

Li, Baoyue Yan, Qianqian Wu, Yukun Liang, ChengJun Ying, Yujie Wang, Baokai

Chen, Chang Cai, Yubin Ruan, XiaoyiWeng, Shibin Chen, Liang Yin, Chengzhong

Yang, Xin Cai, Hongyan Xing, Nanlong Yu, Xiaofei Chen, Dapeng Huang, and

Jianling Sun. 2023. PolarDB-IMCI: A Cloud-Native HTAP Database System

at Alibaba. Proc. ACM Manag. Data 1, 2, Article 199 (June 2023), 25 pages.

https://doi.org/10.1145/3589785

[49] Christophe Wilbaut, Said Hanafi, and Said Salhi. 2008. A survey of effective

heuristics and their application to a variety of knapsack problems. IMA journal
of management Mathematics 19, 3 (2008), 227–244.

[50] Wentao Wu, Chi Wang, Tarique Siddiqui, Junxiong Wang, Vivek R. Narasayya,

Surajit Chaudhuri, and Philip A. Bernstein. 2022. Budget-aware Index Tun-

ing with Reinforcement Learning. In SIGMOD ’22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G.

Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 1528–1541. https:

//doi.org/10.1145/3514221.3526128

[51] Chao Zhang, Guoliang Li, and Tao Lv. 2024. HyBench: A New Benchmark for

HTAP Databases. Proc. VLDB Endow. 17, 5 (2024), 939–951. https://www.vldb.

org/pvldb/vol17/p939-zhang.pdf

[52] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,

Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An

End-to-End Automatic Cloud Database Tuning System Using Deep Reinforce-

ment Learning. In Proceedings of the 2019 International Conference onManagement
of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5,
2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande,

and Tim Kraska (Eds.). ACM, 415–432. https://doi.org/10.1145/3299869.3300085

,

3325

https://api.semanticscholar.org/CorpusID:205001834
https://doi.org/10.1109/ICDE.2019.00113
https://www.usenix.org/conference/osdi21/presentation/shen
https://www.usenix.org/conference/osdi21/presentation/shen
https://doi.org/10.1145/2213836.2213946
https://doi.org/10.1007/S00778-024-00858-9
http://dl.acm.org/citation.cfm?id=1164220
https://doi.org/10.1109/3PGCIC.2012.54
https://doi.org/10.1109/3PGCIC.2012.54
https://dl.acm.org/citation.cfm?id=961367
https://doi.org/10.1145/3514221.3517843
https://doi.org/10.1145/253260.253279
https://doi.org/10.1007/S11222-007-9033-Z
https://doi.org/10.1145/3589785
https://doi.org/10.1145/3514221.3526128
https://doi.org/10.1145/3514221.3526128
https://www.vldb.org/pvldb/vol17/p939-zhang.pdf
https://www.vldb.org/pvldb/vol17/p939-zhang.pdf
https://doi.org/10.1145/3299869.3300085

	Abstract
	1 Introduction
	2 Overview
	2.1 Design of GaussDB-HTAP
	2.2 Problem Definition
	2.3 Design of T2

	3 T2 for Static Workloads
	3.1 Column Selection with No Updates
	3.2 Adaptive Data Synchronization Strategy
	3.3 Bayesian Optimization for Memory Allocation

	4 T2 for Dynamic workloads
	4.1 Approach Overview
	4.2 Dynamic Reallocation Trigger Algorithm

	5 Experiment
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Evaluation of Different Components

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

