
Rebirth-Retire: A Concurrency Control Protocol Adaptable to
Different Levels of Contention

Qian Zhang†
East China Normal University

Shanghai, China
52184501012@stu.ecnu.edu.cn

Yiwen Xiang†
East China Normal University

Shanghai, China
51215902109@stu.ecnu.edu.cn

Jianhao Wei
East China Normal University

Shanghai, China
52215902007@stu.ecnu.edu.cn

Yang Yang
East China Normal University

Shanghai, China
51265902054@stu.ecnu.edu.cn

Yifan Li
East China Normal University

Shanghai, China
51265902129@stu.ecnu.edu.cn

Xueqing Gong∗
East China Normal University

Shanghai, China
xqgong@sei.ecnu.edu.cn

Wanggen Liu
Transwarp Technology (Shanghai)

Co., Ltd
Shanghai, China

wayne.liu@transwarp.io

ABSTRACT
The Wound-Retire concurrency control protocol was proposed to
reduce contention for hotspots in in-memory databases. It enhances
throughput under high-contention scenarios by allowing transac-
tions to release their locks earlier (referred to as Retire), thereby
reducing the wait times for other transactions. However, the proac-
tive early release of locks introduces additional overhead, making
it less efficient than other lock-based protocols in low-contention
scenarios. Moreover, the wound strategy it adopts, while effective at
preventing deadlocks, may lead to unnecessary transaction aborts.

To address these issues, this paper proposes the Rebirth-Retire
concurrency control protocol as an enhancement to the Wound-
Retire protocol. In this protocol, a lock is retired by a younger
transaction that requests it, which reduces unnecessary retire costs
in low-contention scenarios. Additionally, rather than aborting
younger transactions, older transactions are assigned larger times-
tamps (referred to as Rebirth), unless doing so would result in a
deadlock. Experimental evaluations demonstrate that the Rebirth-
Retire protocol achieves better throughput and lower abort rate
than the Wound-Retire protocol across varying levels of contention
workloads.

PVLDB Reference Format:
Qian Zhang, Yiwen Xiang, Jianhao Wei, Yang Yang, Yifan Li, Xueqing Gong
and Wanggen Liu. Rebirth-Retire: A Concurrency Control Protocol
Adaptable to Different Levels of Contention . PVLDB, 18(9): 3162-3174,
2025.
doi:10.14778/3746405.3746435

∗The corresponding author. †These authors contributed equally to this work. This
work is licensed under the Creative Commons BY-NC-ND 4.0 International License.
Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of this
license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.
doi:10.14778/3746405.3746435

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/gitzhqian/RebirthRetire.

1 INTRODUCTION
The concurrency control mechanism is a fundamental component of
database systems, designed to coordinate simultaneous operations
and ensure the consistency and isolation properties of transactions.
Several concurrency control protocols have been developed over
the years, each with unique strategies and trade-offs concerning
system throughput, transaction abort rate, deadlock handling, and
overhead [7, 10, 12, 13, 17, 18, 22, 24, 38, 42].

The Two-Phase Locking (2PL) protocol [7, 18] is a classic and
widely used concurrency control protocol. It employs a "first-come,
first-served" strategy to determine the execution order of conflict-
ing operations. The transaction that acquires the data lock first is
allowed to execute its operation, while other conflicting transac-
tions must wait for it to release the lock. Deadlock-Detection is
a commonly used method in the 2PL protocol to resolve deadlock
issues. A directed wait-for graph is maintained, and the graph is
periodically checked for deadlock cycles. If a cycle is detected, one
of the transactions in the cycle will be aborted. It performs well in
scenarios with fewer conflicts. However, in situations with more
conflicts, the waiting time for transactions increases and the oc-
currence of deadlocks becomes more frequent, leading to many
transactions being aborted after waiting for a long time.

Some concurrency control protocols use timestamps to deter-
mine the execution order of conflicting operations and avoid dead-
locks. In these protocols, each transaction is assigned a unique
timestamp that determines its priority for accessing data. For exam-
ple, in theWound-Wait protocol [5], younger transactions wait for
older transactions to release their locks, while older transactions
do not wait for younger transactions; instead, they directly abort

3162

https://doi.org/10.14778/3746405.3746435
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746435
https://github.com/gitzhqian/RebirthRetire
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: A lock entry and function calls.

the younger transactions. In Optimistic Concurrency Control
(OCC) protocols [27, 34, 36, 43, 44], transactions do not wait for
other transactions during execution. Instead, they create and use
local copies of the accessed data. During the validation phase, they
determine whether they can successfully commit based on times-
tamp ordering. Although these protocols can avoid deadlocks, in
scenarios with a lot of conflicts, a large number of transactions will
be aborted (in both Wound-Wait and OCC), and transactions still
spend a significant amount of time waiting for locks (in Wound-
Wait).

Bamboo[22] is a variant of the Wound-Wait protocol, which
we refer to as Wound-Retire. It violates the two-phase locking
rule by introducing the lock Retire operation (early lock release).
In the Bamboo protocol, older transactions retire their locks after
accessing the data, enabling younger transactions to access the data
without waiting. In scenarios with high contention, this approach
can significantly reduce the time transactions spend waiting for
locks. However, performing the Retire operation and maintaining
dependencies between transactions increases the cost of concur-
rency control, resulting in worse performance than Wound-Wait
and Deadlock-Detection in low-contention scenarios.

In this paper, we propose the Rebirth-Retire protocol, an en-
hanced version of the Wound-Retire protocol. One notable improve-
ment is that older transactions no longer actively perform the Retire
operation while holding a lock; instead, the Retire operation is ini-
tiated by the younger transaction requesting the lock. When no
younger transactions request the lock, older transactions can hold
the lock until they commit, thus saving the overhead of the Retire
operation. Our experimental results show that this approach can
reduce the cost of concurrency control and improve transaction
throughput in low-contention scenarios. Another improvement is

that an older transaction does not always abort the younger trans-
actions holding the lock when it requests a lock. Instead, the older
transaction is assigned a new and larger timestamp (referred to
as Rebirth) unless doing so is determined to result in a deadlock.
Before performing the Rebirth operation on a transaction, we detect
potential deadlocks by topologically sorting the transaction and
all transactions that directly or indirectly depend on it. Our exper-
imental results demonstrate that Rebirth can significantly reduce
the transaction abort rate and improve transaction throughput in
high-contention scenarios.

In summary, this paper makes the following contributions.
• We developed the Rebirth-Retire concurrency control pro-

tocol, which employs Rebirth and passive Retire strategies to
handle conflicting operations between transactions. Rebirth-
Retire is provably correct.

• We also designed several optimizations to further improve
Rebirth-Retire’s performance.

• We conducted comparative experiments between the Rebirth-
Retire protocol and other existing protocols under different
levels of contention. The results show that Rebirth-Retire
offers significant performance advantages across various
contention levels, except in scenarios where transaction
conflicts are rare.

2 BACKGROUND AND MOTIVATION
2.1 The Bamboo (Wound-Retire) Protocol
In theWound-Wait protocol, the lock entry for each tuple maintains
two lists of transactions: owners, representing transactions currently
holding the lock, and waiters, representing transactions waiting for
it, as shown in Figure 1- 1○. When a younger transaction requests
the lock [LockAcquire()], it is added to the waiters. When an older
transaction requests the lock, it kills the younger transactions in
the owners and then joins the owners. Once transactions commit
or abort, they are removed from the owners [LockRelease()]. After
that, transactions in waiters get a chance to move into owners
[PromoteWaiters()].

Bamboo extends the Wound-Wait protocol by introducing an
additional list called retired in each lock entry, as shown in Fig-
ure 1- 2○. After a transaction has finished accessing a tuple, the
transaction can be moved from owners to retired [LockReire()]. This
allows other transactions to join owners. Once transactions commit
or abort, they are removed from the retired [LockRelease()]. All
transactions that have read the dirty updates of retired transactions
or modified the tuples read by retired transactions must wait until
the retired transactions they depend on commit before they can
commit. Bamboo introduces a new variable, commit_semaphore, in
transaction objects to track dependencies among transactions. A
transaction T increments its own semaphore when it conflicts with
any transaction in retired of any tuple. The semaphore is decre-
mented only when the dependent transaction leaves retired so that
T becomes one of the leading non-conflicting transactions in retired.
In principle, each write can be immediately followed by LockRetire()
without affecting correctness. If a transaction writes a tuple for a
second time after retiring the lock, it can still ensure serializability
by aborting all transactions that have seen its first write. For better
performance, a lock can be retired after the transaction’s last write

3163

Table 1: The System Time Proportion, Throughput and Abort Rate of concurrency control protocols under different levels of
contention.

Level Protocol Committed Abort Concurrency Control Lock Wait Commit Wait Throughput Abort Rate

DD 48.97% 0.00% 51.03%(L) 0.00% - 2,896,840 0.00%
WW 54.69% 0.00% 45.31%(L) 0.00% - 2,886,750 0.00%

Low WR 51.15% 0.00% 35.58%(L)3.58%(R)3.05%(LC) 0.00% 0.63% 2,549,320 0.00%
Silo 71.88% 0.00% 1.42%(L)+26.70%(LC) - 0.00% 2,620,910 0.00%

DD 12.48% 8.60% 6.38%(L)7.25%(D) 65.30% - 142,193 26.33%
WW 37.89% 8.95% 15.84%(L) 37.31% - 575,844 14.39%

Medium WR 40.12% 11.01% 31.12%(L)4.19%(R)6.95%(LC) 0.45% 5.12% 832,912 12.41%
Silo 54.36% 32.61% 7.10%(L)5.91%(LC) - 0.03% 366,109 32.51%

DD 1.00% 11.12% 0.79%(L)8.17%(D) 78.91% - 12,246 86.94%
WW 16.85% 17.53% 5.03%(L) 60.59% - 254,421 43.70%

High WR 7.11% 50.30% 18.96%(L)4.42%(R)4.84%(LC) 4.84% 7.43% 208,507 63.47%
Silo 25.78% 65.66% 6.23%(L)2.17%(LC) - 0.16% 206,311 68.18%

to the tuple if the tuple may be updated more than once by the same
transaction. Bamboo rely on programmer annotation or program
analysis to find the last access and insert LockRetire() after it[22].

In Bamboo, each transaction maintains local copies of its read
and write tuples, which can be read by other transactions. Essen-
tially, it functions as a multi-version protocol. Bamboo employs two
optimizations to reduce overhead. One is to directly move a read
operation to retired whenever it can become the owner, reducing
the latch overhead on owners. The other is to give up retiring a
write operation if it brings little benefit, such as writes at the tail of
a transaction. Bamboo also employs two optimizations to reduce
transaction aborts. One is allowing older transactions to read the
local copies of younger transactions to avoid aborting the younger
transactions. The other is assigning timestamps to transactions only
when they first encounter a conflict. These optimizations are not
unique to Bamboo, and some are also applied in other protocols.

2.2 System Time Proportion
We conducted a detailed breakdown analysis of the time spent
on various tasks during transaction execution under different lev-
els of contention for four typical concurrency control protocols:
Deadlock-Detection(DD) , Wound-Wait(WW), Wound-Retire(WR),
and Silo[34]. The first three are lock-based protocols, while Silo is
an optimistic protocol. Deadlock-Detection and Wound-Wait are
single version protocols, while Wound-Retire and Silo are multi-
version protocols. The transaction execution time is divided into
the following parts:

• Processing Time: The time spent on transaction processing
includes accessing tuples, performing computations, etc.
– Committed: Time spent on committed transactions.
– Abort: Time spent on aborted transactions.

• Concurrency Control Time: The time spent on concurrency
control processing.
– DL-Detect(D): Time spent on deadlock detection in

the Deadlock-Detection protocol.

– Latching(L): Time spent on internal data structure op-
erations, such as operations on lock structures in lock-
based protocols and operations on tuple version times-
tamps in timestamp-based protocols.

– Retire(R): Time spent on performing Retire operations
in the Wound-Retire protocol.

– Local Copy(C): Time spent on creating local copies of
tuples for transactions in multi-version protocols.

• Lock Wait: Time spent waiting for locks in lock-based
protocols.

• Commit Wait: Time spent waiting for the transaction
commit conditions to be satisfied in both Wound-Retire
and Silo protocols.

Table 1 presents the results of the analysis experiment on YCSB
workloads1. In the low-contention scenario, the transaction abort
rates of all four protocols are zero. The primary overhead for
Deadlock-Detection and Wound-Wait protocols comes from acquir-
ing and releasing locks (Latching). For the Wound-Retire protocol,
Latching and the Retire operation constitutes a significant portion
of the overhead. For the Silo protocol, the main overhead arises
from creating local copies. In the medium-contention scenario,
both Deadlock-Detection and Silo experience higher abort rates.
Deadlock-Detection and Wound-Wait spend a significant amount
of time waiting for locks, while Wound-Retire spends minimal time
waiting for locks but incurs additional overhead from Retire op-
erations and commit waiting. In the high-contention scenario, all
protocols exhibit a high abort rate, resulting in a significant increase
in the proportion of time spent on aborted transactions. Deadlock-
Detection and Wound-Wait still spend the majority of their time
waiting for locks, while Wound-Retire sees an increase in both lock
wait time and commit wait time.

According to the analysis experiment, we conclude the following:
• In low-contention scenarios, acquiring and releasing locks

(Latching) constitute the primary overhead for lock-based
protocols while creating local copies of data is the main

1The experimental setup is described in Section 5.1.

3164

Figure 2: The Throughput and Abort Rate of concurrency
control protocols under different levels of contention (Each
transaction accesses tuples in Key Order).

overhead for Silo. Other single-version optimistic protocols
should have better performance than Silo.

• As contention increases, lock waiting becomes the domi-
nant factor affecting the performance of lock-based proto-
cols. In contrast, Silo experience a significant rise in trans-
action abort rates, resulting in poorer performance.

• The Retire operation can significantly reduce the time spent
waiting for locks. However, it introduces additional over-
head and increases commit waiting time due to transaction
dependencies. As a result, the performance of the Wound-
Retire protocol is worse than that of Wound-Wait in both
low-contention and high-contention scenarios.

• No concurrency control protocol can achieve optimal per-
formance across all scenarios. Simple protocols such as
Deadlock-Detection, Wound-Wait and Silo are better suited
for low-contention scenarios, while more complex, well-
designed protocols like Wound-Retire perform better in
high-contention scenarios.

In this paper, we propose an improvement to the Wound-Retire
protocol, where transactions no longer actively perform the Re-
tire operations. Instead, the Retire operation is passively initiated
by the transaction requesting the lock. This modification signifi-
cantly enhances the performance of the protocol in low-contention
scenarios.

2.3 Unnecessary Abort
Deadlock handling is a fundamental task of concurrency control
protocols. Deadlock-Detection uses a detection-based approach to
identify deadlocks, while Wound-Wait and Wound-Retire avoid
deadlocks by adopting an "Older Kill Younger" strategy based on
timestamp ordering. Since the probability of deadlock occurrence is
low in most scenarios [19, 20], the time spent on deadlock detection
in Deadlock-Detection protocol does not constitute a significant
proportion in high-contention scenario, as shown in Table 1. In
the Wound-Wait and Wound-Retire protocols, while the "Older Kill
Younger" strategy can prevent deadlocks, it inevitably results in the
premature termination of some transactions that would not have
caused a deadlock. For optimistic protocols, although the optimistic

strategy can prevent lock waiting, it leads to the abort of some
pre-committed transactions.

We demonstrate the occurrence of unnecessary transaction aborts
in the protocols through an experiment on YCSBworkloads2. In this
experiment, each transaction accesses the tuples sequentially in key
order, thereby preventing deadlocks. According to the experimental
results shown in Figure 2, as the level of contention increases, the
number of transactions that are aborted also increases. All of these
aborts are unnecessary.

In this paper, we propose an improvement to the deadlock han-
dling method of the Wound-Wait and Wound-Retire protocols.
Older transactions will only abort younger transactions when a
deadlock is imminent; otherwise, we avoid aborting younger trans-
actions by performing a Rebirth operation, which assigns a larger
timestamp to the older transaction. In high-contention scenar-
ios, the Rebirth mechanism can reduce unnecessary transaction
aborts while preventing deadlocks, thereby improving system per-
formance.

3 REBIRTH-RETIRE PROTOCOL
This section describes the Rebirth-Retire protocol in detail, which is
developed based on Wound-Retire[22]. We first describe the ideas
of passive Retire and Rebirth, followed by a detailed description
of the data structures and the pseudocode of the protocol. Finally,
proof of the protocol’s correctness and a discussion of compatibility
are provided.

3.1 Passive Retire and Rebirth
3.1.1 Passive Retire. According to Table 1, when there are nu-
merous operation conflicts among concurrent transactions, lock
waiting becomes the primary factor affecting system performance.
The Wound-Retire protocol breaks the two-phase locking protocol
by employing the Retiremechanism, which allows transactions hold-
ing locks to release them early, thereby reducing lock waiting times
for other transactions. The Retire operation enables Wound-Retire
to achieve better performance than other lock-based protocols in
high-contention scenarios.

In the Wound-Retire protocol, transactions need to perform Re-
tire operations in addition to acquiring and releasing locks, which
introduces additional overhead. Intuitively, the Retire mechanism
benefits system performance when the overhead introduced by Re-
tire operations is less than the reduction in waiting times for other
transactions. However, when the overhead of Retire operations
exceeds the reduction in waiting times for other transactions, it
can negatively impact system performance. For example, when no
other transactions are waiting for a transaction to release its locks,
performing Retire operation provides no benefit at all. This explains
why Wound-Retire performs worse than Deadlock-Detection and
Wound-Wait in the low-contention scenario.

To reduce unnecessary Retire operations, we propose a passive
Retire strategy. The basic idea is that transactions holding locks no
longer actively perform Retire operations; instead, Retire operations
are initiated by other transactions waiting for the locks.

2The experimental setup is described in Section 5.1 except accessing tuples in key
order in transactions.

3165

For transactions holding shared locks, the timing and initiator
of the Retire operations do not affect their normal execution. For
transactions holding exclusive locks, the Retire operations must be
performed after they have completed their current write operations
on the tuples. To address this, we introduce a flag in the metadata
of the new version generated by the transaction to indicate the
completion of the write operation. When using the passive Retire
strategy, the locks held by a transaction will not be retired when no
other transactions are waiting, thus avoiding unnecessary overhead.

For better performance, an exclusive lock can be retired after
the transaction’s last write to the tuple if the tuple may be updated
more than once by the same transaction. To determine where the
last write is, same as Wound-Retire, we can rely on programmer
annotation or program analysis to find the last write and perform
passive Retire after it.

3.1.2 Rebirth. In the Wound-Wait and Wound-Retire protocols,
each transaction is assigned a timestamp representing its priority.
When a transaction with the smaller timestamp (Older) acquires
a lock and another transaction with a larger timestamp (Younger)
holds the lock, the older transaction will abort the younger transac-
tion. Although this strategy can prevent deadlocks, it may lead to
unnecessary transaction aborts (see section 2.3). The basic idea of
Rebirth is to assign a new, larger timestamp to the older transaction,
thereby avoiding aborting the younger transaction holding the lock.

One challenge in performing Rebirth on transactions is handling
deadlocks. To track dependencies between transactions, unlike
Wound-Retire, we do not maintain a dependency counter for each
transaction. Instead, each transaction maintains a list of transac-
tions it depends on (Parents) and a list of transactions that depend
on it (Children).

When transaction 𝐴 acquires a lock, it discovers that a younger
transaction 𝐵 holds the lock and conflicts with it. Before performing
the Rebirth operation on 𝐴, we first perform a topological sort on
𝐴 and 𝐴’s descendants (all transactions that directly or indirectly
depend on 𝐴), based on transactions’ children lists. The topological
sorting produces a sorted list of𝐴 and𝐴’s descendants. If 𝐵 appears
in the sorted list, it indicates that the Rebirth operation would
result in a deadlock. In this case, the transaction 𝐵 is aborted. After
checking all the owners of the lock, the transactions in the sorted list
are assigned a larger timestamp one by one. This strategy can reduce
transaction aborts while avoiding deadlocks. The time complexity
of the topological sort algorithm (Kahn’s Algorithm) [25] is𝑂 (𝑉+𝐸),
where𝑉 is the number of transactions involved and 𝐸 is the number
of dependencies between these transactions.

3.2 Protocol Description
3.2.1 Data Structures. Similar to the Wound-Retire protocol, in
the Rebirth-Retire protocol, each tuple’s lock entry contains three
lists: tuple.waiters, tuple.owners, and tuple.retired(see Figure
1- 3○). Each entry in the lists is a (𝑡𝑥𝑛, 𝑙𝑜𝑐𝑘_𝑡𝑦𝑝𝑒) pair, where 𝑡𝑥𝑛
is a transaction object, and 𝑙𝑜𝑐𝑘_𝑡𝑦𝑝𝑒 is the type of lock requested
by the transaction. Each list is sorted based on the timestamps of
transactions in it.

To track dependencies between transactions, unlike Wound-
Retire, which uses the commit_semaphore variable, we maintain
two lists in a transaction object: txn.parents and txn.children,

which respectively contain the transactions it depends on and the
transactions that depend on it directly. Similarly, these two lists are
also sorted according to the transactions’ timestamps. Additionally,
each transaction maintains a txn.status variable, which indicates
whether the transaction has been committed or aborted by another
transaction.

The advantage of the commit_semaphore variable is that it can
be updated using atomic instructions. However, it only records
the number of dependencies between transactions rather than
the actual dependency relationships. For example, if transaction
𝑥 depends on transaction 𝑦 for both tuple 𝐴 and tuple 𝐵, 𝑥 ’s com-
mit_semaphore will be incremented twice. After 𝑦 commits, 𝑥 ’s
commit_semaphore must also be decremented twice. Although up-
dating the parents and children lists in Rebirth-Retire incurs higher
overhead than updating commit_semaphore, it enables tracking of
actual dependency relationships between transactions, which can
be used to detect potential deadlocks. Additionally, a transaction
does not need to notify other transactions when it finishes. Each
transaction can independently determine whether it can commit
based on the status of the transactions in its parents list. In Sec-
tion 4.1, we propose an optimization that use an 8-byte word to
implement the children list, which can also be updated using atomic
instructions.

In order to determine whether a transaction holding a lock has
completed its current write operations before performing a passive
Retire operation, each tuple version has a version.ready variable.
This variable serves as an indicator to track the completion status
of the current write operation, ensuring that the lock can only be
safely retired once the transaction has finished its operation.

3.2.2 Function Calls. The Rebirth-Retire protocol is an improve-
ment to the Wound-Retire protocol. See Figure 1- 3○, one difference
is that LockRetire() is no longer initiated proactively by the transac-
tion. Another difference is that an older transaction first executes
TxnRebirth() when requesting a lock and only kills the youngers
if a deadlock is confirmed. We Implement the protocol based on
the algorithm of the Wound-Retire protocol, with the differences
highlighted using a gray background color. In the following, we
walk through the algorithm step-by-step.
Lifecycle Algorithm 1 illustrates the lifecycle of how the data-
base executes a transaction using the Rebirth-Retire protocol. The
differences from the Wound-Retire protocol are as follows:

• A transaction no longer actively performs Retire operations.
(The LockRetire() statement is removed from the algorithm.)

• A transaction determines whether it satisfies the commit
condition by checking the statuses of transactions in its
Parents list (line 4).

LockAcquire()
In the Rebirth-Retire protocol, when a transaction encounters

a conflict while requesting a lock, it no longer directly aborts the
younger conflicting transactions. Instead, it first chooses to perform
a Rebirth operation on itself (Algorithm 2 lines 9-10). During a single
LockAcquire() call, a transaction will be rebirthed only once (line 11).
If the transaction’s timestamp remains unchanged after performing
Rebirth, it indicates that the lock request would result in a deadlock,
and the younger conflicting transactions will be aborted (lines 12-
13). However, if the transaction’s timestamp has been modified

3166

Algorithm 1: A transaction’s lifecycle—Differences be-
tween Wound-Retire and Rebirth-Retire are highlighted
in gray .

req_type is SH or EX
1 LockAcquire(txn, req_type1, tuple1)
...

2 # LockRetire(txn,tuple1)

3 LockAcquire(txn, req_type2, tuple2)
...

Wait for transactions that the txn depends on
4 while all parents have terminated & txn.status≠abort do
5 pause
6 if txn.status≠abort then
7 writeLog() # Log to persistent storage device

8 LockRelease(txn, tuple1, txn.status)
9 LockRelease(txn, tuple2, txn.status)

10 txn.terminate(txn.status)

Algorithm 2: LockAcquire() and LockRelease() —-
Differences between Wound-Retire and Rebirth-Retire are
highlighted in gray .

1 Function LockAcquire(𝑡𝑥𝑛, 𝑟𝑒𝑞_𝑡𝑦𝑝𝑒 , 𝑡𝑢𝑝𝑙𝑒)
2 has_conflicts = FALSE
3 rebirthed = FALSE
4 youngers = NIL
5 for (t, type) in concat(tuple.retired, tuple.owners) do
6 if conflict(req_type, type) then
7 has_conflicts = TRUE

A transaction rebirth only once
8 if has_conflicts & !rebirthed & txn.ts < t.ts then

9 youngers = The tail of concat(retired, owners)

starting from t

10 TxnRebirth(txn, youngers)

11 rebirthed = TRUE
12 if has_conflicts & txn.ts < t.ts then
13 t.set_abort()

14 tuple.waiters.add(txn)
15 PromoteWaiters(tuple)
16 Function LockRelease(𝑡𝑥𝑛, 𝑡𝑢𝑝𝑙𝑒 , 𝑡𝑥𝑛_𝑠𝑡𝑎𝑡𝑢𝑠)
17 if txn_status==abort & txn.getType(tuple)==EX then

Cascading abort
18 abort all transactions in txn.children
19 remove txn from tuple.retired or tuple.owners
20 PromoteWaiters(tuple)

after performing Rebirth, it is now younger than all conflicting
transactions, and those conflicting transactions will not be aborted.
LockRelease()

Algorithm 3: PromoteWaiters()—Differences between
Wound-Retire and Rebirth-Retire are highlighted in gray .

1 Function PromoteWaiters(𝑡𝑢𝑝𝑙𝑒)
2 for t in tuple.waiters do
3 if conflict(t.type, tuple.owners.type) then
4 if tuple.owners.type == EX then

Wait for the owner to complete its
current write operation

5 while !tuple.owners.version.ready do
6 pause

Move transactions in tuple.owners to
tuple.retired (Retire)

7 for t’ in tuple.owners do

8 tuple.owners.remove(t’)

9 tuple.retired.add(t’)

Promote trandaction t
10 tuple.waiters.remove(t)
11 tuple.owners.add(t)

Tracking dependencies
12 for

t’ in tuple.retired in descending timestamp order

do
13 if conflict(t’.type,t.type) then

14 t.parents.add(t’)

15 t’.children.add(t)

16 break

When an aborted transaction releases an exclusive lock, all trans-
actions in its Children list will be aborted (Algorithm 2 lines 17-18).
We no longer use a counter, as in the Wound-Retire protocol (trans-
action.commit_semaphore), to track dependencies between transac-
tions. Therefore, all statements related to counter maintenance are
removed from the algorithm.
PromoteWaiters()

Inside PromoteWaiters(), the algorithm scans waiters in the grow-
ing timestamp order (Algorithm 3 line 2). For each transaction, if
it conflicts with the owner(s) and the owner holds an exclusive
lock (lines 3-4), the transaction will wait for the owner to complete
its current write operation (lines 5-6). Afterward, the transaction
will Retire the owner(s) (lines 7-9). It will then be moved from the
waiters list to the owners list (lines 10-11). In Rebirth-Retire, we
only need to maintain the dependencies between the transaction
that just became an owner and the last transaction that conflicted
with it in the retired list. (lines 12–16).
TxnRebirth()

Inside TxnRebirth(), We first perform a topological sort on the
requesting transaction and all transactions that depend on it (Al-
gorithm 4 line 3). Then, for each transaction 𝑡 in the youngers

3167

Algorithm 4: TxnRebirth()
1 Function TxnRebirth(𝑡𝑥𝑛,𝑦𝑜𝑢𝑛𝑔𝑒𝑟𝑠)
2 sort_list = NIL

Perform topological sorting on the transaction
and its dependencies using Kahn’s algorithm.

3 sort_list = KahnTopologicalSorting(txn)
4 for (t, type) in youngers do
5 if t in sort_list then

A deadlock is found
6 abort transaction t

7 for t in sort_list do
Rebirth the tansactions (Largest)

8 t.ts = ++global_ts

list, if it appears in the 𝑠𝑜𝑟𝑡_𝑙𝑖𝑠𝑡 , it will be aborted (lines 6). Subse-
quently, all transactions that depend on 𝑡 will also be aborted in a
cascading manner. Finally, we assign new timestamps to the active
transactions in the 𝑠𝑜𝑟𝑡_𝑙𝑖𝑠𝑡 one by one (lines 7-8). Here, we apply
the Largest strategy, with further optimization of the timestamp
assignment process discussed in Section 4.3.

3.3 Proof of Correctness
In this section, we prove that the Rebirth-Retire protocol is able
to enforce serializability correctly. According to the serializability
theory, a schedule of transactions is serializable if and only if there’s
no cycle in its serialization graph. The serialization graph represents
the schedule as a directed graph, where each node represents a
committed transaction, and each edge represents a conflict between
two committed transactions.

The Rebirth-Retire protocol is an improvement of the Wound-
Retire protocol [22]. We prove serializability following the proof of
Wound-Retire.

Definition 1. [Commit Point] A transaction’s commit point is
a point in time when it recorded the operations in log. (In Algorithm
1, the commit point is after finishing line 8 but before starting line 9.)

Lemma 1. [Commit Point Ordering] In Rebirth-Retire, if the
serialization graph contains 𝑇𝑖 → 𝑇𝑗 , then 𝑇𝑗 reaches the commit
point after 𝑇𝑖 .

Proof. Without loss of generality, we assume 𝑇𝑖 and 𝑇𝑗 conflict
on tuple 𝑥 . It means that 𝑇𝑗 depends on 𝑇𝑖 . In other words, 𝑇𝑗 is in
𝑇𝑖 .children and 𝑇𝑖 is in 𝑇𝑗 .parents. We know that 𝑇𝑗 can reach its
commit point only when all its parents have terminated (lines 5–6
in Algorithm 1). 𝑇𝑖 can terminate only after it has released its lock
on 𝑥 , which can happen only after 𝑇𝑖 has reached its commit point
(line 11 in Algorithm 1). Together, this means𝑇𝑗 reaches its commit
point after 𝑇𝑖 . □

Theorem 1. Every schedule in Rebirth-Retire is serializable.

Proof. According to Lemma 1, every edge 𝑇𝑖 → 𝑇𝑗 in the seri-
alization graph means𝑇𝑗 reaching the commit point after𝑇𝑖 . There-
fore, no cycle may exist since a transaction cannot reach the commit
point after it has already reached the commit point, finishing the
proof. □

4 OPTIMIZATIONS
As an improvement overWound-Retire, all its optimizations are also
applicable to Rebirth-Retire. A read operation is moved directly to
the retired list whenever it can become the owner. We also give up
retiring a write operation if it brings little benefit under the same
conditions asWound-Retire. Similar toWound-Retire, we minimize
Rebirth operations by allowing older transactions to read the old
versions of tuples. In Rebith-Retire, a transaction is assigned its first
timestamp only when it encounters a conflict for the first time. In
addition, we introduce some new optimization methods.

4.1 O1: Latch-free Dependency Tracking
In Rebirth-Retire, we track dependencies between transactions using
the parents and children lists maintained within each transaction
object. Since a transaction’s parents is updated only by itself, we
simply implement it using the sorted list provided by the C++ STL
library. Since a transaction’s children may be updated concurrently
by multiple transactions, we initially implemented it using Intel
TBB’s open-source lock-free concurrent data structures.

However, we found that implementing a latch-free Children list
can be further simplified by manipulating the bits of an 8-byte
atomic word. Specifically, each worker thread is assigned a unique
bit within this atomic word, with the bit’s offset determined by its
thread ID modulo 64. When a transaction needs to be added to the
children list, it sets the corresponding bit of its worker thread to 1
using an atomic instruction. The transaction manager maintains
the transaction object currently being executed by each worker
thread. During the topological sorting, a transaction needs to check
the worker threads corresponding to the bits set to 1 in the Children
atomic word to determine whether it is present in the Parents list
of the transactions on those worker threads. If not, the transaction
resets the bit to zero, indicating that the dependency has been
resolved. Since multiple worker threads may be mapped to the same
bit, all these worker threads need to be checked simultaneously.
Although this may incur some overhead, it does not affect the
correctness of the algorithm.

4.2 O2: Optimistic Read Descendant
When performing a Rebirth operation on a transaction, all its de-
scendant transactions must first undergo topological sorting. Then,
based on the sorting result, each descendant transaction is assigned
a new timestamp in sequence. To ensure that the timestamps of de-
scendant transactions are not modified by other transactions during
this process, we need to lock these transaction objects. However,
this approach may delay the rebirth operations of other transac-
tions.

To mitigate this challenge, we adopt an optimistic read strategy
[30] to access descendant transaction object. Each transaction ob-
ject has a Version counter. During the topological sorting process,
instead of locking descendant transactions objects, we record their
Versions. A new timestamp can only be assigned to a descendant
transaction if its Version has not been modified; otherwise, the
topological sorting must be re-executed. Now, we lock the descen-
dant transaction objects only when updating their timestamps and
Versions, minimizing the impact on other transactions.

3168

4.3 O3: Assign Larger Timestamps
When performing a Rebirth operation on a transaction, we assign
new timestamps to it and all its descendant transactions. As shown
in algorithm 4, we always assign the current largest timestamp in
the system to these transactions in sequence (the "Largest" strategy),
which would result in the lowest priority for these transactions.
Meanwhile, this approach may cause a timestamp allocation bot-
tleneck [42] and lead to tail latency issues [41]. Here, we present
another approach, which assigns timestamps that are slightly larger
than those of all other transactions holding locks and conflicting
with it (the "Larger" strategy). For example, when performing Re-
birth on transaction 𝑥 , if the largest timestamp among all transac-
tions that hold locks and conflict with 𝑥 is 𝑡 , then we sequentially
assign 𝑡 + 1, 𝑡 + 2, ... to 𝑥 and its descendants. To prevent assigning
the same timestamp to two different transactions in the system, we
use a hybrid timestamp scheme, which incorporates the worker
thread ID of the executing transaction as part of the timestamp3.

4.4 O4: Version Prefetching
Similar toWound-Retire, in Rebirth-Retire, a tuple may have multiple
versions, and transactions are allowed to read the corresponding
version based on their timestamps. When there are a large number
of concurrent updates to hotspot tuples in the system, their ver-
sion chains may grow very long. Since tuple versions are typically
stored in a heap structure, transactions may experience a significant
number of cache misses while traversing these version chains.

To address this, we leverage the software prefetching technique
[2, 23] by introducing an additional jump pointer field in each tuple
version, which points to the version that should be prefetched
next. This method could reduces a transaction’s cache misses when
traversing long version chains by using prefetch instructions (e.g.,
__mm_prefetch).

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
We implement Rebirth-Retire in DBx1000 [1, 42], a multi-threaded,
in-memory DBMS prototype. It stores all data in a row-oriented
manner and employs worker threads to invoke transactions from a
fixed-length queue in stored-procedure mode. Each transaction con-
tains multiple query invocations. In our experiments, each worker
thread is assigned a maximum of 100,000 transactions to execute.
The experiment stops as soon as any worker thread completes its
maximum transaction count. This is to ensure that the number of
concurrent transactions in the experiment does not change due to
some worker threads completing their tasks.

DBx1000 includes a pluggable lock manager that supports dif-
ferent concurrency control protocols. This allows us to compare
Rebirth-Retire with various baselines within the same system. The
concurrency control protocols used in the experiment include:

• Deadlock-Detection (DL-Detection): a 2PL protocol with
deadlock detection, which is implemented by [42].

• Wound-Wait: a variant of 2PL with deadlock prevention
strategy, Which is implemented by [22].

3The hybrid timestamp schema is used in many systems [1, 4, 26, 29, 34].

Table 2: Workloads with varying levels of contention

Benchmark Factors Low Medium High

#Tuples(×1000) 10,000 1,000 1,000
#Transactions 10 20 40

YCSB #Queries 4 16 16
%Writes 10% 50% 90%

Access Skew 𝜃 = 0 𝜃 = 0.85 𝜃 = 0.9

TPC-C #Warehouses 100 1 1
#Transactions 10 10 40

• Wound-Retire (Bamboo): a variant of Wound-Wait with
releasing locks early, which is implemented by [22].

• Silo: an optimistic concurrency control protocol, which is
implemented by [42].

• TicToc: an optimistic concurrency control protocol, which
dynamically adjusts transaction timestamps during execu-
tion. It is implemented by [42].

• MOCC: a concurrency control protocol that combines the
benefits of optimistic concurrency control with pessimistic
locking, which is implemented by [11].

• Rebirth-Retire (RR): Our concurrency control protocol4.
The experiments were run on a server equipped with an Intel

Xeon Gold 5218R CPU (20 physical cores@2.10GHz and 28 MB last
level cache) and 96 GB DDR4 DRAM, running Ubuntu 20.04 LTS.
Each core supports two hardware threads, for a total of 40 threads.
We collect transaction statistics, including throughput and abort
rates, by running eachworkload at least five times and averaging the
results. The throughput is calculated by dividing the total number
of committed transactions by the total running time, measured in
transactions per second. The abort rate is calculated by dividing
the total number of aborted transactions by the total number of
transaction attempts, which includes both committed and aborted
transactions.

Two benchmarks are implemented in DBx1000, YCSB (The Ya-
hoo! Cloud Serving Benchmark)[14] and TPC-C[15]. YCSB is rep-
resentative of large-scale online services. Each query accesses a
single random tuple based on a Zipfian distribution with a param-
eter (𝜃) that controls the contention level in the benchmark [21].
Each tuple has a primary key column and 10 additional columns,
each containing 100 bytes of randomly generated string. TPC-C
is the current industry standard for evaluating OLTP systems. It
consists of nine tables that simulate a warehouse order processing
application. In our experiment, all five transactions of TPC-C are
used, with their default proportions as follows: NewOrder (45%),
Payment (43%), OrderStatus (4%), Delivery (4%), and StockLevel (4%).

According to the previous studies[6, 20], many factors influence
the probability of conflicts between transactions in a workload. It
is positively correlated with the number of concurrently running
transactions(#Transactions), the average number of queries per
transaction(#Queries), the skew of data access(Access Skew), and
the proportion of write operations in queries(%Writes). On the
other hand, it is inversely proportional to the number of tuples in

4https://github.com/gitzhqian/RebirthRetire

3169

Table 3: The Throughput of optimizations

TPS(×1000) Low Medium High

Basic 2,773 1,239 538
+O1 (+1.27%) 2,808 (+3.70%) 1,284 (+8.22%) 582
+O2 (+0.79%) 2,795 (+1.89%) 1,262 (+4.16%) 560
+O3 (+0.68%) 2,792 (+3.54%) 1,282 (+7.57%) 579
+O4 (+0.08%) 2,775 (+0.54%) 1,245 (+2.06%) 549
+All (+1.97%) 2,827 (+5.18%) 1,303 (+12.36%) 605

the database(#Tuples). Together, these factors determine how likely
conflicts are to occur during transaction execution. We designed
workloads with varying levels of contention by adjusting parame-
ters related to these factors. TPC-C primarily controls the level of
contention in a workload through two parameters: the number of
warehouses(#Warehouses) and the number of concurrent trans-
actions(#Transactions). Table 2 presents details of the workloads
with varying levels of contention.

5.2 Evaluation of Optimizations
We first evaluate the optimizations presented in Section 4 to assess
their individual effect on the performance of Rebirth-Retire. To do
this, we conduct experiments using the YCSB workload at different
contention levels, running Rebirth-Retire multiple times with each
optimization enabled individually. We use six configurations:

• Basic: Rebirth-Retire without any optimizations;
• +O1: Rebirth-Retire with Latch-free Dependency Tracking;
• +O2: Rebirth-Retire with Optimistic Read Descendant;
• +O3: Rebirth-Retire with Assign Larger Timestamps;
• +O4: Rebirth-Retire with Version Prefetching;
• +All5: Rebirth-Retire with all optimizations.

The results in Table 3 show the throughput performance. Under
low contention, Rebirth-Retire benefits less from the optimizations
due to fewer conflicts. As contention increases, more dependencies
between transactions need to be tracked. The Latch-free Dependency
Tracking optimization(O1) provides an 8.22% throughput gain in
high-contention scenario. This improvement is attributed to the
lower update cost of the Children list in the latch-free implementa-
tion. The Optimistic Read Descendant optimization(O2) increases
throughput by up to 4.16%, primarily by reducing unnecessary
transaction aborts. The Assign Larger Timestamps optimization(O3)
also delivers a significant performance gain in high-contention
workload. However, the Version Prefetching optimization(O4) offers
limited improvement. In low, medium, and high contention scenar-
ios, applying all four optimizations together results in 1.97%, 5.18%,
and 12.36% throughput improvements, respectively.

5.3 Evaluation of Passive Retire and Rebirth
Next, we compare the performance impact of passive Retire and
Rebirth mechanisms in the Rebirth-Retire protocol. We refer to the
Retire mechanism in Wound-Retire as active Retire.

Compared to active Retire, passive Retire introduces no additional
overhead and does not increase transaction waiting time. In low

5+All is the default configuration for all other experiments in this paper.

Figure 3: The evaluation of Passive Retire and Rebirth

contention scenarios, it helps reduces unnecessary Retire overhead.
Unlike theWound mechanism, Rebirth only terminates the younger
transactions when a deadlock is confirmed. It effectively reduces
unnecessary transaction aborts in high-contention scenarios. For
clarity, we define the evaluated protocols as follows:

• Wound-Active Retire corresponds toWound-Retire;
• Rebirth-Active Retire represents Rebirth-Retire without

passive Retire;
• Wound-Passive Retire denotes Rebirth-Retire without Re-

birth;
• Rebirth-Passive Retire denotes Rebirth-Retire.

Effects of Passive Retire. As shown in Figure 3, passive Retire
outperforms active Retire across all YCSB workloads under different
contention levels. In low andmedium contentionworkloads, passive
Retire improves throughput by 10% and 36%, respectively, compared
to active Retire, as it performs fewer Retire operations. This is further
supported by the proportion of time spent on Retire operations. As
shown in Table 4, Wound-Passive Retire spends significantly less
time on Retire operations under these workloads. Even under high
contention, passive Retire continues to achieve higher throughput
and lower abort rates than active Retire. These results demonstrate
that passive Retire consistently outperforms active Retire across all
scenarios.

Effects of Rebirth. The results in Figure 3 show that Rebirth-
Active Retire consistently outperformsWound-Active Retire in both
throughput and abort rate across all workloads. In low contention
scenarios, where conflicts are minimal, both protocols achieve
low abort rates, but Rebirth-Active Retire achieves slightly higher
throughput. Under medium contention, Rebirth-Active Retire im-
proves throughput by 49% and reduces the abort rate by 84% com-
pared to Wound-Active Retire, as the Rebirth mechanism more
effectively resolves conflicts. In high contention workloads, Rebirth-
Active Retire achieves approximately ∼1.90× higher throughput
thanWound-Active Retire, which suffers from excessive aborts. This
performance gap occurs because Wound-Active Retire frequently
aborts younger transactions unnecessarily, whereas Rebirth-Active
Retire prevents such false aborts by accurately detecting true cycle

3170

Table 4: The time proportion of Retire, Rebirth and Topolog-
ical Sorting

Level Protocol Retire Rebirth Sort

Wound-Active Retire 3.58% - -
Low Rebirth-Active Retire 4.22% 0% 0%

Wound-Passive Retire 0.09% - -
Rebirth-Passive Retire 0% 0% 0%

Wound-Active Retire 4.19% - -
Medium Rebirth-Active Retire 5.34% 0.44% 0.85%

Wound-Passive Retire 0.97% - -
Rebirth-Passive Retire 2.54% 0.49% 0.97%

Wound-Active Retire 4.42% - -
High Rebirth-Active Retire 5.13% 1.88% 1.62%

Wound-Passive Retire 1.05% - -
Rebirth-Passive Retire 2.07% 2.38% 2.64%

Figure 4: YCSB performance with varying the number of
work thread (𝜃=0.9, read_ratio=0.5, 10 million tuples).

dependencies, leading to a 60% reduction in abort rate. By combin-
ing passive Retire and Rebirth, Rebirth-Retire achieves 2.9× higher
throughput than Wound-Retire while reducing the abort rate by
53%. This demonstrates that the Rebirth mechanism effectively mit-
igates unnecessary aborts and significantly enhances throughput,
especially in conflict-heavy transaction scenarios.

Topological Sorting Cost. From the proportion of time in
Table 4, we see that the time spent on Rebirth operations is minimal
across all scenarios, indicating that its overhead is negligible. Fur-
thermore, profiling the time spent on topological sorting confirms
that its overhead is also low and does not constrain performance
throughput. This is because Rebirth-Retire prevents deadlocks and
minimizes the waiting time for requesting transactions.

5.4 Evaluation on Various Workloads
We now evaluate how Rebirth-Retire performs in comparison to
other protocols under varying thread counts, data access distri-
bution, and read ratio. These workloads are commonly studied
in concurrency control research, ensuring a comprehensive and
comparative evaluation.

VaryingNumber of Threads. Figure 4 shows the improvement
of Rebirth-Retire over Wound-Retire with varying thread counts in

Figure 5: YCSB performance with varying access distribution
(40 work threads, read_ratio=0.5, 10 million tuples).

Figure 6: YCSB performance with varying the read ratio (40
work threads, 𝜃=0.9, 10 million tuples).

YCSB, configured with 𝜃=0.9/read_ratio=0.5. Rebirth-Retire reduces
waiting time and minimizes transaction aborts. With 40 threads,
Rebirth-Retire achieves approximately 3× lower abort rates and
2× higher throughput than Wound-Retire. Both Wound-Wait and
OCC exhibit similar throughput, with Wound-Wait being hindered
by blocking and lock contention, and OCC suffering from high
abort rates during validation. Deadlock-Detection has the worst
scalability due to its deadlock detection mechanism, which results
in a high abort rate and increased lock waiting times.

Varying Data Access Distribution. Figure 5 illustrates the
impact of the parameter 𝜃 in the Zipfian distribution on protocol
performance. The results indicate that for 𝜃 values below 0.7, the
skewness introduced by the distribution has little effect on perfor-
mance. However, for higher 𝜃 values, increased skewness leads to
higher contention, causing a sudden drop in throughput andmaking
all protocols non-scalable. Rebirth-Retire consistently outperforms
the others, with its performance improvement being most signifi-
cant under highly skewed workloads. This is due to Rebirth-Retire’s
ability to reduce unnecessary aborts and minimize rebirth overhead.
Wound-Wait is slower due to increased lock waiting time. Wound-
Retire performs worse than Wound-Wait because it suffers from
cascading aborts and commit wait times. Both Deadlock-Detection
and OCC continue to perform poorly due to their high abort rates.

Varying Read Ratio. Figure 6 illustrates the impact of varying
read_ratio on the performance of different protocols. As the read ra-
tio decreases, throughput for all protocols declines. This is because

3171

Figure 7: YCSB performance with 5% long read-only transac-
tions (𝜃=0.9, read_ratio=0.5, 10 million tuples).

a higher proportion of write operations increases contention, lead-
ing to more frequent transaction aborts due to conflict resolution.
Rebirth-Retire consistently outperforms all other protocols across
different read ratios, except when read_ratio = 1, where transactions
do not conflict with each other. In this scenario, OCC protocols,
such as Silo and Tictoc, achieve better performance than the other
algorithms due to their lower concurrency control overhead. Both
Wound-Wait andWound-Retire incur additional overhead from con-
currency control mechanisms, such as timestamp allocation and the
maintenance of wait, owner, and retire lists. Rebirth-Retire’s pas-
sive retire mechanism, dynamic timestamp allocation, and lock-free
dependency tracking effectively reduce this overhead, especially in
less contentious workloads.

The Long Transaction. This experiment uses a workload con-
sisting of 5% long read-only transactions accessing 1000 tuples and
95% read-write transactions accessing 16 tuples. Figure 7 shows
that when the workload is less contentious, Deadlock-Detection
performs the best due to its lower latch overhead compared to the
other protocols. As the number of threads exceeds 20, Rebirth-Retire
outperforms all other protocols. Compared to Deadlock-Detection,
OCC, and Wound-Wait, Rebirth-Retire benefits from reduced wait-
ing times and rarely transaction aborts, achieving up to a 10×
performance improvement. Under 40 threads, both Wound-Retire
and Rebirth-Retire exhibit similar abort rates; however, Rebirth-
Retire achieves 5× higher throughput than Wound-Retire. This
improvement is attributed to Rebirth-Retire’s optimization in hid-
ing the memory latency of long read-only transactions, as these
transactions do not block concurrent read-write transactions and
can target visible versions faster than the traditional linear version
traversal. In contrast, although Wound-Retire optimizes read oper-
ations, it is still constrained by local read copies. OCC exhibits the
worst performance across all scenarios, as long transactions may
suffer from starvation, and aborts dominate the execution time.

5.5 Experimental Analysis on Workloads at
Different Contention Levels

Finally, we compare Rebirth-Retire with other protocols on YCSB
and TPC-C workloads at different contention levels.

Figure 8 shows the performance of the seven protocols across
different YCSB workloads. In the low contention workload, all pro-
tocols perform similarly, achieving nearly identical throughput
with no transactions aborts. In the medium contention workload,

Figure 8: Throughput and Abort Rate of concurrency control
protocols under different levels of contention (YCSB)

Figure 9: Throughput and Abort Rate of concurrency control
protocols under different levels of contention (TPC-C)

Rebirth-Retire achieves the highest throughput, followed byWound-
Retire, Wound-Wait, OCC, and Deadlock-Detection. Rebirth-Retire
outperforms Wound-Retire by 33%, and Wound-Wait achieves only
about half of Rebirth-Retire’s throughput. Rebirth-Retire also has
the lowest abort rate (∼2%), while Wound-Retire suffers from a
higher abort rate (∼12%). Wound-Wait, Deadlock-Detection, and
OCC protocols have even higher abort rates (14%, 26%, 33%, 28% and
36%, respectively). In the high contention workload, Rebirth-Retire
achieves the highest throughput (∼600K transactions/s), while the
others perform poorly, with throughput below 300K transactions/s.
It also maintains the lowest abort rate (∼30%) across all protocols.

Moreover, to assess the impact of conflicts due to hotspot ac-
cesses, we design hotspot workloads similar to those in Bamboo.
Unlike fixed hotspot accesses, our approach allows hotspot tuple
locations to vary within transactions, better reflecting real-world
conditions. Figure 8 shows that Rebirth-Retire consistently outper-
forms Wound-Retire in throughput and achieves a lower abort rate,
demonstrating its superior handling of hotspot-induced conflicts.

Figure 9 presents the performance of all protocols on the TPC-C
workloads. In the low-contention TPC-C workload, Silo achieves

3172

the best performance, completing 100,000 transactions in the short-
est time. In contrast, TicToc and MOCC perform worse as they
spend more time detecting conflicts and computing timestamps
during the validation phase. As contention increases to a medium
level, Deadlock-Detection performs the worst due to the overhead
of lock waiting and deadlock detection. OCC also struggles, as a
significant portion of execution time is spent on transaction aborts.
Both Wound-Retire and Rebirth-Retire reduce the time spent by
transactions waiting for locks but increase the time spent wait-
ing for commit; their overall performance still surpasses that of
other protocols. In high-contention workloads, Deadlock-Detection
and Wound-Wait suffer from extremely low throughput due to ex-
cessive lock waiting. Long transactions, such as StockLevel and
OrderStatus, prolong lock holding, increasing conflicts and causing
frequent aborts in Wound-Wait. OCC continues to underperform,
as most transactions fail during the validation phase. Rebirth-Retire,
however, outperforms Wound-Retire by up to ∼3.1× by minimizing
unnecessary aborts and reducing concurrency control overhead.

6 RELATEDWORK
Dirty Reads and Dirty Writes.Many works have explored con-
currency control protocols that allow transactions to access un-
committed data for performance improvement. Hekaton [16, 28]
proposed two protocols — pessimistic version and optimistic ver-
sion for main memory databases based on multiversioning. IC3 [37]
and Runtime Pipelining (RP) [32, 40] are two popular variants of
transaction chopping techniques. Both methods allow early reads of
dirty data but require prior knowledge of the workload and do not
support ad-hoc transactions. Bamboo [22] extends Wound-Wait [5]
to permit dirty reads and writes without prior workload knowledge.
However, it aborts transactions with larger timestamps than the
requesting transaction, even in the absence of dependency cycles.
In contrast, Rebirth-Retire enables dirty reads and writes without
requiring workload knowledge, using dead-dependency detection
to prevent cycles and avoid unnecessary aborts.

Dynamic Timestamp Assignment. Given the significant bot-
tleneck introduced by centralized timestamp allocation in multi-
core systems, several works have explored alternative approaches
for transaction ordering. Silo [34] employs a decentralized vali-
dation phase using batched atomic addition timestamps, which
avoids bottlenecks from global locks but increases latency under
high contention. Dynamic Timestamp Allocation (DTA) [3] dynam-
ically assigns a timestamp range to each transaction at the start,
with a final commit timestamp assigned within that range during
validation. TicToc [43] calculates the commit timestamp based on
the accessed tuples during validation, eliminating the need for a
static timestamp. Both DTA and TicToc reduce aborts compared to
traditional OCC, but they are limited by the fact that transaction
validation and aborts can only occur during the validation phase,
which may lead to frequent aborts under high contention. Recent
works in distributed database systems [31, 39] further explore dy-
namic timestamp mechanisms. In contrast, Rebirth-Retire assigns
timestamps when conflicts occur and can abort transactions at any
point during execution.

Hybrid Concurrency Control. Several existing approaches
combine multiple concurrency control mechanisms to enhance sys-
tem performance across various contention workloads. MOCC [36]
dynamically selects between 2PL and OCC based on the hotness
of tuples. CormCC [33] formalizes concurrency control into four
phases, allowing any CC policywithin each phase, provided they fol-
low the same phase order. Polyjuice [35] uses a learning framework
to optimize algorithm selection for specific workloads. However,
both CormCC and Polyjuice rely on prior workload knowledge,
while MOCC requires statistical analysis of data access patterns.
Plor [11] and Polaris [41] focus on reducing latency’s impact on
throughput. Plor adopts an optimistic approach within the Wound-
Wait framework but does not eliminate lock acquisition overhead.
Polaris integrates a reservation mechanism to enable priority levels
in the Silo protocol, specifically targeting tail latency reduction
while maintaining throughput. Recent approaches like R-SMF [12],
Morty [8], and TSkd [9] explore the scheduling space systematically,
proactively identifying and executing optimal schedules to boost
throughput. In contrast, Rebirth-Retire adapts to varying contention
levels through its passive retire and rebirth mechanisms.

7 CONCLUSION
Weproposed the Rebirth-Retire concurrency control protocol, which
incorporates a passive Retire mechanism that not only reduces the
time other transactions spend waiting for locks but also avoids
unnecessary Retire overhead. Its Rebirth mechanism prevents dead-
locks and avoids unnecessary transaction aborts. The protocol is
provably correct. Experimental results demonstrate that, compared
to other protocols, Rebirth-Retire offers significant performance
advantages in scenarios with varying levels of contention, except
in cases where conflicts between transactions are rare.

ACKNOWLEDGMENTS
This work was supported by NSF of China (61572194,61672233).
Additional funding was provided by Transwarp Technology (Shang-
hai) Co., Ltd.

REFERENCES
[1] 2020. DBx1000. https://github.com/yxymit/DBx1000.
[2] Sam Ainsworth. 2018. Prefetching for complex memory access patterns. Technical

Report. University of Cambridge, Computer Laboratory.
[3] Vaibhav Arora, Ravi Kumar Suresh Babu, Sujaya Maiyya, Divyakant Agrawal,

Amr El Abbadi, Xun Xue, Zhiyanan, and Zhujianfeng. 2018. Dynamic Timestamp
Allocation for Reducing Transaction Aborts. In 2018 IEEE 11th International
Conference on Cloud Computing. 269–276. https://doi.org/10.1109/CLOUD.2018.
00041

[4] Joy Arulraj, Andrew Pavlo, and PrashanthMenon. 2016. Bridging the archipelago
between row-stores and column-stores for hybrid workloads. In Proceedings
of the 2016 International Conference on Management of Data. 583–598. https:
//doi.org/10.1145/2882903.2915231

[5] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-
tributed Database Systems. ACM Comput. Surv. 13, 2 (jun 1981), 185–221.
https://doi.org/10.1145/356842.356846

[6] P. A. Bernstein and E. Newcomer. 2009. Principles of Transaction Processing.
Morgan Kaufmann.

[7] Philip A. Bernstein, David W. Shipman, and Wing S. Wong. 1979. Formal aspects
of serializability in database concurrency control. IEEE Transactions on Software
Engineering 3 (1979), 203–216. https://doi.org/10.1109/TSE.1979.234182

[8] Matthew Burke, Florian Suri-Payer, Jeffrey Helt, Lorenzo Alvisi, and Natacha
Crooks. 2023. Morty: Scaling Concurrency Control with Re-Execution. In Pro-
ceedings of the Eighteenth European Conference on Computer Systems. 687–702.
https://doi.org/10.1145/3552326.3567500

3173

 https://github.com/yxymit/DBx1000
https://doi.org/10.1109/CLOUD.2018.00041
https://doi.org/10.1109/CLOUD.2018.00041
https://doi.org/10.1145/2882903.2915231
https://doi.org/10.1145/2882903.2915231
https://doi.org/10.1145/356842.356846
https://doi.org/10.1109/TSE.1979.234182
https://doi.org/10.1145/3552326.3567500

[9] Yang Cao, Wenfei Fan, Weijie Ou, Rui Xie, and Wenyue Zhao. 2023. Transaction
Scheduling: From Conflicts to Runtime Conflicts. Proc. ACM Manag. Data 1, 1,
Article 26 (may 2023), 26 pages. https://doi.org/10.1145/3588706

[10] Chen Chen, Xingbo Wu, Wenshao Zhong, and Jakob Eriksson. 2024. Fast Abort-
Freedom for Deterministic Transactions. In 2024 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 692–704. https://doi.org/10.1109/
IPDPS57955.2024.00067

[11] Youmin Chen, Xiangyao Yu, Paraschos Koutris, Andrea C Arpaci-Dusseau,
Remzi H Arpaci-Dusseau, and Jiwu Shu. 2022. Plor: General transactions with
predictable, low tail latency. In Proceedings of the 2022 International Conference
on Management of Data. 19–33. https://doi.org/10.1145/3514221.3517879

[12] Audrey Cheng, Aaron Kabcenell, Jason Chan, Xiao Shi, Peter Bailis, Natacha
Crooks, and Ion Stoica. 2024. Towards Optimal Transaction Scheduling. Proceed-
ings of the VLDB Endowment 17, 11 (2024), 2694–2707. https://doi.org/10.14778/
3681954.3681956

[13] Audrey Cheng, Jack Waudby, Hugo Firth, Natacha Crooks, and Ion Stoica. 2023.
Mammoths Are Slow: The Overlooked Transactions of Graph Data. Proceedings
of the VLDB Endowment 17, 4 (2023), 904–911. https://doi.org/10.14778/3636218.
363624

[14] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA).
Association for Computing Machinery, New York, NY, USA, 143–154. https:
//doi.org/10.1145/1807128.1807152

[15] Transaction Processing Council. 2007. TPC-C Benchmark (Revision 5.9.0). Techni-
cal Report. Transaction Processing Council. Available at: https://www.tpc.org/
tpcc/.

[16] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL Server’s
Memory-Optimized OLTP Engine. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (New York, New York, USA).
Association for Computing Machinery, 1243–1254. https://doi.org/10.1145/
2463676.2463710

[17] Zhiyuan Dong, Zhaoguo Wang, Xiaodong Zhang, Xian Xu, Changgeng Zhao,
Haibo Chen, Aurojit Panda, and Jinyang Li. 2023. Fine-Grained Re-Execution for
Efficient Batched Commit of Distributed Transactions. Proceedings of the VLDB
Endowment 16, 8 (2023), 1930–1943. https://doi.org/10.14778/3594512.3594523

[18] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The Notions of
Consistency and Predicate Locks in a Database System. Commun. ACM 19, 11
(nov 1976), 624–633. https://doi.org/10.1145/360363.360369

[19] J. Gray, P. Homan, H. Korth, and R. Obermarck. 1981. A Straw Man Analysis of
the Probability of Waiting and Deadlock in a Database System. In Proceedings of
the Berkeley Workshop. Berkeley, CA.

[20] Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts and Tech-
niques (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[21] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J.
Weinberger. 1994. Quickly Generating Billion-Record Synthetic Databases. SIG-
MOD Rec. 23, 2 (may 1994), 243–252. https://doi.org/10.1145/191843.191886

[22] Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. 2021. Releasing Locks As
Early As You Can: Reducing Contention of Hotspots by Violating Two-Phase
Locking. In Proceedings of the 2021 International Conference on Management of
Data (Virtual Event, China). Association for Computing Machinery, New York,
NY, USA, 658–670. https://doi.org/10.1145/3448016.3457294

[23] Kaisong Huang, Tianzheng Wang, Qingqing Zhou, and Qingzhong Meng. 2023.
The Art of Latency Hiding in Modern Database Engines. Proceedings of the VLDB
Endowment 17, 3 (2023), 577–590. https://doi.org/10.14778/3632093.3632117

[24] Evan PC Jones, Daniel J Abadi, and Samuel Madden. 2010. Low overhead con-
currency control for partitioned main memory databases. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of data. 603–614.
https://doi.org/10.1145/1807167.1807233

[25] Arthur B Kahn. 1962. Topological sorting of large networks. Commun. ACM 5,
11 (1962), 558–562. https://doi.org/10.1145/368996.369025

[26] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.
Ermia: Fast memory-optimized database system for heterogeneous workloads.
In Proceedings of the 2016 International Conference on Management of Data. 1675–
1687. https://doi.org/10.1145/2882903.2882905

[27] H. T. Kung and John T. Robinson. 1981. On Optimistic Methods for Concurrency
Control. ACM Trans. Database Syst. 6, 2 (jun 1981), 213–226. https://doi.org/10.
1145/319566.319567

[28] Per Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M
Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-
nisms for Main-Memory Databases. Proc. VLDB Endow. 5, 4 (dec 2011), 298–309.
https://doi.org/10.14778/2095686.2095689

[29] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-memory data management beyond main memory. In 2018 IEEE
34th International Conference on Data Engineering. 185–196. https://doi.org/10.
1109/ICDE.2018.00026

[30] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016.
The ART of practical synchronization. In Proceedings of the 12th International
Workshop on Data Management on New Hardware. 1–8. https://doi.org/10.1145/
2933349.2933352

[31] Yishuai Li, Yunfeng Zhu, Chao Shi, Guanhua Zhang, JianzhongWang, and Xiaolu
Zhang. 2024. Timestamp as a Service, not an Oracle. Proceedings of the VLDB
Endowment 17, 5 (2024), 994–1006. https://doi.org/10.14778/3641204.3641210

[32] Shuai Mu, Sebastian Angel, and Dennis Shasha. 2019. Deferred Runtime
Pipelining for Contentious Multicore Software Transactions. In Proceedings
of the Fourteenth EuroSys Conference 2019 (Dresden, Germany). Association
for Computing Machinery, New York, NY, USA, Article 40, 16 pages. https:
//doi.org/10.1145/3302424.3303966

[33] Dixin Tang and Aaron J Elmore. 2018. Toward coordination-free and reconfig-
urable mixed concurrency control. In 2018 USENIX Annual Technical Conference.
809–822.

[34] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-Memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania). Association for ComputingMachinery, New York, NY, USA, 18–32.
https://doi.org/10.1145/2517349.2522713

[35] Jiachen Wang, Ding Ding, Huan Wang, Conrad Christensen, Zhaoguo Wang,
Haibo Chen, and Jinyang Li. 2021. Polyjuice:High-Performance transactions via
learned concurrency control. In 15th USENIX Symposium on Operating Systems
Design and Implementation. 198–216.

[36] Tianzheng Wang and Hideaki Kimura. 2016. Mostly-optimistic concurrency
control for highly contended dynamicworkloads on a thousand cores. Proceedings
of the VLDB Endowment 10, 2 (2016), 49–60. https://doi.org/10.14778/3015274.
3015276

[37] Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, and Jinyang Li. 2016.
Scaling Multicore Databases via Constrained Parallel Execution. In Proceedings
of the 2016 International Conference on Management of Data (San Francisco,
California, USA). Association for Computing Machinery, New York, NY, USA,
1643–1658. https://doi.org/10.1145/2882903.2882934

[38] Jack Waudby. 2024. High Performance Concurrency Control and Commit Protocols
in OLTP Databases. Ph.D. Dissertation. Newcastle University.

[39] Xingda Wei, Rong Chen, Haibo Chen, Zhaoguo Wang, Zhenhan Gong, and
Binyu Zang. 2021. Unifying Timestamp with Transaction Ordering for MVCC
with Decentralized Scalar Timestamp. In 18th USENIX Symposium on Networked
Systems Design and Implementation. 357–372.

[40] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kapritsos, and Yang
Wang. 2015. High-Performance ACID via Modular Concurrency Control. In
Proceedings of the 25th Symposium on Operating Systems Principles (Monterey,
California). Association for Computing Machinery, New York, NY, USA, 279–294.
https://doi.org/10.1145/2815400.2815430

[41] Chenhao Ye, Wuh Chwen Hwang, Keren Chen, and Xiangyao Yu. 2023. Polaris:
Enabling transaction priority in optimistic concurrency control. Proceedings of the
ACM on Management of Data 1, 1 (2023), 1–24. https://doi.org/10.1145/3588724

[42] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. Proc. VLDB Endow. 8, 3 (nov 2014), 209–220. https:
//doi.org/10.14778/2735508.2735511

[43] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. TicToc:
Time Traveling Optimistic Concurrency Control. In Proceedings of the 2016
International Conference on Management of Data (San Francisco, California, USA).
Association for Computing Machinery, New York, NY, USA, 1629–1642. https:
//doi.org/10.1145/2882903.2882935

[44] Yuan Yuan, Kaibo Wang, Rubao Lee, Xiaoning Ding, Jing Xing, Spyros Blanas,
and Xiaodong Zhang. 2016. Bcc: Reducing false aborts in optimistic concur-
rency control with low cost for in-memory databases. Proceedings of the VLDB
Endowment 9, 6 (2016), 504–515. https://doi.org/10.14778/2904121.2904126

3174

https://doi.org/10.1145/3588706
https://doi.org/10.1109/IPDPS57955.2024.00067
https://doi.org/10.1109/IPDPS57955.2024.00067
https://doi.org/10.1145/3514221.3517879
https://doi.org/10.14778/3681954.3681956
https://doi.org/10.14778/3681954.3681956
https://doi.org/10.14778/3636218.363624
https://doi.org/10.14778/3636218.363624
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://www.tpc.org/tpcc/
https://www.tpc.org/tpcc/
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.14778/3594512.3594523
https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/191843.191886
https://doi.org/10.1145/3448016.3457294
https://doi.org/10.14778/3632093.3632117
https://doi.org/10.1145/1807167.1807233
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/2882903.2882905
https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/319566.319567
https://doi.org/10.14778/2095686.2095689
https://doi.org/10.1109/ICDE.2018.00026
https://doi.org/10.1109/ICDE.2018.00026
https://doi.org/10.1145/2933349.2933352
https://doi.org/10.1145/2933349.2933352
https://doi.org/10.14778/3641204.3641210
https://doi.org/10.1145/3302424.3303966
https://doi.org/10.1145/3302424.3303966
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.14778/3015274.3015276
https://doi.org/10.14778/3015274.3015276
https://doi.org/10.1145/2882903.2882934
https://doi.org/10.1145/2815400.2815430
https://doi.org/10.1145/3588724
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.1145/2882903.2882935
https://doi.org/10.1145/2882903.2882935
https://doi.org/10.14778/2904121.2904126

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Bamboo (Wound-Retire) Protocol
	2.2 System Time Proportion
	2.3 Unnecessary Abort

	3 Rebirth-Retire Protocol
	3.1 Passive Retire and Rebirth
	3.2 Protocol Description
	3.3 Proof of Correctness

	4 Optimizations
	4.1 O1: Latch-free Dependency Tracking
	4.2 O2: Optimistic Read Descendant
	4.3 O3: Assign Larger Timestamps
	4.4 O4: Version Prefetching

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Evaluation of Optimizations
	5.3 Evaluation of Passive Retire and Rebirth
	5.4 Evaluation on Various Workloads
	5.5 Experimental Analysis on Workloads at Different Contention Levels

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

