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ABSTRACT

Traditionally, route recommendation systems focused on minimiz-
ing distance (or time) to travel between two points. However, recent
attention has shifted to other factors beyond mere length. This pa-
per addresses the challenge of ensuring a fair distribution of visits
among network nodes when handling a high volume of point-to-
point path queries. In doing so, we adopt a Rawlsian notion of
individual-level fairness exploiting the power of randomization.
Specifically, we aim to create a probabilistic distribution over paths
that maximizes the minimum probability of any eligible node being
included in the recommended path.

A key idea of our work is the notion of forward paths, i.e., paths
where travelling along any edge decreases the distance to the des-
tination. In unweighted graphs forward paths and shortest paths
coincide, but in weighted graphs forward paths provide a richer set
of alternative routes, involving many more nodes while remaining
close in length to the shortest path. Thus, they offer diversity and
a wider basis for fairness, while maintaining near-optimal path
lengths. We devise an algorithm that extracts a directed acyclic
graph (DAG) containing all the forward paths in the input graph,
with the same computational runtime as solving a single shortest-
path query. This avoids enumerating all possible forward paths,
which can be exponential in the number of nodes. We then design
a flow problem on this DAG to derive the probabilistic distribution
over forward paths with the desired fairness property, solvable in
polynomial time through a sequence of small linear programs.

Our experiments on real-world datasets validate our theoretical
results, demonstrating that our technique provides individual node
satisfaction while maintaining near-optimal path lengths. Moreover,
our experiments show that our method can handle networks with
millions of nodes and edges on a commodity laptop, and scales
better than the baselines when there is a large volume of path
queries for the same source and destination pair.
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1 INTRODUCTION

Route recommendation systems have become essential tools in
everyday life for navigation, deliveries, and trip planning [7, 8,
28, 35, 37, 45]. In every smartphone or personal device, apps such
as Google Maps help users find the most effective route from a
source to a destination by driving, public transportation, or walking.
Such point-to-point queries can be solved by classic shortest-path
algorithms [2, 14, 31, 40, 44] by converting the physical space into
a graph structure, where nodes represent locations, edges represent
road segments, and the edge weights can be used to represent travel
costs in terms of time, distance, or other criteria.

Modern route recommendation systems are able to take into
consideration other factors beyond the physical space (e.g., traffic
status, delays in public transportation, varying user preferences,
weather, etc.), thus recommending routes beyond the mere utilitar-
ian value of shortest paths. Researchers have also studied methods
to recommend routes that maximize human factors such as enjoy-
ment, perceived safety, and overall positive experience of users,
while minimizing the risk of crime, accidents, or pollution [33, 39].
While most of this research focuses on the system’s benefit for the
users, scant attention has been paid to ensuring fair exposure of the
items forming the recommendation, i.e., nodes or points-of-interest
(POIs), which may or may not be part of the recommended route.
In this paper we tackle a novel problem thus far overlooked in the
literature: how to guarantee a fair distribution of visits among the
nodes of the network, when providing route recommendations.

Consider the following motivating example:

ExAMPLE 1 (NODE INDIVIDUAL FAIRNESS.). The tourism office of
the municipality of Florence develops an app to help tourists navigate
the city center and move between the key attractions and historic
landmarks. Shortly after the release of the app, an ice-cream parlor,
located in a strategic position for tourists flowing between the Central
Train Station and the Uffizi Gallery, suffers a sudden drop in sales.
Upon investigation, they realize that all tourists moving between the
two landmarks were being routed through the same shortest path,
greatly reducing the visibility of the ice-cream parlor, which was
located along a slightly different path. At the same time, a newly
opened ice-cream parlor located on the recommended shortest path
experiences a surge in sales.

The notion of item fairness, which concerns whether the recom-
mendation allocates exposure to items fairly, is well established
in the literature on fairness in recommender systems [5, 12, 42].
However, it has received very little attention in the context of route
recommendations. Some previous work considered a group-level
notion of fairness in point-to-point shortest path queries on vertex-
colored graphs, requiring that paths pass through a balanced number
of nodes of different colors [3, 4]. The problem we introduce in this
paper, however, departs significantly from previous formulations,
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as we focus on individual fairness for the nodes, requiring that they
are equitably covered by the recommendations. To the best of our
knowledge, we are the first to address this requirement.

Related to our proposal is the notion of diversity of the recom-
mendation. In fact, it is well known that improvements in the items’
individual fairness are likely to increase diversity [42], due to the
larger number of different items covered by some recommendations
[27]. However, the converse need not hold: increasing diversity does
not necessarily improve item fairness [42]. Although providing a
set of diverse paths also enlarges the set of nodes covered by the
recommended routes, as our experiments in Section 5 prove, this
does not guarantee that the nodes in the graph are equitably covered.

Forward paths. When addressing diversity along with fairness, it
is often necessary to relax the requirement that the route be the
shortest, as in weighted networks - like real-world road networks -
the point-to-point shortest path is typically unique. This relaxation
is usually achieved by introducing a parameter to control the desired
path-length deviation from the shortest path [23, 25]. However, in
this paper, we take a different approach.

Our first contribution is the concept of forward paths. Intuitively,
each step along a forward path brings you closer to your destination.
This aligns well with user preferences in real-world applications, as
travelers generally favor routes that consistently progress toward
their destination without backtracking or moving in circles. In
unweighted graphs, forward paths coincide with shortest paths,
while, in weighted graphs, forward paths visit a wider variety of
nodes, making them a suitable foundation for fairness. Figure 1(a)
provides a toy example depicting the shortest path, a forward path
that is not a shortest path, and another path that is neither.

Although instances can be constructed where the ratio between
forward path length and shortest path length may be arbitrar-
ily large, we show empirically that in many real-world weighted
graphs, forward paths are very close in length to the shortest path.!
For example, in the network of drivable streets of Piedmont (Cali-
fornia, USA) shown in Figure 1(b), for randomly sampled source-
destination pair of nodes, there are on average 634 different forward
paths while the shortest path is almost always unique. Forward
paths visit 81% more nodes on average than the shortest paths, and
the longest forward path is only 11% longer than the shortest path.

Based on these observations, we adopt forward paths as our
notion of near-shortest paths, removing the need for the parameter
to control path-length deviation from the shortest path.

Maxmin distributional fairness. The second ingredient of our
solution is the fairness criterion we employ. In particular, given our
focus on fairness from the individual perspective of the nodes of
the network, we adopt the notion of maxmin distributional fairness
[17, 18, 26, 32, 36]. Such a paradigm exploits the power of random-
ization to provide individual ex-ante fairness and is inspired by
Rawls’s theory of justice [34], which advocates arranging social
and financial inequalities to the benefit of the worst-off.

In the context of route recommendation, this translates into
the goal of producing a probabilistic distribution over valid routes,
such that it is impossible to improve the probability of any suitable
location being visited, without decreasing it for some other location
which already has a lower probability. In our context, the routes

1See Table 1 in Section 3 for empirical results on real-world road networks.
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Figure 1: (a) Toy example: in red, a forward path that is not
the shortest path (blue). Moving from the source () to (D)
reduces the distance to the destination (C) from 8 to 5, sat-
isfying the definition of forward path. In black, a path that
is not forward: moving from (A) to (E) increases the distance
to © from 8 to 8.5. (b) Drivable street network of Piedmont
(California). For a random pair of source-destination nodes,
the shortest path is shown in blue, while the union of the
forward paths is highlighted in red. In this dataset, the short-
est path between random pairs is almost always unique. By
contrast, on average there are 634 different forward paths, vis-
iting 81% more nodes than the shortest path, with the longest
forward path being only 11% longer than the shortest path.

that we consider valid are forward paths, and the nodes that are
subject to the fairness requirement are precisely the nodes that
belong to at least one forward path.

Wrapping up, the technical problem we address in this paper
(formally defined as Problem 1 in Section 4) is the following: given a
network, a source node s, a destination node t, produce a probabilistic
distribution over forward paths from s to t that is maxmin-fair for all
the eligible nodes (i.e., those that belong to at least one forward path).

EXAMPLE 2 (MAXMIN-FAIR DISTRIBUTION OVER FORWARD PATHS.).
In Figure 2 we use the setting of Example 1 to showcase the input
and output of the problem we address. In Figure 2(a) we show a
portion of the real road network of the city center of Florence. Our
input is a source-destination pair of nodes, marked in yellow: node 1
(Central Train Station) and node 46 (Uffizi Gallery). The union of all
forward paths is depicted in red. A maxmin-fair distribution assigns
probabilities to the possible paths. In Figure 2(b) we report the output,
a maxmin-fair distribution over forward paths: a list of paths from
the source to the destination, each associated to its probability of being
recommended, satisfying the desired fairness property.

Practical implications and deployment. Our proposal embraces
randomization to produce a probability distribution over forward
paths that guarantees the maximum possible visibility to all eligible
nodes. This distributional fairness approach is very well suited to
contexts in which the same query can be served many times for
different users of a platform. Consider again Example 1, where tens
of thousands of path requests may be received every day for top
landmarks, such as Florence Central Station and the Uffizi Gallery.
Having precomputed a maxmin-fair distribution, such as the one
in Figure 2(b), it becomes easy to serve all the requests simply by
sampling a route recommendation for any request independently,
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Figure 2: (a) A portion of the Florence city-center road network. The input to our problem, along with the map, is a source-
destination pair: here the user needs to go from the Central Train Station (node 1) to the Uffizi Gallery (node 46). The first
step of our solution is constructing the DAG of forward paths (Algorithm 1 in Section 3), shown in red. The DAG is fed into
Algorithm 2 (Section 4.1), which produces a probability distribution over forward paths (b) with the required fairness property
(Problem 1, Section 4). Finally, the system samples one path according to the computed probabilities and suggests it to the user.

with the guarantee of fairness in the spirit of amortized fairness
over multiple trials [5, 18, 38].

In contrast, the baseline methods from the literature on diverse
path recommendations face significant challenges when comput-
ing high volumes of different alternative paths. We will show in
Section 5 that, as the number of paths requested for a point-to-
point query increases, our method becomes significantly faster
than the baseline approaches. Additionally, it is worth noting that
each source-destination pair defines its own problem instance, in-
dependent of other instances. Consequently, our proposal is highly
parallelizable, since computations for different pairs can proceed
concurrently. Moreover, the maxmin-fair distribution for a source-
target pair needs only be computed once; after storing it, the only
computation needed at query time is sampling from the distribution.

Technical challenges and roadmap. A first technical difficulty
towards developing our solution is the need to enumerate the set of
all possible forward paths, which, in the worst case, is exponential
in the number of nodes. We show that it is possible to compute,
with the same asymptotic computational runtime as solving a single
shortest-path query, the Directed Acyclic Graph (DAG) representing
all the forward paths from a given source to a given target, avoiding
the need to explicitly enumerate the set of all possible forward paths.

The main technical challenge is to ensure a maxmin-fair distri-
bution of forward paths. While the work of [18] proposes a general
framework for a wide class of combinatorial problems based on
solving numerous linear programs (LPs), applying it to our problem
presents significant obstacles to overcome.

Firstly, such a method requires the existence of a separation
oracle [21], which is a method to detect quickly a violated constraint
in an exponentially large set of constraints. While this oracle can
be shown to exist for exact shortest paths, it is unlikely to exist for
near-shortest paths (see Section 4 for details).
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Secondly, the general approach in [18] is purely theoretical, re-
lying on solving an exponentially large LP via the ellipsoid algo-
rithm [21], which is the only known algorithm to solve LPs in
polynomial time using separation oracles. There is no practical
implementation of the ellipsoid algorithm: all real-world LP solvers
need all constraints provided upfront or added lazily (with no guar-
antee of polynomial-time efficiency in the latter case). We propose a
compact LP formulation of maxmin-fair forward path distributions
with polynomially many constraints and variables. This allows us
to use any LP solver, yielding a practically efficient algorithm.

In summary, the contributions of this paper are as follows:

e We introduce the novel problem of individual fairness for the
nodes of the network in point-to-point path queries, following
the paradigm of maxmin distributional fairness.

e We introduce the concept of forward paths and show that, in
weighted graphs, they provide a much wider set of alternative
paths than shortest paths, without being much longer. We thus
adopt them as our notion of near-shortest paths.

e We provide an algorithm to compute a Directed Acyclic Graph
(DAG) representing all forward paths in @(|E| +|V|log |V]|) time,
avoiding explicit enumeration of the set of all possible forward
paths (of which there can be exponentially many).

e We design a flow problem which allows us to derive the desired
maxmin-fair probabilistic distribution over forward paths. It can
be solved in polynomial time by solving a sequence of small
linear programs.

e We test our method on several real-world road networks. The
experiments confirm our theoretical results showing that our
method provides a more equitable distribution of visits among
nodes than the baselines. We also demonstrate that our method
can handle graphs with millions of edges on a commodity laptop.



The rest of the paper is organized as follows. Section 2 presents
a brief survey of the related literature. Section 3 introduces the
concept of forward paths and the algorithm to compute the DAG
containing all forward paths. Section 4 provides the formal problem
statement and our method for obtaining a maxmin-fair distribution
on forward paths. Section 5 describes the experiments on real-world
datasets. Finally, Section 6 discusses limitations and future work.

2 RELATED WORK

As clarified in the previous section, our work is the first to address
the problem of guaranteeing an equitable distribution of visits
among the nodes of the network when handling a high volume of
route recommendations. On the one hand, our contribution can be
placed within the wide literature on route recommendation systems
(see, e.g., [45] for a recent survey). On the other hand, it naturally
belongs in the literature about fairness in recommender systems,
especially the part focusing on item fairness, i.e., the equitable
allocation of exposure to the items being recommended (see, e.g.,
[12, 42] for recent surveys). However, neither of these two bodies
of research offers closely related methods to be used as baselines
in our evaluation. We already mentioned the work of Bentert et al.
[3, 4] which, however, deals with a completely different notion of
group fairness that is not relevant in our context. Hence, in order
to identify suitable methods for comparison, we turn our attention
to the literature about diversity in point-to-point path queries.

Diversity in point-to-point path queries. Chondrogiannis et al.
[9] aim to find a set of k paths that are sufficiently dissimilar and as
short as possible. Similarly, Luo et al. [30] study the top-k shortest
paths under a maximum similarity threshold, using an edge devia-
tion/concatenation method to avoid expensive graph searches.

Hécker et al. [23] limit the maximum path length to identify the
k most diverse paths within the length constraint. Abraham et al.
[1] explore alternative routes through single-via paths, formed by
concatenating shortest paths through an intermediate vertex.

Hanaka et al. [25] focus on maximizing the sum of pairwise Ham-
ming distances among the k shortest paths, but this is unsuitable for
real-world weighted graphs due to the uniqueness of the shortest
path. To address the challenge of finding diverse solutions, Hanaka
et al. [24] present a framework for approximation algorithms in
combinatorial problems.

Routing scenarios with precomputed roadmaps that restrict
routes to avoid newly introduced obstacles are studied by Voss et al.
[41]. Fahmin et al. [15] use precomputed hub labels to calculate
shortest paths and prune already-visited hubs for alternative paths.
Xie et al. [43] focus on the space complexity of storing alternative
paths excluding specific vertices or edges.

While this literature does not address fairness, the diverse set of
paths produced ensures that various nodes are visited. In our ex-
periments (Section 5), we use the methods by Chondrogiannis et al.
[9] and the DKSP algorithm from Luo et al. [30] as baselines. Addi-
tionally, we compare against Yen’s algorithm [44], which computes
the k shortest paths without diversity constraints.

Maxmin distributional fairness. The notion of fairness consid-
ered in this work is the maxmin distributional fairness originally
defined by Garcia-Soriano and Bonchi [17] in the context of bipar-
tite matching, and later extended to different contexts: individual
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fairness in ranking under group-fairness constraints by Garcia-
Soriano and Bonchi [18], individual fairness in bipartite matching
under group-fairness constraints by Panda et al. [32], max-cut and
other combinatorial optimization problems by Salem et al. [36] and
other graph-theoretic optimization problems Hojny et al. [26].

3 FORWARD PATHS

We are given a simple, directed, weighted graph G = (V, E, £), where
V is a finite set of nodes, E is a set of directed edges (ordered pairs
of nodes, (4,0) : u,v € V),and ¢ : E — R>%isa positive weight
function associating each edge e = (u,v) € E with its length ¢(e).
A path in a simple directed graph is a finite sequence of distinct
nodes P = (vy,...,0;) such that Vi € [k — 1], (v;,0;41) € E. The

length of P is given by
k-1
£(P) = ) €(0s,0i41)-
i=1

Given a pair of distinct nodes s,¢t € V, an s-t-path is a path P =
(v1, - ..,0;) such that v; = s and v = t. We denote the set of s-t-
paths by Ps ;. Assuming P ; # 0, a shortest s-t-path is any s-¢-path
S such that
S € argmin¢(P).
PePs,

The shortest-path distance between any two distinct nodes s, t € V,
s # tis d(s,t) = minpep,, £(P) if the minimum exists and +oco
otherwise (i.e., if Ps; = 0). When s = t, we define d(s,¢) = 0.

In the remainder of the paper, we might omit the s-¢- prefix when
the start and end point of the path are clear from the context.

In a directed weighted graph, it is quite common for many s-¢
pairs to have a unique shortest path, which does not provide a
good basis for fairness. Next, to address the uniqueness issue of the
shortest path in weighted graphs, we define a novel type of path
called forward path that provides a much larger set of alternatives,
at the price of a slight increase in path length.

DEFINITION 1 (s-T-FORWARD PATH). An s-t-path P = (v;
Sy..., 0 =t) in a graph G is called forward if fori = 1, ...k — 1,

d(vis1,t) < d(v;,t),

where d represents the shortest path distance function in G. We will
write FPs ; for set of forward paths from s to t.

Intuitively, the distance to the target decreases along each step
in a forward path. Clearly, any shortest path is a forward path:

ProposITION 1. Let G = (V,E,{) be a directed weighted graph.
Any shortest s-t-path in G is a forward path.

ProoF. Let S = (v = s,...,0% t) be an s-t-shortest path
and take any edge (v;,vi41) in S. Then d(v;,t) = d(vit1,t) +
£(vj,vi+1), because (v;,vi+1) belongs to a shortest path. Then,
since £(v;,vi41) > 0, d(vit1,t) < d(vj,t). This holds for any
i=1,...,k—1, hence S satisfies the forward path condition. O

In unweighted graphs, i.e., graphs in which the weights are all
one (i.e, £ = 1), it is more common to have various alternative short-
est paths. In this case, shortest paths and forward paths coincide:



Table 1: The table contains data from the road networks of five cities extracted from OpenStreetMap and two datasets from the
9th DIMACS Implementation Challenge — Shortest Paths, namely the Florida and the Eastern USA datasets. Nodes represent
locations and points of interest with a geographic position, stored as latitude-longitude pairs. Edges represent connections
between these locations. The table reports, for 100 source-target pairs sampled uniformly at random, the average shortest
path (SP), the average length of the longest forward path (LFP), and the ratio of the LFP length to the SP length. The ratio is
computed per pair and averaged across all pairs. The remaining three columns show the average number of nodes visited by
SP, FP (i.e., the node count of the DAG), and the mean and standard deviation of their ratio. Overall, we observe that with a
minimal increase in the worst-case forward path length, the number of locations visited increases significantly.

Dataset #nodes  #edges SPlength LFPlength LFP/SPlength SPnodes FPnodes FP/SP nodes
Piedmont, California 352 937 1860.07 2061.58 1.11+0.11 19.91 39.48 1.81 £ 0.66
Essaouira, Morocco 1277 3429 3650.36 3967.11 1.13£0.14 37.20 107.03 2.52+1.33
Florence, Italy 6096 11737 6909.52 7287.29 1.05 £ 0.05 75.10 121.27 1.58 £ 0.65
Buenos Aires, Argentina 17 890 37474 9065.83 9642.57 1.06 £ 0.04 89.10 387.50 4.00+2.12
Kyoto, Japan 44 828 118 087 8501.42 9243.75 1.09 £ 0.06 117.90 536.77 4.16 £2.21
Florida, USA 1070376 2687902 4.12- 10° 4.22 - 10° 1.02 £ 0.02 1194.27 2720.63 2.33+£0.95
Eastern USA 3598623 8708058 4.39-10° 4.57 - 106 1.04 £ 0.02 1924.43 7046.97 3.28 £1.45

PROPOSITION 2. Let G = (V,E, ¥) be a directed unweighted (i.e.,
¢ = 1) graph. An s-t-path P = (v1,...,v) is a shortest path if and
only if it is a forward path.

Proor. The “only if” part is a special case of Proposition 1.
Conversely, let F = (v; = s,...,0p = t) be a forward path. Its
length is £(F) = k — 1. From the forward path condition, we have
d(vit1,t) < d(v;,t), and by the triangle inequality and the exis-
tence of the edge (vj, vi+1), we conclude that d(v;, t) < d(vi41,t)+1.
Hence d(vj,t) > d(vi4+1,t) = d(vj, t)—1. Since d can assume only in-
teger values, we must in fact have d(v;41, t) = d(v;, t) — 1. It follows
thatd(s,t) =d(vg, t) +1=...=d(vp_1,t) +k—-2=k -1 =¢{(F),
so F is a shortest path. O

Forward paths not only have the desirable property of getting
closer to the target after traversing any edge, but also offer the flexi-
bility of allowing for various alternatives and visiting a wider set of
nodes, while remaining competitive in terms of length compared to
the shortest path. Table 1 reports statistics on seven real-world road
networks, confirming that forward paths, with a minimal increase
in length, allow us to visit a significantly larger number of locations.
We thus adopt them as our notion of near-shortest paths.

Constructing the DAG of all forward paths. In Section 4, we
will discuss how to create a maxmin-fair distribution over forward
paths. A preliminary step in our solution is to compute the Directed
Acyclic Graph (DAG) representing all the forward paths from a
given source to a given target, avoiding the need to explicitly enu-
merate the set of all possible forward paths, which, in the worst
case, is exponential in the number of nodes of the DAG.? This is
done by Algorithm 1, presented next.

DAG-FP takes as input a directed graph, a source, and a target
node. It outputs a DAG in which any path from s to ¢ is an s, t-
forward path. The algorithm proceeds by computing a list contain-
ing the distance from the source to all the nodes, and the distance
from any node to the target. These distances can be computed by
Dijkstra’s algorithm [14], once on the input graph and once more

?In fact, the longest forward path lengths reported in Table 1 have been computed by
dynamic programming on this DAG.

Algorithm 1 DAG-FP: Creates a DAG containing the Forward
Paths from s to ¢

Input: Graph G = (V,E, ¢), source node s, target node ¢
Output: DAG with Forward Paths

1: dist_from_s « distance(G,s, V)

2: dist_to_t « distance(G, V,t)
: reachable_from_s « {i | dist_from_s[i] < co}
: reachable_to_t « {i | dist_to_t[i] < oo}
: reachable < reachable_from_s N reachable_to_t
G’ « G.induced_subgraph(reachable)
: for all (4,0) in G’.edges do
if dist_to_t[u] < dist_to_t[v] then

remove (u,v) from G’

10: end if
11: end for
12: return G’

VO N U e W

on the reversed graph. Then, it removes any node v for which there
does not exist an s-t-path that also visits v. The induced subgraph
containing all the remaining nodes and the edges among them is
then considered, and all the edges for which the forward path prop-
erty is not respected are removed. The resulting graph is returned.

ProprosITION 3. Algorithm 1 produces a DAG whose edge set is
exactly the edges in G in some forward path froms tot.

Proor. The DAG returned contains exactly those edges (u,v)
where (a) d(s,u) < oo, (b) d(v,t) < oo, and (c) d(u,t) > d(v,1).
Indeed, edges where (a) or (b) fail are removed in line 6, and edges
where (c) fails are removed in line 9; all other edges are kept. We
need to show that an edge (u,v) belongs to some forward path if
and only if these three conditions hold. The “only if” part follows
directly from the definition of forward path. For the “if” part, assume
that the three conditions hold. Then there is a path in G from s to u
and another one from ¢ to v; in particular, G has a shortest (hence
forward) path from s to u and another shortest (hence forward)
path from ¢ to v. By pasting these two paths together with the edge
(u,v) we obtain a forward path from s to ¢ traversing (u, v), because
d(u,t) > d(v,t).
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Finally, observe that the resulting graph is acyclic since the
distance to ¢ is finite and strictly decreasing along any path. O

Furthermore, the algorithm has the same asymptotic complexity
as computing the distance from a source to all the nodes, which
can be done with Dijkstra’s algorithm. The following holds:

ProPOSITION 4. Algorithm 1 has computational complexity
O(|E[ + [V]log [V]).

Proor. Line 1 is computed with Dijkstra’s algorithm, and also
line 2, after reversing the direction of all the edges in the graph,
can be computed with Dijkstra’s algorithm starting from the target.
Lines 3 to 11 have time complexity ©(|E|). Dijkstra’s algorithm
with a Fibonacci heap priority queue has a worst-case running time
of ©(|E| + |[V|log|V]) [16], and hence also does Algorithm 1. O

Given the ability to efficiently compute the DAG that contains
all the forward paths, one might be tempted to randomly sample
paths from it. However, such random selection would lack fairness
guarantees: one could end up visiting certain nodes too often, while
ignoring others for no good reason, causing inequalities in terms of
nodes’ exposure. To avoid such inequalities, our goal is to produce
a distribution on the forward paths that is individually fair to the
nodes. We formalize this notion in the next section.

4 MAXMIN-FAIR FORWARD PATHS

Consider a general instance 7~ of our path search problem, de-
fined by a directed weighted graph G = (V,E,¢) and a pair of
terminal nodes s, ¢t € V, which in turn implicitly defines the set
of feasible solutions FPs; (i.e., the set of forward paths from s
to t), which is finite and assumed to be non-empty. Let us as-
sociate with each path P € FPs; and each node v € V a bi-
nary satisfaction A(P,v) € {0,1} such that A(P,v) = 1ifo € P
and 0 otherwise. Consider a randomized algorithm A that, for
any given search problem 77, always halts and selects a solution
path A(7) € FPs;. Then A induces a probability distribution
D over FPs; by Pp[P] = P[A(T) = P], VP € FPs;. Let us de-
note the expected satisfaction of each node u € V under D by
D[u] = EP~D [A(P, u)]

ExAMPLE 3 (EXPECTED SATISFACTION.). Consider again the
maxmin-fair distribution of Figure 2(b). The expected satisfaction
of all nodes (except the source and destination, which are trivially
always satisfied) are reported in Table 2. This is simply the probability
of being part of a forward path sampled from the distribution.

It is worth highlighting that a distribution being fair does not
require providing equal satisfaction probability to all eligible nodes.
In fact, there are nodes that are better positioned to be part of a
forward path from the given source to the given destination. Their
“strategic” position should be naturally rewarded by a fair distribu-
tion, rather than penalized. Intuitively, a maxmin-fair distribution
provides, on any given input instance, the strongest guarantee pos-
sible for all nodes, in terms of expected satisfaction [17]. In other
words, a distribution F over FP; ; is maxmin-fair for a set of nodes
U c V ifit is impossible to improve the expected satisfaction of
any node in U without decreasing it for some other node which is
no better off. This is formalized in the following definition.
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Table 2: Expected satisfaction of the nodes in Figure 2(a)
under the probability distribution in Figure 2(b). Source and
destination nodes are omitted, as they are always satisfied.

u [Dlul® ]| [w Dl @] [@ Dl @] [u [Dul®
4 66.7 25 33.3 48 22.2 22 16.7
7 66.7 30 33.3 49 22.2 23 16.7
3 58.3 35 33.3 5 16.7 24 16.7
43 55.6 39 33.3 8 16.7 26 16.7
10 50.0 15 25.0 9 16.7 27 16.7
40 44.4 18 25.0 11 16.7 28 16.7
45 44.4 36 22.2 12 16.7 29 16.7
47 444 37 22.2 14 16.7 31 16.7
2 41.7 38 22.2 16 16.7 32 16.7
6 41.7 41 22.2 17 16.7 33 16.7
13 33.3 42 22.2 19 16.7 34 16.7
20 33.3 44 22.2 21 16.7 - -

DEFINITION 2. A distribution F over FPs ; is maxmin-fair for
U C V if for all distributions D over FPs; and allu € U,

D[u] > Flu] = Jv € U |D[v] < F[v] < Flu].

With these concepts in place, we can now formally state our
problem as follows:

ProBLEM 1. Given a graph G = (V,E,¢) and s,t € V, our
problem consists of finding a maxmin-fair distribution F over
FP; ; for the set U = {u € V | 3P € FP; such that u € P}.

There is some flexibility in choosing the graph G. Practical ap-
plications may require including only a subset of “valuable” nodes
(such as points of interest, major intersections, or important land-
marks) for fairness consideration. In these cases, a weighted graph
based on the shortest distances between the valuable nodes can be
constructed, which can serve as the input to our problem.

In the remainder of this section, we present a solution to Prob-
lem 1 by a carefully crafted linear programming algorithm, which
avoids the need to compute the set of all possible forward paths
(which can be exponential in the number of nodes in the DAG).

4.1 Algorithm

In [18], the authors introduce a general framework to solve maxmin-
fair distributional problems. The problem defined above specializes
their framework to forward paths, and is thus amenable to their
techniques provided that one shows the existence of a certain sepa-
ration oracle [21]. Specifically, given an assignment of non-negative
weights to users, the separation oracle needs to find a feasible so-
lution of maximum weight. The method of [18] applies whenever
such a separation oracle admits an efficient implementation. When
the set of feasible solutions is large (as in our setting), avoiding
explicit enumeration is paramount.

We remark that the choice of forward paths in Problem 1 has
the additional benefit of making the separation oracle tractable.
Indeed, if we were to define the feasible set S as the set of simple
paths from s to t, the separation oracle would ask for a simple
path from s to ¢ of maximum node weight. As the Hamiltonian
path problem can be reduced to this question, it follows that the
separation oracle problem for simple s, t-paths is NP-hard. However,
when the graph is a DAG, there is a linear-time algorithm to find
a simple path of maximum node weight: it suffices to process the



Table 3: The LP (1) encapsulating our problem and its dual (2).

maximize A€ R subject to
Z fu,t =1
ul(ut)€E
2, “ha=-1
ul(s,u)€E
Suo— Z fow=0 Vo#st
u|(u,0)€E w|(o,w)€E
p- Z o <0 VYog¢KkK
u|(u,0)€E
- Z fup < —ay YveK
u|(u,0)€E

fuo =0 V(uov)€E

(1)
minimize d; —ds — Z aywy  subject to
veK

dy—dy—wy >0 V(uov)€E

Z wy =1 (2

vgK

wy >0 VYoeV

dyeR YveV

vertices in topological order and apply dynamic programming (DP)
(Section 24.2 of [11]). As we have shown in Section 3 that the set of
all forward paths forms a DAG, it follows that the separation oracle
for forward paths is polynomial-time solvable.

Using the DP-based separation oracle for the forward path DAG,
one could theoretically apply the techniques from [18] to solve
Problem 1. Unfortunately, the general algorithm proposed therein,
while efficient in theory, requires the use of the impractical ellipsoid
algorithm to solve exponential-sized linear programs in polynomial
time. The ellipsoid method is the only known theoretically efficient
method to solve large LPs via separation oracles, but it suffers
from numerical stability issues and its performance is far from
being competitive with the simplex or interior point methods used
in established solvers. In fact, [18] poses as an open problem the
development of faster algorithms for concrete problems.

We address this challenge by taking a different approach. By in-
terpreting the probabilities of traversing the edges in a maxmin-fair
solution as flows in a network, in the following we provide a com-
pact Linear Programming (LP) formulation for maxmin-fair forward
paths with only polynomially many constraints, thus bypassing the
need of separation oracles and the ellipsoid algorithm.

Throughout our discussion, we use E to represent the set of edges
in the forward path DAG for a certain fixed pair s, ¢ of source-target
vertices. To exclude trivial cases, we assume that the set U — {s, ¢}
is non-empty. Let us introduce a flow variable f, , for each directed
edge (u,v) € E denoting the (unconditional) probability that the
edge u — v will be traversed in a path drawn from the solution.
We interpret the search for a maxmin-fair distribution as a flow
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problem in G, where the probabilities “flow” from one vertex to
its successors in the DAG. As every path starts at the source and
ends at the target (and does not stall at any intermediate vertex),
we need to ensure that (a) the incoming flow for the target and
the outgoing flow from the source is 1; (b) flow conservation holds,
i.e., the incoming flow equals the outgoing flow for every vertex
other than s and ¢; and (c) the minimum incoming flow of a vertex
is maximized (as required by the maxmin-fairness condition). All
of these are expressible as linear constraints in the flow variables.
However, this does not quite suffice, since maxmin-fairness yields
the lexicographically largest vector of sorted satisfaction proba-
bilities [17]. To achieve this ordering, we need to solve several
optimization problems. In order to do so, let @, denote the satis-
faction probability of v in the maxmin-fair distribution. We will
obtain these values step by step, assuming that the values of «; are
known for an (initially empty) subset K C V and augmenting K in
each iteration. Thus, we wish to ensure that all members of K are
visited with probabilities indicated by @, while we maximize the
minimum visiting probability among the rest. Our problem is thus
encapsulated by LP (1) in Table 3 or, equivalently, its dual (2).

LEMMA 4.1. LetK C V and a € RK. Any distribution of forward
paths from s to t satisfying the two conditions below gives rise to a
solution (A, {fu,v} (u,0)eE) to LP (1):

(a) The probability of visiting each vertex v € K is at least ay;
(b) The probability of visiting each vertexv ¢ K is at least A.

Conversely, from any solution (4, {fu,o} (u,0)eg) to LP (1), one may
construct a distribution of forward paths from s to t such that (a) and
(b) above hold.

Proor. Consider a distribution D of forward paths
from s to t satisfying (a) and (b). Define f,,
Prpepledge (v,0) is traversedin p] > 0. Notice that when
drawing a path from D, the probability of entering vertex
0 # 518 Xy|(u0)eE fuo, and the probability of exiting v # t is
2 w|(0,w) eE Jo,w- Hence these two must be equal for every o # s, .
Also, since the source and the target are visited with probability
1, the constraints 3,|(y,r)eE fut = 1and Y| (su)ek fsu = 1 hold.
Finally, we also have 3| (4,0)eE fu,0 = A when o ¢ K by condition
(b) and Xy |(wo)eE fuv = @ by (a). Hence all constraints are
satisfied.

Conversely, take any solution (4, {fu,0} (4,0)c£) to LP (1). For
each (u,0) € E, let

ifu=s

ifu#s ®)

.
Zw|(w,u;EEﬂv,u 20
(We leave p, , undefined when the denominator is zero.) Note
that Xy (uo)eEPuo = 1 for all u # t because of the con-
straint ) (w,0)eE fu.o = Zw|(v,w)eE Jo,w- S0 consider a random
walk starting at s and stopping at t with transition probabilities
{Pu,0} (u,0)cE> and define e(v) = Xy (u,0)eE fuo if v # s and 1 oth-
erwise.

We show that Pr[v is visited] = e(v). The proof proceeds by
induction on the maximum length q(v) of a path from s to v in
the DAG G. The base case is when q(v) = 0 (i.e., v = s), and the
property holds in this case because the path starts at s and e(v) = 1.
For the inductive step, consider a vertex v and suppose that the



Algorithm 2 MMFP - MaxMin Fair Forward Paths

Input: DAG G, source node s, target node ¢
Output: Encoding of a maxmin-fair distribution for s, ¢-forward
paths
1: K10
2: while K # V do
3 Solve LP (1) and its dual LP (2);
let 1, {f;; »}, {wy} be the optimum values
K «—{o¢K|w)>0}
K«— KUK’
for allv € K’ do
ay — A*
end for
end while
Return the flow values f;,

9:
10:
11:

claim holds for all u with q(u) < q(v). Observing that (u,0) € E
implies q(u) < q(v), we have

Pr[o is visited] = Pup - Prlu is visited] =

u|(u,0)€E
fav o _
s fW= DL fuo=e)

ul(u,v)€E ul(u,v)€E

This establishes our claim.

Now observe that the walk must end (because the graph is finite
and acyclic), but cannot end anywhere else than ¢ (as for any vertex
u # t visited with non-zero probability e(u) > 0, the probability
that the walk exits u is 34| (4,0)eE Puo = 1). In particular ¢ is visited
with probability one3. Moreover, properties (a) and (b) follow from
the constraints 3, (y,0)eE fuw = A when o ¢ K by condition (b)
and 3| (u,0)eE fuo = o when v € K by condition (a). ]

Algorithm 2 outlines the complete procedure. It takes as input the
DAG, constructed with Algorithm 1, as well as the source and target
nodes, and outputs the flow values. The algorithm goes through
the following steps. We maintain a set K containing the bottom
nodes for which we already ensured a maxmin-fair probabilistic
satisfaction; it is initialized with the empty set. Then, the algorithm
iteratively performs the following steps until K contains all the
nodes. First, LP (1) and its dual LP (2) are solved. Then K’, a set
containing all the nodes with dual weights greater than zero and not
yet in K, is computed, and K gets updated with the nodes of K’. The
nodes in K’ then have their maxmin probabilistic satisfaction value
@y assigned to the optimum LP value A*; these values are then used
as input for the updated LP (1). Finally, when the loop terminates,
the flow values in the solution of the last LP 1 are returned.

THEOREM 4.2. Algorithm 2 finds a maxmin-fair distribution of
forward paths in polynomial time.

Proor. Given K C V and {ay} ek, call a distribution D of s-¢-
forward paths compatible with (K, «) if D[v] = a, for allv € K and
DJ[o] > @y, forallv ¢ K, w € K. We show that at the start of each

3In fact, this shows that the constraint 2 (ur)ek fur = 1inLP (1) is actually redundant,
and the variable d; in the dual can be taken to be zero.
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Figure 3: A portion of the DAG from Figure 2(a). The weights
on the edges computed by Algorithm 2 encode the maxmin-
fair distribution in Figure 2(b). Performing a random walk
from the source to the target with the computed transition
probabilities yields the maxmin-fair distribution.

1100 12

iteration of the while loop, the maxmin-fair distribution F is com-
patible with (K, o). Furthermore, the size of K is strictly increasing
on each iteration. This implies that the algorithm terminates with
ay =F[ov] forallo e V.

The case K = 0 is vacuous. We establish the general claim by in-
duction. Assuming F was compatible with (K, ) at line 3, we need
to argue that F is compatible with the next pair (K U K’, a) after
line 9 in the same iteration, where a’ denotes the modified values
of a. To this end, we employ the lexicographic characterization of
maxmin-fairness [17]: a distribution is maxmin-fair iff its vector of
satisfaction probabilities, sorted from low to high, is lexicograph-
ically largest. Since we know that F is compatible with (K, @), it
follows from the aforementioned characterization and Lemma 4.1
that LP (1) is feasible and its optimum value A* equals min,¢x F[v].
Observe that K’ # 0 because of the constraint },¢x wy = 1 in
the dual. Moreover, by complementary slackness, the constraints
in any optimal solution to the primal that are complementary to
the non-zero dual variables are tight. Hence Y| (,0)cE fio = 4
for allv € K’. In other words, any distribution D compatible with
(K, a) and maximizing min,¢gx D[v] needs to satisfy D[v] = A* for
all v € K’. In particular this holds for F, which implies that F is
compatible with the next pair (K UK, a").

After the last iteration, we can recover a distribution of forward
paths D determined by the last set of flow variables f;; , by perform-
ing the random walk described in the proof of the “conversely” part
of Lemma 4.1. This distribution is maxmin-fair, since the satisfaction
probabilities of D and F agree everywhere on V.

Regarding the running time, the number of iterations of the while
loop is bounded by n, since |K| is strictly increasing. Therefore at
most n calls to the LP solver are made. The rest of the algorithm,
including computing the forward path DAG, takes linear time. Since
LP is solvable in polynomial time, so is the Maxmin Fair Forward
Paths problem. Sampling each path from this distribution after the
fuo values have been found takes linear time as well. O

It is worth noting that our method does not explicitly mate-
rialize the maxmin-fair distribution shown in Figure 2(b) due to
its redundancy and space demands; indeed, many of the different



routes share a common prefix. Instead, it encodes the distribution
compactly by labeling the DAG edges with the correct transition
probabilities (line 11 of Algorithm 2). We showed in Lemma 4.1 that
a DAG always exists such that performing a random walk from the
source to the target with its transition probabilities is equivalent to
sampling directly a path from the maxmin-fair distribution.

ExAMPLE 4 (ENCODING THE MAXMIN-FAIR DISTRIBUTION.). Fig-
ure 3 illustrates how we encode the maxmin-fair distribution in Fig-
ure 2(b) by labeling the edges of the DAG in Figure 2(b) with the
correct transition probabilities as computed by Algorithm 2. For space
reasons, the figure only shows a portion of the DAG.

Complexity and scalability. Recall that the DAG can be con-
structed in the same asymptotic time it takes to perform a single-
source shortest path computation (Algorithm 1). Moreover, the time
taken to sample each path given the flow values is linear in the
path length. Hence, the bulk of the overall computational effort is
spent on solving the sequence of LPs in Algorithm 2. The fastest
algorithm to date for linear programming by [10] takes roughly
p?%7D, where p is the number of variables and D is the largest
absolute value of the determinant of any submatrix of the matrix of
coefficients. Since LP is not known to be solved in strongly polyno-
mial time, such dependence on a parameter like D is unavoidable.
In the worst case, our algorithm may need to solve up to n linear
programs. However, as demonstrated in Section 5, these bounds are
overly pessimistic. One reason is that, because we update K based
on the value of the dual variables in line 6 of Algorithm 2 rather
than one element at a time, the number of intermediate LP problems
needed is much smaller than n in practice. Furthermore, our LPs
are sparse if the original graph is, since the constraints follow the
edge structure of the DAG of the graph. Finally, the actual practical
performance LP solvers is much faster than the bounds suggest,
and state-of-the-art commercial solvers like Gurobi [22] can handle
LPs with hundreds of thousands of non-zeroes.

5 EXPERIMENTAL EVALUATION

In this section, we compare our proposal against several baselines.
Our empirical analysis focuses on assessing (i) fairness of node
exposure, (ii) path lengths, and (iii) runtime and scalability.

Datasets. We consider five real-world road networks extracted from
OpenStreetMap (publicly available) with the OSMnx Python library
[6]. Furthermore, we consider the graph of the state of Florida
from the 9th DIMACS Implementation Challenge — Shortest Paths
[13] and the Eastern region of the USA from the same collection.
Statistics of the seven datasets used are reported in Table 1.

Queries. For the first six networks in Table 1, we sample uniformly
at random 100 source to target pairs. For the Eastern USA network,
we sample 100 pairs uniformly at random from the set of pairs

dmax dmax

16 > 8
estimated diameter of the graph. Following Luo et al. [30], we
indicate these constrained pairs with Q1.

within the distance range [ ], where dmay represents the

Measures. The main goal of our method is to guarantee individ-
ual fairness in terms of nodes’ satisfaction. For our purposes, we
compute the generalized Lorenz curve [29] between the bottom frac-
tion of the nodes and the cumulative sum of the nodes’ satisfaction,
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when the satisfactions are sorted in increasing order. Furthermore,
we compute the Gini inequality coefficient [19], as 1 — 2 - B, where
B is the area under the Lorenz curve. The Gini coefficient ranges in
[0, 1]; higher values are undesirable and indicate higher inequality
levels between methods with similar total cumulative satisfactions.

As an (unattainably optimistic) reference line, we compute, for
every k between 1 and the number n of nodes, the maximum cu-
mulative satisfaction probability by a distribution of forward paths.
We refer to the curve thus obtained as the pointwise best. It has
been calculated for the four smallest networks using the sequence
of majorized LPs devised in Section 3.1 of [20]. By definition, the
generalized Lorenz curve of any method cannot be above it at any
point. Although every point (k, y) in this curve can be attained by
some distribution of paths, the entire curve cannot, in general, be at-
tained by any fixed distribution. Indeed, the only case in which the
pointwise best is attainable is when it coincides with the maxmin-
fair distribution. However, it provides a useful reference as to how
suboptimal each method is for different values of k simultaneously.

We also consider the length of the paths, as well as the running
time of the methods, measured as wall-time. Due to the runtime of
some baselines on the larger datasets, along with the need to run 100
different source-target pairs, we allow a maximum computational
time of 1000 seconds per point-to-point query.

Experiments were run on a MacBook Pro with Apple M1 chip, 8
cores, and 16 GB RAM. To solve the LP problems, we have used the
Gurobi optimizer [22].

Baselines. To the best of our knowledge, we are the first to in-
vestigate node fairness in path recommendations. As no direct
comparison with previous work is possible, we use baselines from
the literature on diversity in short paths. Specifically:

e Yen’s k-shortest path algorithm [44] computes a shortest path
and then proceeds to find k — 1 deviations of the shortest path.

Two heuristic algorithms from Chondrogiannis et al. [9]:
OnePass+ (OP+) and ESX-C. The goal of these methods is to
find a set of k paths as short as possible and for which their pair-
wise similarity (defined as a weighted fraction of edges shared by
two paths) is below a certain pre-specified threshold 0 € [0, 1].
Given a source node s and a target node t, OnePass+ traverses
the road network expanding every path from the source to any
node v € V satisfying certain shortness and diversity properties,
until k paths are found. ESX-C, instead, executes shortest-path
searches while progressively excluding edges from the road net-
work. We use the default parameter value of 6 = 0.8 and consider
k = 10 paths, unless stated otherwise in the tables and figures. In
a preliminary analysis, smaller § and higher k did not improve
the results on node fairness, instead significantly increasing the
runtime and path length.

Moreover, we compare against DKSP, Luo et al. [30], an edge
deviation and concatenation method, based on shortest path
trees, which aims to diversify the top-k paths between a source-
destination pair such that their pairwise similarities are under a
threshold while their total length is minimal. To run DKSP, we
set the similarity upper bound between each pair of paths to 0.9.

Lastly, we consider random paths drawn uniformly at random
from the set of all forward paths (Random FP). This is equivalent



MMFP (20 paths) DKSP (20 paths)

OP+ (20 paths)

Figure 4: Visualization of the paths (in red) produced by differ-
ent methods, applied to the DAG obtained for a source-target
pair of the Kyoto dataset (nodes and edges in black). Our
method, MMFP (top-left), visits nearly all the nodes. ESX-C
(top-center) also performs well, leaving only a small portion
of nodes unvisited. Yen (top-right) finds only minimal devi-
ations from the shortest path. Due to the runtime limits of
DKSP and OP+, the second row reports a comparison generat-
ing only 20 different paths. Even in this setting, MMFP with
the same number of paths covers significantly more nodes.

to drawing random walks from s to ¢ in the DAG, where the
transition probability is uniform on the outgoing edges of a
vertex. We sample 100 paths for each source-destination pair.
Essentially, this results in the use of random forward paths only,
without the maxmin-fairness optimization.

5.1 Comparison against the baselines

We start with the anecdotal evidence reported in Figure 4, where
the union of the paths recommended by various methods is colored
red. In the first row, we compare methods for which we could com-
pute 200 paths, while in the bottom row we compare our method
against baselines for which a maximum of 20 different paths could
be computed. For our method MMFP, we sample from a maxmin-
fair distribution the exact number of paths, while for the other
methods the number of paths is a parameter to the algorithm. To
facilitate visual comparison, all methods are applied directly to the
DAG constructed for a random source-destination pair from the
Kyoto dataset. The figure highlights how MMFP is able to recom-
mend paths covering a broader set of nodes than the baselines. In
particular, Yen and DKSP appear to produce only limited deviations
from the shortest path. OP+ satisfies a few additional nodes, while
ESX-C visits several more nodes but still leaves some groups of
nodes uncovered.

Fairness. The first column of Tables 4-10 reports the mean and stan-
dard deviation of the Gini coefficient. MMFP obtains the lowest level
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of inequality with respect to the visibility of the nodes, consistently
across all different datasets. This is further illustrated in Figure 5
(Left), where the generalized Lorenz curve for different methods is
depicted (results for different source-target pairs and other datasets
are analogous and not reported for space reasons). The horizontal
axis represents the fraction of nodes receiving the least visibility,
while the vertical axis contains the cumulative visibility received
by that bottom fraction. Observe that the curve for our method
lies consistently above the others, especially in its initial segment,
corresponding to the least visible nodes. This highlights how our
approach aligns with Rawls’s theory of justice, which advocates
maximizing benefits for the least advantaged. Note also how closely
our method is to the ideal (yet unattainable) pointwise best curve.

So far, we have focused on the fact that MMFP guarantees ex-
ante individual fairness. In Figure 5 (Center), we investigate the
convergence of ex-post fairness in terms of the allocation of visi-
bility as provided by forward paths sampled from the maxmin-fair
distribution. As expected, increasing the number of sampled paths
leads to an allocation that closely approximates the theoretical
optimum. Specifically, with around 100 paths, the empirical gen-
eralized Lorenz curve is already very close to the ideal, while for
1000 sampled paths it becomes essentially identical. This shows the
convergence of our technique to maxmin-fairness when serving a
large volume of path queries.

Length of the paths. The second column of Tables 4-10 reports
the average path length. Our method is competitive in this respect,
aligning with our earlier observation in Table 1 that the longest
forward paths closely approximate shortest paths. MMFP paths are
slightly longer than randomly sampled forward paths, reflecting a
trade-off between fairness and path length. Yen’s algorithm, focused
on finding the k s-t-paths as short as possible, naturally yields the
shortest average lengths. OP+ and DKSP still produce quite short
paths. By contrast, those returned by ESX-C are longer; the length
of its paths increases as the similarity threshold 6 decreases and
the number k of requested paths increases.

Runtime analysis. The third column of Tables 4-10 reports the
runtime in seconds. Our method is quite competitive and scales well
with larger networks. It is worth highlighting that, on the commod-
ity laptop we use for our experiments, computing the maxmin-fair
distribution takes on average 150 seconds in a network with 3.6M
nodes and 8.7M edges.

Unsurprisingly, random forward paths are faster to compute
than MMFP. As for the other methods, their runtime is highly
dependent on the number of paths k requested which, unlike our
method, needs to be specified in advance. Requesting around k =
10 paths is reasonably fast for all the baselines, except for very
large road networks (Table 7 and 10). However, asking for a larger
k was computationally expensive for a single source-destination
pair, even for small networks. This was particularly noticeable for
OnePass+ and, to a lesser degree, for Yen and DKSP. Although
ESX-C is able to produce a higher number of different paths k, it
becomes prohibitively slow on large networks.

In Figure 5 (Right), we investigate further the relationship be-
tween the number of requested paths and the runtime for the Flo-
rence dataset (for larger datasets, we couldn’t run several baselines



Table 4: Essaouira, Morocco. We report the Gini coefficient,
path lengths, and runtime averaged over 100 random source-
destination pairs. The maximum computational time al-
lowed per pair is 1000 seconds. For DAG and MMFP (Algo-
rithms 1 and 2), Gini and the expected length are computed
exactly from the distribution; for the rest, they refer to the
empirical average over the k paths produced.

Method Gini Length Runtime (s)
DAG & MMFP 0.27 £ 0.13 3936 + 3664 0.48 + 0.81
Random FP 0.36 + 0.19 3822 + 3582 0.05 + 0.01
Yen 0.48 £ 0.22 3692 + 3485 0.27 £ 0.29

OP+ 0.43 £ 0.16 4040 + 3831 0.07 + 0.38

DKSP 0.46 + 0.20 3704 + 3562  3.70 £ 25.47
ESX-C 6=0.5 k=10  0.47 £ 0.13 5537 + 4500 0.03 + 0.02
ESX-C 0=0.8 k=10  0.50 = 0.12 6055 + 5863 0.04 + 0.03
ESX-C 6=0.5 k=100 0.46 + 0.17 6089 + 3618 0.18 £ 0.17
ESX-C 6=0.8 k=100 0.50 £ 0.16 9871 * 4882 1.03 + 1.08

Table 5: Florence, Italy. Same as in Table 4.

Method Gini Length Runtime (s)
DAG & MMFP 0.18 £0.10 7233 + 3859 0.59 £ 0.42
Random FP 0.20 +0.12 7155 £ 3791 0.28 +£0.04
Yen 0.29 +0.17 6953 + 3598 0.97 £ 0.95
OP+ 0.32 £ 0.09 7301 + 3572 0.82 + 4.02
DKSP 0.29 +0.12 6996 + 3171 0.43 +£1.17
ESX-C 6=0.5 k=10 0.46 £0.07 13985 + 4830 0.17 +£0.18
ESX-C 0=0.8 k=10  0.46 + 0.06 9517 + 3671 0.03 £0.01
ESX-C 6=0.5 k=100 0.55+0.15 29075 + 10320 2.75 +2.03
ESX-C 6=0.8 k=100 0.62+0.10 37191 + 8903 30.6 £15.3

Table 6: Kyoto, Japan. Same as in Table 4.

Method Gini Length Runtime (s)
DAG & MMFP 0.40 +£0.12 9214 + 4973 12.66 + 15.19
Random FP 0.56 £ 0.19 8931 + 4806 2.18 £ 0.15
Yen 0.66 £ 0.20 8510 + 4589 35.88 + 45.45
OP+ 0.61 +0.18 8600 + 4599 1.12 £ 3.10
DKSP 0.64 £ 0.20 8533 + 4672 1.53 £5.96
ESX-C 0=0.5 k=10  0.57 + 0.10 9883 + 4892 0.31 + 0.39
ESX-C 0=0.8 k=10  0.61 + 0.13 9066 + 4681 0.10 + 0.02
ESX-C 0=0.5 k=100 0.63 + 0.12 25868 + 12884 198.4 + 179.6
ESX-C 6=0.8 k=100 0.66 + 0.09 17015 + 6365  15.08 =+ 44.80

Table 7: Eastern USA (Q1). Same as in Table 4.

Method Gini Length Runtime (s)
DAG & MMFP  0.37 £0.11 (1.60 + 0.24) -10°  149.8 + 83.0
Random FP 0.45+0.14 (1.58 +0.24) -10°  67.5+ 6.0
Yen k=5 0.51+0.17 (1.51+0.25)-10° 641.9 + 476.8
OP+ k=5 0.53+0.14 (1.54 +0.24) -10°  229.9 + 622.3
DKSP k=5 - - > 103
ESX-C 0=0.5k=10 057 £0.08 (1.68 +0.26)-10°  9.5+9.1
ESX-C 0=0.8 k=10 059 +0.10 (1.60 + 0.26) -10°5 4.5+ 1.3
ESX-C 6=0.5 k=100 - - > 10%
ESX-C 6=0.8 k=100 - - >10°

Table 8: Piedmont, California, USA. Same as in Table 4.

Method Gini Length Runtime (s)
DAG & MMFP 0.20 +£0.11 2038 + 1004  0.29 + 0.24
Random FP 0.26 £0.14 2034 + 1001 0.02 + 0.03
Yen 0.34 £ 0.17 1958 + 855 0.04 + 0.03
OP+ 0.34 £ 0.13 2125 + 835 0.02 + 0.00
DKSP 0.34 £ 0.16 2004 + 856 0.02 + 0.00
ESX-C 0=0.5k=10  0.38 £ 0.09 4395 + 1739 0.02 + 0.00
ESX-C 0=0.8 k=10  0.41 +0.09 3447 + 1195 0.02 £ 0.00
ESX-C 0=0.5k=100 0.30 £ 0.11 3315+ 1354  0.05 + 0.02
ESX-C 0=0.8 k=100 0.30 £ 0.10 4264 + 1843 0.08 + 0.04
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Table 9: Buenos Aires, Argentina. Same as in Table 4.

Method Gini Length Runtime (s)
DAG & MMFP 0.39+0.13 8824 + 3996 4.14 £5.81
Random FP 0.53+£0.18 8668 + 3915 0.57 £ 0.15
Yen 0.62 +0.21 8364 + 3747 5.44 + 6.20
OP+ 0.57 £0.15 8476 + 3734 0.72 £ 3.76
DKSP 0.61+0.19 8392 + 3748 0.05 + 0.04
ESX-C 0=0.5k=10 0.54 +0.10 9643 + 3776 0.07 + 0.05
ESX-C 6=0.8 k=10  0.58 +0.11 9098 + 3814 0.06 + 0.01
ESX-C 0=0.5 k=100 0.64 +0.07 21793 + 6057 26.64 + 28.35
ESX-C 0=0.8 k=100 0.67 + 0.05 22593 + 5751 3.45 £ 2.97

Table 10: Florida, USA. Same as in Table 4.

Method Gini Length Runtime (s)
DAG & MMFP 043 +0.12 (4.22+2.01)-105 232.1 +213.6
Random FP 0.50 £ 0.17 (4.19 + 2.00) - 109 14.2 £ 2.0
Yen k=5 - - > 103
OP+ k=5 - - > 103
DKSP k=5 - - > 103
ESX-C 6=0.5k=10  0.64 + 0.08 (4.49 +2.01)-10°  61.3 + 64.9
ESX-C 0=0.8 k=10  0.66 + 0.08 (4.28 + 2.00) - 10° 3.2+ 1.6
ESX-C 6=0.5 k=100 - - > 103
ESX-C 6=0.8 k=100 - - > 10%

for k larger than 5). Increasing the number of paths per point-to-
point query, the baseline methods become slower when several
paths are requested, while MMFP is hardly affected. These observa-
tions highlight another advantage of our method: by constructing
a distribution over multiple distinct paths, we eliminate the need to
pre-specify the number of paths required. This approach enables
us to efficiently generate a larger set of paths without the computa-
tional overhead associated with increasing k in other methods.

5.2 Ablation study and scalability

We analyze the scalability of our method by breaking it into three
components: DAG construction (Algorithm 1), maxmin-fair distri-
bution computation (Algorithm 2), and path sampling.

Figure 6 (Left) shows the average runtime of each of the three
components across the seven datasets. As expected, MMFP is the
most computationally intensive. However, the linear trend in the
log-log plot suggests polynomial growth, consistent with Sections 3
and 4. Figure 6 (Center) plots runtime against DAG size for random
source-target pairs from the Kyoto dataset. For each pair, we build
the DAG and report its number of nodes on the horizontal axis.
MMFP shows sublinear growth in the semi-log plot, aligning with
theoretical expectations. DAG construction time depends mainly on
the input graph size, not the (smaller) output DAG size, as Algorithm
1 relies on distance computations from sources to all nodes and
from all nodes to the target. Path sampling time increases only
slightly with DAG size.

Finally, Figure 6 (Right) reports peak memory usage. We can
observe that MMFP’s LP optimization uses minimal memory. DAG
construction memory usage is comparable to that of storing the
original graph, as Dijkstra’s algorithm operates on it directly.

6 CONCLUSIONS

To the best of our knowledge, our work is the first to address the
problem of individual fairness towards the nodes of a network in
route recommendation. We introduce the concept of forward paths
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and show their viability as an alternative to shortest paths. We show
how to compute a DAG that contains all the forward paths and
how a probability distribution on the forward paths, such that the
individual nodes receive a maxmin-fair individual satisfaction, can
be obtained by solving a flow problem by linear programming. Our
experimental results confirm the benefits and practical relevance
of our proposal.

One limitation of our work is that even though forward paths
tend to be short in practice, this property is not guaranteed. The
degree to which forward paths approximate shortest paths is data-
dependent, whereas for some applications a strict pre-specified
upper bound on the deviation from the optimal path length may
be desirable. In this regard, we note that it is straightforward to
modify LP (1) to include a constraint on the expected length of the
forward paths found, which is given by )} f;, » - £(u,v); and by using
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rejection sampling, we can constrain the maximum path length to
be at most 1 + a times its expectation by sampling O(1/a) paths
(in expectation) and rejecting those that are too long. However,
such a modification would not conform to the strict definition of
maxmin-fairness. Reconciling maxmin-fairness with hard bounds
on path lengths remains an open problem for future research.

We have focused on fairness from a locational perspective, as-
suming users aim to reach their destination in a reasonable time.
However, users may have diverse preferences: for example, a tourist
might prefer routes with museums, while another might favor ar-
chitecturally significant sites. Incorporating such personalized pref-
erences into our fairness framework is a compelling challenge for
future work. Additionally, our method assumes static graphs; ex-
tending it to dynamic networks or incorporating evolving edge
weights would be valuable directions for future research.
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