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ABSTRACT
Range-filtering approximate nearest neighbor search (RFANNS)
has gained significant attention recently. Consider a set D of high-

dimensional vectors, each associated with a numeric attribute value,

e.g., price or timestamp. An RFANNS query consists of a query

vector 𝑞 and a query range, reporting the approximate nearest

neighbors of 𝑞 among data vectors whose attributes fall in the

query range. Existing work on RFANNS only considers a static set

D of data vectors while in many real-world scenarios, vectors arrive

in the system in an arbitrary order. This paper studies dynamic

RFANNS where both data vectors and queries arrive in a mixed

stream: a query is posed on all the data vectors that have already

arrived in the system. Existing work on RFANNS is difficult to be

extended to the streaming setting as they construct the index in

the order of the attribute values while the vectors arrive in the

system in an arbitrary order. The main challenge to the dynamic

RFANNS lies in the difference between the two orders. A naive

approach to RFANNS maintains multiple hierarchical navigable

small-world (HNSW) graphs, one for each of the 𝑂 ( |D|2) possible
query ranges – too expensive to construct and maintain. To design

an index structure that can integrate new data vectors with a low

index size increment for efficient and effective query processing,

we propose a structure called dynamic segment graph. It compresses

the set of HNSW graphs of the naive approach, proven to be lossless

under certain conditions, with only a linear to log |D| new edges in

expectation when inserting a new vector. This dramatically reduces

the index size while largely preserving the search performance. We

further propose heuristics to significantly reduce the index cost of

our dynamic segment graph in practice. Extensive experimental

results show that our approach outperforms existing methods for

static RFANNS and is scalable in handling dynamic RFANNS.
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1 INTRODUCTION
Consider a collection D of high-dimensional data vectors (or data

points), each carrying an attribute with a total order. A range-

filtering approximate nearest neighbor search (RFANNS) query
consists of a query vector 𝑞 and a query range. It finds the approx-

imate nearest neighbors of 𝑞 among all the data vectors whose

attribute values fall in the query range. RFANNS has applications
in vector databases [30], retrieval-augmented generation [19], doc-

ument retrieval [20], and person or vehicle re-identification [38].

Two straightforward approaches for RFANNS, pre-filtering and

post-filtering, do not work well when query range size shifts [40].

To address this issue, specialized index structures have been pro-

posed recently, including SeRF [40], iRange [36], andWinFilter [5]
on a static set D. In other words, they require sorting vectors in D
in the order of their attribute values before constructing the index.

In many real-world scenarios, however, data vectors stream into

the system in an arbitrary order of their attribute values. For exam-

ple, on e-commerce platforms where products are represented as

high-dimensional vectors, products are often searched with a price

filter. In this case, new products with varying prices are constantly

added, necessitating effective updates to the index for RFANNS.
This paper studies the dynamic range-filtering approximate nearest

neighbor search problem. Specifically, the data vectors and RFANNS
queries mix in a stream where each RFANNS query is performed

over all data vectors that have arrived before the query is posed.

Existing methods are designed for static datasets, i.e., they need

the data vectors to be sorted by their attribute values before index-

ing. Thus, they cannot effectively handle new data vectors with an

arbitrary attribute value. Specifically, both iRange andWinFilter
build a segment tree over the attribute values of all data vectors.

For each tree node in the segment tree, a graph-based approximate

nearest neighbor search (ANNS) index (such as the de facto state-

of-the-art hierarchical navigable small world (HNSW) graph [23])

is created. When a query arrives,WinFilter performs ANNS over

a few segments (i.e., nodes) covered by or overlapped with the

query range. The approximate nearest neighbors in each segment

are merged to produce the final result. In contrast, iRange merges

the indexes in these segments on-the-fly and performs a single

ANNS over the merged index to find the results. They cannot han-

dle new data vectors as they need to know all attribute values

beforehand to build the segment tree and graph-based indexes.

SegmentGraph is constructed incrementally, by inserting the data
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vectors to the graph one by one, in the order of their attribute values.

Thus SegmentGraph functions well when the attribute values of

the data vectors are monotonically increasing/decreasing with their

arriving time. Nevertheless, SeRF is unable to manage dynamic

RFANNS when the attribute values of data vectors are unrelated to

their arriving time.

A simple way to handle dynamic RFANNS is to build an HNSW

graph for every possible range of attribute values pairs of D. How-

ever, as new data vectors arrive, the number of HNSW graphs

and the number of new edges grow quadratically to |D|. We ob-

serve that the neighboring ranges often share similar edges in their

HNSW graphs, allowing effective compression. To formalize this

insight, we introduce rectangle tree, a structure that answers three

key questions: How can we compactly represent all query ranges

affected by a new data point? Is this representation canonical? And

how complex is it to manage the representation? The rectangle tree

provides a clear framework for efficiently organizing and merging

overlapping ranges. Building on this, we propose the dynamic seg-

ment graph G, where each data vector is a node, and edges between

nodes are labeled with rectangles which specify the query ranges

for which the corresponding edges can be used for approximate

nearest neighbor search. This design ensures efficient updates, i.e.,

the expected number of new edges upon the insertion of a new vec-

tor is linear to log |D| as opposed to |D|2. The design also largely

maintains query performance under the compression. We also intro-

duce optimizations to reduce storage costs while preserving search

performance as new vector arrives.

In summary, we make the following contributions in this paper.

• To the best of our knowledge, this paper is the first study on

dynamic range-filtering approximate nearest neighbor search.

• We design a dynamic segment graph structure to address the dy-

namic RFANNS problem. We prove the dynamic segment graph

is a lossless compression of many HNSW graphs and analyze the

time and space complexity of the dynamic segment graph.

• We design a few optimizations to significantly reduce the index

cost of dynamic segment graph in practice.

• We conduct extensive experiments: our method significantly out-

performs existing methods for both static and dynamic RFANNS.

2 PRELIMINARY
2.1 Problem Definition
Consider 𝑑-dimensional space of R𝑑 with a distance metric 𝛿 , i.e.,

for any two points (vectors) 𝑢, 𝑣 ∈ R𝑑 , their distance is 𝛿 (𝑢, 𝑣) ≥ 0.

Definition 1 (Nearest Neighbor Search). Given a query vec-

tor 𝑞 ∈ R𝑑 , an integer 𝑘 > 0, and a set D of vectors in R𝑑 , the
𝑘-nearest neighbors of 𝑞, denoted as kNN𝛿 (𝑞,D), is the set of 𝑘 vec-

tors in D with the smallest distances to 𝑞 under metric 𝛿 . Formally,

kNN𝛿 (𝑞,D) is a set R ⊆ D of 𝑘 vectors in D such that ∀𝑢 ∈ R and

∀𝑣 ∈ D \ R, 𝛿 (𝑢, 𝑞) ≤ 𝛿 (𝑣, 𝑞).
We omit the subscription 𝛿 when the context is clear.

Let A be an attribute whose domain Dom(A) has a total order,
i.e., operator < exists between any pair of attribute values. A vector

𝑣 ∈ R𝑑 associated with an A-attribute value att(𝑣) ∈ Dom(A) is
called an A-attributed vector, or attributed vector when the attribute

A is clear in the context. For the simplicity of our discussion, we

data points in a stream
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Figure 1: An example of DRFANNS.

introduce −∞A as a placeholder that is smaller than any attribute

value in Dom(A) and +∞A a placeholder that is larger than any

value in Dom(A). Define −∞A < +∞A and use (−∞A, +∞A) to
denote a range that contains all the attribute values in Dom(A).

Definition 2 (Range-FilteringNearestNeighbor Search [40]).

LetD be a set of A-attributed vectors in R𝑑 . A range-filtering nearest

neighbor search query 𝑄 = (𝑞, [𝑙, 𝑟 ], 𝑘) has 𝑞 ∈ R𝑑 , 𝑙, 𝑟 ∈ Dom(A),
and 𝑘 a positive integer. Define D[𝑙, 𝑟 ] ≐ {𝑣 |𝑣 ∈ D, att(𝑣) ∈ [𝑙, 𝑟 ]}.
The query returns kNN(𝑞,D[𝑙, 𝑟 ]), a 𝑘-sized subset R ofD[𝑙, 𝑟 ] such
that ∀ 𝑢 ∈ R and ∀ 𝑣 ∈ D[𝑙, 𝑟 ] \ R, 𝛿 (𝑢, 𝑞) ≤ 𝛿 (𝑣, 𝑞).

For simplicity, assume there are always at least 𝑘 vectors in

D[𝑙, 𝑟 ], i.e., |D[𝑙, 𝑟 ] | ≥ 𝑘 . Due to the “curse of dimensionality” [13],

a large body of existing research on nearest neighbor search fo-

cuses on approximate nearest neighbor search (ANNS), which re-

ports a set kANN(𝑞,D) of 𝑘 vectors aiming at an optimized recall

1

𝑘
|kANN(𝑞,D) ∩ kNN(𝑞,D)| for a vector 𝑞.

Definition 3 (RFANNS [40]). Given a setD of attributed vectors

in R𝑑 , a range-filtering approximate nearest neighbor search query

𝑄 = (𝑞, [𝑙, 𝑟 ], 𝑘) aims at reporting kANN(𝑞,D[𝑙, 𝑟 ]), a set of𝑘 vectors
in D[𝑙, 𝑟 ], with an optimized recall

|kANN(𝑞,D[𝑙,𝑟 ] )∩kNN(𝑞,D[𝑙,𝑟 ] ) |
𝑘

.

Consider RFANNS on a stream of A-attributed data vectors.

Problem 1 (Dynamic Range-Filtering Approximate Nearest

Neighbor Search (DRFANNS)). Let 𝑣1, 𝑣2, · · · be a sequence of

attributed data vectors in R𝑑 arriving the system one at a time. For

each integer 𝑡 > 0, 𝑣𝑡 arrives at the system at time 𝑡 and is associated

with an A-attribute value att(𝑣𝑡 ); denote byD𝑡 = {𝑣1, 𝑣2, · · · , 𝑣𝑡 } the
set of vectors arrived the system by time 𝑡 . Design a structure that can

handle, at each time 𝑡 , the insertion of 𝑣𝑡 , and for any RFANNS query
𝑄 (𝑞, [𝑙, 𝑟 ], 𝑘) raised at time 𝑡 , efficiently report kANN(𝑞,D𝑡 [𝑙, 𝑟 ]).

The main difficulty ofDRFANNS is that the data vectors arriving
the system have an arbitrary ordering of their attribute values.

Example 1. Figure 1 shows the snapshot of the system at time 𝑡 =

9 where a set D9 = {𝑣1, 𝑣2, · · · , 𝑣9} of 9 attributed data vectors ar-

rived the system. Consider the RFANNS query 𝑄 = (𝑞, [34, 63], 𝑘 =

2). The distances between the query vector 𝑞 and the data vectors

are shown in the figure. We have D9 [34, 63] = {𝑣2, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣9}
(i.e., the shadowed vectors are not in the query range). The query

aims to report kNN(𝑞,D9 [34, 63]) = {𝑣4, 𝑣5}. Note that although
𝑣1 is closer to 𝑞 than 𝑣4 and 𝑣5, they should not be reported as its

attribute values att(𝑣1) = 28 is outside of the query range [34, 63].

Note that a special case of DRFANNS which we call Ordered-
DRFANNS, assumes that the data vectors arriving the system are in

the ascending order
1
of theirA-attribute values.Ordered-DRFANNS

can be addressed by an existing technique SeRF [40]. In its settings,

for any two positive integers 𝑖 and 𝑗 with 𝑖 < 𝑗 , att(𝑣𝑖 ) < att(𝑣 𝑗 ).
1
or descending order. We restrict our discussion to the ascending order for simplicity.

3257



Algorithm 1: 2DSegmentANNSearch(G, 𝑞, range, 𝑒𝑝,K)
Input: G: 2D segment graph; range: a query range (𝑥,𝑦) or

[𝑥,𝑦]; 𝑒𝑝 : entry vector, K: the parameter

efsearch/efconstruction in HNSW.

Output: ann: K approximate nearest neighbors of 𝑞 in range.
if range is (𝑥,𝑦) then open = true; else open = false;1

mark 𝑒𝑝 as visited;2

push 𝑒𝑝 to the min-heap pool in the order of distance to 𝑞;3

push 𝑒𝑝 to the max-heap ann in the order of distance to 𝑞;4

while pool is not empty do5

𝑣 ← the vector nearest to 𝑞 in pool, pop pool;6

𝑢 ← the vector farthest to 𝑞 in ann;7

if 𝛿 (𝑞, 𝑣) > 𝛿 (𝑞,𝑢) then continue;8

foreach unvisited 𝑜 with (𝑙, 𝑟 , 𝑜, 𝑏, 𝑒) ∈ G[𝑣] do9

if 𝑥 ∈ (𝑙, 𝑟 ] or (open and 𝑥 = 𝑙) then10

if 𝑦 ∈ [𝑏, 𝑒) or (open and 𝑦 = 𝑒) then11

mark 𝑜 as visited;12

𝑢 ← the vector farthest to 𝑞 in ann;13

if |ann| < K or 𝛿 (𝑞, 𝑜) < 𝛿 (𝑞,𝑢) then14

push 𝑜 to pool and ann;15

if |ann| > K then pop ann;16

return ann;17

Algorithm 2: Prune(𝑜, ann,M)

Input: 𝑜 : a vector; ann: a set of 𝑜’s approximate nearest neighbors; M:

the max number of neighbors to keep.

Output: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ⊆ ann: 𝑜’s neighbors after pruning.

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← ∅;1

foreach 𝑣 ∈ ann in the ascending order of 𝛿 (𝑜, 𝑣) do2

not_dominated← true;3

foreach 𝑢 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do4

if 𝑢 dominates 𝑣 as 𝑜’s neighbors then5

not_dominated← false and break;6

if not_dominated then add 𝑣 to 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ;7

if |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 | ≥ M then break;8

return 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ;9

Algorithm 3: 2DSegmentGraphConstruction
Input: D = {𝑣1, 𝑣2, · · · , 𝑣𝑛 }; K: an integer; M: the max degree.

Output: G: 2D segment graph for D.

foreach 1 < 𝑗 ≤ 𝑛 do1

For dummy vector 𝑣0, let att(𝑣0 ) ← −∞A; 𝑖 = 0;2

while 𝑖 < 𝑗 − 1 do3

ann←2DSegmentANNSearch(G, 𝑣𝑗 , (att(𝑣𝑖 ), +∞A ), 𝑣𝑗−1,K);4

𝑖′ = min{𝑥 |𝑣𝑥 ∈ ann};5

foreach 𝑣 ∈ Prune(𝑣𝑗 , ann,M) do6

add (att(𝑣𝑖 ), att(𝑣𝑖′ ), 𝑣, att(𝑣𝑗 ), +∞A ) to G[𝑣𝑗 ];7

add (att(𝑣𝑖 ), att(𝑣𝑖′ ), 𝑣𝑗 , att(𝑣𝑗 ), +∞A ) to G[𝑣 ];8

𝑖 = 𝑖′ ;9

return G;10

For the simplicity of our discussion, assume that for a vector 𝑣𝑡
in the stream, all the other stream vectors have different distances

to 𝑣𝑡 . In fact, we break ties using the arrival time of the vectors.

2.2 Graph-based RFANNS Structure SeRF
We introduce SeRF [40], the state-of-the-art RFANNS method on

static datasets, which also serves as a solution toOrdered-DRFANNS.
Given an attributed vector set D, SeRF constructs a graph G,

called 2DSegmentGraph. G’s nodes are the vectors in D; for

each node 𝑢 in G, its neighbor list consists of tuples in the form of

(𝑙, 𝑟 , 𝑣, 𝑏, 𝑒). These tuples capture a key observation: in the HNSW

graph built on each subset D[𝑥,𝑦], where 𝑥 ∈ (𝑙, 𝑟 ] and 𝑦 ∈ [𝑏, 𝑒),
𝑣 always appears in 𝑢’s neighbor list. For example, suppose a node

𝑢 in G has a neighbor tuple (3, 6, 𝑣, 8, 9). Then 𝑣 is 𝑢’s neighbor

in all the HNSW graphs built on D[𝑥,𝑦] for all 𝑥 ∈ (3, 6] and
𝑦 ∈ [8, 9). Given a RFANNS query (𝑞, [𝑥,𝑦], 𝑘), the greedy search

of [40] traverses a neighbor (𝑙, 𝑟 , 𝑣, 𝑏, 𝑒) in G if and only if 𝑥 ∈ (𝑙, 𝑟 ]
and 𝑦 ∈ [𝑏, 𝑒). This is equivalent to performing the greedy search

in the HNSW graph built on the subset D[𝑥,𝑦].
Algorithm 1 details the search process. Specifically, the search

starts from an entry vector 𝑒𝑝 and keeps two initially empty heaps,

a min-heap pool recording all the visited yet explored nodes (Line 3)

and a max-heap ann keeping K visited nodes that are closest to

𝑞. The search is prioritized by the distance to 𝑞 (Line 6) and ends

when depleting the nodes in pool (Line 5)
2
. For node 𝑣 that is being

explored, select the neighbors whose tuples fit the query range

(Lines 9-10) for visiting. If a newly visited node has distance to 𝑞

smaller than the K-th node in ann, update the heaps (Lines 14-16).

What makes SeRF suitable for Ordered-DRFANNS is its con-

struction process (Algorithm 3). It inserts the nodes to an initially

empty graph G in the ascending order of their attribute values. The

insertion of every node 𝑣 𝑗 (Lines 1-2) triggers a number of ANNS
for 𝑣 𝑗 with different ranges (Lines 3-4) on the partially constructed

graph G. The aim is to identify the range (att(𝑣𝑖 ), att(𝑣𝑖′ )] that for
all query ranges [𝑥,𝑦] with 𝑥 ∈ (att(𝑣𝑖 ), att(𝑣𝑖′ )] and 𝑦 ≥ att(𝑣 𝑗 ),
the neighbor list of 𝑣 𝑗 would be the same; we call (att(𝑣𝑖 ), att(𝑣𝑖′ )]
an interval for sharing neighbor lists. Specifically, to identify these

intervals for 𝑣 𝑗 , SeRF first calls Algorithm 1 to find a set ann of K

approximate nearest neighbors of 𝑣 𝑗 for the range (att(𝑣𝑖 ), +∞A)
(Line 4), here 𝑖 is initially 0 and 𝑣0 is a dummy vector (Line 2). For

𝑖′ being the index of the vector with the smallest attribute value

in ann, (att(𝑣𝑖 ), att(𝑣𝑖′ )] is an interval for sharing neighbor lists.

Line 6 prunes the ann (same as in HNSW [23]) to prepare the neigh-

bour list, and then Lines 7-8 add the edges and reverse edges with

intervals to G. In the next iteration, 𝑖 jumps to 𝑖′ (Line 9) and the

process is repeated. It terminates when 𝑖 meets 𝑗 − 1 (Line 3).
Remark. If assuming that 2DSegmentANNSearch in Line 4, Algo-

rithm 3 returns exact nearest neighbors, and disabling reverse edges

in HNSW to trigger pruning, SeRF proves that G is a lossless com-

pression of all the 𝑂 (𝑛2) HNSW graphs, one for each set of data

vectors D[att(𝑣𝑖 ), att(𝑣 𝑗 )], where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. Both the correct-

ness of SeRF and the compression technique are heavily based on

the strict ordering on the attribute values of the inserted nodes.

We updated Algorithm 1 to accommodate an open query range

(𝑥,𝑦) in Lines 10-12. In other words, an edge with label (𝑙, 𝑟 , 𝑜, 𝑏, 𝑒)
is active under (𝑥,𝑦) if (𝑥 ∈ (𝑙, 𝑟 ] or 𝑥 = 𝑙 ) and (𝑦 ∈ [𝑏, 𝑒) or 𝑦 = 𝑒).

2
K is essentially the efsearch/efconstruction in the original HNSW algorithm [23]. Same

as in HNSW search, one can return the 𝑘 vectors in ann closest to 𝑞 as the final results.
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Figure 2: A running example of the rectangle tree.

3 RECTANGLE TREE AND DYNAMIC
SEGMENT GRAPH

To deal with DRFANNS, we design a structure called the dynamic

segment graph. Similar to the 2DSegmentGraph, each data vector

is a node in the graph and each edge has a “rectangle” label (𝑙, 𝑟 ] ×
[𝑏, 𝑒). We aim to build the dynamic segment graph such that for

any query range [𝑥,𝑦], the subgraph induced by the edges whose

labels (𝑙, 𝑟 ] × [𝑏, 𝑒) satisfy 𝑥 ∈ (𝑙, 𝑟 ] and 𝑦 ∈ [𝑏, 𝑒) is exactly the

HNSW graph onD𝑡−1 [𝑥,𝑦] whereD𝑡−1 = {𝑣1, · · · , 𝑣𝑡−1} includes
data vectors arrived when the query is issued.

Consider the next vector 𝑣𝑡 in the stream. To insert 𝑣𝑡 into the

dynamic segment graph (by creating edges from/to it), one way

is to find all the tuples (𝑙, 𝑟 , 𝑏, 𝑒,KNNlist) such that for any query

range [𝑥,𝑦] there is one and only one tuple (𝑙, 𝑟 , 𝑏, 𝑒,KNNlist) such
that 𝑥 ∈ (𝑙, 𝑟 ] and 𝑦 ∈ [𝑏, 𝑒). Moreover, KNNlist is the K-nearest
neighbors of 𝑣𝑡 inD𝑡−1 [𝑥,𝑦]. We can then create edges for 𝑣𝑡 in the

dynamic segment graph by visiting every tuple (𝑙, 𝑟 , 𝑏, 𝑒,KNNlist)
in the structure, applying the pruning strategy in HNSW to KNNlist
to get a neighbor list, and create an edge (𝑙, 𝑟 , 𝑣, 𝑏, 𝑒) from 𝑣𝑡 and

another edge (𝑙, 𝑟 , 𝑣𝑡 , 𝑏, 𝑒) to 𝑣𝑡 for every data vector 𝑣 in the neigh-

bor list. We design a structure called the “rectangle tree” in this

section, whose leaf nodes are all the tuples (𝑙, 𝑟 , 𝑏, 𝑒,KNNlist).
The rectangle tree is defined based on the exact nearest neighbors

of each vector 𝑣𝑡 among its predecessors D𝑡−1 = {𝑣1, 𝑣2, · · · , 𝑣𝑡−1}
on the stream of 𝑣1, 𝑣2, · · · , 𝑣𝑡 , · · · . We define the structure and show

its properties in Section 3.1. Section 3.2.1 uses the rectangle tree

to redesign the solution to Ordered-DRFANNS. Such a redesign

leads us to a solution to DRFANNS (Problem 1), as shall be seen in

Section 3.2.2. To distinguish from the graph constructed by SeRF, we
useG to denote the dynamic segment graph we build forDRFANNS.

For the readers who are not interested in the complexity analysis,

Section 3.1.2 can be skipped.

3.1 Rectangle Tree Structure
A rectangle tree is built for a newly arrived vector 𝑣𝑡 . Let K be an

integer parameter. The tree has K + 1 levels.

3.1.1 Definitions. xNN sequence. Given a vector 𝑣𝑡 , an integer

𝑥 and an attribute pair (𝑙, 𝑟 ) with att(𝑣𝑡 ) ∈ [𝑙, 𝑟 ], the 𝑥NNlist se-
quence includes the 𝑥 nearest neighbors of 𝑣𝑡 in D𝑡−1 [𝑙, 𝑟 ] – we

define 𝑥NNlist sequence only on closed ranges for simplicity. The 𝑥

nearest neighbors are ordered by their distances to 𝑣𝑡 ascendingly.

Formally, the data vectors sequence 𝑣𝑖1 , 𝑣𝑖2 , · · · , 𝑣𝑖𝑥 is the 𝑥NNlist
sequence of [𝑙, 𝑟 ] if

(1) They all arrive before 𝑣𝑡 , i.e., time 𝑖1, 𝑖2, · · · , 𝑖𝑥 < 𝑡 ;

(2) Their attribute values att(𝑣𝑖1 ), att(𝑣𝑖2 ), · · · , att(𝑣𝑖,𝑥 ) ∈ [𝑙, 𝑟 ];
(3) Their distances to 𝑣𝑡 ascend, i.e.,𝛿 (𝑣𝑖1 , 𝑣𝑡 ) < · · · < 𝛿 (𝑣𝑖𝑥 , 𝑣𝑡 );
(4) There does not exist a vector 𝑣𝑖 in the stream that satisfies

both (1) and (2) and has 𝛿 (𝑣𝑖 , 𝑣𝑡 ) < 𝛿 (𝑣𝑖𝑥 , 𝑣𝑡 ).

We denote by + the concatenation of a sequence and a vector

where the vector would be the last vector in the sequence.

Short Attribute Pair. Given an integer 𝑥 , an attribute pair 𝑙, 𝑟 may

not even have a 𝑥NNlist sequence before inserting 𝑣𝑡 – if there are

less than 𝑥 vectors in D𝑡−1 [𝑙, 𝑟 ] – we call such a pair (𝑙, 𝑟 ) a short
attribute pair to 𝑥 . On the other hand, as long as |D𝑡−1 [𝑙, 𝑟 ] | ≥ 𝑥 ,
𝑙, 𝑟 has an 𝑥NNlist sequence. Define sap𝑡−1 (𝑥) as the set of all the
short attribute pairs to 𝑥 . Formally,

sap𝑡−1 (𝑥) = {(𝑙, 𝑟 ) |𝑙, 𝑟 ∈ Dom(𝐴) 𝑎𝑛𝑑 |D𝑡−1 [𝑙, 𝑟 ] | < 𝑥}.
Nodes. A node 𝑣𝑇 of a rectangle tree is a tuple in the form of

𝑣𝑇 = (L, L′, R, R′, 𝑥,N𝑥 ), where L ≤ L
′ ≤ att(𝑣𝑡 ) ≤ R ≤ R

′
are

attribute values; 𝑥 is an integer in [0,K];N𝑥 is the 𝑥NNlist sequence
of 𝑣𝑡 , 𝑥 , and all the possible [𝑙, 𝑟 ] with 𝑙 ∈ (L, L′] and 𝑟 ∈ [R, R′).
In other words, for all possible attribute ranges [𝑙, 𝑟 ] with (𝑙, 𝑟 )
in the rectangle of (L, L′] × [R, R′), they share the same 𝑥NNlist
sequence N𝑥 under 𝑣𝑡 and 𝑥 . We call rect(𝑣𝑇 ) = (L, L′] × [R, R′)
the rectangle of 𝑣𝑇 . The tree ensures that any child 𝑢𝑇 of 𝑣𝑇 has

rect(𝑢𝑇 ) ⊆ rect(𝑣𝑇 ).
Levels. The nodes in the rectangle tree is leveled by the 𝑥 values.

The root is the only node with 𝑥 = 0. The children are one level

deeper than the father. All nodes with 𝑥 = K are leaves.

A rectangle tree must satisfy two conditions, disjoint condition

and covering condition, defined as below.

Disjoint condition. For any two nodes at the same level 𝑥 ∈ [0,K],
their 𝑥NNlist sequences must be different.

Covering condition. For a node 𝑣𝑇 = (L, L′, R, R′, 𝑥,N𝑥 ) in the

rectangle tree with 𝑝 children at level 𝑥 + 1. Denote the set of

its children’s rectangles as S = {𝑆1, 𝑆2, · · · , 𝑆𝑝 }. S covers all the

attribute pairs in rect(𝑣𝑇 ) that have an (𝑥 + 1)NNlist sequence, i.e.,
rect(𝑣𝑇 ) \ sap𝑡−1 (𝑥 + 1) ⊆ ∪𝑖∈[1,𝑝 ]𝑆𝑖 .

Example 2. Figure 2 above shows a rectangle tree for the newly

arrived vector 𝑣10 in the stream of vectors on the left side of the

figure. The 𝑥NNlist sequences are inside the nodes. The levels 𝑥
are 0 for the root, 1 for the four children of the root, and 2 for the

grandchildren of the root. The rectangles of the nodes are adjacent

to the nodes. To be more clear, we also plot the rectangles of the

nodes in the figure. The second subfigure shows the rectangles of all

the nodes at level 2, while the third subfigure shows the rectangles

of all the nodes at level 1. The root node has the entire plane as its

rectangle. The bottom-right corners in shadow represent the sets of

all short attribute pairs. As we can see, the rectangle tree satisfies

both the disjoint condition and the covering condition.

3.1.2 Properties.

Lemma 1. The rectangles of all the nodes at the same level are dis-

joint. In other words, there is no attribute pair that is in the rectangles

of two distinct tree nodes at the same level at the same time.
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Proof. Consider two distinct nodes 𝑣𝑇 and 𝑢𝑇 at the same level

𝑥 . 𝑣𝑇 has rectangle 𝑆𝑣 and list N𝑥 . 𝑢𝑇 has 𝑆𝑢 and list N′𝑥 . Let (𝑙, 𝑟 )
be an attribute pair in both 𝑆𝑣 and 𝑆𝑢 . Thus, the 𝑥NNlist sequence
of range [𝑙, 𝑟 ] = N𝑥 = N′𝑥 since the 𝑥NNlist sequence of [𝑙, 𝑟 ]
is unique, conflicting the distinct condition that N𝑥 ≠ N′𝑥 . Thus
attribute pair (𝑙, 𝑟 ) does not exist. Thus 𝑆𝑣 and 𝑆𝑢 are disjoint. □

Lemma 2. For a non-leaf rectangle-tree node with a rectangle 𝑆0 at

level 𝑥 − 1, the rectangles S = {𝑆1, 𝑆2, · · · , 𝑆𝑝 } of all its children (at

level 𝑥) form a disjoint partitioning of 𝑆0 \ sap𝑡−1 (𝑥). In other words,

for every attribute pair (𝑙, 𝑟 ) ∈ 𝑆0 that is not a short attribute pair to
𝑥 , there is one and only one rectangle 𝑆 in S such that (𝑙, 𝑟 ) ∈ 𝑆 .

Proof. From the definition of the rectangle tree node, we have

𝑆𝑖 ⊆ 𝑆0 for each 𝑖 ∈ [1, 𝑝]. For every attribute pair (𝑙, 𝑟 ) ∈ 𝑆0 \
sap𝑡−1 (𝑥), there is one (covering condition) and only one (Lemma 1)

rectangle 𝑆 in S such that (𝑙, 𝑟 ) ∈ 𝑆 . □

Theorem 3 (Canonical Partitioning). Given a vector 𝑣𝑡 and

a rectangle 𝑆 on Dom(𝐴). For all the rectangle trees for 𝑣𝑡 whose
root has the rectangle of 𝑆 , for any level 𝑥 ∈ [0,K], the rectangles
of all the tree nodes on level 𝑥 form a canonical partitioning of the

attribute pairs in 𝑆 \ sap𝑡−1 (𝑥). Specifically, let S = {𝑆1, 𝑆2, · · · , 𝑆𝑝 }
be the rectangles of all the tree nodes at level 𝑥 . Let the corresponding

collections of sets of the attribute pairs be

S′ = {{(𝑙, 𝑟 ) |𝑙, 𝑟 ∈ Dom(𝐴) 𝑎𝑛𝑑 (𝑙, 𝑟 ) ∈ 𝑆𝑖 }|𝑖 ∈ [1, 𝑝]}.

Then we have S′ = S′′ where S′′ is the grouping of all attribute

pairs (𝑙, 𝑟 ) ∈ 𝑆 \sap𝑡−1 (𝑥) by their corresponding 𝑥NNlist sequences.

Proof. Firstly, for any two integers 0 ≤ 𝑥 ′′ < 𝑥 ′ ≤ K, we have

sap𝑡−1 (𝑥 ′′) ⊆ sap𝑡−1 (𝑥 ′) based on the definition of short attribute

pair. Apply Lemma 2 top down from the root to the tree nodes at

level 𝑥 − 1 level by level, thus the rectangles of all the rectangle

tree nodes at level 𝑥 is a disjoint partitioning of 𝑆 \ sap𝑡−1 (𝑥).
Secondly, we prove that the partitioning is canonical. Consider all

the attribute pairs in 𝑆 \ sap𝑡−1 (𝑥) that have 𝑥NNlist sequences.
Since each rectangle 𝑆𝑖 ∈ S ensures that all pairs (𝑙, 𝑟 ) ∈ 𝑆𝑖 have
the same 𝑥NNlist sequence; Distinct condition ensures that pairs

from different rectangles in S have different 𝑥NNlist sequences.
Therefore, S′ must be a grouping of all the attribute pairs (𝑙, 𝑟 )
in 𝑆 based on their 𝑥NNlist sequences which is S′′ and is thus

canonical. □

Our following average case analysis assumes the independence
between the attribute values and distances, i.e., the attribute values

of vectors in {𝑣1, 𝑣2, · · · , 𝑣𝑡 } are distinct and if fixing the order-

ing of vectors in D𝑡−1 based on their distances to 𝑣𝑡 , and then

reorder all the vectors based on their attribute values, then each of

𝑡 ! permutations has an equal probability to appear.

Lemma 3. Consider a rectangle tree for a vector 𝑣𝑡 with att(𝑣𝑡 ) >
att(𝑣1), att(𝑣2), · · · , att(𝑣𝑡−1) and let the rectangle of the root be

(−∞, att(𝑣𝑡 )] × [att(𝑣𝑡 ), +∞) . The number of leaf nodes of the rec-

tangle tree at level K is in the worst case𝑂 (𝑡) and𝑂 (K ln 𝑡) expected.

Theorem 4. When inserting 𝑣𝑡 and the root node has rectangle

(−∞A, att(𝑣𝑡 )] × [att(𝑣𝑡 ), +∞A), the number of leaf nodes at level K

is in the worst case 𝑂 (K𝑡), and 𝑂 (K2
ln 𝑡) in expectation.

Algorithm 4: OrderedInsertion(G, 𝑣𝑡 ,M,K)
Input: G: the dynamic segment graph constructed for

D𝑡−1 = {𝑣1, 𝑣2, · · · , 𝑣𝑡−1}; 𝑣𝑡 : a vector arriving at time 𝑡 ; M

and K: the parameters in HNSW construction

Output: G: the dynamic segment graph for {𝑣1, 𝑣2, · · · , 𝑣𝑡 }.
// 𝑞𝑢𝑒𝑢𝑒 is a min-heap of tuples in the form of

(L, L′, R, R′, 𝑥, 𝑥NNlist) in the order of 𝑥; the tuple
means for all the attribute ranges (𝑥, 𝑦) with (𝑥 = L

or 𝑥 ∈ (L, L′ ]) and (𝑦 = R
′ or ∈ [R, R′ )), 𝑣𝑡 has the same

set of the 𝑥 nearest neighbors on D𝑡−1, which is
𝑥NNlist.

𝑞𝑢𝑒𝑢𝑒.push(−∞A, att(𝑣𝑡 ), att(𝑣𝑡 ), +∞A, 0, ∅) ;1

while 𝑞𝑢𝑒𝑢𝑒 is not empty do2

(L, L′, R, R′, 𝑥,N𝑥 ) ← 𝑞𝑢𝑒𝑢𝑒.pop( ) ;3

if 𝑥 = K then4

foreach 𝑣 ∈ Prune(N𝑥 , M, 𝑣𝑡 ) do5

add (L, L′, 𝑣, R, R′) to G[𝑣𝑡 ];6

add (L, L′, 𝑣𝑡 , R, R′) to G[𝑣 ];7

continue;8

while L < L
′
and R < R

′ do9

ann← 2DSegmentANNSearch(G, 𝑣𝑡 , (L, R′ ) , 𝑣1, K);10

if ann ⊆ N𝑥 then goto Line 5;11

// When the # of vectors in attribute range (L, R′ )
is ≤ 𝑥, call this node a sap node.

𝑣𝑐 ← argmin𝑣∈ann\N𝑥
𝛿 (𝑣, 𝑣𝑡 ) ;12

if att(𝑣𝑐 ) < L
′ then13

𝑞𝑢𝑒𝑢𝑒.push(L, att(𝑣𝑐 ), R, R′, 𝑥 + 1,N𝑥 + 𝑣𝑐 ) ;14

L← att(𝑣𝑐 ) ;15

else16

𝑞𝑢𝑒𝑢𝑒.push(L, L′, R, R′, 𝑥 + 1,N𝑥 + 𝑣𝑐 ) ;17

break;18

return G;19

Please find the proofs of Lemma 3 and Theorem 4 in our technical

report: https://miaoqiao.github.io/paper/VLDB25_TR.pdf

3.2 Dynamic Segment Graph
3.2.1 Ordered Insertion. Consider the problem ofOrdered-DRFANNS
where the attributes of data vectors have att(𝑣1) < att(𝑣2) < · · · <
att(𝑣𝑡 ). We maintain an initially empty graph called dynamic seg-

ment graph G for nearest neighbor search. Call OrderedInser-

tion(G, 𝑣𝑡 , M, K) (Algorithm 4) for every newly arrived vector 𝑣𝑡
at time 𝑡 , from 𝑡 = 1.

We analyze our algorithms under the Accurate Search Assump-

tion (ASA), i.e., the nearest neighbors returned by Algorithm 1 are

exact. We make this assumption because if otherwise, we could not

accurately assess the impact of the approximation of the nearest

neighbor search to the index structure. Note that for the prob-

lem of Ordered-DRFANNS, the lossless compression of [40] is also

achieved under the ASA assumption.

Lemma 4. Algorithm 4 builds a rectangle tree with root rectan-

gle (−∞A, att(𝑣𝑡 )]×[att(𝑣𝑡 ), +∞A) when inserting 𝑣𝑡 under ASA, i.e.,
each tuple (L, L′, R, R′, 𝑥,N𝑥 ) of the queue in the algorithm corre-

sponds to a rectangle tree node at level 𝑥 with 𝑥NNlist sequence N𝑥 .

Explanations to Algorithm 4 and Proof Sketch to Lemma 4.
The root has level 𝑥 = 0, ∅ is the 0NNlist sequence of the rectangle
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of (−∞A, att(𝑣𝑡 )] × [att(𝑣𝑡 ), +∞A). The rectangle tree is generated
level by level because the queue is a min-heap based on 𝑥 . Each

iteration (Lines 2-18) pops a tuple 𝑣𝑇 = (L, L′, R, R′, 𝑥,N𝑥 ) with the

smallest 𝑥 from the queue (Line 3). If 𝑣𝑇 is a leaf node with 𝑥 = K,

lodge the rectangle with the edge (𝑣𝑡 , 𝑣) to the graph G for each

pruned vector 𝑣 in theN𝑥 sequence (Lines 4-8). Otherwise, generate
all the children (Lines 9-18) of 𝑣𝑇 and enqueue them.

Next we show that if 𝑣𝑇 ensures that for all the attribute pairs

(𝑙, 𝑟 ) with 𝑙 ∈ (L, L′], 𝑟 ∈ [R, R′), the 𝑥NNlist sequence of interval
[𝑙, 𝑟 ] is N𝑥 , then under ASA, the properties below hold for all the

𝑣𝑇 ’s children (L𝑐 , L′𝑐 , R𝑐 , R′𝑐 , 𝑥 + 1,N𝑥+1) generated in Lines 9-18.

• N𝑥+1 is the (𝑥 + 1)NNlist sequence for all the attribute

intervals [𝑙, 𝑟 ] with 𝑙 ∈ (L𝑐 , L′𝑐 ] and 𝑟 ∈ [R𝑐 , R′𝑐 ).
• The rectangles of the children of 𝑣𝑇 are a partitioning of

rect(𝑣𝑇 ) \ sap𝑡−1 (𝑥 + 1).
• The (𝑥 + 1)NNlist sequences of the children of 𝑣𝑇 are dif-

ferent, but they have a common prefix of N𝑥 .

The children are generated in a sequence of jumps of L values

(Line 15) until L reaches/exceeds L
′
(Line 9). We first find 𝑣𝑐 , the

(𝑥+1)-th nearest neighbor of 𝑣𝑡 on attribute range (L, R′) using
nearest neighbor search (Lines 11-12). If 𝑣𝑐 does not exist (Line 11),

then all the intervals [𝑙, 𝑟 ] with 𝑙, 𝑟 ∈ (L, R′) are short to 𝑥 + 1, we
shall add edges to G and proceed to the next iteration (Line 8).

If 𝑣𝑐 has attribute value in [L′, R] (Lines 16-18), then all the

ranges [𝑙, 𝑟 ] with (𝑙, 𝑟 ) in the rectangle (L, L′] × [R, R′) share not
only the 𝑥NNlist sequence but also the (𝑥 + 1)-th nearest neighbor.

Thus they share the same sequence N𝑥+1 = N𝑥 + 𝑣𝑐 . We can safely

break the search (Line 18) after enqueue the child tuple (Line 17).

If 𝑣𝑐 has attribute value in (L, L′) (Lines 13-15), the two attribute
ranges [att(𝑣𝑐 ), L′] and [𝑟, L′], att(𝑣𝑐 ) < 𝑟 , will not share their

(𝑥 + 1)-th nearest neighbor, as that of [att(𝑣𝑐 ), L′] will be 𝑣𝑐 which
is missing from range [𝑟, L′]. Therefore, we partition the rectan-

gle into two on att(𝑣𝑐 ), the left one (L, att(𝑣𝑐 )] × [R, R′) which
shares the (𝑥 + 1)NNlist sequence N𝑥+1 = N𝑥 + 𝑣𝑐 (enqueued

in Line 14) while the remaining rectangle (att(𝑣𝑐 ), L′] × [R, R′)
will be processed in the next loop (Line 15). The loop terminates

when the remaining rectangle is enqueued entirely (Line 17). There-

fore, the rectangles of the children of 𝑣𝑇 form a partitioning of

rect(𝑣𝑇 ) \ sap𝑡−1 (𝑥 + 1).
The above two cases are sufficient since by assumption, att(𝑣𝑡 ) >

att(𝑣𝑖 ) for all 𝑖 < 𝑡 , so att(𝑣𝑐 ) can never be larger than R = att(𝑣𝑡 ).
Besides, att(𝑣𝑐 ) cannot go equal or below L since it was generated

by the nearest neighbor search in the attribute range (L, R′).
Therefore, each child (L𝑐 , L′𝑐 , R𝑐 , R′𝑐 , 𝑥 + 1,N𝑥+1) of 𝑣𝑇 ensures

that for any (𝑙, 𝑟 ) ∈ rect(𝑣𝑇 ) \ sap𝑡−1 (𝑥 + 1), the interval [𝑙, 𝑟 ] has
(𝑥 + 1)NNlist sequence equal to N𝑥+1. The (𝑥 + 1)NNlist sequences
of all the children are different (distinct) and all the rectangles of the

children form a partitioning of rect(𝑣𝑇 ) \ sap𝑡−1 (𝑥 + 1) (covering).
Apply the above results level-by-level to the tuples popped from

the queue, we verify that these tuples form a rectangle tree. □

Lemma 5. When Line 11, Algorithm 4 tests true, take a snapshot of
L, L′, R, R′, 𝑥 . Denote by 𝑦 the number of vectors in the range (L, R′)
on D𝑡−1, then 𝑥 = 𝑦.

Algorithm 5: UnorderedInsertion(G, 𝑣𝑡 ,M,K)
// Replace Lines 13-18 of Algorithm 4 with code:

if att(𝑣𝑐 ) < L
′ then1

𝑞𝑢𝑒𝑢𝑒.push(L, att(𝑣𝑐 ), R, R′, 𝑥 + 1,N𝑥 + 𝑣𝑐 ) ;2

L← att(𝑣𝑐 ) ;3

else if R < att(𝑣𝑐 ) then4

𝑞𝑢𝑒𝑢𝑒.push(L, L′, att(𝑣𝑐 ), R′, 𝑥 + 1,N𝑥 + 𝑣𝑐 ) ;5

R
′ ← att(𝑣𝑐 ) ;6

else7

𝑞𝑢𝑒𝑢𝑒.push(L, L′, R, R′, 𝑥 + 1,N𝑥 + 𝑣𝑐 ) ;8

break;9

Proof. Let 𝑣𝑇 be the tree node popped in the corresponding

iteration. As all attribute pairs in rect(𝑣𝑇 ) share the same 𝑥NNlist
sequence, 𝑦 ≥ 𝑥 ; as Line 11 tests true, 𝑦 ≤ 𝑥 . Thus 𝑦 = 𝑥 . □

Theorem 5 (Complexity of Algorithm 4). Under ASA, when
the 𝑡-th vector is inserted, 𝑡 ≥ K, Algorithm 4 has the worst case space

complexity𝑂 (M𝑡) and the average case space complexity𝑂 (KM ln 𝑡);
the number of calls of ANN search, i.e., Algorithm 1, is in the worst

case 𝑂 (K𝑡) and in the average case 𝑂 (K2
ln 𝑡).

Proof. Algorithm 4 writes tuples to G either on leaves at level

K (Lines 4-8) or on tree nodes on any level 𝑥 < K such that Line 11

tests true– we call these nodes sap nodes. Each time, we write at

most 2M edges to G. From Lemma 3, the total number of leaves at

level K is𝑂 (𝑡) in the worst case for 𝑣𝑡 , and𝑂 (K ln 𝑡) in expectation.

Next, we show that the total number of sap nodes on each level

𝑥 < K is at most 1 and thus the total number of sap node is 𝑂 (K).
When Line 11, Algorithm 4 tests true, take a snapshot L, L′, R, R′, 𝑥 .

Lemma 5 proves that range (L, R′) has exactly 𝑥 vectors in D𝑡−1.
Note R

′ = +∞A and R = att(𝑣𝑡 ) are larger than the attribute values

of all vectors, Lmust be the (𝑥+1)-th largest attribute value onD𝑡−1
and L

′
the 𝑥-th. As all nodes on level 𝑥 have disjoint rectangles, no

node other than 𝑣𝑇 has rectangle intersecting (L, L′] × [R, R′) and
thus Line 11 is tested true at most once at level 𝑥 .

Thus, the space complexity is𝑂 (M(𝑡 +K)) = 𝑂 (M𝑡) in the worst

case and 𝑂 (KM ln 𝑡) in expection. Besides, since each ANN search

either labels a node as sap node or generates a node, the total

number of ANN search is at most K + the total number of nodes.

Thus, the worst case number of calls of ANN search is 𝑂 (K𝑡) and
the expected number of ANN calls is 𝑂 (K2

ln 𝑡). □

3.2.2 Unordered Insertion. The benefit of the rectangle tree is that
adapting Algorithm 4 to unordered insertion, i.e., removing the

assumption that all the vectors inserted are in ascending order of

their attribute values, is easy.

Algorithm 5 shows the algorithm of unordered insertion. Com-

pared to ordered insertion, when a vector 𝑣𝑐 is found, in addition

to cope with the case when L < att(𝑣𝑐 ) < L
′
, and L

′ ≤ att(𝑣𝑐 ) ≤
att(𝑣𝑡 ), Lines 4-6 cope with an additional case of R < att(𝑣𝑐 ) < R

′

in a way symmetric to that of the case of L < att(𝑣𝑐 ) < L
′
.

Example 6. Figure 2 on the left shows a stream of attributed

data vectors and their distances to 𝑣10. Consider inserting 𝑣10 to

the dynamic segment graph G using Algorithm 5 with K = 2.

The algorithm first processes the tuple (L = −∞A, L
′ = 54, R =

54, R′ = +∞A, 𝑥 = 0,N0 = ∅) in the queue. For this purpose, it
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first finds the 2-nearest neighbors of 𝑣10 in (−∞A, +∞A), which is

ann = {𝑣1, 𝑣5}, and has 𝑣𝑐 = 𝑣1. Since att(𝑣1) = 28 < L
′ = 54, a

tuple (−∞A, 28, 54, +∞A, 1, 𝑣1) is added to the queue and L becomes

28. Next, it finds ann in (28, +∞A), which is {𝑣5, 𝑣4}, and has 𝑣𝑐 = 𝑣5.
Since att(𝑣5) = 43 < L

′ = 54, another tuple (28, 43, 54, +∞A, 1, 𝑣5)
is added to the queue and L becomes 43. Then, it finds ann in

(43, +∞A), which is {𝑣7, 𝑣6}, has 𝑣𝑐 = 𝑣7, adds (43, 54, 57, +∞A, 1, 𝑣7)
to the queue as R = 54 < att(𝑣7) = 57, and sets R

′
as 57. After that, it

finds ann in (43, 57), which is {𝑣6} (note that this is the only vector

in D9 whose attribute value is within (43, 57)), has 𝑣𝑐 = 𝑣6, adds

a tuple (43, 54, 56, 57, 1, 𝑣6) to the queue as R = 54 < att(𝑣6) = 56,

and sets R
′ = 56. Finally, it finds ann in (43, 56), which is ∅ as there

is no vector in D9 whose attribute value is within (43, 56). Thus
it goes to the edge generation steps, which results in no edges as

N0 = ∅. The above process essentially builds a level below the root

node in the rectangle tree as illustrated in Figure 2 on the right.

Next, tuple (L = −∞A, L
′ = 28, R = 54, R′ = +∞A, 𝑥 = 1,N1 =

𝑣1) is popped from the queue. It finds ann in (−∞A, +∞A), which is

{𝑣1, 𝑣5}. Since 𝑣1 ∈ N1, it has 𝑣𝑐 = 𝑣5. As L
′ = 28 ≤ att(𝑣5) = 43 ≤

R = 54, (−∞A, 28, 54, +∞A, 2, 𝑣1𝑣5) is added to the queue and the

while loop breaks. The process stops when the queue depletes.

Lemma 6. Algorithm 5 builds a rectangle tree 𝑇 with root rectan-

gle (−∞A, att(𝑣𝑡 )] × [att(𝑣𝑡 ), +∞A) when inserting 𝑣𝑡 under ASA.
Specifically, each tuple (L, L′, R, R′, 𝑥,N𝑥 ) in 𝑞𝑢𝑒𝑢𝑒 of the algorithm
corresponds to a node at level 𝑥 on 𝑇 whose 𝑥NNlist sequence is N𝑥 .

Proof Sketch. The proof adds additional discussions on the case

of R < att(𝑣𝑐 ) < R
′
compared to the proof sketch of Lemma 4. It

means that all the attribute ranges [𝑙, 𝑟 ] with (𝑙, 𝑟 ) ∈ (L, L′]×[R, R′)
share the same 𝑥NNlist sequence. However, when 𝑟 ≥ att(𝑣𝑐 ) the
(𝑥 + 1)NNlist should be N𝑥 + 𝑣𝑐 (Line 4), while when 𝑟 < att(𝑣𝑐 ),
some other vectors in (L, 𝑟 ), not including 𝑣𝑐 , will be the (𝑥 + 1)-
th nearest neighbor of 𝑣𝑡 . In this case, we generate a tuple with

rectangle (L, L′] × [att(𝑣𝑐 ), R′) for (𝑥 + 1)NNlist sequence N𝑥 + 𝑣𝑐
(Line 5), and the remaining rectangle will be left for the next round

of the while loop (Line 9 of Algorithm 4). Therefore, the three

properties listed in the second paragraph of the proof of Lemma 4

hold. Note that removing the assumption that the attribute values

of 𝑣𝑡 is larger than the vectors in D𝑡−1 only adds this additional

case while the other discussions in the proof of Lemma 4 hold here.

Therefore, Algorithm 5 constructs a rectangle tree. □

Theorem 7 (Complexity of Algorithm 5). When the 𝑡-th vector

is inserted, 𝑡 ≥ K, the worst-case index size of Algorithm 5 is𝑂 (KM𝑡).
The average-case index size of Algorithm 5 is𝑂 (K2

M ln 𝑡). The worst
number of calls of ANN search is𝑂 (K2𝑡) and the expected number of

ANN search calls is 𝑂 (K3
ln 𝑡).

Please find the proof of Theorem 7 in our technical report https:

//miaoqiao.github.io/paper/VLDB25_TR.pdf

Theorem 8. Denote by a1 ≤ a2 ≤ · · · ≤ a𝑡−1 the attribute values
of the vectors inserted by time 𝑡 . When inserting 𝑣𝑡 under ASA, the
new edges of G created by Algorithm 5 is a lossless compression of the

edges from/to 𝑣𝑡 on the 𝑂 (𝑡2) HNSW graphs, one for each attribute

range [a𝑖 , a𝑗 ], i.e., on D𝑡 [a𝑖 , a𝑗 ] with 𝑖 ≤ 𝑗 .

Proof. Define a0 be −∞A and a𝑡 be +∞A. Consider an attribute

range of [𝑙, 𝑟 ]. We only consider 𝑙 ≤ att(𝑣𝑡 ) ≤ 𝑟 as otherwise 𝑣𝑡 is

not in the corresponding HNSW graph and there will be no working

edges among the newly added edges to G on 𝑣𝑡 . Let 𝑖, 𝑗 be such that

a𝑖−1 < 𝑙 ≤ a𝑖 ≤ a𝑗 ≤ 𝑟 < a𝑗+1. Let 𝑆 be the K nearest neighbors of

𝑣𝑡 inD𝑡−1 [a𝑖 , a𝑗 ] = D𝑡−1 [𝑙, 𝑟 ]. The HNSW edges from/to 𝑣𝑡 under

search range [𝑙, 𝑟 ] are the 𝑣𝑡 edges on the HNSW graph built on

attribute range [a𝑖 , a𝑗 ]. Under ASA, these edges are between 𝑣𝑡 and
the pruned (w.r.t. 𝑣𝑡 ) vectors 𝑆𝑝 of 𝑆 . Consider the rectangle tree 𝑇

constructed for 𝑣𝑡 by Algorithm 5. It suffices to show that all the

working edges under search range [𝑙, 𝑟 ] from 𝑣𝑡 that are added by

𝑇 to the graph of G are exclusively between 𝑣𝑡 and 𝑆𝑝 . Our proof

has two cases, |𝑆 | < K and |𝑆 | ≥ K.

When |𝑆 | < K, let 𝑥 ≐ |𝑆 |. According to Theorem 3, there is

exactly one node 𝑣𝑇 on 𝑇 at level 𝑥 such that (𝑙, 𝑟 ) ∈ rect(𝑣𝑇 ).
Furthermore, since (𝑙, 𝑟 ) belongs to sap𝑡−1 (𝑥 +1), it will not appear
in any rectangle at level higher than 𝑥 and thus there must be a time

when processing 𝑣𝑇 , Line 11 Algorithm 4 tests true: snapshot the
values of (L, L′, R, R′) and thusD𝑡−1 on both (L, R′) and [L′, R] are
𝑆 (as all attribute pairs in rect(𝑣𝑇 ) share the same 𝑥NNlist sequence
which is 𝑆), thus L = a𝑖−1, L′ = a𝑖 , R = a𝑗 , and R

′ = a𝑗+1 (as they
all align to attribute values of D𝑡−1). The edges between 𝑣𝑡 and
𝑆𝑝 are thus added to G under rectangle𝑈 = (a𝑖−1, a𝑖 ] × [a𝑗 , a𝑗+1).
Thus the working edges of 𝑣𝑡 under [𝑙, 𝑟 ] ∈ 𝑈 are exclusively with

𝑆𝑝 . Moreover, as this rectangle 𝑈 will not join with any rectangle

in higher levels, the edges between 𝑣𝑡 to 𝑆𝑝 will not work under an

interval which has more than 𝑥 vectors in D𝑖−1.
When |𝑆 | ≥ K, there is exactly one node 𝑣𝑇 (L, L′, R, R′,K,NK)

on 𝑇 among level K nodes such that (𝑙, 𝑟 ) ∈ rect(𝑣𝑇 ) (Theorem 3).

That is, for 𝑣𝑡 , only edges added by 𝑣𝑇 can work under [𝑙, 𝑟 ]. Also,
we have NK = 𝑆 due to the definition of rectangle tree. Since edges

between 𝑣𝑡 and 𝑆𝑝 are added to G with rectangle rect(𝑣𝑇 ) by this

node, they are the exclusive working edges from 𝑣𝑡 under [𝑙, 𝑟 ].
Therefore, the newly added edges to G form a lossless compres-

sion of the edges from/to 𝑣𝑡 on the 𝑂 (𝑡2) HNSW graphs. □

3.3 Early Prunning
Realizing that we perform pruning of the 𝐾NNlist sequence on

leaf nodes before adding edges to the dynamic segment graph, we

would like to explore if pruning the 𝐾NNlist early can reduce both

the index time and index size.

Algorithm 6 revises the random insertion process in two aspects.

Consider 𝑣𝑇 = (L, L′, R, R′, 𝑥, 𝑥NNlist) popped from the queue. As

opposed to either generating a child/terminate the children genera-

tion based on 𝑣𝑐 in Lines 1-9 of Algorithm 5, we keep generating 𝑣𝑐
until either 𝑣𝑐 is not be pruned by the existing 𝑥NNlist sequence
(Lines 15), or a total of 𝐾 points are accumulated (together with

the points in the sequence) for the rectangle (Line 10). If 𝑣𝑐 is not

pruned, split the rectangle as usual (Line 17). For each tuple in

queue (except for the root), the last point 𝑣𝑐 of the 𝑥NNlist list
must remain after pruning, we lodge edges between 𝑣𝑡 and 𝑣𝑐 as

after-prune edge (Lines 5-7).

Pruned nearest neighbors sequence of attribute interval [𝑙, 𝑟 ].
Define on set D𝑡−1 [𝑙, 𝑟 ] the points that arrived before 𝑣𝑡 whose

attribute values falling in [𝑙, 𝑟 ], the pruned sequence below.

(1) Sort all the points in D𝑡−1 [𝑙, 𝑟 ] in ascending order of their

distances to 𝑣𝑡 . The resulting sequence is denoted as ann.
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Algorithm 6: PrunedInsertion(G, 𝑣𝑡 ,M,K)
Input: G: the dynamic segment graph constructed for

D𝑡−1 = {𝑣1, 𝑣2, · · · , 𝑣𝑡−1}; 𝑣𝑡 : a point arriving at time 𝑡 ; M

and K: the parameters in HNSW construction

Output: G: the dynamic segment graph for {𝑣1, 𝑣2, · · · , 𝑣𝑡 }.
𝑞𝑢𝑒𝑢𝑒.push(−∞A, att(𝑣𝑡 ), att(𝑣𝑡 ), +∞A, 0, ∅) ;1

while 𝑞𝑢𝑒𝑢𝑒 is not empty do2

(L, L′, R, R′, 𝑥, 𝑥NNlist) ← 𝑞𝑢𝑒𝑢𝑒.pop( ) ;3

if 𝑥 ≠ 0 then4

𝑣𝑒 ← the last point in 𝑥NNlist;5

add (L, L′, 𝑣𝑒 , R, R′) to G[𝑣𝑡 ];6

add (L, L′, 𝑣𝑡 , R, R′) to G[𝑣𝑒 ];7

If 𝑥 = K then continue;8

while 𝐿 ≤ 𝐿′ and 𝑅 ≤ 𝑅′ do9

while 𝑥 < 𝐾 do10

ann← 2DSegmentANNSearch(G, 𝑣𝑡 , (L, R′ ) , 𝑣1, K);11

𝑣𝑐 ← argmin𝑣∈ann\𝑥NNlist 𝛿 (𝑣, 𝑣𝑡 ) ;12

if 𝑣𝑐 is dominated by any point in 𝑥NNlist then13

(𝑥 + 1)NNlist← 𝑥NNlist + 𝑣𝑐 ; 𝑥 + +;14

else break;15

if 𝑣𝑐 is in 𝑥NNlist then break;16

Lines 1-9 of Algorithm 5;17

return G;18

(2) Prune, using Algorithm 2, by calling Prune(𝑜, ann, 𝑀), and
call the resulting sequence the Pruned Nearest Neighbors

Sequence (PNNS) of [𝑙, 𝑟 ].

Lemma 7. For each tuple 𝑣𝑇 = (L, L′, R, R′, 𝑥, 𝑥NNlist), if 𝑥 > 0,

then the last point 𝑣𝑐 of 𝑥NNlist cannot be pruned by any point in

𝑥NNlist \ {𝑣𝑐 }.

Lemma 8. For each tuple 𝑣𝑇 = (L, L′, R, R′, 𝑥, 𝑥NNlist) in the

queue of Algorithm 6, let 𝑆 be the rectangle (L, L′] × [R, R′), let
sequence 𝑃 = Prune(𝑥NNlist,M, 𝑣𝑡 ), let𝑚 = |𝑃 |. We show that for

all attribute pair (𝑙, 𝑟 ) ∈ 𝑆 , 𝑃 is the𝑚-prefix of the PNNS of [𝑙, 𝑟 ].

Please find the proofs of Lemma 7 and Lemma 8 in our technical

report: https://miaoqiao.github.io/paper/VLDB25_TR.pdf

Theorem 9. Algorithm 6 constructs a tree of aggregated rectangles

where each aggregated rectangle 𝑆 ensures that all attribute intervals

[𝑙, 𝑟 ] with (𝑙, 𝑟 ) ∈ 𝑆 share the same PNNS prefix. In other words, the

tree is a prefix tree of the PNNS of different rectangles.

4 OPTIMIZATIONS FOR DYNAMIC SEGMENT
GRAPH

Although the dynamic segment graph introduced earlier losslessly

compresses many HNSW graphs, one for each possible query range,

the index cost (i.e., index time and index size) is rather high in

practice. In this section, we present a few optimizations to improve

the practical performance of dynamic segment graph maintenance.

O1: One ANN Search for All. We observe that the procedure

2DSegmentANNSearch is invoked an excessive number of times

(one search for each node in the rectangle tree). To reduce the index

time, when a new data point 𝑣𝑡 arrives, we propose to perform a sin-

gle search using 2DSegmentANNSearch(G, 𝑣𝑡 , (−∞A, +∞A), 𝑣1,Z)

where Z is a parameter to find a set ann of Z approximate nearest

neighbors of 𝑣𝑡 . Then, instead of invoking 2DSegmentANNSearch

(G, 𝑣𝑡 , (L, R′), 𝑣1,K) in the algorithms to find the 𝑣𝑐 , we visit the

data points in ann in the ascending order of their distance to 𝑣𝑡
and 𝑣𝑐 is the first one in ann that (1) is not in 𝑥NNlist and (2) has

att(𝑣𝑐 ) ∈ (L, R′). If no such data point exists in ann, we simply

break the while condition and process the next tuple in the queue.

O2:RemovingDominatedNeighbors.Realizing that the𝐾NNlist
sequence on leaf nodes is pruned before added edges to the dynamic

segment graph, we propose to prune the 𝐾NNlist early to reduce

both the index time and index size. Specifically, instead of maintain-

ing 𝑥NNlist in the rectangle tree node, we maintain the neighbor

list after pruning 𝑥NNlist, which we denote it as 𝑥PNN. Then, con-
sider 𝑣𝑇 = (L, L′, R, R′, 𝑥, 𝑥PNN) popped from the queue. We visit

the set ann of Z approximate nearest neighbors and use the first 𝑣𝑐
that (1) is not dominated by any data point in 𝑥PNN, (2) is not in
𝑥PNN and (3) has att(𝑣𝑐 ) ∈ (L, R′). If no such data point exists in

ann, we move on to process the next tuple in the queue.

O3: Merge Rectangles using MBR.We observe that, between the

same two endpoints in the dynamic segment graph, there might be

multiple edges, each with a distinct rectangle label. To reduce the

index size, we propose to merge them using minimum bounding

rectangles (MBRs) [10]. There are different strategies in merging

the rectangles similar to the construction of the R-tree [10]. For

simplicity, this paper proposes to merge all these rectangles to a

single MBR. Specifically, for each edge G[𝑢] [𝑣] from 𝑢 to 𝑣 in the

dynamic segment graph, a single MBR (𝑙, 𝑟 ] × [𝑏, 𝑒) is maintained.

Upon the arrival of a new data point, a new edge from 𝑢 to 𝑣 with

label (𝑙 ′, 𝑟 ′, 𝑣, 𝑏′, 𝑒′) may be created in our algorithm. We merge

the edge with the existing one by updating the MBR in G[𝑢] [𝑣]
as (min(𝑙, 𝑙 ′),max(𝑟, 𝑟 ′)] × [min(𝑏, 𝑏′),max(𝑒, 𝑒′)). When a query

with range [𝑥,𝑦] arrives, we use the subgraph induced by the set

of edges whose MBRs containing [𝑥,𝑦] to process the query.

Optimized Dynamic Segment Graph Algorithm. Algorithm 7

shows the pseudo-code of our optimized algorithm for incremental

dynamic segment graph construction. It revises the unordered in-

sertion process in several aspects. Firstly, it replaces the repetitive

ANNS with a single ANNS that finds a set ann of Z approximate

nearest neighbors of 𝑣𝑡 among all existing data points at the begin-

ning (Line 1). Secondly, in Lines 7-8, instead of adding the neighbor

(L, L′, 𝑣𝑒 , R, R′) to G[𝑣𝑡 ] and (L, L′, 𝑣𝑡 , R, R′) to G[𝑣𝑒 ], it merges the

rectangle (L, L′] × [R, R′) with the MBRs G[𝑣𝑡 ] [𝑣𝑒 ] and G[𝑣𝑒 ] [𝑣𝑡 ].
Thirdly, it removes the dominated neighbors to prevent them from

generating children in the rectangle trees (Lines 11-14). Fourth, in-

stead of adding edges to the dynamic graph only at the leaf nodes “in

batches”, when visiting a tuple (L, L′, R, R′, 𝑥, 𝑥PNN) in the queue

(except for the root), as the last point 𝑣𝑒 in the pruned neighbor list

𝑥PNN must remain after pruning, we lodge edges between 𝑣𝑡 and

𝑣𝑒 (Lines 5-8). Lastly, we stop splitting the rectangles when there

are M neighbors in the pruned neighbor list (Lines 9).

Upon the arrival of a query (𝑞, [𝑥,𝑦], 𝑘), we call Algorithm 1,

2DSegmentANNSearch(G, 𝑞, [𝑥,𝑦], 𝑣1, efsearch). Among the re-

turned neighbors, we report the 𝑘 neighbors closest to 𝑞.
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Algorithm 7: DynamicSegmentGraphInsertion(G, 𝑣𝑡 ,M,Z)
Input: G, 𝑣𝑡 , M are the same as Algorithm 4; Z: an integer.

Output: G: the dynamic segment graph for {𝑣1, 𝑣2, · · · , 𝑣𝑡 }.
ann←2DSegmentANNSearch(G, 𝑣𝑡 , (−∞A, +∞A ) , 𝑣1, Z);1

𝑞𝑢𝑒𝑢𝑒.push(−∞A, att(𝑣𝑡 ), att(𝑣𝑡 ), +∞A, 0, ∅) ;2

while 𝑞𝑢𝑒𝑢𝑒 is not empty do3

(L, L′, R, R′, 𝑥, 𝑥PNN) ← 𝑞𝑢𝑒𝑢𝑒.pop( ) ;4

if 𝑥 ≠ 0 then5

𝑣𝑒 ← the last point in 𝑥NNlist;6

merge (L, L′ ] × [R, R′) with G[𝑣𝑡 ] [𝑣𝑒 ];7

merge (L, L′ ] × [R, R′ ) with G[𝑣𝑒 ] [𝑣𝑡 ];8

If 𝑥 = M then continue;9

while L ≤ L
′
and L

′ ≤ R
′ do10

𝑣𝑐 = null;11

foreach 𝑣 ∈ ann in ascending order of 𝛿 (𝑣, 𝑣𝑡 ) do12

if 𝑣 ∉ 𝑥PNN and att(𝑣) ∈ (L, R′ ) and 𝑣 is not dominated13

by any point in 𝑥PNN then
𝑣𝑐 ← 𝑣;14

if 𝑣𝑐 is not null then15

Lines 1-9 of Algorithm 5, replace 𝑥NNlist with 𝑥PNN;16

else break;17

return G;18

5 EXPERIMENT
Environment.We implement our methods and baselines in C++

and compiled them using GCC 9.2.0 with -O3 optimization. We ran

all our experiments on a server with an Intel(R) Xeon(R) Platinum

8358 CPU@2.60GHz with 64 cores and 256GB of RAM.

Datasets. We used three real-world datasets. (1) YouTube: each
vector is a 1024-dimensional RGB feature vector of a YouTube video.

This dataset came from YouTube8M
3
. The attribute value of each

vector is the release time of the corresponding video. (2)WIT4: each
vector is a 2048-dimensional ResNet-50 embedding of an image from

Wikipedia. We used the size of the image as the attribute value.

(3) DEEP5: each vector is a 96-dimensional feature vector of an

image, which is acquired from the last fully-connected layer of the

GoogLeNet model [4]. Each vector is assigned a random number as

the synthetic attribute value.

Workloads and Baselines.We design three RFANNS workloads

to evaluate our optimized algorithm DSG (Algorithm 7) against 6

baselines. (a) Unordered Insertion (i.e., Problem 1). Only three base-

lines, Prefiltering, Postfiltering, and Acorn support this workload.

Specifically, (1) Prefiltering builds a self-balanced binary search tree
over the attribute values. When a query arrives, it scans all the vec-

tors whose attribute values fall in the query range. (2) Postfiltering
builds a HNSW graph for all the data vectors. To process a query,

it performs ANNS and keeps a returned vector only if its attribute

value is within the query range. It terminates when enough vectors

are collected. (3) Acorn [26] is a graph index for predicate-agnostic

approximate nearest neighbor search. It explores multi-hop neigh-

bors that satisfy the query predicate during greedy search. (b) Or-

dered Insertion (i.e.,Ordered-DRFANNS). (4) Except for the above

3
https://research.google.com/youtube8m/download.html

4
https://github.com/google-research-datasets/wit

5
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search

methods, the only baseline that supports this workload is SeRF [40]
(as introduced in Section 2.2). (c) Static (i.e., Definition 3).WinFilter
and iRange are designed for static datasets. They cannot support

ordered/unordered insertion. Specifically, (5)WinFilter [5] builds
a segment tree based on the attribute values of all data vectors.

A graph-based index is created for each tree node. When a query

arrives, it performs ANNS over a few segments (i.e., nodes) covered

by or overlapping with the query range and merges the results.

(6) iRange [36] also builds a segment tree. However, it merges the

indexes on the tree nodes on the fly and performs ANNS only once.

Query Scenarios. All query vectors were selected uniformly at

random from the vectors that were not in the stream of data vectors.

For each query vector, the left boundary of its query range was

selected from the attribute values of all the inserted vectors uni-

formly at random, while the right boundary was determined by the

query range size. We evaluated small/medium/large (SR/MR/LR)

query range sizes, which contain 1%/4%/16% of inserted vectors,

respectively. In addition, we used the blended query range size (BR)

that includes 𝑥% of the inserted vectors where 𝑥 was drawn from

{1%, 2%, 4%, 8%, 16%, 32%} with equal probability. We do not test

ranges that are too small – Prefiltering could be an efficient solu-

tion. We can build a simple cost model. The cost model calculates

the number of vectors in the query range. If it is smaller than a

threshold, use Prefiltering; otherwise, use indexes.

Parameters. ForDSG, the parameters M and Zwere set to 16/32/32

and 500/1000/1000, respectively, for DEEP/YouTube/WIT, unless
stated otherwise. For SeRF, we employed the maxleap strategy

with M = 16/32/64 for DEEP/YouTube/WIT. Notably, the value of
M in DSG is smaller than that in SeRF on YouTube because the

maxleap strategy in SeRF, designed to reduce graph size, discards

many neighbors. This results in sparse connectivity for small query

ranges, requiring SeRF to use a higher M to achieve a recall above

0.95 in our experiments. Besides, we set K = 100 for all datasets.

Postfiltering used the same M and K as SeRF. Acorn also used the

same M as SeRF, with 𝛾 = 10 and M𝛽 set equal to M for all datasets.

ForWinFilter, we used superpostfilteringwith the parameters 𝛽 = 2,

K = 500, and M = 64. We set efsearch = 80 and the final multiply

factor to 1. For iRange, we set M = 64 and K = 100 forWIT, M = 64

and K = 400 for YouTube, and M = 32 and K = 100 for DEEP.
All baseline parameter settings were based on their papers or the

optimal results from a grid search.

5.1 Comparison with Existing Methods
Exp-1: Unordered Insertion. We compare our method DSG with the

only three baselines that support unordered insertion: Prefiltering,
Postfiltering, and Acorn. We evaluated the query performance on

SR/MR/LR after every 100,000 data vectors were inserted. We tuned

the query parameters of these methods (except for Prefiltering,
whose recall is always 1.0) such that their recall reached 0.99/0.95/0.9

on three datasets for all query scenarios and reported the QPS

(query per second). Note that comparison at recall 0.99 on YouTube
is omitted since all methods except Prefiltering cannot reach 0.99

recall. The results were averaged over 1,000 queries.

Figure 3 shows the results (the 𝑥-axis is the number of data

vectors inserted in the unit of 100K). As expected, the QPS of all

methods decreased almost logarithmically as more data vectors
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Figure 3: Comparison with Existing Methods: Unordered Insertion (evaluated after every 100,000 data vectors inserted).
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Figure 4: Comparison with Existing Methods: Ordered Insertion (evaluated after every 100,000 data vectors inserted).
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Figure 5: Comparison with Existing Methods: Static Workload.

were inserted. Nevertheless, DSG consistently and significantly

outperformed the baselines. For example, onWIT at all recall levels,

DSG achieved 1.6-2.5× the QPS of the best-performing baseline

Postfiltering throughout the process. The advantage was more obvi-

ous for SR, whereDSG achieved 3-15× the QPS of the best baselines
at recall 0.99. This is because Postfiltering andAcorn only workwell
when the query range size is very large. For small query ranges,

both Postfiltering and Acorn struggle to find enough neighbors

that satisfy the range predicate, resulting in a longer search time to

achieve the same recall as DSG. Although Prefiltering’s recall was
always 1.0, its QPS was extremely low. For example, on SR and LR

in WIT, the QPS of DSG was 18× and 87 × that of Prefiltering at

1M vectors.

Exp-2: Ordered Insertion. Next, we compare DSG with SeRF for the

ordered insertion workload. We omit Prefiltering, Postfiltering, and
Acorn hereinafter as they were not competitive with DSG as illus-

trated in Exp-1. Note that the data vectors in the stream arrive in

the ascending order of their attribute values in this workload. The

settings are the same as the unordered insertion workload except

that we require the recall of all methods to achieve at least only 0.9

for SR. This is because SeRF cannot achieve a higher recall with its

“max-leap” heuristic [40], which trades off index cost for reduced

query performance.

Figure 4 shows the results. As we can see, DSG consistently out-

performed SeRF in all query scenarios throughout the process. For

example, on DEEP and SR, with 100,000 vectors inserted, the QPS of

DSG was 3× that of SeRF. Besides, it is worth to mention that DSG
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Table 1: Comparison of Index Cost.

Dataset Metric WinF iRange DSG Acorn SeRF PostF

DEEP
time (s) 27968 1052 1489 947 887 212.6

size (GB) 7.28 3.23 3.08 0.69 0.64 0.53

WIT
time (s) 48471 16253 19449 25349 8532 1624

size (GB) 30.15 13.48 10.65 8.66 8.18 8.20

YouTube
time (s) 71113 6775 31963 30201 6452 1046

size (GB) 18.15 9.48 7.85 5.33 4.15 4.22

is more capable than SeRF as DSG supports unordered insertion

whereas SeRF does not. The reason that DSG outperformed SeRF
is that SeRF used the max leap heuristic which resulted in fewer

edges and consequently poorer query performance.

Exp-3: Static.We compareDSG against iRange, SeRF, andWinFilter
under the static workload. To build the index, iRange andWinFilter
process the entire dataset at once, while SeRF and DSG insert vec-

tors one by one in the order of their attribute values.

Figure 5 shows the recall (0.9 to 1.0) and QPS tradeoffs of all

methods for various query scenarios and datasets. It can be observed

that DSG almost always achieved the best QPS-recall tradeoff. For

example, for YouTube and LR, the QPS of DSG was more than

3× than that of iRange when their recall was around 0.96. This

is because DSG considers all the 𝑂 ( |D|2) attribute ranges, while
iRange andWinFilter covers only up to𝑂 ( |D| log( |D|)) ranges in
the segment tree built on the vectors in D. It is worth to mention

that DSG is more capable than these baselines as DSG supports

dynamic RFANNS whereas iRange andWinFilter do not.

Exp-4: Index Cost.Table 1 shows the index time and index size (mem-

ory footprint) of all methods for 1M vectors. Note that the index cost

of Prefiltering was negligible and was omitted in the table. A single

thread was employed. As we can see, the index sizes ofWinFilter
and iRange were significantly larger than DSG, though iRange had
a lower index time. This is because WinFilter and iRange build

multiple HNSW graphs for each segment in the segment tree, while

DSG builds a lossless compression of many HNSW graphs directly.

SeRF had a lower index cost than them as it used the max-leap

heuristic. Although the index cost of Postfiltering was the lowest,
its query performance (as well as SeRF’s) was extremely low for

small query range sizes. Note our index construction can be acceler-

ated through parallelization (similar to HNSW). Specifically, we can

insert vectors concurrently into our index while using a spin-lock

to manage reverse neighbor updates.

5.2 Sensitivity and Scalability Tests
Exp-5: Optimization Sensitivity Test.We evaluate the effectiveness

of the three optimizations in Section 4 by comparing the following

four combinations𝑂1,𝑂12,𝑂13, and𝑂123 onDEEPwith 10, 000 data

vectors. Here 𝑂𝑥𝑦 means using the combination of optimizations

𝑂𝑥 and 𝑂𝑦 as described in Section 4. The optimization 𝑂1 (one

ANNS for all) is applied universally as the experiments would take

too long to finish without it. Specifically, the index sizes (edges only)

of 𝑂1,𝑂12,𝑂13,𝑂123 were 45700MB, 220MB, 27MB, 27MB, while

the index time was 508s, 8.5s, 288s, 8.1s. As we can see 𝑂3 (merge

rectangles using MBR) significantly reduces the number of edges by

merging edges, while 𝑂2 (removing pruned vectors) significantly

reduces the indexing time. Figure 6 shows the query performance.

As we can see, without 𝑂2 and 𝑂3, the QPS was rather low. This is

because the number of edges is huge in the graph. However, with

only𝑂2, the recall was low as the edges are sparse for small ranges

without edge merging.

Exp-6: Sensitivity Test onM. We tested the sensitivity of DSG on

the parameter of M (from 4 to 32) on three datasets. Figures 7(a),

7(d), and 7(g) show the QPS and recall. In general, as M increases,

recall improves while QPS decreases. However, the effect of M on

both recall and QPS saturates at approximately 16 for WIT and

DEEP, and 32 for YouTube. This occurs because M defines the

maximum degree of nodes, directly influencing recall and QPS.

However, when M is sufficiently large, most nodes do not reach

this limit due to the neighborhood pruning strategy, leading to

a saturation effect in recall and QPS. The index size (edges only)

for DEEP/WIT/YouTube was 6/8/6MB, 14/13/10MB, 20/17/15MB,

21/18/22MB respectively when M was 4, 8, 16, 32, while the index

time was 3/46/29s, 9/85/44s, 21/136/78s, 31/173/140s. The index size

did not increase proportionally with M as M is only the maximum

degree (not the actual degree).

Exp-7: Sensitivity Test on Z. We tested the sensitivity of the param-

eter Z on three datasets by varying it from 400 to 1000. Figures 7(b),

7(e), and 7(h) show the query performance. For MR and LR, 400

was enough for all datasets. For SR (small query ranges), a large

Z helps improve the recall. For example, as shown in Figure 7(e),

on WIT, when Z increased from 400 to 1000, the recall improved

from 0.87 to 0.96 for small query ranges. This is because the neigh-

bors of a node in DSG are all from the Z approximate nearest

neighbors of the node. A large Z helps the nodes in small query

ranges to be connected in DSG, which benefits the recall. The index

time for DEEP/WIT/YouTube was 21/61/31s, 30/86/46s, 40/111/59s,
51/136/71s respectively when Z was 400, 600, 800, 1000, while the

index size (edges only) was 20/12/10MB, 23/13/12MB, 25/15/13M,

27/17/15M. This is because, a large Z adds more edges to the dy-

namic segment graph, making the index cost higher.

Exp-8: Scalability Test.Weused 10K, 100K, 1M, 10Mvectors inDEEP,
and 10K, 100K, 1M vectors in WIT and YouTube to test the scal-

ability of our method DSG. Figures 7(c), 7(f), and 7(i) show the

query performance. For all query scenarios, the QPS only decreased

sublinearly with the increase of the number of data vectors, while

the recall remained very high (above 0.98). The index size scaled

linearly while the index time grew sublinearly until 1M vectors. For

example, inDEEP, the index sizes (edges only) were 0.03GB, 0.33GB,
3.73GB, 47.3GB respectively for 10K, 100K, 1M, 10M vectors, while

the average insertion latencies were 2.8ms, 6.4ms, 8.7ms, 8.7ms.

6 RELATEDWORK
Approximate Nearest Neighbor Search (ANNS). LSH (Locality-

Sensitive Hashing) [1, 7, 12, 13, 21, 27], product quantization [2, 8,

16, 17, 25, 32], and proximity graph [3, 6, 11, 14, 22, 23] are three

classes of indexes for ANNS. Each of them has a rich line of research.

At a high level, LSH provides strong theoretical guarantees but

does not perform well in practice. Product quantization effectively

compresses the high-dimensional vectors into tiny codes that are

suitable for linear scans, though its query accuracy is often not

high enough. Many graph-based methods, such as HNSW [22, 23],

NSG [6], and DiskANN [15], are approximations of the relative

neighborhood graph (RNG), which bears favorable properties but is

expensive to construct [14]. They typically offer low query latency
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Figure 6: Evaluating Optimizations.
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Figure 7: Sensitivity and Scalability Tests.
and high query accuracy, but their index sizes are often large since

the vectors are not compressed.

Attribute-Filtering Approximate Nearest Neighbor Search.
SeRF, iRange, and WinFilter are three recent works for range-

filtering ANNS. SeRF introduces the segment graph, which is a

compression of multiple HNSW graph, one for each possible query

range. For half-bounded query range, it losslessly compresses 𝑛

HNSW graphs using nearly the same index cost as building a sin-

gle HNSW graph for 𝑛 data points [40]. WinFilter proposes to

build a segment tree over the attribute values of all data points [5].

For each segment containing a sufficient number of data points,

a graph-based ANNS index is created. When a query arrives, it

performs ANNS over a few segments overlapping with the query

range and merges the results. Instead of performing multiple ANNS,

iRange proposes to build an index based on the segments over-

lapping with the query range on the fly and search that index

only [36]. FilteredDiskANN [9] is designed to process tag-filtered

ANNS, where the tags of the returned approximate nearest neigh-

bors must contain a few query tags. It proposes to incorporate

the tag information in edge pruning. A node can only dominate

other nodes sharing the same tags with it. Mesh [29] is designed for

spatial-range-constrained ANNS, which retrieves the approximate

k-nearest neighbors within a specified 2D rectangular spatial range

for a given query vector. ACORN is designed for predicate-agnostic

ANNS [26], where the predicate is arbitrary (e.g., regex match, key-

word match, etc). It proposes to explore two-hop neighbors during

the greedy search in case there are not enough one-hop neighbors

satisfying the query predicate. It further compresses the graph by

removing the two-hop neighbors from the neighbor list. A few stud-

ies, including AnalyticDB-V [33] and reconfigurable inverted index

(Rii) [24] propose to design cost models to choose from pre-filtering

and post-filtering for attribute-filter ANNS. Milvus further proposes

to partition the dataset and apply different approaches for different

partitions [30]. NHQ [31] and HQANN [34] propose to fuse the

attribute values into the vectors for attribute-filtering ANNS. ARK-

Graph studies how to compress the approximate k-nearest neighbor

graphs of all ranges [39]. Note that it does not discuss the impact

of HNSW pruning. Zhao et al. [37] design a few optimizations for

attribute-filtering ANNS, including entry point selection, biased

priority queue selection, and multi-direction search.

Dynamic Approxiamte Nearest Neighbor Search. Insertion can
be naturally supported by the HNSW graph as it is constructed by

repeatedly inserting nodes to the graph. FreshDiskAnn [28] designs

update rules for the Vamana graph, a variant of the HNSW graph.

The deletion rule can be generalized to maintain the HNSW graph.

Xu et al. propose online product quantization which incremen-

tally updates the quantization codebook to accommodate incoming

streaming data [35]. Leng et al. study online sketching hashing to

handle new data points in data-dependent hashing-based methods

for approximate nearest neighbor search [18].

7 CONCLUSIONS
Range-filtering approximate nearest neighbor search (RFANNS)
identifies approximate nearest neighbors for a query vector among

data vectors whose attributes fall within a specified range. Existing

RFANNSmethods are designed for static datasets and struggle with

dynamic scenarios where data vectors arrive continuously. To ad-

dress this, we propose the dynamic segment graph, which losslessly

compresses multiple hierarchical navigable small-world (HNSW)

graphs, each corresponding to a query range. This structure sup-

ports efficient insertion of incoming data vectors. We analyze its

time and space complexity and introduce optimizations to reduce

index costs in practice.
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