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ABSTRACT

Cloud storage services such as Amazon S3, Azure Blob Storage,

and Google Cloud Storage are widely used to store raw data for

machine learning applications. When the data is later processed,

the analysis predominantly focuses on regions of interest (such as

a small bounding box in a larger image) and discards uninteresting

regions. Machine learning applications can signi�cantly acceler-

ate their I/O if they push this data �ltering step to the cloud. Prior

work has proposed di�erent methods to partially read array (tensor)

objects, such as chunking, reading a contiguous byte range, and

evaluating a lambda function. No method is optimal; estimating the

total time and cost of a data retrieval requires an understanding of

the data serialization order, the chunk size and platform-speci�c

properties. This paper introduces ArrayMorph, a cloud-based ar-

ray data storage system that automatically determines which is the

best method to use to retrieve regions of interest from data on the

cloud. ArrayMorph formulates data accesses as hyperslab queries,

and optimizes them using a multi-phase cost-based approach. Ar-

rayMorph seamlessly integrates with Python/PyTorch-based ML

applications, and is experimentally shown to transfer up to 9.8X

less data than existing systems. This makes ML applications run

up to 1.7X faster and 9X cheaper than prior solutions.
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1 INTRODUCTION

Large multi-dimensional array (tensor) datasets are ubiquitous in

machine learning applications like image recognition [20], natural

language processing [12] and video analytics [16, 26, 39, 41]. In

these applications, data is often collected at storage-constrained

edge devices, is uploaded to cloud object stores such as Amazon S3

or Azure Blob Storage, and is analyzed further with machine learn-

ing frameworks such as PyTorch. The �rst step in many machine
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learning pipelines is accessing data from regions of interest, such

as retrieving data between two points in time from a sequence of

observations, or pixels within a bounding box from an image, or

particular frames from a video. We refer to accesses that retrieve

data from regions of interest as hyperslab queries.

A naive way to obtain the region of interest is to retrieve the

entire object to the client in a single request, and throw away un-

needed data in the client. (Surprisingly, this naive approach to data

�ltering is extremely common in machine learning applications!)

Prior work has explored more e�cient methods to �lter data in the

cloud that do not retrieve the entire object. Array-based systems

split each object into chunks and retrieve all chunks that overlap the

region of interest using separate requests. TileDB [38] and HSDS

[17] follow this approach. HSLAMBDA [51] �lters array data in

a lambda function and returns the result to the client. Another

option is to convert the data to a tabular representation and use

services such as S3 Select to perform �lter pushdown using SQL,

as implemented in PushdownDB [56] and FlexPushdownDB [55].

No data retrieval method is optimal. Retrieving the entire object

in one request minimizes the request cost, but transfers redun-

dant data and hence incurs high data transfer time and charges.

Retrieving the overlapping chunks requires issuing multiple re-

trieval requests, which greatly increases the request cost. Invoking

a lambda function has a high initialization cost which is charged as

CPU cycles. Using S3 Select requires expensive schema conversion

(from multi-dimensional to relational) and data format conversion

(from dense array to Parquet).

This paper introduces ArrayMorph, a cloud-based array data

storage system that addresses the challenge of e�ciently retrieving

hyperslab-shaped regions of data, which are common in scienti�c

and ML work�ows, from cloud object stores. ArrayMorph mini-

mizes response time and cost through adaptive query planning: Ar-

rayMorph formulates data accesses as queries, considers multiple

possible access methods including lambdas, and uses multi-phase,

cost-based optimization that is inspired by access method selec-

tion in relational database systems. ArrayMorph supports queries

against multiple cloud vendors, speci�cally Amazon S3, Azure Blob

Storage, and Google Cloud Storage. ArrayMorph seamlessly in-

tegrates with Python/PyTorch-based ML applications through the

h5py interface that returns a dense NumPy array / PyTorch tensor.

Under the covers, ArrayMorph is implemented as a dynamical-

ly-loaded HDF5 VOL plugin, which allows a drop-in binary install

without recompiling any C++-based HDF5 applications. The main

contributions of this paper are as follows:

(1) We explore the limitations of existing systems for processing

hyperslab queries. They use a single method to retrieve data,

which is not always optimal in either time or cost.

3189

https://doi.org/10.14778/3746405.3746437
https://github.com/ruochenj123/ArrayMorph
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746437
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Step 1
download dataset

Step 2
hyperslab query

Step 3
feed to GPU

Images and annotations

hyperslab query 

pushdown

Cloud Side

Client Side

Figure 1: Species classi�cation in the CameraTrap pipeline.

(2) We formulate data retrievals as a cost-based optimization prob-

lem and develop an optimization heuristic that chooses better

access methods than the state of the art.

(3) We design and implement a cloud-based array data storage

system, ArrayMorph, using HDF5 VOL features. This makes

integration with Python/PyTorch-based ML applications easy.

(4) We evaluate ArrayMorph on synthetic and real-world work-

loads. The evaluation shows ArrayMorph transfers up to 9.8X

less data than prior solutions. This makes ML applications run

up to 1.7X faster and 9X cheaper.

The paper is structured as follows. Section 2 introduces how an ML

application today can access data in cloud object stores. Section

3 shows the architecture of ArrayMorph. Section 4 formulates

the hyperslab query processing optimization problem. Section 5

experimentally evaluates ArrayMorph. Section 6 presents related

work and Section 7 concludes.

2 BACKGROUND AND MOTIVATION

2.1 Application example

Camera traps are cameras that are triggered by motion. They are

used for wildlife monitoring (such as estimating the population size

of endangered species) and ecological research (such as studying

the impact of climate change on bird migration patterns) [54]. One

large research project [30, 41] performs species classi�cation as

follows: The on-�eld team places camera traps, collects raw data,

discards unusable images, and uploads to the cloud. A data post-

processing team performs object detection using MegaDetector

[31], and stores pixel coordinates of objects of interest (bounding

boxes) in JSON format [9].

The data inside the bounding box is then processed using a cus-

tom species classi�cation model as shown in Figure 1: The PyTorch

script �rst downloads the requested images and the associated an-

notations from the cloud into memory (step 1). The bounding box

is used to crop the original image (step 2), before transmitting the

region of interest (a tensor) to the species classi�er running on the

GPU (step 3). In this pipeline, the data download step commonly

results in signi�cant I/O waste, as only a small subset of the raw

image (i.e., the cropped part) is used. Instead of downloading the

entire image, data retrieval can be accelerated by issuing a hyperslab

query to the cloud storage service to directly retrieve the needed

data. Modern cloud storage platforms support various methods to

access only a part of an object, as we describe next.

2.2 Data retrieval methods

ArrayMorph considers three methods for processing hyperslab

queries. All methods are supported by leading cloud providers, in-

cluding Amazon Web Services, Microsoft Azure, and Google Cloud.

Table 1 summarizes the trade-o�s associated with each.

Get is the most commonly used data retrieval method. A Get

request accepts a bucket and an object (key) name, and returns the

entire payload (value) associated with this object. Cloud providers

charge a per-request fee and a data transfer (egress) fee for each

byte transferred out of the storage service. The data transfer fee

dominates the total cost with Get requests.

Range retrieval is another data access method. A Range request

is a Get request that only retrieves a speci�c byte range from the

payload. To issue a Range request, users specify a byte range (ex-

pressed as a start and end o�set) and add it to the HTTP header

of the Get request. Range retrievals do not transfer data outside

the retrieval range. The request fee of a Range request is the same

as for a Get request, but returning less data reduces latency and

data transfer (egress) costs. The limitation of the Range method is

that it only fetches a contiguous region. When the requested data is

not stored contiguously, one has to either issue multiple requests

(which means higher service charges), or expand the byte range to

span all regions of interest (which increases the data transfer cost).

Lambda functions are the most �exible data retrieval method, as

they allow the execution of arbitrary code to process data on the

cloud before returning to the client. Users invoke a lambda function

through an HTTP request, and get charged for the compute cost

(running time and memory usage) used to run the function, in

addition to an egress fee charged for each byte transferred out.

Compared to the Get and Range methods, Lambda incurs the lowest

data transfer fee but introduces more server-side overhead: the

processing time of a lambda function includes the actual execution

time plus a function initialization time. For low-selectivity queries,

the lambda execution fee is the major contributor to the total cost.

Object Lambda functions are a special form of lambda functions.

Instead of invoking a lambda through an HTTP request, some

providers (notably Amazon S3) can invoke a lambda function au-

tomatically when a Get request completes. Lambda functions that

are invoked from Get requests are referred to as Object Lambdas.

Object Lambdas intercept the output of the Get request and can

return arbitrary data back to the requester.

Performance and cost pro�le. Di�erent data retrieval methods

have signi�cantly di�erent performance and cost. We demonstrate

these di�erences on a dataset of 2D arrays (images) with dimensions

of 4096x4096 cells (pixels), that is chunked in 1MB square chunks.

(The size is similar to the image data used for species classi�cation

in Section 2.1.) We evaluate the time and cost for processing three

representative hyperslab queries: (a) Horizontal box query, which

Invocation

Method overhead Service charge Egress fees

Get Negligible Request fee, single High

Range Negligible Request fee, multiple Moderate

Lambda High Compute cost Low

Table 1: Cloud data retrieval methods.
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HSDS [17] HSLAMBDA [51] TileDB [38] PushDownDB [55, 56] ArrayMorph

Supported platforms S3, Azure S3 S3, Azure, GCS S3 S3, Azure, GCS

Data model Array-based Array-based Array-based Relational Array-based

Get 6 — — — 6

Range — — 6 — 6

Lambda — 6 — — 6

Object Lambda — — — — 6

S3 Select — — — 6 —

Table 2: Design choices of prior work.
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Figure 2: Performance and cost pro�le of di�erent retrieval

methods across cloud platforms.

reads contiguous rows of data chosen at random, (b) Vertical box

query, which reads contiguous columns chosen at random, and

(c) Small box queries, which retrieves random 21x21 small regions.

(Workload details are presented in Section 5.1.) We ran experiments

on three cloud platforms and used di�erent data retrieval methods.

Figure 2 shows the results and the motivating application pat-

terns from species classi�cation [30, 41] and supernovae detection

[21, 27], respectively. Get (ă) is not the best choice, as it reads

redundant data which impacts performance and cost. Range (Ď)

always performs better than Get. Lambda is a low-cost data re-

trieval method, as data transfers to a lambda are not charged, but

the lambda initialization and processing time is signi�cantly higher

than the other methods. No single method is always optimal, as

the performance and cost us in�uenced by the query shape and the

cloud platform choice. To e�ciently access data on the cloud, one

should consider multiple data retrieval methods and their trade-o�s.

2.3 Data retrieval methods in prior work

Table 2 summarizes the design choices of systems in prior work.

Despite the fact that the performance and cost pro�les of each data

retrieval method are signi�cantly di�erent, prior work uses a single

method to access data. HSDS [17] and HSLAMBDA [51] store each

chunk as a single object. HSDS issues Get requests to each object

and fetches the entire object to the client side for further processing.

HSLAMBDA invokes an AWS lambda function and executes the

query completely on the cloud. TileDB [38] stores the entire array

as one object, with each logical chunk serialized as a contiguous

block within the object. To process hyperslab queries, TileDB uses

the Range method to fetch the accessed chunks. If the accessed

chunks are stored contiguously, TileDB merges individual requests

into a single large Range request.

Another approach is to use existing relational cloud manage-

ment systems. PushdownDB [55, 56] uses the AWS S3 Select service

to process SQL queries on the cloud. To process hyperslab-based

queries using SQL, one needs to convert array data into a relational

form by adding array indices as additional columns. This is known

to be ine�cient, because storing array indices has signi�cant stor-

age overhead [42]. Our experiments (see Section 5.2) corroborate

that converting to a relational form can be up to 1,000X slower than

directly using an array-based storage representation.

3 SYSTEM ARCHITECTURE

Figure 3 shows the architecture of ArrayMorph. It is implemented

using the Virtual Object Layer (VOL) feature of HDF5 and serves

as an I/O interceptor between the HDF5 library and cloud storage

services. Users can seamlessly connect existing applications to the

cloud by using ArrayMorph without code changes and recom-

pilation, as ArrayMorph exposes the API of HDF5/h5py and is

loaded as a dynamic plugin. Machine learning pipelines load data

on demand through ArrayMorph’s PyTorch DataLoader.

ArrayMorph consists of four components: The Micro-pro�ler

estimates constant variables and tunes the cost model by bench-

marking small workloads. The I/O Interceptor uses the HDF5 VOL

API to intercept I/O requests from relevant HDF5/h5py calls (e.g.

H5Dread) in client applications. It forwards these accesses to the

Query Executor (§4.3)

Micro-profiler (§3.1)I/O Interceptor

Cloud Storage SDK

S3 Azure GCP

HDF5 h5py

ArrayMorph

results

Client App

queries

C/C++ Apps Python Apps

PyTorch dataloader

Query Optimizer (§4.2) Cost Model (§4.1)

Figure 3: ArrayMorph system architecture.
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Figure 4: Micro-pro�ling results.

Query Optimizer, which selects an appropriate access method for

each access. The Query Executor then issues the appropriate I/O

requests to the cloud platforms.

ArrayMorph organizes data in the HDF5 hierarchical structure

where each �le can contain multiple datasets, and each dataset

can contain multiple chunks. ArrayMorph adopts the standard

HDF5 chunking mechanism, where each chunk in ArrayMorph is

serialized in row order. Each chunk is stored as an object on cloud

storage and the object is named according to its index position.

3.1 Micro-pro�ler

The Micro-pro�ler estimates the value of performance-sensitive

constants in the cost models by pro�ling a simple synthetic work-

load. The Micro-pro�ler is con�gured once for each cloud provider,

and does not need to be re-con�gured unless the network or com-

pute capabilities change. Speci�cally, for each cloud provider Č ∈

{ď3, ýİīĨě,ăÿď}, theMicro-pro�ler estimates (1) the network band-

width þē for di�erent numbers of concurrent requests Ċ , (2) the

request concurrency range ĊģğĤ to ĊģėĮ where peak þē can be

attained, and (3) the server-side processing time for regular requests

ĐĎ and for lambda functions Đą .

Network bandwidth estimator. Estimating data transfer through-

put is important to accurately determine the total data retrieval

time. The bandwidth estimator �rst generates a randomly-�lled

16GB, 4-byte integer array. The estimator then selects a level of

concurrency Ċ , and issues Ċ Get requests of appropriate size to

retrieve 16GB of data in total. (For example, Ċ = 256 retrieves 64MB

per request.) It then computes the average data transfer through-

put for concurrency level Ċ by dividing the data size (16GB) with

the time to complete processing all Ċ requests. Through these ex-

periments, the Micro-pro�ler estimates the network bandwidth

at points Ċ1, Ċ2, ... for cloud platform Č . The function þē (Č, Ċ )

�nds the nearest points Ċğ , Ċ Ġ such that Ċğ < Ċ < Ċ Ġ for which

bandwidth measurements have been collected for cloud provider Č ,

and performs linear interpolation.

Request bounds ĊģğĤ and ĊģėĮ . The top row of Figure 4 shows

the results for three cloud platforms. We observe that the request

rate signi�cantly a�ects the network throughput. For Amazon S3,

too few requests cannot fully utilize the network, while other cloud

vendors fully utilize the network with as few as 8 requests. Too

many requests lead to excessive overhead due to resource con-

tention for all cloud vendors. In order to maintain high throughput

for data transfers, for each cloud platform Č , the Micro-Pro�ler

computes two variables Ċ Č
min and Ċ Č

max which represent the mini-

mum and maximum request rates that can sustain peak throughput

for cloud platform Č . Ċ Č
min is the smallest Ċğ such that þē (Č, Ċğ )

reaches at least 90% of the maximum observed bandwidth. Similarly,

Ċ Č
max is the largest Ċğ such that þē (Č, Ċğ ) reaches at least 90% of

the maximum observed bandwidth.

Server-side processing time Đą and ĐĎ . ArrayMorph considers

whether to use lambda functions or issue regular data retrieval

requests to process queries. Estimating the server-side process-

ing time of either is crucial to making a good choice. To do this,

the micro-pro�ler picks di�erent request sizes and generates 32

data retrieval requests on a single chunk. It observes the server-

side execution time for processing requests as lambdas (Đą) or as

regular retrievals (ĐĎ). (The Google Cloud platform reports server-

side processing time only for lambda requests, so we approximate

server-side processing time of regular requests as the total request

execution time minus the data transfer time.) The two bottom rows

of Figure 4 show the results, where the whiskers are the minimum

and the maximum time for di�erent request sizes.

The �rst observation is that the lambda processing time (Fig. 4,

bottom row) linearly correlates with the request size, which is attrib-

uted to the time to transfer the object from storage to the function.

In contrast, the processing time for regular requests (Fig. 4, middle

row) is not sensitive to request size. Therefore, the Micro-pro�ler

estimates the processing time of regular requests (ĐĎ ) as a �xed cost,

and the processing time of lambda functions (Đą) through linear

regression. Speci�cally, the micro-pro�ler produces parameters ĂČ ,

ÿČ and ĈČ for each cloud provider Č such that:

ĐĎ (Č) = ĈČ

Đą (Č,Object Size) = ĂČ × Object Size + ÿČ

The second observation is that HTTP-triggered lambda func-

tions fail in AWS when chunk sizes are larger than 16MB, due to

restrictions on the response payload size. S3 Object Lambda has

the same performance but can handle signi�cantly larger chunk

sizes. In terms of cost, Object Lambda follows the pricing policy

of HTTP-triggered lambda, with a negligible extra cost ($0.4 per

million requests). Based on these observations, ArrayMorph uses

Object Lambdas for Amazon S3, and HTTP-triggered lambda func-

tions for other cloud platforms.

4 QUERY PROCESSING

In this section, we describe how the Query Optimizer chooses

how to access data in each chunk to process hyperslab queries.

For a Ě-dimensional array, a hyperslab region is a continuous Ě-

dimensional range of cells. A range ĩğ :ěğ de�nes the starting ĩğ and

ending ěğ index values along each dimension ğ , with ĩğ ≤ ěğ . A

hyperslab query č is the Ě-dimensional selection range [ĩ1:ě1, ...,

ĩĚ :ěĚ ]. Figure 5 colors the hyperslab query č1=[3:4, 1:2] in grey.
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Access method

Meaning Symbol Get Range (Ĩ1, Ĩ2, ..., ĨĤ ) Lambda (č)

Number of total requests ĊĎ 1 Ĥ 1

Number of lambda requests Ċą 0 0 1

Transferred data (bytes) ďĐ ďÿ
∑

Ĥ

ğ=1
(Ĩğ .ě − Ĩğ .ĩ + 1)

∏
Ě

ğ=1
(č.ěğ − č.ĩğ + 1)

Cloud service fee ($) Ă ĂĎ (Get) + ĂĐ ·ďĐ ĂĎ (Range) ·ĊĎ + ĂĐ ·ďĐ ĂĎ (Lambda) + ĂĐ ·ďĐ + Ăą ·ĉą ·Đą (Č, ďÿ )

Table 3: Fee estimation for accessing one chunk with di�erent access methods.

33

41

49

57

34 35 36

42 43 44

50 51 52

58 59 60

Local Filter

(a) Get

Get

1 2 3 4

1

2

3

4

35

33

41

49

57

34 35 36

42 43 44

50 51 52

58 59 60

Local Filter

(b) Range

Range

 [3-8]
36 41 42 43 44

1 2 3 4

1

2

3

4

33

41

49

57

34 35 36

42 43 44

50 51 52

58 59 60

Lambda(Q)

(c) Lambda

1 2 3 4

1

2

3

4

35 36 43 44

35 36 43 44

35 36 43 4433 34 35 36 41 42 43 44 49 50 51 52 57 58 59 60

Figure 5: Di�erent ways to process a hyperslab query.

4.1 Cost estimation

In the cloud, there is often a trade-o� between the response time

Đ (č) of a hyperslab query č and the service fee Ă (č) to process

it. To balance the trade-o� between response time and monetary

cost, ArrayMorph combines these two metrics by introducing a

user-de�ned parameter č , i.e.

ÿĥĩĪ (č) =Đ (č) + č × Ă (č)

where Đ (č) represents the response time and Ă (č) represents the

cloud service fee paid for processing query č . In other words, č

conveys price sensitivity, or how many seconds may a query be

delayed to save one dollar (if such an opportunity arises). Applica-

tions can always express a strict preference for time or cost: setting

č = 0 minimizes time; setting č = +∞ minimizes cost.

Fee estimation model. Let us �rst assume that a hyperslab query

č only accesses one chunk ÿ of the array. That is, assume the

range (č.ĩğ , č.ěğ ) indicated by č for each dimension ğ is within the

boundaries of ÿ in all dimensions, or č ∩ÿ =č . Let ďÿ be the size

of chunk ÿ in bytes. The role of this model is to estimate the total

service fee Ă (č) for di�erent access methods by calculating the

number of requests ĊĎ and the transferred data size ďĐ for each

method. Table 3 summarizes the estimations for each method.

Symbol Meaning

ĂĎ (ğ ) Request fee, where ğ ∈ {Get, Range, Lambda}

ĂĐ Data transfer (egress) fee per byte

ĉą Memory (GB) used in lambda function execution

Ăą Lambda fee per GB-second for lambda functions

Ă Total service fee

ĊĎ Number of requests in total

Ċą Number of lambda requests

ďĐ Data transferred (bytes)

ďÿ Chunk size (bytes)

Table 4: Notation for cost estimation and query processing.

Get reads the entire chunk in one request (ĊĎ = 1). The trans-

ferred data size is the chunk size (ďĐ = ďÿ ). The service fee Ă is the

data transfer fee plus the request fee.

Range accepts ranges Ĩ1, Ĩ2, ..., ĨĤ for retrieval. Each range Ĩğ indi-

cates a starting byte o�set Ĩğ .ĩ and an ending byte o�set Ĩğ .ě . Each

range is retrieved as a separate request (ĊĎ = Ĥ) where each request

retrieves Ĩğ .ě − Ĩğ .ĩ + 1 bytes. The service fee Ă is the data transfer

fee plus the request fee for all Ĥ requests.

Lambda passes the hyperslab query č to the cloud function,

which reads chunk ÿ , �lters unneeded data, and only returns the

query result to the client. The data transfer size can be computed in

advance from the hyperslab ranges (č.ĩğ , č.ěğ ) for every dimension

ğ . Lambda functions are charged a request fee and a data transfer fee,

similar to regular requests. In addition, there is a lambda function

execution fee Ăą which is proportional to the execution time Đą for

processing a chunk with size ďÿ (as estimated by the Micro-pro�ler

in Sec. 3.1) and the requested memoryĉą > ďÿ to run the function.

When a hyperslab query č accesses multiple chunks ÿ1,ÿ2, ...,ÿĤ ,

the fee estimation model computes the cost per chunk ÿğ , and then

adds the per-chunk costs together:

Ă (č) =
∑

Ă (č ∩ÿğ )

Response time estimation model. Assume hyperslab query č

accesses chunks ÿ1,ÿ2, ...,ÿĤ . The response time estimation model

partitions č into per-chunk queries čğ =č ∩ÿğ . If Ī represents the

number of threads issuing concurrent requests, on the cloud plat-

form Č , the time Đ (č) is estimated as the sum of the data transfer

time, request handling time and lambda execution time:

Đ (č) =

∑

ğ čğ .ďĐ

þē (
∑

ğ čğ .ĊĎ)
︸ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄︷︷ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄︸

Data transfer

+ĐĎ

⌈∑

ğ čğ .ĊĎ

Ī

⌉

︸ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄︷︷ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄︸

Request handling

+Đą (ďÿ )

⌈∑

ğ čğ .Ċą

Ī

⌉

︸ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄︷︷ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄︸

Lambda execution

where þē ,ĐĎ , andĐą are the functions obtained from pro�ling the

cloud platform, as discussed in Section 3.1.

4.2 Query optimization

The role of query optimization is to assign a data retrieval strategy

to each chunk that needs to be retrieved to answer a hyperslab

query, among the following choices: (1) Get, where one request will

transfer the entire chunk from the cloud and then �lter unneeded

data locally, (2) Range, which issues one or more partial reads

for contiguous byte ranges within the chunk, (3) Lambda, which

invokes a lambda function on the cloud to �lter the data before

returning them to the client.

Interestingly, it is not su�cient to minimize the number of bytes

transferred. The Range method can return exactly the cells that the

query needs, but if this creates too many requests it is better to
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r1  r4

# Current Split groups Action Pending Assigned

1 Ĩ1→Ĩ4 (Ĩ1, Ĩ2→Ĩ4) Split [Ĩ1, Ĩ2→Ĩ4] [ ]

2 Ĩ1 (Ĩ1ė , Ĩ1Ę ) Stop [Ĩ2→Ĩ4] [Ĩ1]

3 Ĩ2→Ĩ4 (Ĩ2→Ĩ3, Ĩ4) Split [Ĩ2→Ĩ3, Ĩ4] [Ĩ1]

4 Ĩ2→Ĩ3 (Ĩ2, Ĩ3) Stop [Ĩ4] [Ĩ1, Ĩ2→Ĩ3]

5 Ĩ4 (Ĩ4ė , Ĩ4Ę ) Stop [ ] [Ĩ1, Ĩ2→Ĩ3, Ĩ4]

Figure 6: Decomposition and range re�nement example. The

algorithm iteratively splits groups when it reduces estimated

cost, and stops when there is no further bene�t.

merge requests and send fewer messages. (In the example in Fig-

ure 5, the query can be answered using Range(3–8) in one request,

and also with Range(3–4, 7–8) and two requests.) Conversely, even

when all cells in a chunk are accessed, Get may not be the fastest

method because it does not bene�t from the processing concur-

rency that many smaller Range requests would enjoy. The query

optimization procedure needs to carefully consider how to merge

and split requests to balance these trade-o�s.

For simplicity, the presentation has assumed that a single hy-

perslab query č is processed. Technically, the query optimization

algorithm processes a set of queries at once. This is because the

query abstraction of HDF5 is a dataspace, which is de�ned as a

union of hyperslab queries [52]. This allows HDF5 to support sam-

pling and scatter-gather I/O patterns in one read call.

Decomposition. The �rst phase is the decomposition phase. The

decomposition phase �rst converts a multi-dimensional hyperslab

query (technically, an HDF5 dataspace) to a list of one-dimensional

byte ranges that must be accessed for each chunk. This is a simple

calculation based on the query shape, the chunk shape and the data

serialization order. The decomposition phase then sorts the ranges

and merges overlapping and contiguous byte ranges. An example

of the decomposition phase is shown in Figure 6 for an array that is

serialized in row-major order and the queriesč1=[1:2, 1:2],č2=[2:3,

2:3] and č3=[2, 5]. After sorting and merging overlapping ranges,

the resulting ranges are Ĩ1, Ĩ2, Ĩ3, and Ĩ4. Note how a single hyperslab

query can produce multiple byte ranges for further optimization.

Range re�nement. Next is the range re�nement phase. The goal

of range re�nement is to �nd how many Range requests should

be transmitted to cover all ranges Ĩ1, ..., ĨĤ that were produced in

the decomposition phase. Algorithm 1 shows the range re�nement

algorithm. It starts by considering grouping all ranges together

in one Range request (line 2). It then splits the group into two

(lines 8-9), based on which range ğ has starting point Ĩğ .ĩĪėĨĪ with

the greatest distance from Ĩğ−1 .ěĤĚ . (If multiple ranges have the

same distance to their predecessor, the one that produces the most

even split is selected.) The algorithm then compares the cost of

processing the range as a single request versus processing the two

split groups as separate requests (line 10). If splitting the request

lowers the total cost, the two split groups will be added to the end

of the pending queue (line 11), else the request will not be split

further (line 13). Eventually, some split group will only consist of

a single range. The algorithm attempts to split the single range

Algorithm 1: Range re�nement algorithm

Input : [Ĩ1, ..., ĨĤ], vector of sorted, non-overlapping ranges

1 Pending = []; Assigned = [];

2 Pending.enqueue(Ĩ1→ĨĤ)

3 while Pending is not empty do

4 cur = Pending.dequeue()

5 if cur is a single range request then

6 (sg1, sg2) = BreakInHalf(cur)

7 else

8 idx = FindLargestGap(cur)

9 (sg1, sg2) = (ĨęīĨ .ĩĪėĨĪ →ĨğĚĮ−1, ĨğĚĮ →ĨęīĨ .ěĤĚ )

10 if Cost(cur) > Cost(sg1) + Cost(sg2) then

11 Pending.enqueue([sg1, sg2]) ² Split into two

12 else

13 Assigned.enqueue(cur) ² Stop splitting further

14 return Assigned

into two halves by breaking the range in the middle (line 6). This

continues until the cost model advises to stop splitting, or the range

points to a single cell and cannot be split further.

Figure 6 shows how the range re�nement algorithm would pro-

cess the decomposition shown in Figure 6. In the �rst iteration, the

entire range Ĩ1 → Ĩ4 is considered versus the split groups Ĩ1 and

Ĩ2→Ĩ4. The cost model indicates that a split has lower total cost,

so both split groups are added to the end of the pending queue. In

the next iteration, Ĩ1 is considered for splitting into Ĩ1ė and Ĩ1Ę . The

cost model indicates that splitting does not lower the cost, so Ĩ1
will be processed as one request. The processing continues until

the pending queue is empty.

Final selection. The cost of the issuing a Range request for each

group produced by the range re�nement algorithm is compared

with the cost of retrieving the entire chunk (Get method) and the

cost of retrieving all ranges through a Lambda function invocation.

The method that results in the lowest cost will be selected.

Analysis. Selecting the optimal access method requires consider-

ing all combinations of methods for every possible range grouping.

A complete exploration of the search space is impractical: the dif-

�culty lies in the fact that the retrieval method for each chunk

depends on the total number of requests (ĊĎ) and the number of

Lambda requests (Ċą) across all chunks, and whether they can fully

utilize the bandwidth (expressed as the non-linear þē function).

This interdependence makes dynamic programming infeasible: the

selected plans for other chunks may no longer be the best if there

are changes in the request distribution in this chunk.

The optimization process makes simplifying assumptions to

reduce the search space. The heuristic does not consider if a com-

bination of lambda and range retrievals further lowers cost, does

not consider splitting at other points except the largest gap, and

will never produce overlapping range groups (such as Ĩ1→Ĩ3 and

Ĩ2→Ĩ4). The worst case scenario for Algorithm 1 is to keep splitting

the input ranges until there are as many requests as cells in the

array, forċ (ĤĢĥĝĤ) worst case complexity. Experimental results cor-

roborate that the search stops quickly: it is rare for the re�nement

algorithm to create 3 or more range groups (see Section 5.1.2).
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4.3 Query execution

The Query Executor (cf. Figure 3) issues the requests the Optimizer

selected for each chunk. It issues requests in batches, and the de-

fault batch size is 256 requests. Batches are processed sequentially.

Requests within a batch are executed in parallel, and execution

blocks until all requests in the batch return. While the requests in a

batch are issued asynchronously, a read in HDF5 is a synchronous

call: the application is blocked until H5Dread() returns with a full

data bu�er (or an error).

Get and Range requests are issued against the chunk URLs, while

Lambda requests are issued against an endpoint that accepts the

chunk URL and the hyperslab query as parameters. The Lambda

function retrieves the chunk at the pointed URL using a Get re-

quest, discards unneeded data, and returns the data directly in the

H5Dread return bu�er. Range and Get requests may require addi-

tional �ltering on the client. This �ltering step is implemented as a

callback function which is called asynchronously after a response

is received. After �ltering, the callback function will place the data

in the appropriate location in the return bu�er.

Error handling. ArrayMorph has limited fault-tolerance capa-

bilities to mitigate against networking errors. When a failure or

timeout occurs in a Lambda, ArrayMorph falls back to the Get-

based method. GET requests are retried three times. If they are not

successful, the error code is propagated back to the HDF5 library,

which returns the code for I/O error on H5Dread to the application.

ExtendingArrayMorph.ArrayMorph supports AWS S3, Azure

and Google Cloud Storage. It can be extended to platforms that

support data retrievals via HTTP GET (such as OpenStack Swift

[14] or MinIO [32]) and serverless functions (such as Illuvatar [15]).

5 EXPERIMENTAL EVALUATION

This section evaluates the performance of ArrayMorph. In the �rst

subsection, we use synthetic workloads to evaluate the performance

and robustness of ArrayMorph. In the second subsection, we use

real-world applications to compare the end-to-end performance of

ArrayMorph with other systems.

Implementation.We build ArrayMorph as an HDF5 VOL plugin

in C++ using HDF5 1.14.2. The source code of ArrayMorph is

publicly available [24].

Hardware. Unless otherwise noted, we use the us-east-2 region

for AWS S3, Azure and Google Cloud. The experiments run on an

on-premises 6-core Xeon E-2246G server with 60GB of memory.

Micro-pro�ling.Wemicro-pro�led each cloud vendor once before

running experiments. Micro-pro�ling completes in about 70-80

minutes, depending on the cloud platform. Bandwidth estimation

�nishes in about 25 minutes, latency estimation �nishes in about 5

minutes, vendors, and the remainder of the time is data generation.

A single pro�ling run is generally su�cient: although the cost

modeling is not as accurate when bandwidth or latency �uctuate,

the chosen plans remain superior. (We further investigate sensitivity

to bandwidth and latency in Section 5.1.4.)

System baselines:

• HSDS [17] is an open-source software package that provides a

RESTful web interface for accessing datasets in HDF5 format.

• HSLAMBDA [51] encapsulates the entire HSDS system in an

AWS Lambda function that users can send HTTP requests to.

• TileDB [38] is an open-source data management system for

e�cient management of complex, multi-dimensional data.

• PushDownDB [55] uses S3 Select to process SQL queries for

CSV and Parquet tables on AWS S3. This baseline evaluates how

state-of-the-art relational cloud-based processing performs with

array data. To run experiments, we convert all array data to

relational tables and add array indices as additional columns

(one column per dimension). We convert hyperslab queries to

SQL queries which �lter on predicates on the array indices. We

use the S3-Side Filter con�guration in PushDownDB as it had

the best performance in our experiments.

ArrayMorph con�gurations. We evaluate ArrayMorph’s plan

quality by forcing the optimizer to select a particular access method.

• Get always issues one Get request for each accessed chunk.

• Lambda always invokes a Lambda function for each chunk.

• Range(Merge) sends one Range request per chunk that groups

together all requests for this chunk. In the example in Figure 6,

this con�guration would issue the request Range(Ĩ1→Ĩ4).

• Range(Fetch) issues as many Range requests as the ranges

produced by the decomposition phase. In the example in Figure 6,

the Range(Fetch) con�guration would issue four separate Range

requests for Ĩ1, Ĩ2, Ĩ3, and Ĩ4.

Methodology and metrics.We run each experiment at least three

times at various times of the day. We report the following metrics:

• Queries per minute measures performance, and is calculated

as the total number of queries issued divided by the median total

execution time (in minutes). The total execution time includes

creating the hyperslab queries, optimizing and executing them,

and transferring the results from the cloud to the client.

• Queries per dollar measures cost e�ciency, and is calculated

as the total number of queries issued divided by the cost. Ser-

vice providers calculate charges daily, which is too coarse for

our experiments. We thus compute the cost manually using the

published charging policy and pertinent information from server-

side logs. Our service fee calculation is equal to the cost reported

from the cloud vendors down to the cent (which is the highest

resolution data we can access from the cost dashboard).

We often plot these two metrics together in a two-dimensional

plot, where cost e�ciency is shown vertically and performance is

shown horizontally. This shows a comprehensive view of system

performance and cost, where the top right corner indicates the

highest performance and cost e�ciency. However, because the

number and type of queries that are issued is di�erent for each

application, comparisons are only meaningful when comparing

di�erent systems within the same experiment. Comparisons across

experiments are not meaningful as they involve di�erent queries.

5.1 Synthetic Workload Evaluation

In this section, we use a synthetic dataset to evaluate ArrayMorph.

The evaluation focuses on the following questions:

• Systemperformance and cost.DoesArrayMorph outperform

existing cloud-based baselines, and by how much?
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Figure 7: Performance on synthetic workloads.

• Query plan quality. How does the mixed strategy chosen by

ArrayMorph compare with single-choice alternatives? Does the

user-de�ned č parameter impact query plan selection?

• Impact of chunking. Is the performance of ArrayMorph sen-

sitive to the chunking size? If we assume perfect knowledge of

the query workload, does optimal chunking trivially produce the

optimal data access plan?

• Big datasets, unstable network and complex queries. How

robust is ArrayMorph? Can it scale to larger datasets, adapt to

network �uctuations, and handle complex query patterns?

Synthetic dataset and query workload.We generate a two-di-

mensional (2D) array with 128K rows and 128K columns of random

integers, with a total size of 64GB. Unless otherwise noted in speci�c

experiments, the dataset is stored in 16MB square chunks. We issue

three synthetic query workloads on this array:

• Thehorizontal box and vertical boxworkloads issue 10 queries

that read contiguous rows or columns, respectively. The starting

point is chosen randomly, and the selectivity is �xed to 1% of

the array. This workload was used to evaluate the dicing perfor-

mance of ArrayStore [47] in prior work, and mimics the species

classi�cation workload in CameraTrap (see Figures 2a-2b).

• The small box workload issues 100 queries that read a 21x21

pixel region from the image, where the starting point is chosen

at random. This access pattern is encountered in supernovae

detection (see Figure 2c) when focusing on speci�c objects of

interest, such as supernovae, in a much larger image [21, 27].

5.1.1 System performance and cost.

Figure 7 plots the performance and cost of ArrayMorph (A) versus

the system baselines HSDS (H), TileDB (T), andHSLAMBDA (ą) that

always use a single data retrieval method. The upper right corner
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Figure 8: Breakdown of ArrayMorph access method choices

for one random query from each workload. Note howArray-

Morph adapts the retrieval strategy based on the hypeslab

query and often selects a mix of di�erent strategies.

indicates the best performance and cost e�ciency. Looking at the

black marks in Figure 7, we �nd that ArrayMorph consistently

outperforms the baseline systems HSDS and TileDB by about 2X, in

both performance and cost. This is because both HSDS and TileDB

return a lot of redundant data: they transfer about 16GB for the

Horizontal and Vertical Box workloads, which is 2X more than

the query requests. (Recall that both HSDS and TileDB read every

accessed chunk; HSDS usesmultiple Get requests, while TileDB uses

multiple Range requests.) HSLAMBDA invokes one lambda function

to evaluate the entire query. This has poor performance for the small

box workload (20X slower than ArrayMorph) due to the very high

initialization overhead of lambda functions. HSLAMBDA crashes

for the horizontal and vertical box workload on AWS. (Interestingly,

although HSLAMBDA crashes before returning any data, it still

incurs costs for the lambda executions!) Overall, ArrayMorph

achieves the best performance and cost e�ciency in all workloads.

5.1.2 ArrayMorph plan quality.

We now turn our attention to the quality of the plans produced by

ArrayMorph. For this analysis, we force ArrayMorph to always

pick one plan, and we indicate the di�erent choices in Figure 7

with di�erent colors. We see that no method is always best for

all query workloads. ArrayMorph-Get behaves most similarly to

TileDB and HSDS, which is re�ected in its near-identical perfor-

mance, cost and data transfer volume. ArrayMorph-Range(Merge)

performs much better for the horizontal box workload but does not

bene�t the vertical box workload: it transfers only about 8GB for

the horizontal workload, but twice as much (16GB) for the vertical

workload. This is because of how data is serialized: ArrayMorph-

Range(Merge) issues a few large requests with the horizontal box

workload, but as many as Get when there is no bene�t in merg-

ing in the vertical box workload. ArrayMorph-Range(Fetch) and

ArrayMorph-Lambda minimize the data transferred for all query

workloads, transferring 8GB for the horizontal and vertical work-

loads, and just 170KB for the small box workload, but they have

limitations. Range(Fetch) issues too many requests (about 150k re-

quests per query) for the Horizontal/Vertical workloads, which has

signi�cant overhead. On the other hand, using lambda functions

indiscriminately has signi�cant lambda execution overhead: for the

Small Box workload ArrayMorph-Lambda has lower throughput

than ArrayMorph-Get.
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Figure 9: Alternative plansArrayMorph considered for each

workload on AWS S3. The selected plan (indicated by a circle)

has competitive performance and cost e�ciency.

ArrayMorph further bene�ts from selecting a mixed execution

strategy. Figure 8 shows which access strategy ArrayMorph se-

lected for each chunk for one run from each query workload. Note

how ArrayMorph adapts, preferring the Range(Merge) method for

Horizontal box queries that align with the row-major storage order,

and relying more on the Lambda method for Vertical box queries to

avoid strided accesses that other methods would incur. Additionally,

for some chunks in the Horizontal Box workload, ArrayMorph

applies a small number of splits (ranging from 1 to 7), striking a

balance between Range(Merge) and Range(Fetch). This result con-

�rms that the range re�nement algorithm generally �nishes after

very few iterations. For the Small box workload, Range(Fetch) is

selected because it is estimated to achieve similar throughput to

Range(Merge), but lower cost due to transferring less data.

We now look more closely into how well the minimum cost

plan that ArrayMorph selected performs in practice, compared

to alternatives that the optimizer considered but did not select. To

assess this, we perform the following experiment. We start with

the same plan that is used in the previous �gures, we select one

accessed chunk at random, and we force the optimizer to produce

all possible plans by making the stop condition (Alg. 1, line 10) to

evaluate to false after ġ iterations. By changing ġ from 1 to as many

cells in the query, we obtain thousands of plans, which we execute

and report their performance and cost.

Figure 9 shows the results.We label the single-planArrayMorph

con�gurations with the corresponding letter. The dots represent

plans that issue a di�erent number of Range requests. The circled

plan indicates the �nal choice made by the ArrayMorph optimizer

to process the chunk. (We omit the Get(G) plan from the Small

Box result as its performance is over 100X away from all other

plans.) The results show that for all workloads the plan selected

by ArrayMorph is the best or near-best in terms of performance

and cost e�ciency. In addition, the results suggest that the param-

eter č has limited impact in practice, as it is often the case that a

choice is better than the others in both the time and cost dimen-

sions. Overall, the results corroborate that ArrayMorph derives

its e�ciency gains from careful selection among di�erent access

plans for di�erent access patterns.

We now evaluate how query plans selected by ArrayMorph

are a�ected by the user-de�ned č , which expresses a preference

between saving time or saving costs. We vary the value of č from
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Figure 10: Impact of č parameter on performance and cost.

1 to 10
5 when processing the Vertical box workload. We run ex-

periments on both a local server and an EC2 t2.2xlarge instance

located in us-east-2. Figure 10 shows the results. On the local server,

both time and service fees are bottlenecked by data transfer, so the

Query Optimizer consistently minimizes transfer size regardless of

č , resulting in similar query plans and performance. On the EC2

node data transfer from/to S3 is free, so Lambda costs dominate. In

this setting, č balances response time and cost: smaller č values

favor Lambda for faster execution, while larger č values shift the

preference to Get and Range methods to lower cost.

5.1.3 Sensitivity to chunk size.

This section evaluates the robustness of ArrayMorph over dif-

ferent chunk sizes. Of particular interest is whether baselines can

achieve comparable performance with a chunking layout gener-

ated by optimal chunking algorithms in prior work. We use the QS

(Query Shape) algorithm [43] as a representative optimal chunking

algorithm. QS takes as input a set of hyperslab queries and gener-

ates a chunking layout by analyzing the distribution of historical

query shapes, aiming to minimize the number of chunks retrieved

for a given workload. The optimal chunking shape generated for

the Horizontal, Vertical and Small box workload are [2048, 131072],

[131072, 2048], and [16, 32], with chunk sizes of 1GB, 1GB, and 2KB

respectively.

In this experiment we vary the chunk size from 2KB to 1GB and

�x the chunk shapes to what the QS algorithm recommended. HSDS

fails with errors for datasets with chunk sizes smaller than 64KB

or larger than 256MB, so we only show results from this smaller

range. We report the average, and show variability using error bars,

where the bars show the minimum to the maximum value observed.

Figure 11 shows the results on AWS S3, where the triangle marks

the chunking recommendation of the QS algorithm.

ArrayMorph is the fastest and most cost-e�ective system for all

workloads and chunk sizes, except for the horizontal box workload

with TileDB for small chunk sizes (<64KB). Importantly, Array-

Morph achieves the highest throughput for this workload with

more typical chunk sizes (in the MBs range). TileDB outperforms

ArrayMorph for this particular workload and chunk size due to its

unique design choice to store all data in a single object and perform

logical chunking. This means that for the horizontal box workload

TileDB will only issue a few large requests to one S3 object. In

comparison, ArrayMorph stores chunks in separate S3 objects,

and hence needs to send separate requests to each object, which

impacts performance. This speci�c design choice results in poor

TileDB performance when the requests cannot be merged in the

Vertical box workload for small chunk sizes.

The chunking choice of the QS algorithm is suboptimal, because

although the chunking layout perfectly matches the query pattern
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(a) Horizontal box.
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(b) Vertical box.
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(c) Small box.

Figure 11: Sensitivity to chunking size on AWS S3. For e�cient hyperslab query processing in the cloud, choosing the access

method carefully as ArrayMorph does is as important as selecting the perfect chunk size.
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Figure 12: Scalability and robustness of ArrayMorph on the Horizontal box workload on AWS S3.

for the Horizontal and Vertical Box workloads, the chunk bound-

aries never perfectly align with the hyperslab queries, requiring

accesses to multiple very large chunks for a single hyperslab query.

Because of this, ArrayMorph is up to 4.7X faster and 8.8X cheaper

than the baselines with 1GB chunk size. For the Small box workload,

ArrayMorph runs 11.5X faster and 1.5X cheaper than TileDB with

2KB chunking. This demonstrates that tuning the chunking layout

is insu�cient for hyperslab query processing—choosing the access

method carefully is just as important.

5.1.4 Scalability and system-level robustness.

This section evaluates the scalability and system-level robustness

of ArrayMorph on AWS S3.

Scalability. To evaluate how ArrayMorph performs on larger

datasets, we change the dataset size from 64GB to 2TB and execute

the Horizontal Box workload. The selectivity of the queries is �xed

(1% on the 64GB dataset) and does not change with the dataset size.

Figure 12(a) shows the average data transfer throughput (in MB/s)

of ArrayMorph, along with the throughput variability indicated

by error bars. The results show that ArrayMorph has consistent

throughput as the dataset size grows, consistently achieving approx-

imately 100-110 MB/s, which is the network speed for this system.

This demonstrates that ArrayMorph is capable of handling much

larger TB-sized datasets.

Robustness under network�uctuations.The estimated network

bandwidth and latency are crucial factors for the cost model. In

this experiment we investigate how sensitive the plan selection

of ArrayMorph is to changes in network bandwidth and latency

that may occur. We focus on four query plans (Get, Range(Merge),

Lambda, and Range(Fetch)), which re�ect di�erent choices made

by ArrayMorph. By comparing their relative performance under

di�erent network conditions, we assess whether the same plan

remains competitive—con�rming if ArrayMorph needs frequent

re-pro�ling as network conditions change.

We control the available bandwidth using the readRateLimiter

option provided by the AWS S3 SDK, and vary it from 20 MB/s up

to the full available bandwidth. We control the latency by deploying

EC2 instances in di�erent AWS regions with di�erent round-trip

latencies to where the S3 data are stored: local/us-east (50 ms), us-

west (90 ms), and eu-west (150 ms). Figure 12(b) and 12(c) show

the results. In this experiment Merge consistently achieves the

best performance. Although all methods show reduced throughput

as bandwidth decreases and latency increases, the relative perfor-

mance order remains unchanged. The fact that relative performance

remains consistent under network �uctuations indicates that Ar-

rayMorph will not bene�t from frequent re-pro�ling.
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Figure 13: ArrayMorph performance on the DLIO bench-

mark versus �le-based data transfer.

Complex query patterns. We also evaluate ArrayMorph us-

ing the Deep Learning I/O (DLIO) benchmark [5, 11]. DLIO is de-

signed to emulate diverse I/O patterns commonly observed in deep

learning workloads, and has been used to study and categorize

I/O behaviors in machine learning applications [29]. We integrate

ArrayMorph into the existing DLIO benchmarking scripts [3],

replacing its default h5py-based data reader. We compare the end-

to-end running time of using ArrayMorph against the conven-

tional pipeline, which �rst downloads the entire dataset from cloud

storage to local storage before running ML tasks. For dataset down-

load, we use Tapis [50], a high-performance data transfer service

optimized for moving large-scale scienti�c datasets to HPC envi-

ronments. Speci�cally, we compare two Tapis-based methods: (1)

Tapis-scratch, which downloads the dataset to the distributed �le

system and starts the DLIO benchmark, and (2) Tapis-tmpfs, which

copies the downloaded dataset into a RAM-based temporary �le

system (tmpfs) to eliminate disk-based I/O during the execution of

the DLIO benchmark, as ArrayMorph does.

Figure 13 shows the results. ArrayMorph runs about 1.7X faster

than Tapis-based methods. The key performance gain comes from

avoiding redundant data transfer and I/O. ArrayMorph fetches

only the necessary data directly from the cloud during the DLIO

benchmark execution, avoiding redundant data transfer and by-

passing local disk I/O. In contrast, Tapis-based methods incur the

overhead of downloading the entire dataset before computation.

The results demonstrate that ArrayMorph e�ciently handles and

remains robust against the complex query patterns commonly en-

countered in ML applications.

5.2 Real-world Workload Evaluation

This section evaluates the end-to-end performance of ArrayMorph

compared to existing cloud-based data management systems on

real-world machine learning workloads. All systems are evaluated

across their supported cloud platforms to load data using hyperslab

queries, with all ML tasks executing on a single NVIDIA A100 GPU.

We use the following real-world ML applications in our evaluation:

• BERT pretrained model evaluation [35] follows the PyTorch

implementation by NVidia for evaluating the pretrained BERT

model. The dataset consists of 250 HDF5 �les (totaling 250GB)

with �ve 2-D and one 1-D array per �le, all in 4-byte integer

format. Each �le is chunked and uses 16MB chunks. We convert

and upload the dataset to the cloud using ArrayMorph and all

baselines. We run the PyTorch evaluation script while directly

fetching data from the cloud using h5py interface. The script

issues about 1500 hyperslab queries to randomly sample 1% of
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Figure 14: Performance of Real-world Workloads.

the dataset. Throughput (queries per minute) is computed by

dividing the number of queries by the total running time. For

PushDownDB, the total running time includes the overhead of

converting query results from CSV to NumPy arrays.

• BioCLIP few-shot classi�cation [49] evaluates the BioCLIP

vision model on wildlife images using the SWG CameraTrap

dataset [30], which contains 10K images with bounding box

annotations and class labels. Each image is stored as a (3, 2880,

3840) 3-D array of 1-byte unsigned integers. The total size is

about 300GB, and we use a chunk size of 16MB. We execute

the BioCLIP repository’s PyTorch evaluation script [48], directly

retrieving bounding boxes from the cloud via hyperslab queries

(see Figure 1). During evaluation, 10K hyperslab queries are

issued to fetch region-of-interest data.

5.2.1 BERT Results.

Figure 14 shows the results from evaluating ArrayMorph when

sampling BERT training data, Compared with existing systems,

ArrayMorph is up to 1.66X faster and up to 9X cheaper than HSDS

and TileDB, mainly by transferring less data. Speci�cally, Array-

Morph transfers only 2.7GB of data, whereas HSDS and TileDB

each transfer around 26.8GB. PushDownDB and HSLAMBDA avoid

redundant data transfer but exhibit low performance. For Push-

downDB, the converted relational tables are much larger than the

original data size, which S3 Select takes longer to process. Although

S3 Select returns no redundant data, it incurs the extra overhead

of data conversion before running ML tasks from CSV or Parquet

formats into a dense tensor representation. These drawbacks make

it up to 71.X slower than ArrayMorph. HSLAMBDA exacerbates

the long cold start times of executing Lambda functions, making it

20.3X slower than ArrayMorph.

Among the single-operator methods implemented by Array-

Morph, Range(Merge) transfers no redundant data due to the align-

ment of hyperslab queries with the row-major storage order. How-

ever, it uses a single request to fetch data, which limits network

throughput. In contrast, ArrayMorph improves performance by
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splitting large segments into multiple smaller requests, making

better use of the network and achieving 1.06X speedup over the

Range(Merge) method. Range(Fetch) generates an excessive num-

ber of small (512-byte) requests, leading to signi�cant overhead in

both time and cost, resulting in low throughput and cost e�ciency.

For Lambda, the execution time of the lambda function becomes a

bottleneck when queries access only a single 16MB chunk, making

it even slower than Get. Although its cost e�ciency is compara-

ble to ArrayMorph, the throughput is 1.52X lower. In conclusion,

the results show ArrayMorph outperforms existing systems in

terms of both time and cost e�ciency. This is becauseArrayMorph

considers factors such as serialization order and lambda execution

overheads, instead of always picking a single data retrieval method.

5.2.2 CameraTrap Results.

We now focus on the CameraTrap workload of Figure 14. Camera-

Trap fails to run on HSLAMBDA. Compared with existing systems,

ArrayMorph is up to 1.39X faster and 9.25X cheaper than other

array-based systems, and 25.6X faster and 5.24X cheaper than Push-

DownDB. It transfers only 28.3GB of data while TileDB and HSDS

transfer more than 265GB. Among the single-operator methods

implemented internally, ArrayMorph runs up to 1.17X faster and

up to 7.0X cheaper than Range(Merge) and Lambda. This is be-

cause hyperslab queries generated by annotations show diverse

access patterns—some align with the row-major storage order, oth-

ers do not, and some may even span an entire chunk. As a result,

no single-operator method performs optimally across all cases. In

contrast, ArrayMorph adapts to di�erent access patterns by se-

lecting suitable plans through the split-based algorithm guided by

the cost model. In conclusion, ArrayMorph achieves the highest

throughput in terms of both time and cost by adapting its data

access methods for di�erent queries.

6 RELATED WORK

Data processing on the cloud.Cloud storage services have gained

popularity in recent years due to their convenience, �exibility and

scalability. Many data processing platforms integrate with cloud

services, including Presto [44], Snow�ake [10], Hive [53], Redshift

[19], and Spark [4] for relational data; TileDB [38], and HSDS [17]

for array data. Prior research has explored e�cient cloud data pro-

cessing. PushdownDB [56] and FlexPushdownDB [55] leverage

computation pushdown via AWS S3Select to execute SQL oper-

ations closer to the storage. Recent work also utilizes serverless

cloud functions. Lambada [33], Starling [40], and Flint [28] build

query engines on AWS Lambda to reduce latency. HSLAMBDA [51]

extends this approach to hyperslab queries, while LambdaML [23]

applies it to ML training.

Unlike relational cloud databases, e�cient array data manage-

ment remains underexplored. Existing systems [17, 38] often fetch

entire objects, which is ine�cient for applications requiring partial

data, such as ML sampling [12] and video analytics [16, 26, 39, 41,

49]. In contrast, ArrayMorph optimizes query execution across

multiple data retrieval metods, selecting the most e�cient strategy.

Cloud Data Placement Optimization. Data placement in cloud

storage signi�cantly impacts query latency and cost. Prior work

has explored intelligent placement strategies to optimize perfor-

mance. Many systems [1, 6, 36] automate data distribution across

multiple cloud data centers to reduce cross-region transfer costs

and improve locality for frequently accessed data. Some systems

[22, 34, 55, 58] leverage edge storage or caching to minimize redun-

dant data transfers. Other works [18, 45] study how edge computing

(e.g., on sensors or drones) can preprocess data before uploading

to the cloud, reducing transfer latency. While ArrayMorph opti-

mizes hyperslab retrievals rather than data placement, integrating

adaptive placement strategies could further enhance e�ciency.

Array data processing.Array data processing is essential for high-

performance applications in �elds like machine learning [12, 16, 20,

26, 39, 41] and scienti�c computing [25, 46], where vast volumes of

multidimensional data are common. Prior research has extensively

studied high-performance array data management systems, cov-

ering areas such as storage and e�cient data retrieval [8, 38, 47],

as well as advanced array operators, including join [13, 59], multi-

plication [7], and others. The comprehensive survey by Rusu [42]

concisely summarizes recent research in array data management.

The chunking strategy plays a crucial in array data management,

as well-tuned chunk sizing can signi�cantly reduce I/O operations

for array data retrieval and processing. Previous work [37, 42, 43]

has extensively studied the implications of chunking and proposed

di�erent chunking strategies. Some array systems [2, 57] support

fast rechunking to adapt to dynamic workloads. While Array-

Morph does not support automatic rechunking, it mitigates the

impact of suboptimal layouts by changing the data access strategy

based on the data layout.

7 CONCLUSION

This paper explores the opportunity of accelerating the I/O part

of machine learning applications by pushing the evaluation of hy-

perslab queries to the cloud. Prior work considers three methods

to selectively retrieve parts of objects in cloud storage services,

namely chunking, reading a contiguous byte range, and evaluating

a lambda function. We �nd that existing solutions have limitations

in that they are only implementing one of these methods, which is

not always optimal in time or cost. To overcome these limitations,

we propose ArrayMorph, a cloud-based array data storage system

that automatically determines which is the best method to use to

retrieve regions of interest from data on the cloud. ArrayMorph

formulates data accesses as queries and optimizes them using a

multi-phase cost-based optimization. ArrayMorph is designed to

be seamlessly integrated with Python/PyTorch-based ML applica-

tions, and supports queries against leading object store services,

namely Amazon S3, Azure Blob Storage, and Google Cloud Storage.

We evaluate ArrayMorph on synthetic workloads and real-world

workloads. The experimental results show that ArrayMorph can

transfer up to 9.8X less data than existing systems, which makes it

run up to 1.7X faster and 9X cheaper than existing systems.
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