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ABSTRACT

Graph Neural Networks (GNNs) have become a cornerstone in

multivariate time series forecasting by addressing the challenge of

modeling inter-series dependencies often overlooked by traditional

temporal approaches. However, real-world temporal dependencies

(inter- and intra-dependencies) are inherently intertwined, mak-

ing it difficult to treat them as separate processes. Recent pure

graph paradigms attempt to capture these dependencies holistically

by transforming time series into fully connected graphs. While

effective, these methods suffer from prohibitive computational com-

plexity O((𝑁𝑇 )2), limiting their scalability for large-scale data and

long-term forecasting. To address these challenges, we propose

UFGTime, a novel framework that leverages spectral signals to con-

struct a "spectral-variate graph," embedding multivariate temporal

dependencies in a compact spectral representation and modeling

inter- and intra-signal connections through frequency similarities.

Empowered by our proposed graph framelet message-passing func-

tion, UFGTime efficiently aggregates global information, avoids

over-smoothing, and achieves near-linear complexity O(𝑘𝑁𝑇 ). Ex-
tensive experiments on diverse datasets demonstrate that UFG-

Time consistently outperforms state-of-the-art baselines, offering

a scalable, accurate, and resource-efficient pure graph solution for

multivariate time series forecasting.
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1 INTRODUCTION

Multivariate time series forecasting plays a crucial role in indus-

trial applications such as transportation, manufacturing, and en-

ergy management [26]. Recent advances in deep neural networks

have significantly improved forecasting accuracy [27, 35, 48]. How-

ever, these methods primarily focus on exploring temporal patterns

within individual time series, often overlooking the inter-relations

between time series. These inter-relations are critical for capturing

complex dependencies in multivariate time series data and have

the potential to enhance model performance [6, 17].

To harness these inter-relations, a graph structure is often em-

ployed to represent these connections, serving as the foundation

for applying Graph Neural Networks (GNNs). Renowned for their

effectiveness in graph representation learning, GNNs have been uti-

lized to model these inter-correlations, enabling each time series to

leverage information from others [6, 17]. Forecasting models with

GNN modules enable the simultaneous modeling of inter-series re-

lationships (via GNNs) and intra-series dependencies (via temporal

model), providing a unified framework for leveraging both types of

information in time series data, resulting as many developed state-

of-the-art such as DCRNN [21], GraphWaveNet [41], STGCN [46],

and MTGNN [40]. Despite their success, these models often rely

on integrating GNN modules with separate temporal components

to capture both types of dependencies, treating the modeling of

inter- and intra-series connections as two independent processes.

This separation is inconsistent with the entangled nature of the

underlying dynamics via multivariate time series data.

To resolve the problem, recent research, FourierGNN [45], moves

beyond traditional GNN approaches to these models, which build

end-to-end frameworks to capture inter- and intra-temporal re-

lations with separate modules. Instead, it explicitly explores the

intertwined interactions within the multivariate temporal system.

To globally model the entangled temporal dependencies, it proposes

a fully connected framework that disregards the distinction between

inter- and intra-temporal connections, treating all connections as

the same type. This approach assumes that all time points in a

multivariate time series system share uniform connections, thereby

transforming the multivariate time series into a novel graph struc-

ture characterized by a fully connected graph. This serves as an

initial prototype that applies the pure graph method to multivariate

time series analysis.
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Nonetheless, this "nascent" pure graph paradigm leaves sev-

eral challenges unaddressed. Treating the multivariate temporal

system as a complete graph results in computational complexity

of O((𝑁𝑇 )2), which is computationally expensive. While Fouri-

erGNN partially mitigates this issue by reducing the complexity

to O(𝑁𝑇 log(𝑁𝑇 )) through learning a neural frequency scaling

filter to approximate a fully connected graph convolution, this

approach still requires further optimization to improve efficiency.

Moreover, representing global connections with a complete graph

causes all time slices to share the same fully connected structure,

failing to reflect dynamic features in multivariate time series. This

static representation overlooks the varying relationships between

time points across different periods, limiting its ability to capture

temporal dynamics effectively. Considering the limitations of trans-

forming time series into complete graphs, the question of "how to
find a compact and non-fully connected graph solution that
effectively represents the global and dynamic dependencies of
multivariate time series" emerges as Challenge 1 in this work.

In time series analysis, spectral representations are often used

as an alternative [19, 38, 43] to temporal representations to cap-

ture information in a global and overarching form (e.g., periodicity),

offering the detection of the trends that are not easily discernible

in temporal representations. Inspired by this, we propose lever-

aging the spectral domain to construct a pure spectral graph as

a compact alternative for capturing the intertwined patterns in

multivariate temporal systems (against Challenge 1). Given the

global nature of spectral signals, applying GNNs on a partially con-

nected graph in the spectral domain to mix various frequencies can

effectively represent overarching temporal information. Based on

signal similarities, a customized graph with appropriate densities

can be constructed, providing an efficient foundation for diverse

downstream applications. However, the flexible connection levels

of this graph impose higher requirements on the GNNs applied.

When the graph is sparse, GNNs focus excessively on local con-

nectivity, neglecting critical global neighboring information on the

graph. Conversely, GNN propagates on dense graphs, exacerbat-

ing the over-smoothing (OSM) issue [30] and aforementioned high

computational complexity. This leads to a critical question: "how
can we design efficient GNNs to capture global neighboring
information (e.g., by spectral filtering [11]) with limited con-
nections and avoid over-smoothing even when the dense graph
is needed?" This forms Challenge 2, which will be extensively

discussed in Section 3.5.

Based on the above analysis, this paper develops a novel frame-

work, UFGTime, for time series forecasting by leveraging an ef-

ficient framelet GNN (Defined in Section 3) on the spectral do-

main graph. Specifically, we introduce multi-scale spectral filtering

within our framework, enabling the aggregating of global informa-

tion that would otherwise be neglected when the input graph is

sparse. Furthermore, we demonstrate that our GNN is immune to

over-smoothing under mild conditions, regardless of graph den-

sity (against Challenge 2). To the best of our knowledge, this is the
first work that represents the spectral frequencies of a multivariate

time series as a graph and utilizes connections between different

frequencies to capture the complex dynamics of multivariate tem-

poral systems. The contributions of this work are summarized as

follows:

• We propose the spectral-variate graph, which transforms spectral

signals of multivariate time series into graph features connected

by signal frequency similarities. This graph globally embeds tem-

poral dependencies into a sparse graph, enabling more efficient

graph operations.

• We propose a novel framelet GNN that effectively utilizes global

information on sparse graphs and demonstrates that it prevents

the over-smoothing issue under mild conditions. Furthermore,

our analysis shows that the method remains compact and effi-

cient, with a complexity of O(𝑘𝑁𝑇 ) when applied to the pro-

posed spectral-variate graph.

• Through evaluations of twelve short-term forecasting datasets,

two long-term datasets, and supplementary tests, we demon-

strate that our model consistently outperforms state-of-the-art

baselines with an efficient design.

2 PRELIMINARIES AND RELATEDWORKS

In this section, we introduce the fundamental notations and define

the forecasting problem. Additionally, we discuss two paradigms

for applying GNNs to multivariate time series forecasting, which

provide valuable insights and guidelines for designing our frame-

work.

2.1 Problem Definition

A multivariate time series 𝑿 ∈ R𝑁×𝑇×𝐷 represents a sequence of

𝐷-dimensional vector observations of 𝑁 entities recorded over a

time period 𝑇 . We denote 𝑿𝑡 = [𝑋𝑡−𝑇+1, . . . , 𝑋𝑡−1, 𝑋𝑡 ] ∈ R𝑁×𝑇×𝐷
representing the observations on the looking back-window of size

𝑇 at timestamp 𝑡 , where 𝑋𝑡 ∈ R𝑁×𝐷 is the observation for all the

𝑁 entities at 𝑡 . A typical forecasting task is to learn a model 𝑓 (·),
by minimizing a predefined loss function, such that

ˆ︁𝒀 𝑡+1 = 𝑓 (𝑿𝑡 ) = 𝑓 ( [𝑋𝑡−𝑇+1, . . . , 𝑋𝑡 ]) (1)

predicts the next 𝜏 steps of time series 𝒀 at 𝑡 + 1, e.g., 𝒀 𝑡+1 =

[𝑋𝑡+1, . . . , 𝑋𝑡+𝜏 ] ∈ R𝑁×𝜏×𝐷 , forecasting within the prediction time

window 𝜏 .

2.2 Paradigm of GNNs in Multivariate Time

Series Forecasting

Multivariate time series forecasting has been widely studied in

various fields, such as economics, finance, and traffic, using deep

learning algorithms such as convolutional neural networks (CNNs)

[2, 4], recurrent neural networks (RNNs) [9, 16], and transformers

[49, 52]. These deep learning approaches often employ sophisti-

cated structures to model the temporal patterns within individual

time series. However, a major limitation of these methods is their

inability to account for inter-dependencies across time series, which

can significantly hinder forecasting accuracy. To address these chal-

lenges in modeling temporal and structural dependencies, GNNs

have been leveraged across diverse paradigms (shown in Table 1),

enabling the integration of temporal dynamics and inter-series

relationships. These paradigms can be categorized as follows:
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Table 1: Comparison of Different GNNs in Multivariate Time Series Forecasting

Paradigm Core Design Methods Graph Type Graph Domain Graph Operation Entangled Pattern Complexity

Modulity

GNN + Recurrence STGNN [37], AGCRN [3], etc. Sparse Temporal Yes No -

GNN + Convolution GWNet [41], MTGNN [40], etc. Sparse Temporal Yes No -

GNN + Attention GMAN [50], TPGNN [25], etc. Sparse Temproal Yes No -

Pure Graph

Hypervariate Graph + Frequency Scaling FourierGNN [45] Complete Temproal No (Equivalent) Yes O(𝑁𝑇 log(𝑁𝑇 )𝐷 + 𝑁𝑇𝐷2)
Spectralvariate Graph + Graph Framelet Ours Sparse Spectral Yes Yes O(𝑁𝑇𝑘𝐷 + 𝑁𝑇𝐷2)

Figure 1: Visual Demonstration of GNN Methods of Different Paradigms

Modularity Paradigm. The introduction of DCRNN [21], which

integrates graph and recurrent modules into an end-to-end frame-

work, represented a significant step forward in capturing inter-

series correlations and temporal dynamics (intra-series dependen-

cies). This design has emerged as a dominant paradigm for applying

GNNs in multivariate time series forecasting (as demonstrated in

Figure 1 (a)). Variants of this paradigm can be categorized into three

groups: GNNs with recurrence (e.g., ST-MetaNet [28], STGNN [37],

AGCRN [3], GTS [31], and HiGP [8]), GNNs with convolution (e.g.,

GraphWaveNet [41], MTGNN [40], StemGNN [5], STGODE [13],

MTGODE [18], and CaST [42]), and GNNs with temporal attention
(e.g., GMAN [50], STAR [47], and TPGNN [25]). Despite their effec-

tiveness, these frameworks often separate cross-series modeling

and temporal dynamic learning into two distinct processes. This

separation may lead to a disjointed representation of the complex

dependencies observed in nature, inadequately capturing the inher-

ent spatio-temporal interconnections, thereby potentially limiting

forecasting performance.

Pure Graph Paradigm. To address the limitations of the mod-
ularity paradigm in capturing the complex entanglement of inter-

and intra-temporal information, FourierGNN [45] introduces the

pure graph paradigm, treating multivariate time series as a fully

connected structure known as a hypervariate graph:

Definition 1 (Hypervariate Graph [45]). Given a multi-
variate time window 𝑿𝑡 ∈ R𝑁×𝑇×𝐷 at timestamp 𝑡 , a hypervariate

graph is defined as 𝑮𝐻𝑡 =

(︂
𝑿𝑮
𝑡 , 𝑱

)︂
, where 𝑿𝑮

𝑡 ∈ R𝑁𝑇×𝐷 represents

node features, and 𝑱 ∈ 1𝑁𝑇×𝑁𝑇 denotes the fully connected adjacency
matrix.

Unlike modularity paradigms that separately model inter-series

and intra-series dependencies, the hypervariate graph treats multi-

variate time series as a single, fully connected graph, embedding

both temporal dynamics and inter-series correlations, as shown

in Figure 1 (b). This representation reformulates the forecasting

problem as:

ˆ︁𝒀 𝑡+1 = 𝑔𝜃 (𝑮𝐻𝑡 ) = 𝑔𝜃 (𝑿𝑮
𝑡 , 𝑱 ), (2)

where 𝑔𝜃 (·) is a GNN that accepts node features and adjacency

matrix as inputs. This unified paradigm addresses key limitations

of modularity-based methods and offers significant potential for

time series analysis. However, the fully connected nature of the hy-

pervariate graph introduces substantial computational challenges.

The time and space complexity of graph operations grow quadrat-

ically with the number of time points and series, making direct

implementation infeasible for large-scale data. To address this, they

employ a neural frequency scaling filter in the Fourier domain,

which has been proven to be equivalent to graph aggregation on a

complete graph, thereby significantly reducing complexity while

maintaining global connectivity.

Despite these innovations, the pure graph paradigm proposed

by Yi et al. [45] has certain limitations. First, scaling each frequency

individually overlooks interactions across signals, potentially over-

simplifying their relationships. Second, the fully connected assump-

tion of the hypervariate graph causes the connections to remain

static across different periods, failing to capture the dynamic nature

of temporal variations. Third, the equivalent fully connected graph

convolution tend to lead oversmoothing, a phenomenon where en-

forced similarity between nodes results in indistinguishable rep-

resentations, reducing the model’s ability to preserve distinctive

representation of nodes. Finally, the computational complexity,
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O(𝑁𝑇 log(𝑁𝑇 )𝐷 + 𝑁𝑇𝐷2), poses significant challenges for scal-
ing to large-scale data. These limitations underscore the need for

alternative compact strategies, such as leveraging sparse graph

structures to reduce complexity or employing adaptive filters to

better capture frequency interactions.

3 PROPOSED METHOD

In this section, we provide an overview of UFGTime (Section 3.1)

and introduce two key components of our framework: the For-

mation of the Spectral-variate Graph (Section 3.2) and the Global

Graph Framelet Message-Passing Operator (Section 3.4).

3.1 Overview of Framework

As shown in Figure 2, our framework, UFGTime, decomposes the

multivariate temporal forecasting task into two stages: (1) spectral-
variate graph transformation, and (2) global graph framelet operation.

In the first stage, we employ the Fourier transformation to project

temporal information into the spectral domain, treating all fre-

quency signals as node features of a graph. We then use the k-

nearest neighbors (KNN) algorithm to capture the similarity be-

tween different Fourier signals and establish edge connections. By

combining the signals (as node features) and edge connections

calculated by KNN, we construct the spectral-variate graph (as Def-

inition 2), which is a 𝑘-customized density graph representation of

the multivariate temporal system.

In the second stage, we introduce the global graph framelet

message-passing function to apply graph convolution on the spectral-

variant graph. This function leverages fast graph-level framelet de-

composition to enable efficient graph convolution while mitigating

the over-smoothing problem.

3.2 Transformation from Multivariate Time

Series to Sparse Graph

As discussed in Section 1 and 2.2, representing multivariate time

series as a fully connected graph captures both inter- and intra-

relations within the temporal system. However, this static con-

nectivity fails to accurately reflect the dynamic dependencies of

real-world systems and significantly increases computational com-

plexity, making it unsuitable for large-scale data analysis. Thus,

constructing a sparse graph that captures both global and dynamic

dependencies becomes the first challenge of this work.

To preserve global information from multivariate time series

without relying on a fully connected structure to model temporal

patterns, we turn to spectral representations of time series. The

Discrete Fourier Transform (DFT) is a computational tool widely

used to convert data from the time domain to the spectral domain.

Given a finite-length sequence 𝒙 [𝑡 ∈ 𝑇 ], the DFT and Inverse

Discrete Fourier Transform (IDFT) denoted as F (·) and F −1 (·),
are defined as follows:

𝒔 [𝑐] = F (𝒙) [𝒄] ≔
𝑇−1∑︂
𝑡=0

𝒙 [𝑡]𝑒−𝑖2𝜋𝑐𝑡/𝑇 , (3)

𝒙 [𝑡] = F −1 (𝒔) [𝑡] ≔ 1

𝑇

𝑇−1∑︂
𝑐=0

𝒔 [𝑐]𝑒𝑖2𝜋𝑐𝑡/𝑇 , (4)

where 𝒔 is the complex spectral representation of the time-domain

sequence 𝒙 . Notably, the basis functions 𝑒−𝑖2𝜋𝑐𝑡/𝑇 = cos(2𝜋𝑐𝑡/𝑇 ) −
𝑖 sin(2𝜋𝑐𝑡/𝑇 ) span the entire time domain, covering all discrete

points. Each frequency component 𝒔 [𝑐] captures a global pattern
of the sequence 𝒙 .

By adopting this insight, we first transform the real multivariate

time series 𝑿𝑡 into its spectral representation 𝑺𝑡 that keep low-

frequency spectra 𝐶 = ⌊𝑇 /2⌋ + 1, as follows:

𝑺𝑡 = F (𝑿𝑡 ) ∈ C𝑁×𝐶×𝐷 . (5)

The spectral representation of a multivariate time series comprises

multiple Fourier signals, each corresponding to distinct frequen-

cies. These signals also exhibit dependencies, reflecting both intra-

and inter-signal relationships in the time domain. Thus, the entire

spectral representation can be viewed as a graph in the spectral do-

main, encapsulating the complex interactions within the temporal

domain. We note that the transform F (𝑿𝑡 ) defined in (5) can be

adopted to those datasets with different temporal dynamics (i.e.,

different 𝑇 ). Furthermore, we show our models’ performances via

long-term time series forecasting task with different time steps (𝑇 )

in Table 4.

To construct the graph in the spectral domain, we first apply a

vectorization operation to the spectral representation to form the

graph node features:

𝑺𝑮𝑡 = vec(𝑁,𝐶 ) (𝑺𝑡 ) ∈ C𝑁𝐶×𝐷 , (6)

where 𝑺𝑮𝑡 represents the graph node features that formed by spec-

tral signals.

Next, we define the graph edge connections. Since each signal

in 𝑺𝑮𝑡 retains global information from the temporal domain, we

construct a sparse connection by measuring the similarity between

each signal’s frequency components. The cosine similarity between

two arbitrary graph features (Fourier signals) is defined as:

similarity

(︂
𝒔𝑮𝑡 (𝑖), 𝒔𝑮𝑡 ( 𝑗)

)︂
=

𝒔𝑮𝑡 (𝑖) · 𝒔𝑮𝑡 ( 𝑗)
∥𝒔𝑮𝑡 (𝑖)∥∥𝒔𝑮𝑡 ( 𝑗)∥

, (7)

where 𝑖, 𝑗 ∈ 𝑁𝐶 are the graph node indices, and 𝒔𝑮𝑡 (𝑖) and 𝒔𝑮𝑡 ( 𝑗)
are the features of nodes 𝑖 and 𝑗 in 𝑺𝑮𝑡 .

Using cosine similarity, we apply the K-nearest neighbors (KNN)

algorithm to select the top-𝑘 similar signals:

N𝑘 (𝒔𝑮𝑡 (𝑖)) = arg top𝑘

𝒔𝑮𝑡 ( 𝑗 ), 𝑗≠𝑖

(︄
similarity

(︂
𝒔𝑮𝑡 (𝑖), 𝒔𝑮𝑡 ( 𝑗)

)︂ )︄
, (8)

where N𝑘 (𝒔𝑮𝑡 (𝑖)) denotes the nearest neighbors of node 𝑖 .
Finally, the adjacency matrix 𝑨𝑡 is defined as:

𝑨𝑡 (𝑖, 𝑗) =
{︄
1, if 𝒔𝑮𝑡 ( 𝑗) ∈ N𝑘 (𝒔𝑮𝑡 (𝑖));
0, otherwise.

(9)

Using this adjacency matrix, a graph is constructed based on the

spectral signals 𝑺𝑡 . This new graph structure is formally defined as

follows:

Definition 2 (Spectral-variate Graph). Given a general
multivariate time window 𝑿𝑡 ∈ R𝑁×𝑇×𝐷 at time step 𝑡 , the spec-
tral temporal signals 𝑺𝑡 are defined as the Fourier-transformed time
series, 𝑺𝑡 = F (𝑿𝑡 ) ∈ C𝑁×𝐶×𝐷 . The spectral-variate graph 𝑮𝑆𝑡 at
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Figure 2: A workflow demonstration of UFGTime framework for predicting ˆ︁𝒀 𝑡+1 with input 𝑿𝑡

timestamp 𝑡 is then defined as 𝑮𝑆𝑡 =

(︂
𝑺𝑮𝑡 ,𝑨𝑡

)︂
, where 𝑺𝑮𝑡 ∈ C𝑁𝐶×𝐷

represents the graph features, and𝑨𝑡 ∈ {0, 1}𝑁𝐶×𝑁𝐶 is the adjacency
matrix associate with spectral-variate graph features 𝑺𝑮𝑡 .

Our motivation for advocating spectral-variate graphs lies in

the inherent global representation capability of the Fourier trans-

formation. Instead of relying on fully connected graphs to capture

global patterns in multivariate time series, we leverage the KNN

algorithm to construct sparse connections between various Fourier

signals, thereby modeling complex dependencies in the spectral do-

main. This approach implicitly retains the global temporal patterns

while significantly reducing computational overhead. With higher

sparsity, spectral-variate graphs offer great potential for improving

graph operation efficiency.

3.3 Challenges and Requirements for GNNs on

Spectral-variate Graphs

Figure 3: A case study of various graph sparsity impact on

GCN and UFGTime performances on spectral-variate graph

formed by Covid-Cal dataset. One can check that UFGTime

shows better robustness to the sparsity change of the graph

(which risks over-smoothing) compared to the classic GCN

model.

Unlike the hypervariate graph introduced in Definition 1, where

fully connected graphs are constructed across all timestamps, the

adjacencymatrices in the spectral-variate graph are estimated based

on signal similarity using the KNN algorithm. Once the graph struc-

ture is defined, the next challenge is processing the features 𝑺𝑮 with

the generated graph structure 𝑨𝑡 at a customized density 𝑘 . When

𝑨𝑡 is sparse, employing traditional GNNs to propagate spectral-

variate graph features may result in short-sightedness, focusing

only on local, nearest-neighbor connections and failing to capture

global relationships. Conversely, when 𝑨𝑡 is densely constructed

(large 𝑘 of KNN), feature propagation risks over-smoothing [30].

This issue causes node features to become indistinguishable after

graph propagation, which is detrimental to downstream tasks such

as forecasting.

Therefore, a suitable GNN model for spectral-variate graphs

preferably addresses the following requirements:

• Prevent excessive smoothing (similarity) of spectral-variate graph
features by preserving the identifiability (sharpness) of each node’s
features during propagation.

• Propagate node features in a global manner, even though the graph
is sparsely connected.

How to select GNN for spectral-variate graphs? GNNs that

satisfy the first requirement often employ a diffusion-reaction par-

adigm, where node features are first homogenized through spatial

propagation (i.e., using 𝑨). Then the ego-graph feature (e.g., 𝑺𝑮𝑡 ) is
added to reintroduce variation into the system [7, 14, 36]. While

these models have achieved remarkable results, spectral GNNs,

such as ChebNet [11], typically learn filtering functions (e.g., diag-

onal matrices) in the spectral domain (i.e., the eigenspace of the

graph Laplacian), which enables feature propagation from a global

perspective, thus satisfying the second requirement. Consequently,

an ideal model would either be a spectral GNN that can induce

multiple feature dynamics or a spatial GNN that accounts for global

dependencies between features.

In light of these considerations, we focus on a family of spectral

GNNs known as Graph Framelets, which meet the aforemen-

tioned requirements. In Figure 3, we conduct a case study to show

how the changes in the graph sparsity (i.e., number of edges) affect

the forecasting performance between GCN, which suffers from the

over-smoothing problem particularly when the graph is dense, and

our global graph framelet message-passing function (to be defined

in the next section) which is immune to the over-smoothing prob-

lem e.g., caused by dense graph (See the main theorem 1 in Section

3.5 for details.). We finally remark that although GCN eventually

owns the worst performance with the highest MAE when the graph

is nearly fully connected, the initial MAE drop remains to show
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that one customized graph sparsity (i.e., to describe the inter and

intra-temporal relations) is of the necessity of producing higher

model forecasting performances.

3.4 Framelet Message Passing on the Fourier

domain

In this section, we formulate a novel global graph framelet message-

passing system, specifically designed for spectral-variate graphs in

multivariate time series forecasting tasks, addressing the unique

demand posed by this setting. While numerous framelet variants

have been developed in recent years [15, 24, 34], these approaches

primarily focus on node features in the real domain. In contrast,

our work refines the original graph framelet framework [44, 51]

to the spectral domain of spectral-variate graphs. This new design

enables us to more effectively capture the intricate relationships of

the spectral-variate graph.

3.4.1 Graph Framelet Message-Passing. Graph framelets are

defined by a set of filter banks, denoted as 𝜂𝑎,𝑏 = {𝑎;𝑏 (1) , . . . , 𝑏 (𝐿) },
and the corresponding complex-valued scaling functions. These

scaling functions are typically expressed as Ψ = {𝛼 ; 𝛽 (1) , . . . , 𝛽 (𝐿) },
where 𝐿 represents the number of high-pass filters. The framelet

framework adheres to the following refinement relationship be-

tween the scaling functions and filter banks:ˆ︁𝛼 (2𝜉) = ˆ︁𝑎(𝜉)ˆ︁𝛼 (𝜉), (10)ˆ︃𝛽 (𝑟 ) (2𝜉) = ˆ︃𝑏 (𝑟 ) (𝜉)ˆ︁𝛼 (𝜉), ∀ 𝜉 ∈ R, 𝑟 = 1, . . . , 𝐿, (11)

where ˆ︁𝛼 and
ˆ︃𝛽 (𝑟 ) denote the Fourier transforms of 𝛼 and 𝛽 (𝑟 ) ,

respectively, and ˆ︁𝑎, ˆ︃𝑏 (𝑟 ) represent the Fourier series of 𝑎 and 𝑏 (𝑟 ) .
The graph framelets are then defined as

𝜑 𝑗,𝑝 (𝑣) =
𝑛∑︂
𝑖=1

ˆ︁𝛼 (︃
Λ𝑖
2
𝑗

)︃
𝑢𝑖 (𝑝)𝑢𝑖 (𝑣), (12)

𝜓𝑟𝑗,𝑝 (𝑣) =
𝑛∑︂
𝑖=1

ˆ︃𝛽 (𝑟 ) (︃Λ𝑖
2
𝑗

)︃
𝑢𝑖 (𝑝)𝑢𝑖 (𝑣), (13)

for 𝑟 = 1, . . . , 𝐿 and scale level 𝑗 = 1, . . . , 𝐽 . Here, 𝑢𝑖 (𝑣) refers
to the eigenvector 𝑢𝑖 at node 𝑣 . The functions 𝜑 𝑗,𝑝 (·) and 𝜓𝑟𝑗,𝑝 (·)
are commonly referred to as the low-pass framelets and high-pass
framelets at node 𝑝 . We further denote 𝚲 be the matrix that contains

the eigenvalues of the graph Laplacian. One can define the framelet

decomposition matricesW0,𝐽 andW𝑟,𝐽 as:

W0,𝐽 = 𝑼ˆ︁𝑎 (︃
𝚲

2
𝑚+𝐽

)︃
· · ·ˆ︁𝑎 (︃

𝚲

2
𝑚

)︃
𝑼⊤, (14)

W𝑟,0 = 𝑼 ˆ︃𝑏 (𝑟 ) (︃ 𝚲

2
𝑚

)︃
𝑼⊤, for 𝑟 = 1, . . . , 𝐿, (15)

W𝑟,𝑗 = 𝑼 ˆ︃𝑏 (𝑟 ) (︃ 𝚲

2
𝑚+𝑗

)︃ ˆ︁𝑎 (︃
𝚲

2
𝑚+𝑗−1

)︃
· · ·ˆ︁𝑎 (︃

𝚲

2
𝑚

)︃
𝑼⊤, (16)

for 𝑟 = 1, . . . , 𝐿, 𝑗 = 1, . . . , 𝐽 .

Here, 𝑚 represents the coarsest scale level, which is the small-

est value satisfying 2
−𝑚𝜆(𝑁 ) ≤ 𝜋 . Let the set I = {(𝑟, 𝑗) : 𝑟 =

1, . . . , 𝐿, 𝑗 = 0, 1, . . . , 𝐽 }∪{(0, 𝐽 )}, one can verify the so-called tight-
ness of the framelet decomposition and reconstruction such that∑︁
(𝑟,𝑗 ) ∈IW⊤𝑟, 𝑗W𝑟, 𝑗 = 𝑰 .

We highlight that, in practice, to avoid the heavy eigen-decomposition

of the graph Laplacian, one may adopt the 𝐾-order polynomial to

boost implementation speed. For notation simplicity, we denote

the polynomials as T𝑗 (𝜉) instead of T𝐾
𝑗
(𝜉). Accordingly, the above

framelet decomposition can be approximated as:

W0,𝐽 ≈ T0 (
1

2
𝐿+𝑚

˜︁𝑳) · · · T0 ( 1
2
𝑚
𝑳), (17)

W𝑟,0 ≈ T𝑟 (
1

2
𝑚
𝑳), for 𝑟 = 1, ..., 𝐿, (18)

W𝑟, 𝑗 ≈ T𝑟 (
1

2
𝑚+ℓ 𝑳)T0 (

1

2
𝑚+ℓ−1

˜︁𝑳) · · · T0 ( 1
2
𝑚
𝑳), (19)

for 𝑟 = 1, ..., 𝐿, 𝑗 = 1, ..., 𝐽 .

in which we let 𝑳 be the graph Laplacian matrix and note that

𝑘 = 2 is good enough for providing high-quality approximations

in practice [44]. In summary, one can explicitly denote the feature

propagation of the graph framelet (without activation) as

𝑯 (ℓ + 1) =
∑︂
(𝑟, 𝑗 ) ∈I

W⊤𝑟, 𝑗diag(𝜽𝑟,𝑗 )W𝑟,𝑗𝑯 (ℓ)𝑾 (ℓ), (20)

where we generically denote 𝑯 (ℓ) be the feature matrix at layer ℓ

(e.g., 𝑯 (ℓ) = 𝑺𝐺𝑡 (ℓ)), and diag(𝜽 ) contains learnable coefficients in

each frequency domain,𝑾 (ℓ) is the weight matrix that is shared

across the different frequency domains. In addition, we further

simplify the framelet model by omitting the reconstruction pro-

cess [24] and applying identical channel-mixing (i.e., W) among all

frequency domains. This leads to

𝑯 (ℓ + 1) =
∑︂
(𝑟,𝑗 ) ∈I

diag(𝜽𝑟, 𝑗 )W𝑟, 𝑗𝑯 (ℓ)𝑾 (ℓ), (21)

and thus forming a multiscale message-passing model that propa-

gates the node features through efficient spectral filtering.

3.5 Model Properties

As aforementioned (e.g., Challenge 2 in Introduction), it is preferable

to have a GNN that can avoid over-smoothing even when the

graph is dense. Below, we show that the propagation defined in

(21) can avoid over-smoothing under the mild conditions. First, we

state the main theorem as follows.

Theorem 1 (Avoid Over-Smoothing). Assuming the graph is
connected and unweighted, the propagation defined in (21) can avoid
over-smoothing regardless of the sparsity (i.e., 𝑘 in KNN) of the graph.

The proof of Theorem 1 is done by showing that the propagation

in (21) can induce both low and high-frequency dominant dynamics

(LFD and HFD) under the mild conditions, regardless of the sparsity

of the graph. Without loss of generality, we let 𝑔𝜃 be any GNN

model. We will also denoteˆ︁𝑳 = 𝑰 − ˆ︁𝑨 = 𝑰 −D−
1

2 (𝑨+ 𝑰 )D−
1

2 as the

normalized graph Laplacianmatrix, and let 𝜌ˆ︁𝑳 be the spectral radius

(i.e., the difference between the smallest and largest eigenvalue) ofˆ︁𝑳. We then introduce the following definitions of LFD and HFD.

Definition 3. 𝑯̇ (𝑡) = 𝑔𝜃 (𝑯 (𝑡), 𝑡) is LFD if 𝐸
(︁
𝑯 (𝑡)/∥𝑯 (𝑡)∥

)︁
−→

0 as 𝑡 −→ ∞, and is HFD if 𝐸
(︁
𝑯 (𝑡)/∥𝑯 (𝑡)∥

)︁
−→ 𝜌ˆ︁𝑳/2 as 𝑡 −→ ∞.

Our definitions of LFD and HFD are adopted from the recent

work in [12]. We note that although the phenomenon defined in

Definition 3 is defined via the continuous domain (i.e., 𝑡 ), it is
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straightforward to analogize the definition to the discrete domain,

i.e., layers of GNNs. Another important remark here is that if one

GNN model is LFD, then the model’s smoothing effect on the node

features will dominate the entire dynamic; thus, asymptotically,

the features will become identical, causing the over-smoothing

phenomenon. On the other hand, if a GNN model can induce an

HFD dynamic, the features will tend to be dissimilar to each other,

causing the GNN to avoid the problem. Accordingly, aligning with

the conclusion introduced in [12], one can further characterize the

notion of LFD and HFD in the following Lemma:

Lemma 1 (LFD/HFD Behaviors [12]). A GNN model is LFD (resp.
HFD) if and only if for each 𝑡 𝑗 −→ ∞, there exists a sub-sequence
indexed by 𝑡 𝑗𝑘 −→ ∞ and 𝑯∞ such that 𝑯 (𝑡 𝑗𝑘 )/∥𝑯 (𝑡 𝑗𝑘 )∥ −→ 𝑯∞
and ˆ︁𝑳𝑯∞ = 0 (resp. ˆ︁𝑳𝑯∞ = 𝜌ˆ︁𝐿𝑯∞).

The detailed proof of the Lemma can be found in [12], and it is

straightforward to generalize the Lemma to the feature frequency

representation (i.e., S); thus, we omit it here. We now demonstrate

that our proposed framelet model, with the propagation defined in

(21), can induce both LFD and HFD-type dynamics as follows. We

note that for simplicity reasons, the following conclusion is for the

framelet model with Haar type filtering function [44] of scale one

(i.e., J = 1) in (21), and we have

W0,1 = 𝑼𝚲0,1𝑼
⊤ = 𝑼 cos(𝚲/8)𝑼⊤,

W1,1 = 𝑼𝚲1,1𝑼
⊤ = 𝑼 sin(𝚲/8)𝑼⊤ .

Accordingly, the feature propagation defined in (21) becomes

𝑯 (ℓ + 1) = 𝑼diag(𝜽 0,1)cos(𝚲/8)
+ diag(𝜽 1,1)sin(𝚲/8)𝑼⊤𝑯 (ℓ)𝑾 (ℓ), (22)

and we have the following conclusion.

Lemma 2. Assuming the graph is connected and unweighted, the
framelet message-passing model defined in (21) with Haar-type filter
of scale 1 can induce both LFD and HFD dynamics. Specifically, let
𝜽0,1 = 1 and 𝜽1,1 = 𝜃1 where 1 is a vector of all 1s. Suppose 𝜃 ≥ 0.
Then, when 𝜃 ∈ [0, 1), the dynamic in (21) LFD; otherwise, the model
is HFD.

Proof. The proof of the Lemma extends the conclusion in [15]

when the framelet model is without reconstruction. First, one can

assume the propagation in (22) as the gradient flow (e.g., with

stepsize 𝜏 ) of the evolution of the quadratic or energy term, and the

channel-mixing matrix W is symmetric [12, 15], plunging in the

settings in Lemma 2, result in the following.

vec

(︁
𝑯 (𝑚𝜏)

)︁
= 𝜏𝑚

(︂
W ⊗ (W0,1 + 𝜃W1,1)

)︂𝑚
vec

(︁
𝑯 (0)

)︁
,

= 𝜏𝑚
∑︂
𝑘,𝑖

(︂
𝜆𝑊
𝑘

(︁
cos(𝜆𝑖/8) + 𝜃 sin(𝜆𝑖/8)

)︁ )︂𝑚
𝑐𝑘,𝑖 (0)𝜙𝑊𝑘 ⊗ u𝑖 , (23)

where we denote ℓ =𝑚𝜏 and {(𝜆𝑊
𝑘
, 𝜙𝑊
𝑘
)}𝑐
𝑘=1

as the eigenvalue and

eigenvector pairs of W and 𝑐𝑘,𝑖 (0) := ⟨vec(𝑯 (0)), 𝜙𝑊𝑘 ⊗ u𝑖 ⟩ as the
projection of the initial node features to the domain constructed by

𝜙𝑊
𝑘
⊗ u𝑖 . Now one can check that

|𝜆𝑊
𝑘
(cos(𝜆𝑖/8)+𝜃 sin(𝜆𝑖/8)) | ≤ Δ𝑊 (cos(𝜆𝑖/8) + 𝜃 sin(𝜆𝑖/8)),

where Δ𝑊 := max𝑘 |𝜆𝑊𝑘 |. One can further check that for exam-

ple when 𝜃 > 1 the function cos(𝜆𝑖/8) + 𝜃 sin(𝜆𝑖/8) is monoton-

ically increasing in 𝜆𝑖 ∈ [0, 𝜌ˆ︁𝑳] and its maximum is achieved at

𝜆𝑖 = 𝜌ˆ︁𝑳 (with sufficiently large 𝜆𝑊
𝑘
). On the other hand, with

small 𝜃 , the function is monotonically decreasing and its maxi-

mum is achieved at 𝜆𝑖 = 0. More specifically, one can let 𝛿 :=

max𝑖:𝜆𝑖≠𝜌ˆ︁𝐿 | (︁𝜆𝑊 ((𝜆Λ0,1

𝑖
) + 𝜃 (𝜆Λ1,1

𝑖
))

)︁
|. Also denote P𝜌 =

∑︁
𝑘 (𝝓𝑘 ⊗

u𝜌 ) (𝝓𝑘 ⊗ u𝜌 )⊤ where u𝜌 is the eigenvector of ˆ︁𝑳 associated with

eigenvalue 𝜌ˆ︁𝑳 . Then we can decompose (23) as

vec

(︁
𝑯 (𝑚𝜏)

)︁
= 𝜏𝑚

∑︂
𝑘

𝛿𝑚
HFD

𝑐𝑘,𝜌𝐿 (0)u𝑘 ⊗ u𝜌

+ 𝜏𝑚
∑︂
𝑘

∑︂
𝑖:𝜆𝑖≠𝜌𝐿

(︂ (︁
𝜆𝑊 (𝜆Λ0,1

𝑖
) + 𝜃 (𝜆Λ1,1

𝑖
)
)︁ )︂𝑚

𝑐𝑘,𝑖 (0)𝝓𝑘 ⊗ u𝜌

≤ 𝜏𝑚𝛿𝑚
HFD
(P𝜌vec

(︁
𝑯 (0)

)︁
+
∑︂
𝑘

∑︂
𝑖:𝜆𝑖≠𝜌ˆ︁𝐿

(︃
𝛿

𝛿HFD

)︃𝑚
𝑐𝑘,𝑖 (0)𝝓𝑘 ⊗ u𝜌 ,

(24)

where 𝛿 < 𝛿HFD. One can then normalize the results of the above

derivation, one can see that

vec

(︁
𝑯 (𝑚𝜏 )

)︁
∥vec

(︁
𝑯 (𝑚𝜏 )

)︁
∥
−→ P𝜌 (vec(𝑯 (0) ) )
∥P𝜌vec(𝑯 (0) ) ∥ as

𝑚 →∞, where the latter term is a unit vector h∞ satisfying (𝑰𝐷 ⊗ˆ︁𝑳)h∞ = 𝜌𝐿h∞, where 𝐷 is the feature dimension. This directly

suggests the dynamic is HFD according to the Definition 3 and

Lemma 1. This completes the proof. □

Remark 1. Based on the definition of LFD and HFD, one can check
that there are other ways of achieving LFD and HFD for the dynamic
in (22), and our settings in Lemma 2 are for illustration purposes to
show our proposed model has such capability. In addition, Lemma 2
conclusion can be directly extended to other filtering functions rather
than Haar and scales (i.e., 𝐽 > 1), we omit the proof here.

Based on Lemma 2, one can check that when the model dynamics

is HFD, e.g., the model with a relatively large 𝜃 , node features tend

to be dissimilar to each other, thus avoiding the over-smoothing

problem. More importantly, Lemma 2 is still valid when the graph

is dense, and this directly proves the claim in Theorem 1, further

reflecting that a task-adaptive graph-forming technique can consis-

tently benefit our model once a carefully selected GNN is paired

with it to prevent the potential computational issues. We refer to

the more detailed theoretical discussion in the works in [32, 34].

Remark 2. Our final remark is that in the case where the graph
of 𝑁 nodes is complete, the eigenvalues of the normalized graph
Laplacian are 0 with multiplicity 1 and 1 with multiplicity 𝑁 − 1.
One can verify that without edge reweighting and rewiring, even
multiscale GNNs (e.g., framelets) have limited filtering power. This
also verifies the necessity of leveraging an adaptive, preferably sparse
graph via graph neural network (GNN) propagation.

3.6 Forecasting Pipeline with UFGTime

The main framework of UFGTime is illustrated in Figure 2. Given

input multivariate time series data 𝑿𝑡 ∈ R𝑁×𝑇×𝐷 , we first apply
moving-average decomposition to the input to extract trend infor-

mation 𝑿𝑡𝑟𝑒𝑛𝑑𝑡 ∈ R𝑁×𝑇×𝐷 , and then apply the Discrete Fourier

Transform (DFT) on the time dimension of the input to obtain the
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Algorithm 1: UFGTime

Input: X = {𝑿1,𝑿2, . . . ,𝑿𝑡 , . . .},𝑿𝑡 ∈ R𝑁×𝑇×𝐷 , number

of neighbors 𝑘 , number of high-pass filters 𝐿, scale

level 𝐽 , coarsest scale𝑚, and maximum iterations 𝐼

Output: Predicted results
ˆ︁Y = {ˆ︁𝒀 1,ˆ︁𝒀 2, . . . ,ˆ︁𝒀 𝑡 , . . .}

1 while 𝑖 = 0 to 𝐼 do

2 for 𝑿𝑡 in X do

3 ApplyMA(𝑿𝑡 ) → 𝑿𝑡𝑟𝑒𝑛𝑑𝑡 ∈ R𝑁×𝑇×𝐷 ;

4 Apply F (𝑿𝑡 ,𝐶) → 𝑺𝑡 ∈ C𝑁×𝐶×𝐷 ;
5 Reshape 𝑺𝑡 → 𝑺𝑮𝑡 ∈ C𝑁𝐶×𝐷 ;
6 Apply KNN(𝑿𝑮

𝑡 , 𝑘) → 𝑨𝑡 ∈ {0, 1}𝑁𝐶×𝑁𝐶 ;
7 Form 𝑮𝑆𝑡 =

(︂
𝑺𝑮𝑡 ,𝑨𝑡

)︂
;

8 Generate graph Laplacian ˆ︁𝑳 ← 𝑨𝑡
9 for 𝑟 = 0 to 𝐿 − 1 do
10 W𝑟,𝑗 ={︄

T𝐾
0
(2−𝑚L) 𝑗 = 1,

T𝐾𝑟 (2−(𝑚+𝑗−1)L) . . . T𝐾0 (2
−𝑚L) 𝑗 = 2, ..., 𝐽

11 𝑯 (0) ← 𝑺𝑮𝑡 ;

12 𝑯 (ℓ) = SiLU

∑︁
𝑟, 𝑗 diag(𝜽𝑟, 𝑗 )W𝑟, 𝑗 𝑺𝑮𝑡 (ℓ − 1)𝑾 (ℓ) ;

13 Reshape 𝑯 (ℓ) → 𝑺𝑡 (ℓ) ∈ C𝑁×𝐶×𝐷 ;
14 Apply F −1 (𝑺𝑡 (ℓ),𝑇 ) → 𝑿𝑯

𝑡 ∈ R𝑁×𝑇×𝐷 ;
15

ˆ︁𝒀 𝑡+1 = FFN(𝑿𝑯
𝑡 ) + 𝑿𝑡𝑟𝑒𝑛𝑑𝑡 𝑾𝑡𝑟𝑒𝑛𝑑 .

16 return Predicted results
ˆ︁Y;

spectral signal 𝑺𝑡 ∈ C𝑁×𝐶×𝐷 . The frequency signal is reshaped

into a spectral-variate graph feature 𝑺𝑮𝑡 ∈ C𝑁𝐶×𝐷 . Next, we lever-
age KNN to generate a graph structure 𝑨𝑡 ∈ {0, 1}𝑁𝑇×𝑁𝑇 . At
this point, we obtain the spectral-variate graph 𝑮𝑆𝑡 =

(︂
𝑺𝑮𝑡 ,𝑨𝑡

)︂
.

Subsequently, to capture intricate dependencies on the spectral-

variate graph, we feed the data into ℓ layers of a global framelet

message-passing function with a SiLU activation function, defined

as 𝑯 (ℓ) = SiLU

(︂∑︁
𝑟,𝑗 diag(𝜽𝑟,𝑗 )W𝑟,𝑗 𝑺𝑮𝑡 (ℓ − 1)𝑾 (ℓ − 1)

)︂
. After-

ward, we reshape 𝑯 (ℓ) into frequency signal 𝑺𝑡 (ℓ) ∈ C𝑁×𝐶×𝐷
and use the Inverse Fast Fourier Transform (IFFT) F −1 (𝑺𝑡 (ℓ)) to
obtain the graph operation output 𝑿𝑯

𝑡 ∈ R𝑁×𝑇×𝐷 . Finally, based
on the output hidden state 𝑿𝑯

𝑡 , which encodes both intra- and

inter-temporal dependencies, we apply a two-layer feed-forward

network (FFN) to project it forward 𝜏 steps. This result is combined

with the trend embedding to yield the final output:ˆ︁𝒀 𝑡+1 = FFN(𝑿𝑯
𝑡 ) + 𝑿𝑡𝑟𝑒𝑛𝑑𝑡 𝑾𝑡𝑟𝑒𝑛𝑑 . (25)

We provide the full pipeline of our method, which is shown in

Algorithm 1.

3.7 Model Complexity Analysis

For simplicity, we assume theweights of our Fourier-domain framelet

message-passing function are in C𝐷×𝐷 , and the Fourier signals

have length 𝑇 identical to the original time series. Our frame-

work consists of two main stages: spectral-variate graph construc-

tion and the graph framelet operation. The complexity of graph

Table 2: Summary of Dataset Statistics and Characteristics

Datasets #Samples #Nodes Granularity Start time Split Characteristics

Solar-FL 4,380 593 2 hour 2006-01-01 7/2/1 stationarity

Wiki-500 803 500 1 day 2015-01-07 7/2/1 shift, stationarity

Traffic 10,560 963 1 hour 2015-01-01 7/2/1 stationarity

Ecg 4,999 140 unknown unknown 7/2/1 stationarity, shift

Electricity2H 4,380 370 2 hour 2014-01-01 7/2/1 stationarity

Covid-Cal 345 60 1 day 2020-01-22 7/2/1 trend

Fred-MD 728 107 1 month 1959-01-01 7/2/1 trend, n/stationarity

Exchange 7,588 8 1 day 1990-01-01 7/2/1 shift, n/seasonality

Nasdaq 1,244 5 1 day unknown 7/2/1 n/seasonality

Nyse 1,243 5 1 day unknown 7/2/1 n/seasonality

NN5 791 111 1 day 1996-03-18 7/2/1 stationarity

Ili 966 7 1 week 2002-01-02 7/2/1 n/stationarity

ETTm 69,680 7 15 minutes 2016-07-01 6/2/2 transition

ETTh 17,420 7 1 hour 2016-07-01 6/2/2 transition

construction is dominated by the Fourier transformation F (·),
which is O(𝑁𝑇 log(𝑇 )). For the framelet operation on the sparse

spectral-variate graph, the complexity per layer is initially O(𝑅(𝐽 +
1) (𝑁𝑇 )2𝐷 +𝑁𝑇𝐷2), but due to graph sparsity enforced by the KNN
(|E | ≤ 𝑘𝑁𝑇 ), it reduces to O(𝐿(𝐽 + 1)𝑁𝑇𝑘𝐷 +𝑁𝑇𝐷2). Considering
that log(𝑇 ) ≪ 𝐷2

and constants 𝐿, 𝐽 , and 𝑘 are relatively small, the

overall complexity simplifies further to O(𝑁𝑇𝑘𝐷 + 𝑁𝑇𝐷2). This
demonstrates the high efficiency of UFGTime, reducing the original

quadratic complexity O((𝑁𝑇 )2) to linear complexity O(𝑁𝑇 ).

4 EMPIRICAL EVALUATION

4.1 Experimental Setup

4.1.1 Datasets. We evaluate our proposed method on 14 multi-

variate time series datasets spanning diverse domains, including

healthcare, energy, transportation, online activity, and finance (de-

tails summarized in Table 2). The ECG
1
dataset contains recordings

of patients’ heartbeats but lacks temporal granularity and start time

metadata. Solar-FL
2
comprises synthetic solar photovoltaic (PV)

power generation data from plants located in Florida. Covid-Cal
3

includes annual confirmed COVID-19 case counts from hospitals

across 60 counties in California, sourced from the CSSE COVID-19

repository. The Electricity2H
4
dataset, derived from the UCI elec-

tricity load database, was downsampled to 2-hour intervals. Wiki-

500
5
consists of 500 randomly selected Wikipedia page view series.

Traffic
6
provides hourly traffic volume measurements from free-

way sensors in San Francisco. Fred-MD
7
contains macroeconomic

indicators collected by the Federal Reserve Bank. The Exchange

dataset records daily exchange rates for eight foreign currencies

spanning 26 years. NASDAQ and NYSE
8
include historical stock

1
https://timeseriesclassification.com/description.php?Dataset=ECG5000

2
https://www.nrel.gov/grid/solar-power-data.html

3
https://github.com/CSSEGISandData/COVID-19

4
https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014

5
https://drive.google.com/uc?export=download&id=1VytXoL_

vkrLqXxCR5IOXgE45hN2UL5oB

6
https://drive.google.com/uc?export=download&id=

1dyeYj8IJwZ3bKvk1H67eaDTANdapKe7w

7
https://zenodo.org/records/4654833

8
https://github.com/fulifeng/Temporal_Relational_Stock_Ranking

3182

https://timeseriesclassification.com/description.php?Dataset=ECG5000
https://www.nrel.gov/grid/solar-power-data.html
https://github.com/CSSEGISandData/COVID-19
https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
https://drive.google.com/uc?export=download&id=1VytXoL_vkrLqXxCR5IOXgE45hN2UL5oB
https://drive.google.com/uc?export=download&id=1VytXoL_vkrLqXxCR5IOXgE45hN2UL5oB
https://drive.google.com/uc?export=download&id=1dyeYj8IJwZ3bKvk1H67eaDTANdapKe7w
https://drive.google.com/uc?export=download&id=1dyeYj8IJwZ3bKvk1H67eaDTANdapKe7w
https://zenodo.org/records/4654833
https://github.com/fulifeng/Temporal_Relational_Stock_Ranking


Table 3: Short-Term Forecasting Results on Twelve Datasets with Average Rankings. Best and Second Best Results Per Dataset

are Highlighted in Red and Blue, Respectively. Rankings are Based on Average MAE, RMSE, and MAPE Across Datasets. Ecg,

Nasdaq, and Nyse Results for Partial Transformer-based Methods are Denoted as ’−’ Due to Missing Temporal Information.

Baselines

Solar-FL Wiki-500 Traffic Ecg Electricity2H Covid-Cal

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Autoformer 0.1078 0.1489 3.4948 0.1936 0.3917 2.8225 0.0669 0.1018 0.9734 - - - 0.0961 0.1273 0.4902 0.6654 1.1961 0.3363

Informer 0.0827 0.1296 3.4536 0.1255 0.3183 2.4051 0.0522 0.0837 0.6640 - - - 0.1241 0.1611 0.6116 2.6893 4.7431 0.8996

Pyraformer 0.1451 0.1862 3.5104 0.0957 0.2651 2.0245 0.0466 0.0768 0.6961 - - - 0.1525 0.1986 0.8710 3.4571 5.4846 0.9987

Crossformer 0.0858 0.1281 3.4378 0.1566 0.2927 2.7246 0.0642 0.0940 1.0889 0.0592 0.0850 0.1335 0.1403 0.1750 0.8241 2.1863 4.6706 0.5858

Dlinear 0.0895 0.1351 3.4382 0.0594 0.3159 1.4073 0.0655 0.1036 0.9161 0.0544 0.0814 0.1182 0.0859 0.1193 0.4912 0.2045 0.4458 0.2115

Dcrnn 0.4772 0.5995 3.8203 0.4397 0.5655 3.6791 0.4404 0.5507 3.2122 0.6491 0.7858 1.1309 0.5532 0.6879 1.8591 3.9790 5.9690 1.1232

Stgcn 0.0873 0.1351 3.4544 0.0761 0.1901 1.7022 0.0356 0.0619 0.5197 0.0642 0.0923 0.1472 0.1155 0.1587 0.6625 3.2116 5.4279 0.8565

Gwnet 0.0838 0.1339 3.4561 0.0513 0.1698 1.2301 0.0354 0.0638 0.5194 0.0564 0.0833 0.1231 0.0782 0.1201 0.4536 2.4842 5.0064 0.6153

Mtgnn 0.0843 0.1343 3.4613 0.0518 0.1711 1.2702 0.0353 0.0619 0.5199 0.0557 0.0824 0.1222 0.0834 0.1235 0.5106 2.4513 4.2893 0.6835

Stemgnn 0.1558 0.2002 3.4951 0.2004 0.2977 3.0139 0.0694 0.1028 1.0486 0.1147 0.1496 0.2577 0.2929 0.3598 1.0889 3.9085 5.8803 1.1068

Agcrn 0.2169 0.3441 3.4381 0.5697 0.6508 3.9500 0.0973 0.1336 1.4485 0.0991 0.1320 0.2286 0.1735 0.2193 0.9563 3.5163 5.6340 0.9627

Fouriergnn 0.0809 0.1245 3.4414 0.1040 0.2246 2.2089 0.0403 0.0696 0.5908 0.0565 0.0879 0.1366 0.0927 0.1359 0.5589 0.2729 0.5113 0.2345

Ufgtime 0.0809 0.1259 3.4372 0.0471 0.1696 0.8746 0.0351 0.0618 0.5191 0.0536 0.0806 0.1173 0.0752 0.1164 0.0455 0.1918 0.4488 0.2051

Baselines

Fred-MD Exchange Nasdaq Nyse NN5 Ili

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Autoformer 0.2085 1.2868 0.2350 0.0305 0.0500 0.0797 − − − − − − 0.1030 0.1504 0.3972 0.1850 0.2767 0.6109

Informer 1.1117 5.6775 0.7958 0.0803 0.0990 0.1850 − − − − − − 0.0995 0.1440 0.3857 0.2579 0.3582 0.7265

Pyraformer 0.1959 1.2032 0.2306 0.0300 0.0494 0.0679 − − − − − − 0.1013 0.1518 0.3919 0.1792 0.2651 0.6018

Crossformer 1.6651 6.5407 1.3223 0.0357 0.0517 0.0839 0.0903 0.1249 0.0917 0.0882 0.1172 0.6057 0.2450 0.3056 0.8243 0.1867 0.2893 0.3873

Dlinear 0.1457 0.9382 0.1869 0.0254 0.0437 0.0780 0.0709 0.1037 0.0763 0.0408 0.0612 0.3037 0.1092 0.1590 0.4238 0.1775 0.2668 0.6042

Dcrnn 1.9966 7.0783 1.3772 0.6065 0.7544 1.3214 0.9298 1.1339 0.9613 0.4369 0.5383 2.4912 0.5109 0.6391 1.4664 0.7532 0.9625 1.7924

Stgcn 1.3315 6.8512 0.8610 0.0425 0.0638 0.1618 0.2492 0.3247 0.2100 0.0590 0.0720 0.4345 0.0967 0.1343 0.3377 0.3534 0.4430 1.0736

Gwnet 0.9881 3.6123 1.2256 0.0289 0.0439 0.0919 0.1450 0.1826 0.1451 0.0439 0.0546 0.3052 0.0954 0.1352 0.3376 0.2304 0.3269 0.7119

Mtgnn 0.3808 1.9662 0.3931 0.0284 0.0435 0.0926 0.1118 0.1490 0.1135 0.0599 0.0742 0.4520 0.0906 0.1283 0.3208 0.2010 0.2924 0.6861

Stemgnn 1.1810 6.7190 0.6430 0.0341 0.0533 0.1224 0.1493 0.1914 0.1376 0.2506 0.2750 1.5064 0.1074 0.1441 0.3907 0.2920 0.3960 0.6489

Agcrn 1.0822 6.1587 0.5804 0.0267 0.0413 0.0829 0.0687 0.1050 0.0725 0.0848 0.1252 0.5822 0.0898 0.1271 0.3257 0.1826 0.2643 0.5980

Fouriergnn 1.3784 4.7566 1.1396 0.0488 0.0709 0.1687 0.0872 0.1229 0.0913 0.1766 0.2164 1.0829 0.0956 0.1308 0.3305 0.1849 0.2863 0.5917

Ufgtime 0.1052 0.5343 0.1279 0.0263 0.0409 0.0786 0.0669 0.1013 0.0710 0.0300 0.0437 0.1932 0.0951 0.1309 0.3358 0.1770 0.2603 0.5988

transaction data from the NASDAQ and NYSE exchanges, respec-

tively. The NN5
9
dataset records daily cash withdrawal volumes

from 111 ATMs across England. Finally, the ILI
10

dataset includes

weekly influenza-like illness (ILI) cases reported by the U.S. CDC.

For long-term forecasting, we use two ETT datasets (ETTm/h)
11
.

These datasets include electricity data from two transformer sta-

tions (ETTm/h (1/2), we select ETTm/h1) in China, each with 7 time

series (e.g., electricity load, oil temperature).

We adopt the original train-validation-test splits from prior stud-

ies [23, 45, 52], as indicated in the "Split" column. To ensure a

comprehensive evaluation, we follow the time series attribution

method described in [29] to select datasets covering five represen-

tative characteristics. Detailed dataset statistics are summarized in

Table 2.

4.1.2 Baselines. To comprehensively evaluate our proposedmethod

alongside state-of-the-art approaches in multivariate time series

forecasting, we select a variety of representative baselines classified

into three main categories.

9
https://rdrr.io/cran/TSPred/man/NN5.A.html

10
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

11
https://github.com/zhouhaoyi/ETDataset

• Transformer-based methods: Crossformer [49], Autoformer [39],

Informer[52], and Pyraformer [22].

• Graph-based methods: DCRNN [21], STGCN [46], GWNet [41],

MTGNN [40], StemGNN [5], AGCRN [3], and Fouriergnn [45].

• Linear-based methods: DLinear [48], and TiDE [10].

4.1.3 Implementation. We reproduce the baseline models using

modified scripts from FourierGNN [45] and the fair benchmarking

toolkit, BasicTS+
12

[33]. Our model and all baselines are fine-tuned

using the Optuna
13

toolkit [1] with RMSprop optimizers to mini-

mize the Mean Squared Error (MSE) loss.

4.1.4 Evaluation Metrics. Following the evaluation methodology

in prior works [23, 45, 52], we adopt multiple metrics to compre-

hensively assess the performance of our method. For multi-step

forecasting accuracy, we use mean absolute error (MAE), root mean

squared error (RMSE), and mean absolute percentage error (MAPE).

To evaluate module contributions in the ablation study, we perform

12
https://github.com/GestaltCogTeam/BasicTS

13
https://optuna.org/
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Table 4: Long-Term Multivariate Time Series Forecasting Results on ETT Datasets. Best and Second Best Results Per Dataset

Highlighted in Red and Blue Respectively.

Datasets Steps

Ufgtime Fouriergnn Crossformer TiDE Dlinear Pyraformer Autoformer Informer FEDformer StemGNN

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm

96 0.324 0.357 0.581 0.462 0.375 0.415 0.364 0.387 0.339 0.380 0.543 0.510 0.505 0.475 0.672 0.571 0.456 0.490 0.528 0.536

192 0.370 0.385 0.904 0.643 0.453 0.474 0.398 0.404 0.391 0.410 0.557 0.537 0.573 0.509 0.795 0.669 0.517 0.524 0.693 0.610

336 0.404 0.421 0.919 0.646 0.548 0.526 0.428 0.425 0.433 0.438 0.754 0.655 0.621 0.537 1.212 0.871 0.570 0.557 0.667 0.625

720 0.515 0.473 0.927 0.648 0.857 0.713 0.487 0.461 0.489 0.481 0.908 0.724 0.749 0.5694 1.307 0.893 0.613 0.588 0.689 0.624

Avg 0.412 0.409 0.833 0.600 0.563 0.532 0.419 0.419 0.413 0.427 0.691 0.607 0.612 0.523 0.997 0.751 0.539 0.540 0.644 0.599

ETTh

96 0.416 0.418 0.476 0.495 0.441 0.457 0.479 0.464 0.451 0.475 0.664 0.612 0.449 0.459 0.865 0.713 0.551 0.544 0.609 0.590

192 0.449 0.445 0.547 0.571 0.521 0.503 0.525 0.492 0.496 0.506 0.790 0.681 0.500 0.482 1.008 0.792 0.612 0.580 0.742 0.650

336 0.474 0.471 1.173 0.574 0.659 0.603 0.569 0.551 0.536 0.535 0.891 0.738 0.521 0.496 1.107 0.809 0.643 0.600 0.685 0.635

720 0.634 0.575 0.733 0.716 0.893 0.736 0.770 0.672 0.650 0.610 0.963 0.782 0.514 0.512 1.181 0.865 0.788 0.681 0.777 0.683

Avg 0.531 0.477 0.567 0.589 0.628 0.574 0.541 0.507 0.533 0.532 0.827 0.703 0.496 0.487 1.040 0.794 0.649 0.601 0.703 0.639
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Figure 4: Robustness Comparison between Our Method and Baselines (MTGNN, FourierGNN) across 8 Datasets. Results are

Illustrated Using Box Plots and Density Plots based on 10 Repeated Experiments with Random Initialization. All Results are

Reported in RMSE, Except for the ETTh/m Dataset, Which uses MSE.

a Two-Way ANOVA test and report the p-statistic results. Addition-

ally, we measure computational efficiency using Gflop/s to compare

the computational cost across baselines.

4.1.5 Hardware and Setting. Our experiments were conducted on

a server equipped with an AMD EPYC 7J13 64-core CPU, 256 GB of

RAM, and four NVIDIA GeForce RTX 4090 GPUs. This setup was

used to evaluate our and baseline models across all datasets.

4.2 Overall Performance Analysis

4.2.1 Can UFGTime effectively capture temporal patterns from short
input sequences? The performance of short-term multivariate time

series forecasting is presented in Table 3, where both the his-

tory window and forecasting length are set to 12. Notably, some

transformer-based methods, such as Autoformer, Informer, and

Pyraformer, fail to produce results on the ECG, NASDAQ, and

NYSE datasets due to the absence of timestamp information. Com-

pared to all state-of-the-art baselines, UFGTime demonstrates com-

petitive performance. Specifically, on datasets such as Covid-Cal,

Fred-MD, Exchange, NASDAQ, NYSE, and ILI, which exhibit strong

non-stationary patterns, UFGTime effectively captures complex

dynamic patterns that often challenge transformer-based methods.

This highlights the strength of our framework’s spectral-variate
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Figure 5: Scalability Test (Computational Cost and

Parameters) on Various Lengths

Table 5: Comparison of Parameters and Computational Costs for Vari-

ous Model Hidden Size on theWiki-500 Dataset with a Batch Size of

32. Computational Costs are shown in Gflop/s.

Baselines

Hidden 32 Hidden 64 Hidden 128 Hidden 256

Param Gflop/s Param Gflop/s Param Gflop/s Param Gflop/s

Stemgnn 1, 800, 504 57.5376 1, 800, 504 57.5376 1, 800, 504 57.5376 1, 800, 504 57.5376

Crossformer 588, 216 30.2640 1, 398, 616 70.0281 3, 707, 544 178.0567 11, 077, 912 508.1150

Mtgnn 106, 268 13.5128 195, 548 26.5872 374, 108 52.7361 731, 228 105.0339

Gwnet 68, 588 6.9514 270, 284 27.5671 1, 073, 036 54.8956 4, 275, 980 876.4211

Fouriergnn 68, 076 2.1748 70, 540 2.2528 75, 368 2.4084 85, 324 2.7197

Pyraformer 905, 800 0.2190 1, 819, 424 0.4494 3, 700, 432 0.9446 7, 677, 488 2.0720

Autoformer 570, 996 0.2192 1, 174, 260 0.4507 2, 479, 092 0.9517 5, 481, 972 2.1046

Informer 183, 348 0.1664 404, 340 0.3642 963, 060 0.8542 2, 547, 444 2.2118

Dcrnn 33, 672 0.0307 657, 496 0.4915 129, 366 1.2458 257, 482 2.4915

Stgcn 97, 452 0.0246 196, 940 0.1311 402, 060 1.5729 836, 876 2.6214

Ufgtime 3, 690 0.1245 7, 261 0.2341 14, 045 0.4532 27, 613 0.8915

Agcrn 3, 960 0.1232 7, 080 0.2331 13, 480 0.4321 26, 840 0.8531

DLinear 312 0.0048 312 0.0048 312 0.0048 312 0.0048

(a) Hidden Size: 32 (b) Hidden Size: 64 (c) Hidden Size: 128 (d) Hidden Size: 256

Figure 6: Contour Plots of Hyperparameters Surface with Different Settings of Number of Graph Neighbors 𝑘 (2-10), Framelet

Dilation Scale 𝑠 (2-10), and Hidden Size (32, 64, 128, 256)

graph construction and robustness of graph framelet design, under-

scoring its effectiveness in multivariate time series forecasting.

4.2.2 Is UFGTime still effective in extracting long-term temporal
relationships? As discussed by Yi et al. [45], pure graph paradigms

tend to focus on dynamic patterns rather than long-range dependen-

cies, such as periodic patterns and trends, potentially limiting their

performance in long-range forecasting tasks. To mitigate this limi-

tation, our refined pure graph method introduces a spectral-variate

graph to construct pure graphs from various global Fourier sig-

nals, integrates a global filter within the framelet message-passing

function, and incorporates trend information. These enhancements

allow our model to effectively capture global patterns, making it

possible for long-term forecasting. Building on this insight, we

evaluate our method and Fouriergnn on two widely used ETT

long-range forecasting datasets for prediction horizons of 96, 192,

336, and 720 steps. Comparison results with state-of-the-art long-

range forecasting baselines are summarized in Table 4. While we

notice some performance loss for very long-range forecasting (720

steps), it delivers competitive results overall, matching the per-

formance of certain baselines specifically designed for such tasks.

These findings underscore the effectiveness of our carefully de-

signed mechanisms for preserving global patterns, demonstrating

their significant contributions to long-range predictions.

4.2.3 Is UFGTime robust compared to other GNN baselines? We

analyze the robustness of our method against two representative

graph-based baselines: MTGNN and FourierGNN. Figure 4 illus-

trates the robustness evaluation results across all datasets, where

RMSE is used for the six short-term datasets and MSE for the two

long-term ones. The results demonstrate that UFGTime consistently

achieves the lowest average prediction errors with relatively narrow

distribution widths across most datasets, indicating its superior ro-

bustness and stability in diverse forecasting scenarios. However, for

the ETTh dataset, UFGTime exhibits occasional outliers, suggesting

some variability under specific conditions. In contrast, Mtgnn and

Fouriergnn yield higher errors and broader variability distribu-

tions, particularly noticeable on complex datasets such asWiki-500

and ETTh, reflecting their comparatively lower robustness.
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Figure 7: Ablation Study of Key Designs of UFGTime on Four Selected Dataset. Differences were Analyzed using a Two-Way

ANOVA Test. "*" Indicate Statistical Significant at the 90% Level, While "ns" Denotes No Statistically Significant.

4.3 Resource Utilization Analysis

In Table 5, we compare the resource utilization of all baselines. To

ensure fairness and eliminate hardware variability, we use THOP14 to
measure key efficiency metrics, including the number of parameters

and giga floating-point operations per second (Gflop/s). We assess

resource consumption across varying hidden size configurations to

evaluate efficiency with respect to model size. As expected, DLinear

demonstrates outstanding efficiency due to its simple single-linear

architecture. Compared to other baselines, both AGCRN and our

method show strong size efficiency, outperforming most models.

Notably, when compared to the pure graph-based FourierGNN, our

method achieves comparable or better efficiency while requiring

only about 1/6 of the computational resources, even under multiple

model size settings.

We further evaluate the scalability of various methods with dif-

ferent sequence lengths, as shown in Figure 5. The results indicate

that pure graph methods, including our approach, demonstrate

strong scalability in terms of computational cost and parameter

growth, with parameters increasing linearly as input lengths grow.

This underscores the compact design of our method, character-

ized by its modular structure and lower computational complexity,

which ensures robustness and high scalability across varying input

sizes.

4.4 Hyperparameter Sensitivity Analysis

In this section, we conduct a sensitivity study of our proposed

method. To evaluate the impact of the model’s hyperparameters,

we perform a grid search on the ECG dataset, exploring three ar-

chitectural hyperparameters: framelet dilation scale 𝑠 , number of

graph neighbors 𝑘 , and hidden size. To better visualize the hyper-

parameter landscape, we interpolate the grid search results and

present them as contour plots in Figure 6.

The main observations are as follows: Is UFGTime Sensitive
to Hyperparameters? Based on the results shown in Figure 6, the

MAE of our model remains relatively stable, around 0.055, across a

range of hyperparameter values, indicating low sensitivity. What
Are the Patterns of Hyperparameters? From Figure 6, we observe

that hidden size has a more pronounced effect on the model. Specif-

ically, increasing the number of hidden units sharpens the contour

surface. Furthermore, as hidden size increases, the optimal values

14
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of 𝑘 and 𝑠 tend to decrease, suggesting that the model dynamically

balances the dilation scale, number of neighbors, and hidden size

to maintain computational complexity.

4.5 Ablation Analysis

We conduct ablation experiments along four dimensions: sparsity

of the graph (SG), framelet graph convolution (FrC), convolutions

on the spectral-variate graph (GC), and frequency transformation

(FT). Each setting is evaluated over 10 repeated runs, and we apply

two-way ANOVA to assess statistical significance. As shown in

Figure 7, replacing the sparse graph with a fully connected one de-

grades performance, highlighting the benefit of enforcing sparsity

in temporal graph construction. Substituting the framelet convolu-

tion with a standard GCN [20] results in increased error, confirming

the effectiveness of multi-scale frequency-aware operations. Re-

moving graph convolutions altogether and replacing them with

linear layers results in a significant drop in accuracy, indicating

the necessity of graph-based modeling for capturing temporal de-

pendencies. Finally, comparing the spectral-variate graph with a

hypervariate graph shows that incorporating frequency-domain

transformations (e.g., DFT) enables better generalization, making

the spectral-variate design more suitable for pure graph-based time

series forecasting. Moreover, we observe that different designs yield

comparable performance on the ECG dataset (see Figure 7 (b)), as

its temporal patterns are relatively easy to capture.

5 CONCLUSION

In this work, we proposed UFGTime, a novel framework for multi-

variate time series forecasting that effectively addresses the inter-

twined inter- and intra-series dependencies, a challenge often over-

looked by traditional temporal models. Leveraging spectral signals,

UFGTime constructs a sparse spectral-variate graph that embeds

temporal dependencies into a compact spectral representation. The

framework further incorporates a global framelet message-passing

function, which efficiently aggregates global signal information,

mitigates over-smoothing, and achieves near-linear computational

complexity of O(𝑘𝑁𝑇 ). Extensive experiments demonstrate that

UFGTime consistently outperforms state-of-the-art baselines, un-

derscoring the practicality and robustness and establishing it as

a promising pure graph solution for the multivariate time series

forecasting task.
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