
LLMLog: Advanced Log Template Generation via LLM-driven
Multi-Round Annotation

Fei TENG

CSE, HKUST

fteng@connect.ust.hk

Haoyang LI
∗

Computing, PolyU

haoyang-comp.li@polyu.edu.hk

Lei CHEN

DSA, HKUST & HKUST (GZ)

leichen@cse.ust.hk

ABSTRACT
Modern computing systems, such as HDFS and Spark, produce

vast quantities of logs that developers use for tasks like anomaly

detection and error analysis. To simplify log analysis, template gen-

eration methods have been proposed to standardize log formats,

transforming unstructured data into structured templates. Existing

heuristic-based methods and neural network-based methods suffer

from low accuracy problems due to the reliance on handcrafted

heuristics or specific log patterns in training sets. Recently, large

language models (LLMs) have shown great potential in log tem-

plate generation. However, they often struggle with ambiguous,

complex, or highly specific log content, which can lead to errors

in generating accurate templates. To address these challenges, we

propose LLMLog, a multi-round annotation framework with adap-

tive in-context learning. We first propose an edit-distance-based

similarity metric to evaluate log similarity. Then, we introduce a

method to select the most informative 𝑘 unlabeled logs for annota-

tion by considering both the representativeness of the logs and the

confidence of LLM predictions. Additionally, we design an adaptive

context selection strategy that adaptively selects labeled logs to

ensure comprehensive keyword coverage for unlabeled logs. These

labeled logs serve as the context for LLMs to better understand

the unlabeled logs, thereby enhancing the accuracy of template

generation. Extensive experiments on sixteen datasets demonstrate

that LLMLog outperforms the state-of-the-art approaches.

PVLDB Reference Format:
Fei TENG, Haoyang LI and Lei CHEN. LLMLog: Advanced Log Template

Generation via LLM-driven Multi-Round Annotation. PVLDB, 18(9): 3134 -

3148, 2025.

doi:10.14778/3746405.3746433

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/XinTT/LLMLog.

1 INTRODUCTION
Modern computing systems, such as HDFS and Spark, generate

vast quantities of logs, which offer a wealth of information about

system runtime behavior. Developers can use the recordings to

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.

doi:10.14778/3746405.3746433

*Corresponding Author.

System Logs

Templates

2024-11-15 10.0.0.5 POST 401/api/ausers/login

2024-11-25 cse.ust.edu POST 200/adam/index

2024-11-26 cuhk.edu GET 404/api/ausers/login

[DATE] [IP] <POST> [STATUS][RESOURCE]

[DATE] [IP] <GET> [STATUS][RESOURCE]

Figure 1: Template generation from system logs. As shown in
the figure,we can generate two templates for the three logs
from HTTP. Templates help structure the logs by assigning
types or categories to each word in the logs.

debug and maintain the computer system, including anomaly detec-

tion [14, 25, 41, 43, 63, 82] and error analysis [1, 24, 38]. However,

the massive volume of logs causes the difficulty of system develop-

ers and maintain staffs to detect the anomalies and track errors. To

facilitate easier understanding and analysis, motivated by pattern

mining approaches [3, 44, 75], researchers have proposed gener-

ating templates for these massive logs. For example, as shown in

Figure 1, template generation creates structured formats to consis-

tently standardize the logs, making them easier to parse, analyze,

and maintain. This process extracts structured patterns from un-

structured log data, which transforms raw logs into more organized

formats. As a result, developers can quickly identify fields with

anomalies or errors, making it easier to debug issues and maintain

system health. The diversity of logs within a system, such as config-

uration, user, and error logs, oftenmaps to multiple templates rather

than a single one, complicating their effective template generation.

This challenge is further exacerbated by the ever-growing volume

of logs and their variability over time due to system updates.

Depending on the technique of generating templates for logs, cur-

rent approaches can be categorized into three types, i.e., heuristic-

based methods [22, 23, 36, 47, 62], neural network-based meth-

ods [33, 49], and LLM-based methods [74]. Firstly, heuristic-based

methods [22, 23, 36, 47, 62] separate user logs into different clusters

using handcrafted rules or heuristics, such as assuming all logs are

of equal length if they have the same template. However, such pre-

defined heuristics or rules cannot completely match patterns of logs.

Consequently, they lack the flexibility and adaptability to standard-

ize diverse logs. Secondly, neural-network-based approaches train

neural networks to predict the type of each word in the logs, such

as [DATE] and [IP] in Figure 1. However, the success of supervised

3134

https://doi.org/10.14778/3746405.3746433
https://github.com/XinTT/LLMLog
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746433
https://www.acm.org/publications/policies/artifact-review-and-badging-current

approaches relies on numerous annotated labels to train the neural

networks, which requires expensive human effort [33, 74].

Recently, large language models (LLMs) [18–20, 54, 56, 88] pre-

trained on diverse corpora, such as text and code, have shown excep-

tional abilities in understanding text, achieving significant success

in natural language processing tasks [20, 53, 59], such as question

answering [50, 52, 71]. Therefore, researchers have explored using

LLMs to comprehend text in logs and generate templates for them.

Typically, they provide each user log along with candidate word

labels to the LLMs, instructing them to label each word in the log

to create its template. However, due to the presence of complex,

specific, and ambiguous words in logs (e.g., a username asjaks001),
LLMs may struggle to interpret these words accurately, leading to

challenges in generating correct templates.

To enhance the understanding of words in logs, researchers [11,

60, 61, 70] have proposed a multi-round annotation framework for

large language models (LLMs), which typically consists of an an-

notation component and an in-context learning (ICL) component.

Firstly, in the annotation component, each round involves labeling

a subset of logs that lack corresponding templates. Researchers

typically define a similarity score among logs, such as cosine simi-

larity between log embeddings [6, 46, 67, 72]. Based on this score,

they select a set of logs within a budget 𝑘𝑎 to represent the other

unlabeled logs. Second, the in-context learning component involves

selecting top-𝑘𝑐 similar logs with their templates to serve as context

for unlabeled logs [16, 26, 74]. This contextual information helps

the LLMs understand the correlation between words and labels,

enabling them to predict labels for the unlabeled logs. After each

round, the framework filters logs with lower prediction confidence

as unlabeled. It then iteratively repeats the annotation and ICL

steps until the LLMs generate templates for all logs.

Nevertheless, despite the success of existing frameworks, there

are still three limitations. Firstly, they define log similarity based

on log embeddings in both annotation and in-context learning

components. However, this embedding similarity overlooks crucial

aspects such as important words (e.g., POST), and more emphasizes

useless words (e.g., time stamps or IP addresses in figure 1). Thus,

in annotation or in-context learning, the similar logs may share

duplicate time stamps while lack crucial words, offering insuffi-

cient information. Second, in the annotation component, existing

approaches typically select the top-𝑘𝑎 unlabeled logs for annota-

tion where selected logs are similar to as many logs as possible.

However, this approach neglects the importance of LLM predic-

tion confidence, where logs with low prediction confidence often

require more annotations. Third, in the in-context learning compo-

nent, existing approaches [28, 37, 39, 45] select a fixed number of

top-𝑘𝑐 similar labeled logs to serve as context for each unlabeled log.

However, using a fixed number of labeled logs may fail to provide

sufficient context for the LLM, potentially leading to the generation

of incorrect templates.

To address the aforementioned limitations, we propose an LLM-

driven multi-round annotation framework with adaptive in-context

learning, called LLMLog. Specifically, this framework defines an

edit-distance based log similarity metric which emphasize the im-

portant keywords bymeasuringword insertion/deletion/replacement

operations. The most useful logs in annotation and ICL can be re-

spectively identified by adaptively varying the wordset. Benefit

from similarity metric, we define activated logs for representative-

ness of annotated logs. In each round of the annotation component,

we first adaptively determine the budget for that round. Then, we

propose a greedy algorithm to annotate logs by jointly optimiz-

ing the confidence of LLM predictions and the total number of

activated logs, taking into account logs with low confidence and

high representativeness. In adaptive ICL component, we select the

minimum number of demonstrative logs from annotation set for

each input log by ensuring all keywords are covered from input

log in a greedy manner. Compared to the fixed top-𝑘𝑐 strategy, our

adaptive selection can precisely guide LLM by ensuring the infor-

mativeness of contextual information from each demonstrative log.

The contributions of this paper are summarized as follows.

• We propose LLMLog, a novel LLM-driven multi-round annota-

tion framework with adaptive in-context learning for log tem-

plate generation. The framework addresses limitations in exist-

ing methods by iteratively improving annotation and template

generation processes.

• We propose an semantic edit-distance-based metric for keyword

coverage and an LLM feedback metric considering word consis-

tency and confidence. Additionally, we introduce an adaptive

strategy to dynamically allocate the annotation budget. Finally,

we formulate the NP-hard multi-round log annotation problem

and develop a greedy algorithm with theoretical guarantees.

• We develop an adaptive strategy for selecting the minimum

number of demonstrative logs as context for each unlabeled log.

This approach ensures that all keywords from the input log are

covered, enhancing the LLM’s understanding and improving

template generation accuracy compared to fixed top-k strategies.

• Extensive experiments on 16 datasets demonstrate that LLMLog

achieves higher accuracy than state-of-the-art baselines while

reducing computational and API costs through adaptive demon-

stration selection and efficient log annotation.

2 PRELIMINARY AND RELATEDWORKS
In this section, we first present the preliminaries on logs and log

template generation. Then, we discuss the related works. Important

notations of this paper are summarized in Table 1.

2.1 Log Template Generation Problem
Logs are textual sequences that document the behaviors and events

of a system. Formally, a log 𝑠 is one system message recording a sys-

tem event, composed of a set of words, denoted as 𝑠 = (𝑤𝑠
1
,𝑤𝑠

2
, ...,𝑤𝑠

|𝑠 |),
i.e., 2024-11-14 192.168.1.1 GET /index.html 200 123ms is

a log. Logs serve as an essential tool for system monitoring, de-

bugging, and performance analysis [63]. By capturing a detailed

account of system activities, logs allow developers to trace events,

identify issues, and ensure optimal functionality [41, 77]. Recent re-

search in database and data management focuses on various aspects

of log analysis, including log anomaly detection [43, 48, 63, 80], log-

based retrieval [12, 27, 29, 78], and root cause analysis [7, 42, 68, 76].

In modern systems, logs are produced in massive volumes daily.

Each system generates multiple system events, producing logs in

various formats corresponding to different templates. However, the

large size of logs makes it challenging and time-consuming for de-

velopers and operators to trace events and identify issues efficiently.

3135

Recent studies have explored knowledge base template generation

for user queries [3, 57, 75, 84], while several researchers have pro-

posed methods for generating templates for SQL queries [15, 17, 44,

86]. There are also several works proposed to generate templates

for Web pages [4, 9, 30, 73]. Motivated by template generation

works in database area [44, 75], we can generate templates for logs,

converting unstructured logs into structured templates, enabling

efficient storage, analysis, and debugging [43, 63]. Formally, given a

log 𝑠 = (𝑤𝑠
1
, . . . ,𝑤𝑠

|𝑠 |) and word type candidates T = {𝜏1, · · · , 𝜏 | T | }
and system keyword candidates K = {𝑘1, · · · , 𝑘 |K | }, the target of
log template generation is to generate a template 𝑡 = (𝑤𝑡

1
, · · · ,𝑤𝑡

|𝑡 |)
for 𝑠 , which maps each word𝑤𝑠

𝑖
∈ 𝑠 to a corresponding word type

𝑤𝑡
𝑖
∈ T or a system keyword𝑤𝑡

𝑖
∈ K .

For example, the template of the log 2024-11-14 192.168.1.1
GET /index.html 200 123ms is [DATE] [IP] <GET> [RESOURCE]
[STATUS] [LATENCY], where [·] is a word type and < · > is a

keyword. The template of log 2024-11-14 192.168.1.2 DELETE
/test.html 200 123ms is [DATE] [IP] <DELETE> [RESOURCE]
[STATUS] [LATENCY]. By identifying structured templates from

raw logs, log template generation streamlines the management and

analysis of large-scale log data from systems such as Apache [2, 87],

HDFS [2, 87], and Spark [66, 87]. These templates make it easier to

track IP addresses, enabling the detection of anomalies or errors in

database systems [43, 63].

2.2 Log Template Generation Approaches
Depending on the techniques used for generating log templates,

existing works can be classified into three categories: heuristic-

based approaches [22, 23, 36, 47, 62], neural network-based ap-

proaches [33, 49], and LLM-based approaches [74].

2.2.1 Heuristic-based Approaches. Heuristic-based models [22, 23,

36, 47, 62] depend on handcrafted rules or heuristics to group logs

into multiple clusters. In practice, heuristics cannot match the char-

acteristics of logs from multiple domains well, resulting in low

flexibility and adaptability in labelling diverse logs. For instance,

Drain [23] assumes that the first word of a log must always be a

keyword. However, this assumption is not consistent across logs

from different systems. Moreover, logs from specific datasets may

follow unique patterns. For example, in the HDFS dataset [87], the

pattern blk_3651 represents a block with ID 3651, which can be in-

terpreted using a specific regular expression like 𝑏𝑙𝑘 \𝑑+. However,
such patterns do not exist in other datasets, such as Mac [87] and

Android [87], requiring the re-writing of regular expressions for

each dataset, which incurs significant human effort. As each system

have logs in diverse templates, the developers have to check the

whole log sets from each system to separately define rules or thresh-

old for template generation, which is impractical in real-world log

datasets [87] with hundreds of templates.

2.2.2 Neural Network-based Approaches. Neural network-based
models [33, 49] train neural network models (i.e. transformers) to

predict each word type in logs. However, the training process de-

mands large-scaled logs with annotated word type. The annotation

of word type in large-scaled logs requires experienced software

Table 1: Important Notations

Notation Definition
𝑠, 𝑡 A log 𝑠 ∈ 𝑆 and its template 𝑡 ∈ 𝑇
𝑡 Predicted template 𝑡 of log 𝑠 , 𝑡 ∈ 𝑇
𝑤𝑠
𝑖

The 𝑖-th word in the log 𝑠

𝑤𝑡
𝑖

The 𝑖-th type in template 𝑡

K Keyword set

T Candidate word type set

𝐺 = (𝑆,𝑊) Bipartite graph between log set 𝑆 and words𝑊

𝑟 The 𝑟 -th round

𝐿𝑟 The annotated logs at the 𝑟 -th round

𝐿 Annotated logs

𝑈 Unlabeled logs

𝑐𝑜𝑠𝑖𝑛𝑒 (·) Cosine similarity score

𝑆𝐸𝐷 (·) Semantic-based edit distance between two logs

𝐼𝑠𝑖 Representative score of 𝑠𝑖

𝑃 (𝑠𝑖 , 𝑡𝑖) Average probability of predicted template 𝑡𝑖

I(𝑠𝑖 , 𝑠𝑖) Prediction consistency indicator

𝐶 (𝑠𝑖 , 𝑡𝑖 , 𝑠𝑖) Confidence score

𝐵𝑟 Annotation budget at the 𝑟 -th round

𝑊𝑟 Identified words at the 𝑟 -th round

𝐼𝑆 (·) The informative score in Equation (8)

𝜆 Trade-off parameter in Equation (8)

𝐷𝑠 Demonstrative logs of 𝑠

𝑈𝑊 (𝐷𝑠) Word set in 𝐷𝑠

maintainer, which is expensive. Besides, the trained template gen-

eration model relies on patterns existing in training set with po-

tential low generalization ability to unseen patterns. For examples,

if logs in training set only cover the template [ADDRESS] Byte
flume reports host available, the trained model may falsely

infer the template of log [ADDRESS] Byte flume reports host
available again while an important keyword again is missed

due to it is unseen in training set. One intuitive solution to general-

ization problem is to re-train or update the neural network model

based on the logs [55, 81]. However, it is also costly to re-train the

transformer model [33, 49, 74]. As high cost for human-resources

and low generalization problem for both heuristic-based approaches

and neural network-based approaches, LLM-based template gener-

ation methods [74] have been proposed.

2.2.3 LLM-based Approaches. Large language model pre-trained

on massive corpora has obtained extraordinary natural language

processing ability [35]. Motivated by success of LLM, researchers

have investigated LLM-based log template generation that feed the

log and candidate words labels to LLMwith instructing LLM to label

each word. However, as logs contain various domain-specific words

which is excluded in open-sourced corpora, it is difficult for LLM to

understand these words [74]. Based on recent studies, performance

of pre-trained LLM can be training-freely augmented by prompting

LLMwith several examples with ground truth templates as contexts,

calling ICL [8, 16, 28, 37, 39, 45, 74].

Researchers have proposed a multi-round annotation framework

for LLMs [45, 58, 79, 85] with an annotation component and an

ICL component. As for annotation, they firstly compute the cosine

similarity score between embedding of logs. Based on the score,

annotation process finds a representative subset as labeled logs

3136

within a budget 𝑘𝑎 . In ICL component, for each unlabeled log, they

selects top-𝑘𝑐 similar labeled logs which offer contextual knowledge

for LLM to comprehend the correlation between each word and

labels. AdaICL [45] uses each unlabeled log to represent its top-𝑘𝑎
similar logs and proposes selecting 𝑘𝑎 unlabeled logs to represent

as many logs as possible. IDEAL [79] employs an information dif-

fusion process [79] to select the top-𝑘𝑎 most informative unlabeled

logs. DivLog [74] selects the top-𝑘𝑎 most diverse and informative

unlabeled logs. However, the current works achieve sub-optimal

performance due to following three issues: 1) The embedding of

logs overlooks the importance of keywords but emphasizes several

useless words thus cannot identify the most informative contexts. 2)

The annotation ignores that logs are unconfident for LLM also wor-

thy for annotation. 3) Fixed top-𝑘𝑐 similar demonstrations misguide

LLM by irrelevant/scarced contexts.

3 METHOD
In this section, we introduce our LLM-driven multi-round annota-

tion and adaptive in-context learning framework in Figure 2.

3.1 Framework Overview
Step 1: Log Similarity and Annotation. This component aims to

construct and update the annotated log set 𝐿 at each round 𝑟 by se-

lecting the most representative and challenging unlabeled logs from

the dataset𝑈 . At the 𝑟 -th round, we compute an edit-distance-based

metric SED between logs, which emphasizes important keywords

to identify representative logs. Based on SED, the framework selects

a subset 𝐿𝑟 of size 𝐵𝑟 for human annotation by jointly consider-

ing two factors: representativeness and LLM prediction confidence.

More details can refer to Section 3.2 and Section 3.3.

Step 2. Adaptive Demonstration Selection. This component

dynamically selects a minimum number of labeled logs from the

labeled log set 𝐿 to serve as context for each unlabeled log 𝑠𝑖 ∈
𝑈 during LLM inference. This dynamic selection ensures that all

words in the input log 𝑠𝑖 are covered while avoiding irrelevant or

redundant context, which could otherwise degrade the quality of

template generation. More details can refer to Section 3.4.

Step 3. LLM-Driven Template Generation. After constructing
the adaptive context for each unlabeled log 𝑠𝑖 , we generate the final

template prediction. This process begins with prompt construction,

which includes three key elements: an instruction for template

generation, examples of labeled logs with their templates (retrieved

from the context), and the input log 𝑠𝑖 with its identified words.

Once the prompt is constructed, it is fed into the LLM for inference,

resulting in the predicted template 𝑡𝑖 for the input log 𝑠𝑖 .

3.2 Log Similarity
As mentioned in Section 2.2.3, existing works compute the similar-

ity [69] between two logs 𝑠𝑖 and 𝑠 𝑗 using the cosine similarity of

their embeddings [46, 67, 72], which can be defined as

𝑠𝑖𝑚(𝑠𝑖 , 𝑠 𝑗) = 𝑐𝑜𝑠𝑖𝑛𝑒 (s𝑖 , s𝑗), (1)

where s𝑖 =
∑|𝑠𝑖 |

𝑘=1
w𝑠
𝑘

|𝑠𝑖 | is the embedding of log 𝑠𝑖 , and w𝑠
𝑘
represents

the embedding of the 𝑘-th word in log 𝑠𝑖 . However, the cosine

similarity for log embedding is not suitable for representing log

similarity in template generation, as it overlooks the importance of

several keywords and favors irrelevant words with a large number

of letters, such as timestamps or IP addresses. We aim to find similar

template logs as contexts for the target log in the ICL phase, where

each contextual log should provide enough information to guide

the LLM on how to process each word.

Suppose we have an unlabeled log com.cse.ust.hk:8080 POST,
and two labeled logs, proxy.cse.cuhk.edu.hk:5070 POST and

com.cse.ust.hk:8080 GET. Intuitively, we should pick the first

one to demonstrate how LLM converts the IP address to [IP] and

tags POST with <POST>. However, the cosine similarity in Equa-

tion (1) emphasizes the longerwords, such as com.cse.ust.hk:8080.
Therefore, the cosine similaritymetric selects com.cse.ust.hk:8080
GET as the context, which has no information about the keyword

POST. Such a context may falsely guide the LLM to generate tem-

plates with an irrelevant word, GET. To emphasize the important

words, we can build a bipartite graph to model the similarity via

connections between logs and the words they contain.

Definition 1 (Log-Word Bipartite Graph). We build a bi-
partite graph 𝐺 = (𝑆,𝑊) where 𝑆 = {𝑠𝑖 } |𝑆 |𝑖=1

is the set of logs and
𝑊 = ∪𝑠𝑖 ∈𝑆 ∪𝑤∈𝑠𝑖 𝑤 is the set of words contained in 𝑆 . There is an
edge connecting log 𝑠𝑖 and word𝑤 if𝑤 ∈ 𝑠𝑖 .

In the log-word bipartite graph, multiple logs can be linked

through their shared words. This implies that a log 𝑠𝑖 can assist an

LLM in understanding a similar log 𝑠 𝑗 if they share similar or identi-

cal words. Consequently, the LLM can generate the correct template

for the words in log 𝑠 𝑗 . Here, we propose a novel semantic-based

edit-distance in real sequence (SED) to determine the similarity

among two logs, instead of using sentence embedding-based cosine

similarity in Equation (1).

The core idea of our proposed metric 𝑆𝐸𝐷 (𝑠𝑖 , 𝑠 𝑗), is to compute

the minimal number of operations (including deletion, insertion,

and replacement) required to transform log 𝑠𝑖 into log 𝑠 𝑗 , while

incorporating word semantics into the calculation. Formally, given

two logs 𝑠𝑖 = (𝑤𝑠𝑖
1
, · · · ,𝑤𝑠𝑖

|𝑠𝑖 |) and 𝑠 𝑗 = (𝑤
𝑠 𝑗
1
, · · · ,𝑤𝑠 𝑗

|𝑠 𝑗 |) and all the

labeled logs 𝐿 = {(𝑠𝑘 , 𝑡𝑘)}
|𝐿 |
𝑘=1

, the semantic-based EDR similarity

score 𝑆𝐸𝐷 (𝑠𝑖 , 𝑠 𝑗) between 𝑠𝑖 and 𝑠 𝑗 is defined as follows:

𝑆𝐸𝐷 (𝑠𝑖 , 𝑠 𝑗) =



|𝑠𝑟
𝑖
|, 𝑖 𝑓 |𝑠𝑟

𝑗
| = 0

|𝑠𝑟
𝑗
|, 𝑖 𝑓 |𝑠𝑟

𝑖
| = 0

𝑚𝑖𝑛


𝑆𝐸𝐷 (𝑅(𝑠𝑟

𝑖
), 𝑅(𝑠𝑟

𝑗
)) + 𝑐 (𝑠𝑟

𝑖
[0], 𝑠𝑟

𝑗
[0])

𝑆𝐸𝐷 (𝑅(𝑠𝑟
𝑖
), 𝑠𝑟

𝑗
) + 1

𝑆𝐸𝐷 (𝑠𝑟
𝑖
, 𝑅(𝑠𝑟

𝑗
)) + 1

(2)

𝑐 (𝑤1,𝑤2) =
{
1, 𝑐𝑜𝑠𝑖𝑛𝑒 (w1,w2) ≥ 0

0, 𝑐𝑜𝑠𝑖𝑛𝑒 (w1,w2) < 0

(3)

where 𝑠𝑟
𝑖
= {𝑤𝑖 | 𝑤𝑖 ∈ 𝑠𝑖 ∧ 𝑤𝑖 ∉ 𝑠𝑘 ,∀𝑠𝑘 ∈ 𝐿} represents the

remaining words in 𝑠𝑖 that are not identified in the labeled logs.

Also, 𝑅(𝑠𝑟
𝑖
) represents the sub-sequence of words in 𝑠𝑟

𝑖
with the

current first word removed, Equation (2) recursively enumerates

all words in 𝑠𝑖 and 𝑠 𝑗 . More specifically, as SED is designed to

measure the minimal distance between two logs, we use 𝑚𝑖𝑛(·)

3137

Step 3: LLM-driven Template GenerationStep 2: Adaptive Demonstration Selection

LLM
Cover all keywords in log 𝒔

Step 1: Log Similarity and Annotation

SED-based
Representativeness

𝐷!: {𝑠"}

LLM Prediction
Confidence

Unlabeled
Logs

Labeled Logs Labeled Logs in 𝑫𝒔

Template of 𝒔𝟏Annotation

Minimize𝑠" 𝑠#
Unlabeled Log 𝒔

Predicted
Template 𝒕$

2024-11-15 GET10.0.0.5 /api/login 200

Candidate
Labeled Logs

2024-11-16 GET256.0.1.1 /register 401

[DATE] <GET>[IP] [RESOUCE] [STATUS]

[DATE] <GET>[IP] [RESOUCE] [STATUS]

2024-11-16 GET256.0.1.1 /register 401𝒔:

Figure 2: Framework overview of LLMLog consists of three key components: (1) Log similarity and annotation: LLMLog
employs a semantic-based edit-distance (SED) metric to assess log similarity. It selects a subset of logs for human annotation by
identifying the most representative and challenging ones through a greedy algorithm across multiple rounds. (2) Adaptive
demonstration selection: LLMLog adaptively selects a minimal set of labeled logs that comprehensively cover all relevant
words for each input log. This ensures that the contextual information provided to the LLM is both relevant and concise. (3)
LLM-driven template generation: LLMLog constructs tailored prompts by incorporating the adaptive contexts and unlabeled
logs. These prompts are then input into the LLM, which generates accurate templates for the unlabeled logs.

instead of 𝑎𝑣𝑔(·) or𝑚𝑎𝑥 (·) to compute the minimal operation of

replace/insertion/deletion. Instead of only computing the minimal

operation for the first word in 𝑠𝑖 and 𝑠 𝑗 , the minimum distance for

the two sequences is obtained by recursively iterating 𝑅(𝑠𝑟
𝑖
) and

𝑅(𝑠𝑟
𝑗
) in a dynamic programming manner. The function 𝑐 (𝑤1,𝑤2)

computes the cosine similarity between the two words based on

cosine similarity andw1 is the embedding of word𝑤1 [5]. We define

𝑐 (𝑤1,𝑤2) = 1 if the word similarity between𝑤1 and is greater than

0 otherwise the value 𝑐 (𝑤1,𝑤2) = 0.

Compared to cosine similarity in Equation (1), SED is better

at identifying logs with the same templates by emphasizing key-

words. By definition in Section 2.1, logs under the same template

share keywords. Thus, we can use edit distance to capture the

common parts. The effect of other words can be further reduced

by using an adaptive word set. For example, consider the previ-

ous case where cosine similarity produces a false positive, iden-

tifying com.cse.ust.hk:8080 GET as a match for the unlabeled

log com.cse.ust.hk:8080 POST, while ignoring the true posi-

tive log proxy.cse.cuhk.edu.hk:5070 POST. As the adaptive

word set in the SED metric removes irrelevant IP addresses as

shown in labeled logs, the edit distance between input log and

proxy.cse.cuhk.edu.hk:5070 POST becomes 0, which is smaller

than the distance between it and com.cse.ust.hk:8080 GET. There-
fore, SED is more suitable for measuring the similarity between

logs in the similar templates. In particular, SED can be computed

in 𝑂 (|𝑠𝑖 | ∗ |𝑠 𝑗 |), where |𝑠𝑖 | denotes the number of words in 𝑠𝑖 .

3.3 Multiple Round Log Annotation
In this subsection, we introduce our LLM-driven multi-round an-

notation approach. Specifically, our framework for multi-round

labeled log annotation follows a common setup where the total

number of rounds is 𝑛, and each round 𝑟 is allocated a budget of

𝐵𝑟 . In the 𝑟 -th round, given the unlabeled logs 𝑈 = {𝑠𝑖 } |𝑈 |𝑖=1
, the

objective is to annotate up to 𝐵𝑟 logs, which are then added to the la-

beled log set 𝐿 = {(𝑠 𝑗 , 𝑡 𝑗)} |𝐿 |𝑗=1
. This labeled log set 𝐿 is subsequently

utilized as demonstration candidates for unlabeled logs𝑈 \𝐿 during

LLM inference, improving its ability to generate accurate templates.

To achieve effective annotation, we propose two complemen-

tary metrics to guide the selection of the most representative and

challenging unlabeled logs for annotation in each round. The first

metric is the representative score, which evaluates how represen-

tative an unlabeled log is in relation to other unlabeled logs. The

second metric is LLM confidence, which measures the LLM’s con-

fidence in generating a correct template for each unlabeled log.

By combining these two metrics, our approach ensures that the

most representative and challenging logs are strategically selected

for annotation in each round. The details of these two metrics are

discussed in the following sections.

3.3.1 Representative Score. We firstly present the metric of the

reprensentativeness of labeled logs. As introduced in Section 3.2,

similar words tend to have the same types, and logs with low SED

scores are likely to share similar templates. Therefore, we aim to

annotate logs that share similar words with many other logs, max-

imizing the representativeness of the labeled set. This approach

ensures that the labeled logs capture a diverse and meaningful

range of patterns present in the data. As a result, we can select rep-

resentative logs for labeling because they provide more contextual

information for other logs during in-context learning (ICL). For-

mally, given two logs 𝑠𝑖 and 𝑠 𝑗 , we say that 𝑠 𝑗 is represented by 𝑠𝑖 if

𝑆𝐸𝐷 (𝑠𝑖 , 𝑠 𝑗) ≤ 𝛿∗𝑚𝑖𝑛(𝑙𝑒𝑛(𝑠𝑖), 𝑙𝑒𝑛(𝑠 𝑗)). We define the representative

set for a log 𝑠𝑖 as:

𝐼𝑠𝑖 = {𝑠 𝑗 |𝑆𝐸𝐷 (𝑠𝑖 , 𝑠 𝑗) ≤ 𝛿 ∗𝑚𝑖𝑛(𝑙𝑒𝑛(𝑠𝑖), 𝑙𝑒𝑛(𝑠 𝑗))}, 𝛿 ∈ (0, 1] (4)

The threshold is set to 𝛿 ∗𝑚𝑖𝑛(𝑙𝑒𝑛(𝑠𝑖), 𝑙𝑒𝑛(𝑠 𝑗)), implying that the

represented log 𝑠 𝑗 must have at least one common word to 𝑠𝑖 . In

general, the size of the set 𝐼𝑠𝑖 reflects how representative 𝑠𝑖 is among

3138

all unlabeled logs. 𝛿 is hyper-parameter to control the size of rep-

resentative group. Intuitively, 𝛿 should not be too large as it will

weaken the representativeness of each log, thus provide less infor-

mative contexts for unlabeled logs. We give a parameter sensitivity

experiment in Section 4.4 to investigate the effects of 𝛿 .

3.3.2 LLM Prediction Confidence Score. We introduce the confi-

dence score of each unlabeled log based on the prediction of LLMs.

Intuitively, if the LLM exhibits low confidence in generating an

accurate template for a log, that log is prioritized for annotation.

By focusing on these low-confidence logs, the annotation process

targets the most challenging cases, thereby improving the LLM’s

overall performance on similar logs, which is a common practice

in LLM annotation works [45, 58, 79].

In general, given an unlabeled log 𝑠𝑖 = (𝑤𝑠𝑖
1
, . . . ,𝑤

𝑠𝑖
|𝑠𝑖 |), the gener-

ated log template by a LLM can be denoted as 𝑡𝑖 = {𝑤̂𝑡𝑖
1
, · · · , 𝑤̂𝑡𝑖

|𝑡𝑖 | }.
Firstly, we can use the average predicted word-probability to esti-

mate the confidence by LLM, defined as follows.

𝑃 (𝑠𝑖 , 𝑡𝑖) =
1

|𝑡𝑖 |
∗
|𝑡𝑖 |∑︁
𝑘=1

𝑝 (𝑤𝑡𝑖
𝑘
) (5)

where 𝑝 (𝑤𝑡𝑖
𝑘
) is the predicted probability of LLM for each word in

the predicted template 𝑡𝑖 , i.e,𝑤
𝑡𝑖
𝑘
∈ 𝑡𝑖 . If the average probability is

low, it indicates the LLM’s low confidence in its predictions, sug-

gesting that the log is challenging to interpret and needs to be prior-

itized for annotation. Suppose there is a log com.cse.ust.hk:8080
DELETE where the keyword DELETE does not exist in labeled set.

LLM is less confident for DELETE than that other identified key-

words, like POST. Therefore, the predicted probability of the log

tends to be less than other logs. The average probability metric

selects this log for annotation.

However, a high predicted word-probability 𝑃 (𝑠𝑖 , 𝑡𝑖) cannot guar-
antee that the generated word type𝑤

𝑡𝑖
𝑗
∈ 𝑡𝑖 really corresponds to

𝑤
𝑠𝑖
𝑗
∈ 𝑠𝑖 . The reason is that LLMs generate output words in a regres-

sive manner, which cannot guarantee that the generated template

word 𝑤
𝑡𝑖
𝑗
∈ 𝑡𝑖 corresponds accurately to 𝑤

𝑠𝑖
𝑗
∈ 𝑠𝑖 . Additionally,

current researchers [34, 40, 83] have demonstrated that LLMs suffer

from the hallucination problem, where the model may misunder-

stand the context and generate irrelevant or incorrect information.

For example, the correct template of a log com.cse.ust.hk:8080
POST is [IP] <POST>. However, the LLM might predict the tem-

plate of this log as [IP] [STATUS] with high confidence, as it may

mistakenly interpret [IP] <POST> as [IP] [STATUS] due to the

hallucination problem. Thus, the LLM produces an incorrect result

even exhibiting high confidence in the predicted template.

Therefore, except for average predicted word-probability metric,

inspired by the template generation requirements in Section 2.1, we

can derive a word-consistency metric for template generation task.

Specifically, in addition to the predicted template 𝑡𝑖 of 𝑠𝑖 generated

by the LLM, we enable the LLM to generate the corresponding

words 𝑠𝑖 = (𝑤𝑠𝑖
1
, · · · ,𝑤𝑠𝑖

|𝑠𝑖 |) as well. We then compare the consis-

tency between the words in the input log 𝑠𝑖 = (𝑤𝑠𝑖
1
, · · · ,𝑤𝑠𝑖

|𝑠𝑖 |)
and the generated words 𝑠𝑖 = (𝑤𝑠𝑖

1
, · · · ,𝑤𝑠𝑖

|𝑠𝑖 |), with consistency

indicator I(𝑠𝑖 , 𝑠𝑖) defined as follows.

I(𝑠𝑖 , 𝑠𝑖) =
{
0, 𝑠𝑖 = 𝑠𝑖

1, 𝑠𝑖 ≠ 𝑠𝑖
(6)

The word-consistency indicator function evaluates whether the

words in the log 𝑠𝑖 generated by the LLM are consistent with the

original words in the input log 𝑠𝑖 . Specifically, it ensures that no

new words or non-candidate labels are falsely generated by the

LLM. Additionally, it verifies whether the word count |𝑠𝑖 | matches

the word count |𝑠𝑖 |, ensuring that each word is correctly labeled.

Any templates that fail to meet these two conditions are considered

incorrect and can be used to identify error cases. To assess the LLM’s

performance in the log template generation task, we combine the

average word-probability and word-consistency metrics. Formally,

given a log 𝑠𝑖 and the predicted log template 𝑡𝑖 associated with the

predicted words 𝑠𝑖 , we define the confidence score as 𝐶 (𝑠𝑖 , 𝑡𝑖 , 𝑠𝑖) as
follows. into a weighted sum as follows.

𝐶 (𝑠𝑖 , 𝑡𝑖 , 𝑠𝑖) = 𝑎 ∗ (1 − 𝑃 (𝑠𝑖 , 𝑡𝑖)) + (1 − 𝑎) ∗ I(𝑠𝑖 , 𝑠𝑖) (7)

where 𝑎 is a weight to balance the average probability 𝑃 (𝑠𝑖 , 𝑡𝑖)
and consistency score I(𝑠𝑖 , 𝑠𝑖), where we use 1 − 𝑃 (𝑠𝑖 , 𝑡𝑖) to select

logs with low confidence in the predicted template 𝑡𝑖 . A larger

𝐶 (𝑠𝑖 , 𝑡𝑖 , 𝑠𝑖) indicates that the LLM has low confidence and potential

inconsistency between 𝑠𝑖 and 𝑠𝑖 , suggesting that 𝑠𝑖 is challenging.

3.3.3 LLM-driven Log Annotation Problem. We introduce our LLM-

driven log annotation problem by incorporating the proposed repre-

sentative score in Section 3.3.1 and the LLM prediction confidence

score in Section 3.3.2. The formal definition is given as follows.

Definition 1 (LLM-driven Log Annotation Problem). Given
a budget 𝐵𝑟 and an unlabeled log set 𝑈 at round 𝑟 , where the LLM
predicts a template 𝑡𝑖 along with the corresponding log 𝑠𝑖 for each
unlabeled log 𝑠𝑖 ∈ 𝑈 , the objective is to select a subset of informative
unlabeled logs 𝐿𝑟 ⊆ 𝑈 for annotation, such that |𝐿𝑟 | ≤ 𝐵𝑟 . The
selection aims to maximize the following objective:

𝐼𝑆 (𝐿𝑟) = max

∑︁
𝑠𝑖 ∈𝐿𝑟

(1 − 𝜆)
|⋃ |𝐿𝑟 |

𝑖=0
𝐼𝑠𝑖 |

|𝑈 | + 𝜆𝐶 (𝑠𝑖 , 𝑡𝑖 , 𝑠𝑖) (8)

𝑠 .𝑡 . |𝐿𝑟 | ≤ 𝐵𝑟 , 𝐿𝑟 ⊆ 𝑈 (9)

where 𝜆 is a trade-off parameter, 𝐼𝑠𝑖 is the unlabeled logs represented
by 𝑠𝑖 defined in Equation (4), and 𝐶 (𝑠𝑖 , 𝑡𝑖 , 𝑠𝑖) is the confidence score
defined in Equation (7).

As shown in Equation (8), in each round 𝑟 , the first term,

|⋃|𝐿𝑟 |
𝑖=0

𝐼𝑠𝑖 |
|𝑈 | ,

prioritizes selecting representative logs that are likely to impact a

larger number of unlabeled logs and guide the LLM to process more

logs effectively. The second term, 𝐶 (𝑠𝑖 , 𝑡𝑖 , 𝑠𝑖), ensures the selection
of logs with the lowest LLM prediction confidence. By combin-

ing these two scores, we can effectively select 𝐵𝑟 informative logs,

𝐿𝑟 ⊆ 𝑈 , for annotation.

Theorem 1. The LLM-driven log annotation problem is NP-hard.

Proof Sketch. We prove Theorem 3 by reduction from theMax

Coverage problem [32] to our problem. Due to space limits, we put

full proof in technique report [65] Appendix 6.1. □

3139

3.3.4 Algorithm for Annotation Log Selection. As demonstrated

in Theorem 1, the LLM-driven log annotation problem under the

budget 𝐵𝑟 is NP-hard, indicating that it is unlikely to be solved

optimally in polynomial time. To address this, we propose a greedy

algorithm with a theoretical guarantee. The basic idea is to greedily

select the unlabeled log that can bring the maximum information

gain into the selected annotation set until exceeding the log bud-

get 𝐵𝑟 . Specifically, given the unlabeled set 𝑈 , we first define the

marginal information gain of 𝑠 for the selected set 𝐿𝑟 as follows:

△𝐼𝑆 (𝑠 |𝐿𝑟) = 𝐼𝑆 (𝐿𝑟 ∪ {𝑠}) − 𝐼𝑆 (𝐿𝑟) (10)

The details are provided in Algorithm 1. Specifically, we first ini-

tialize the selected log set 𝐿𝑟 as ∅ (line 1). Then, for each unlabeled

log 𝑠 ∈ 𝑈 , we update 𝑆𝐸𝐷 (𝑠, 𝑠𝑖) among the other unlabeled logs

𝑠𝑖 ∈ 𝑈 \ 𝑠 (line 3). Also, we obtain the representative log set 𝐼𝑠
for each unlabeled log 𝑠 (line 4) and compute the confidence score

𝐶 (𝑠, 𝑡, 𝑠) based on the LLM model 𝑓𝜃 (line 5). Next, we compute the

informative score 𝐼𝑆 (𝐿𝑟 ∪ 𝑠) by incorporating each unlabeled log

𝑠 ∈ 𝑈 into the selected log set 𝐿𝑟 . We then select the log 𝑠∗ with
the maximum △𝐼𝑆 (𝑠 |𝐿𝑟), as defined in Equation (10) (lines 7–10).

Afterward, we add 𝑠∗ to 𝑆𝑟 and remove it from the set of unlabeled

logs 𝑈 (lines 11–12). This selection procedure is repeated until 𝐵𝑟
logs have been selected (lines 6–13).

Time complexity Loop in line 2 enumerates 𝑈 to compute the

representative score and LLM confidence score. For each 𝑠 ∈ 𝑈 , let

𝑠𝑚𝑎𝑥 be the log with maximum number of words, it takes at most

𝑂 (|𝑠𝑚𝑎𝑥 |2) time to compute SEDwhile scores in line 4 and line 5 can

be computed in constant time, where the loop costs 𝑂 (|𝑈 | |𝑠𝑚𝑎𝑥 |2).
As for while loop starting in line 6, it requires to enumerate each

instance in 𝑈 in inner for loop at line 7 to select one log with

maximized △𝐼𝑆 (𝑠 |𝐿𝑟), which roughly takes time complexity𝑂 (𝐵𝑟 ∗
|𝑈 |). Thus, the overall time complexity is 𝑂 ((𝐵𝑟 + |𝑠𝑚𝑎𝑥 |2) ∗ |𝑈 |).

Theorem 2. Algorithm 1 has an approximation ratio of 1 − 1

𝑒 .

Proof Sketch. Let 𝐼𝑆 (𝐿∗𝑟) denotes the optimal value of objec-

tive in Equation (8) within budget 𝐵𝑟 . We first prove the △𝐼𝑆 (𝑠 |𝐷𝑠)
in Equation (10) is monotone increasing and submodular. Then we

prove (1− (1

𝐵𝑟
)𝐵𝑟)𝐼𝑆 (𝐿∗𝑟) ≤ 𝐼𝑆 (𝐿𝑟). Due to space limits, we put the

full proof in technique report [65] Appendix 6.2. □

3.3.5 Algorithm for Multiple Round Log Annotation. In the multi-

round framework, annotation selection can be performed iteratively

using Algorithm 1 under a total budget 𝐵. The overall performance

of LLM will converge once 𝐵 is large enough to cover all the words.

We give a parameter sensitivity experiment in Section 4.4 to inves-

tigate the effect of 𝐵. To execute Algorithm 1, a strategy is required

to determine the budget 𝐵𝑟 for each individual round. However,

since the LLM operates as a black box, it is not possible to predict

the performance improvement of the LLM as the labeled log set is

augmented. Alternatively, we design an adaptive strategy base on

the number of identified words.

𝐵𝑟 = 𝐵𝑟−1 ∗ (1 −
△𝑊𝑟−1
𝑊𝑟−1

) (11)

△𝑊𝑟−1 =𝑊𝑟−1 −𝑊𝑟−2 (12)

Instead of manually setting a hyper-parameter for the total number

of annotation rounds, Equation (11) adaptively computes 𝐵𝑟 based

Algorithm 1: Annotation selection at the 𝑟 -th round

Input: Annotation budget 𝐵𝑟 , unlabelled logs𝑈 , previous

LLM prediction 𝑇𝑈
𝑟−1 and LLM 𝑓𝜃

Output: Selected logs 𝐿𝑟 for annotation

1 𝐿𝑟 ← ∅
2 for 𝑠 ∈ 𝑈 do
3 ∀𝑠𝑖 ∈ 𝑈 \ 𝑠 , 𝑆𝐸𝐷 (𝑠, 𝑠𝑖) ←Equation (2)

4 𝐼𝑠 ← Equation (4)

5 𝐶 (𝑠, 𝑡, 𝑠) ← Equation (7)

6 while |𝐿𝑟 | < 𝐵𝑟 do
7 for 𝑠 ∈ 𝑈 do
8 𝐼𝑆 (𝐿𝑟 ∪ {𝑠}) ←Equation (8)

9 △𝐼𝑆 (𝑠 |𝐿𝑟) = 𝐼𝑆 (𝐿𝑟 ∪ {𝑠}) − 𝐼𝑆 (𝐿𝑟)
10 𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈𝑈 △𝐼𝑆 (𝑠 |𝐿𝑟)
11 𝐿𝑟 = 𝐿𝑟 ∪ 𝑠∗
12 𝑈 = 𝑈 \ 𝑠∗

13 return 𝐿𝑟

on the previous round budget𝐵𝑟−1. Specifically, in the 𝑟−1-th round,
the number of identified words is denoted as𝑊𝑟−1. △𝑊𝑟−1 denotes
the increment of words in the 𝑟 − 1-th round. By this definition, if

the number of words in the 𝑟 − 1-th round increases compared to

its previous round, LLMLog will annotate fewer logs in the current

round. On the contrary, if the number of words in the 𝑟 −1-th round
decreases, LLMLog will annotate more logs in the current round.

Since the adaptive budget strategy requires annotation results from

the previous two rounds, we intuitively set the annotation budget

for the first two rounds.

As illustrated in Algorithm 2, in line 1, we initialize the annotated

labeled log set using the Determinantal Point Process (DPP)[10, 74],

following the approach in Divlog[74] to select the most diverse

logs. After the initialization process, we iteratively perform the

following steps: First, in lines 5 to 7, we execute Algorithm 3 to

retrieve the demonstration set 𝐷𝑠 for each 𝑠 ∈ 𝑈 . Then, we feed 𝐷𝑠

and 𝑠 into 𝑓𝜃 to obtain the predicted template 𝑡 . After obtaining the

prediction result, we determine the annotation budget 𝐵𝑟 for the

next round based on Equation 11 (line 10-11). Once the annotation

budget 𝐵𝑟 is determined, we proceed to a new round of annotation

at line 12. The labeled log set 𝐿 and unlabeled log set𝑈 are updated

after the annotation process (lines 13-14).

3.4 Adaptive Demonstration Selection
After annotating the selected logs 𝐿𝑟 = {(𝑠𝑖 , 𝑡𝑖)}𝐵𝑟

𝑖=1
in the 𝑟 -th

round, we obtain all labeled logs from the first round to the 𝑟 -th

round as 𝐿 = ∪𝑟
𝑖=1

𝐿𝑖 . For each unlabeled log 𝑠 ∈ 𝑈 , we select a set

of demonstrations 𝐷𝑠 ⊆ 𝐿 to provide contextual information for 𝑠 .

These demonstrations 𝐷𝑠 will help the LLM understand the words

in each unlabeled log 𝑠 and generate the correct log template 𝑡 . To

improve efficiency and prevent irrelevant information, it is impor-

tant to limit the size of the demonstration set 𝐷𝑠 . As mentioned in

Section 2.2, existing works [45, 58, 74, 79] commonly define a fixed

number 𝑘 and select 𝑘 demonstration logs for each 𝑠 . However, a

fixed number 𝑘 is not ideal for every 𝑠 , as the number of words and

the difficulty of each unlabeled log can vary significantly.

3140

Algorithm 2:Multiple Round Log Annotation

Input: Annotation budget 𝐵, LLM 𝑓𝜃 , unlabelled logs𝑈 ,

total rounds 𝑛

Output: Annotated logs 𝐿

1 Initialize 𝐿1, K ,V by DPP

2 𝑟 ← 2

3 while 𝐵 ≥ 0 do
4 𝑇𝑈

𝑟 ← ∅
5 for 𝑠 ∈ 𝑈 do
6 𝐷𝑠 ← 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐷𝑒𝑚𝑜𝑛𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑠, 𝐿)
7 𝑡 ← 𝑓𝜃 (𝑠, 𝐷𝑠)
8 𝑇𝑈

𝑟 ← 𝑇𝑈
𝑟 ∪ 𝑡𝑠

9 𝑟 ← 𝑟 + 1
10 𝐵𝑟 ← Equation (11)

11 𝐵𝑟 =𝑚𝑖𝑛(𝐵𝑟 , 𝐵), 𝐵 = 𝐵 − 𝐵𝑟
12 𝐿𝑟 ← 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐵𝑟 ,𝑈 ,𝑇𝑈

𝑟 , 𝑓𝜃)
13 𝐿 ← 𝐿 ∪ 𝐿𝑟
14 𝑈 ← 𝑈 \ 𝐿𝑟
15 return 𝐿

In this paper, we propose an adaptive demonstration selection

approach that does not rely on a fixed number 𝑘 . Instead, the size

of the demonstration set is dynamically adjusted based on the

characteristics of each unlabeled log 𝑠 . Formally, we define the

adaptive log demonstration selection problem as follows.

Problem 1 (Adaptive Log Demonstration Selection Prob-

lem). Given an input log 𝑠 = (𝑤𝑠
1
, · · · ,𝑤𝑠

|𝑠 |) and the annotated log

set 𝐿 = {(𝑠𝑖 , 𝑡𝑖)} |𝐿 |𝑖=1
, the goal is to select a demonstration set 𝐷𝑠 ⊆ 𝐿

from the annotated log set 𝐿 by minimizing the following objective.

min |𝐷𝑠 | (13)

𝑠 .𝑡 .∀𝑤𝑠
𝑖 ∈ 𝑠, ∃ 𝑤

𝑠 𝑗

𝑘
∈ 𝑠 𝑗 ∧ 𝑠 𝑗 ∈ 𝐷𝑠 ,

such that 𝑐𝑜𝑠𝑖𝑛𝑒 (w𝑠
𝑖 ,w

𝑠 𝑗

𝑘
) ≥ 0 (14)

wherew𝑠
𝑖
∈ R𝑑𝑤 is the word embedding of the word𝑤𝑠

𝑖
and 𝑐𝑜𝑠𝑖𝑛𝑒 (·)

is the cosine similarity measurement.

Theorem 3. The adaptive log demonstration selection is NP-hard.

Proof Sketch. We prove Theorem 3 by reducing our problem

to the Set-cover problem [13]. Due to space limits, we provide the

full proof in the technical report [65] Appendix 6.3. □

3.4.1 Adaptive Context Selection. As demonstrated in Theorem 3,

the adaptive log demonstration selection problem is NP-hard. To
address this, we propose a greedy algorithm with a theoretical

guarantee. As shown in Algorithm 3, the Adaptive Demonstration
Selection Algorithm aims to select a subset of labeled logs 𝐷𝑠 ⊆ 𝐿

from a pool of labeled logs 𝐿 that are most relevant to a given

unlabeled log 𝑠 . The algorithm begins by initializing an empty set

of selected logs 𝐷𝑠 and an empty set of union words𝑈𝑊 (𝐷𝑠) (line
1-2). It iteratively selects the most relevant labeled log from 𝐿 to

include in 𝐷𝑠 until no additional contribution from labeled logs 𝐿.

Algorithm 3: Adaptive Demonstration Selection

Input: Unlabeled log 𝑠 and all labeled logs 𝐿.

Output: Selected demonstrated logs 𝐷𝑠 ⊆ 𝐿 for 𝑠

1 𝐷𝑠 = ∅
2 𝑈𝑊 (𝐷𝑠) = ∅
3 while True do
4 for 𝑠𝑖 ∈ 𝐿 do
5 𝑈𝑊 (𝑠𝑖 |𝑠) = ∅
6 for𝑤𝑠

𝑗
∈ 𝑠 do

7 𝑤
𝑠𝑖∗
𝑘

= argmax
𝑤

𝑠𝑖
𝑘
∈𝑠𝑖 𝑐𝑜𝑠𝑖𝑛𝑒 (w

𝑠𝑖
𝑘
,w𝑠

𝑗
)

8 if 𝑐𝑜𝑠𝑖𝑛𝑒 (w𝑠𝑖∗
𝑘

,w𝑠
𝑗
) ≥ 0 then

9 𝑈𝑊 (𝑠𝑖 |𝑠) = 𝑈𝑊 (𝑠𝑖 |𝑠) ∪ {𝑤𝑠𝑖∗
𝑘
}

10 𝑈𝑊 (𝐷𝑠 ∪ 𝑠𝑖) = 𝑈𝑊 (𝐷𝑠) ∪𝑈𝑊 (𝑠𝑖 |𝑠)
11 △𝑈𝑊 (𝑠𝑖 |𝐷𝑠) = 𝑈𝑊 (𝐷𝑠 ∪ 𝑠𝑖) −𝑈𝑊 (𝐷𝑠)
12 if |△𝑈𝑊 (𝑠𝑖 |𝐷𝑠) |=0 then
13 break

14 if ∀𝑠𝑖 ∈ 𝐿, |△𝑈𝑊 (𝑠𝑖 |𝐷𝑠) |=0 then
15 break

16 𝑠∗
𝑖
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑖 ∈𝐿△𝑈𝑊 (𝑠𝑖 |𝐷𝑠)

17 𝐷𝑠 ← 𝐷𝑠 ∪ 𝑠∗𝑖
18 𝐿 ← 𝐿 \ 𝑠∗

𝑖

19 return 𝐷𝑠

Specifically, at each iteration, the algorithm evaluates every la-

beled log 𝑠𝑖 ∈ 𝐿. For each word𝑤𝑠
𝑗
in the unlabeled log 𝑠 , it identifies

the most similar token𝑤
𝑠𝑖∗
𝑘

in the labeled log 𝑠𝑖 ∈ 𝐿 using cosine

similarity (line 6-7). Words are considered similar if their cosine

similarity score is greater than or equal to 0 (line 8). If the word

in 𝑠𝑖 meets this threshold, it is added to the set of matched word

set𝑈𝑊 (𝑠𝑖 |𝑠) (line 9). After processing all words in 𝑠 , the algorithm
merges current similar words𝑈𝑊 (𝐷𝑠) in selected logs 𝐷𝑠 with the

words in𝑈𝑊 (𝑠𝑖 |𝑠) (line 10). The contribution of 𝑠𝑖 to 𝑠 regarding

the selected log 𝐷𝑠 as △𝑈𝑊 (𝑠𝑖 |𝐷𝑠) = 𝑈𝑊 (𝐷𝑠 ∪𝑠𝑖) −𝑈𝑊 (𝐷𝑠) (line
11). If the larges contribution among logs 𝑠𝑖 ∈ 𝐿 (i.e., |△𝑈𝑊 (𝑠𝑖 |𝐷𝑠) |
is zero), the algorithm stops processing that log, as it adds no new

information (line 12-13). If all remaining labeled logs 𝑠𝑖 ∈ 𝐿 con-

tributes no information to 𝑠 , the algorithm terminates (line 14-15).

Otherwise, we add 𝑠∗
𝑖
to the selected set 𝐷𝑠 , and remove it from the

pool of labeled logs 𝐿 (line 16-18).

Theorem 4. Algorithm 3 has an approximation ratio of 1 + 𝑙𝑛(𝑛).

Proof Sketch. We prove that△𝑈𝑊 (𝑠𝑖 |𝐷𝑠) is monotone increas-

ing and submodular. Then, according to [21],the approximation

ratio is 1+ ln(𝑛). We provide the full proof in [65] Appendix 6.4. □

4 EXPERIMENTS
4.1 Experiment Setting
4.1.1 Datasets. We use the widely-used log template benchmark

over 16 domains provided by Log-PAI [87] with their statistics

summarized in Table 2. In each domain, there are 2,000 logs labeled

with ground-truth templates and a unique ID [74, 87].

3141

4.1.2 Metrics. We use three metrics to evaluate the effectiveness

of template generation from logs, message level accuracy (MLA),

precision template accuracy (PTA) and recall template accuracy

(RTA). MLA is to measure the effectiveness of template generation

in log level while PTA and RTA evaluate it at template levels.

• Message Level Accuracy (MLA). MLA is defined as the ratio of

logs whose templates are correctly generated to the total number

of logs [31]. Formally, given the unlabeled logs 𝑆 ,MLA is defined

as

∑
𝑠𝑖 ∈𝑆 I(𝑡𝑖=𝑡𝑖)
|𝑆 | , where I(𝑡𝑖 = 𝑡𝑖) = 1 if the predicted template 𝑡𝑖

of each unlabeled log 𝑠𝑖 ∈ 𝑆 is the same as its ground truth 𝑡𝑖 .

• Precision Template Accuracy (PTA). PTA is the ratio of cor-
rectly generated templates to all generated templates, where cor-
rectly generated refers to the template whose corresponding logs

are all correctly predicted. Formally, given the generated tem-

plates 𝑇 , PTA is

∑
𝑡 ∈𝑇 𝑓

(∧
𝑠𝑖 ∈logs(𝑡) I(𝑡𝑖=𝑡)

)
|𝑇 | , where 𝑓 (·) = 1 when

the predicted template 𝑡𝑖 of each log 𝑠𝑖 ∈ logs(𝑡) is correctly
predicted as 𝑡 .

• Recall Template Accuracy (RTA). RTA is the ratio of ground

truth templates for which all corresponding logs are correctly

predicted to the total number of ground truth templates. Formally,

given ground truth templates𝑇 ,RTA is

∑
𝑡 ∈𝑇 𝑓

(∧
𝑠𝑖 ∈logs(𝑡) I(𝑡𝑖=𝑡)

)
|𝑇 | ,

where 𝑓 (·) = 1 when the predicted template 𝑡𝑖 of each log 𝑠𝑖 ∈
logs(𝑡) is correctly predicted as 𝑡 .

Accuracy in template level is tighter than MLA as they require

all corresponding logs are correctly generated, which are suitable

to evaluate the effectiveness for large-scaled system logs [74].

4.1.3 Baselines. We select Drain [23] and LogPPT [33] as represen-

tative for heuristic-based methods and NN-based methods respec-

tively. We also include the LLM-based method, Divlog [74], which

is the SOTA approach on template generation from log. Besides

existing template generation methods, we adopt existing multiple-

round annotation algorithm, AdaICL [45] to Divlog, forming a new

baseline namely AdaICL. For apple-to-apple comparison, we select

GPT-4o [51] as the base LLM for all LLM-based baselines and our

proposed framework.

4.1.4 Implementation and Hyperparameter Setting. In our exper-

iments, our proposed LLMLog and all baselines are implemented

in Python 3.9. For LLMs, we use GPT-4o [51] and Qwen2.5-7B-

Instruct [64] as our LLM backbones to conduct experiments due

to their superior capabilities. Specifically, for our proposed model

LLMLog and all ICL-based baselines, including Divlog [74] and

AdaICL [45], we set the total budget 𝐵 = 50 on five datasets, in-

cluding HDFS, Proxifier, Apache, HPC and Windows, since they

have fewer templates and words as shown in Table 2. For other

datasets with more templates and words, we set the total budget

𝐵 = 200 instead. Specifically, for single-round annotation method

Divlog, we perform DPP [10] algorithm to select 50 or 200 labeled

logs following [74]. For multiple-round with fixed budget method

AdaICL, the budget per round is 10 for 𝐵 = 50 and 40 for 𝐵 = 200, re-

spectively [45]. In terms of LLMLog, we need manually set startup

two rounds for adaptive budget which is 𝐵0 = 10, 𝐵1 = 10 for

𝐵 = 50 and 𝐵0 = 50, 𝐵1 = 25 for 𝐵 = 200 respectively. Also, for base-

lines [23, 33, 74], we maintain the default settings following [74]

Table 2: Statistics for sixteen log datasets.

Dataset Templates# Logs# Words#
Android 165 437 857

BGL 120 1367 2008

Hadoop 114 734 979

HDFS 14 2000 2960

Linux 118 290 667

Mac 341 1185 3136

Thunderbird 149 339 676

Zookeeper 50 693 959

HealthApp 75 1179 1682

Spark 36 1699 1360

Windows 50 963 1185

OpenSSH 27 729 692

OpenStack 43 1548 1484

Proxifier 8 1056 2284

HPC 46 381 485

Apache 5 886 907

with labeled demonstration log number 𝑘𝑐 = 5. For our LLMLog,

we set 𝜆 = 0.5 in Equation (8) and 𝛿 = 0.5 for all dataset.

All experiments are conducted on CentOS 7 with a 20-core In-

tel(R) Xeon(R) Silver4210 CPU@2.20GHz, 8 NVIDIA GeForce RTX

2080 Ti GPUs (11G), and 92G of RAM.

4.2 Main Results
For main experiments, we evaluate the effectiveness by reporting

MLA, PTA and RTA over 16 datasets on GPT-4o in Table 3. In terms

of efficiency, we report the average template generation time for

unlabeled logs and API cost for LLM-based approaches. Under the

same dataset, the bold number indicates the best performance.

4.2.1 Effectiveness Evaluation. We compare our LLMLogwith state-

of-the-art baselines using three metrics: MLA, PTA, and RTA on

sixteen datasets, as shown in Table 3. Regarding MLA, LLMLog

and AdaICL outperform DivLog by leveraging the benefits of multi-

round annotation, enabling more effective and accurate log pro-

cessing. Our LLMLog outperforms AdaICL in terms of MLA on

all datasets. The reason is that, for HDFS and Proxifier with fewer

templates, SED in LLMLog outperforms traditional cosine similar-

ity in AdaICL by generating a higher-quality labeled log set for

annotation. These annotated logs serve as effective demonstrations

for a large number of unlabeled logs. Additionally, the adaptive

demonstration strategy in LLMLog ensures that each word in the

unlabeled logs is accurately processed, achieving higher accuracy

even with a limited budget. For datasets with diverse templates and

words, such as Mac, LLMLog reduces redundant contexts, provid-

ing clear and sufficient context for each unlabeled log compared to

fixed top-𝑘𝑐 demonstrations.

In terms of template-level accuracy, the PTA and RTA metrics

tend to be lower than MLA since they require all logs belonging to

a template to be correctly predicted. Specifically, if more words are

mistakenly generated in predicted templates, PTAwill drop because

the total number of predicted templates increases. Therefore, the

lower PTA of DivLog and AdaICL compared to our proposed LLM-

Log reflects the false generation of word types, indicating that they

3142

Table 3: Effectiveness (accuracy) over 16 log datasets on GPT-4o. The bold number indicates the best performance.

Dataset Drain LogPPT DivLog AdaICL LLMLog (Ours)
MLA PTA RTA MLA PTA RTA MLA PTA RTA MLA PTA RTA MLA PTA RTA

Android 73.0 56.6 62.0 76.7 58.4 68.4 63.8 58.9 68.4 97.8 89.4 92.1 99.6 94.6 96.4
BGL 44.4 33.9 30.8 97.0 68.6 78.3 94.0 68.4 77.5 99.4 93.5 95.8 99.9 95.1 98.3

Hadoop 43.9 36.8 34.2 89.5 54.0 58.8 89.0 69.3 85.1 99.4 92.2 97.4 100.0 100.0 100.0
HDFS 95.9 81.3 92.9 90.2 85.7 85.7 100.0 100.0 100.0 99.9 86.7 92.9 100.0 100.0 100.0
Linux 19.4 43.4 42.2 94.9 47.5 49.1 97.3 92.4 93.2 99.7 96.6 96.6 99.8 96.6 98.3
Mac 27.2 21.2 24.9 67.3 43.6 53.4 62.4 48.3 64.5 93.2 74.4 82.1 96.0 77.1 85.9

Thunderbird 19.1 29.9 36.9 92.6 50.6 59.1 88.9 86.8 92.6 98.9 83.3 90.6 99.9 93.3 98.7
Zookeeper 49.8 39.1 36.0 99.0 74.1 86.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
HealthApp 24.1 8.3 34.7 78.9 85.3 85.3 99.9 98.7 98.7 99.9 98.7 98.7 100.0 100.0 100.0

Spark 37.6 50.0 41.7 99.1 60.0 58.3 82.1 48.3 77.8 99.9 97.2 97.2 100.0 100.0 100.0
Windows 69.6 46.3 50.0 98.3 55.4 72.0 97.6 55.9 76.0 99.9 92.3 96.0 100.0 100.0 100.0
OpenSSH 53.4 52.0 50.0 97.6 48.9 84.6 99.9 96.3 96.3 99.9 96.3 96.3 100.0 100.0 100.0
OpenStack 18.0 5.5 39.5 90.7 84.4 88.4 96.9 74.0 88.4 100.0 100.0 100.0 100.0 100.0 100.0
Proxifier 52.7 26.9 87.5 100.0 100.0 100.0 96.5 14.3 75.0 99.9 77.8 87.5 100.0 100.0 100.0
HPC 67.2 38.8 41.3 94.7 73.6 84.8 97.5 42.6 87.0 98.6 62.5 97.8 100.0 100.0 100.0

Apache 100.0 100.0 100.0 99.4 83.3 83.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

provide low-quality contexts to unlabeled logs. LLMLog ensures

higher-quality contexts through both the SED-based representa-

tive score and the adaptive demonstration strategy. Thus, LLMLog

performs better than the baselines on the PTA metric. As for RTA,

it evaluates how many templates in a dataset are correctly pre-

dicted. Though Drain and LogPPT achieve 100 percent accuracy on

Apache and Proxifier, respectively, their low RTA on other datasets

illustrates their low generalization abilities. In summary, LLMLog

outperforms AdaICL on PTA and RTA, proving its suitability for

large-scale log datasets.

4.2.2 Efficiency Evaluation. We compare the template generation

efficiency for LLMLog with baseline LLM-based methods. Template

generation efficiency is measured by average LLM prediction time

for single log on each dataset, summarized in Table 4. The average

LLM prediction time for LLMLog is less than 0.8 seconds on all

16 datasets while the time for DivLog and AdaICL is larger than 1

second. As all three methods are measured under the same API, the

less time consumption reflects the fewer number of input tokens.

The adaptive demonstration selection minimizes the number of

example logs based on word coverage, which reduces the number

of input tokens in contextual demonstration compared to fixed top-

𝑘𝑐 logs in DivLog and AdaICL. On datasets with fewer words and

templates like Apache, Windows and HPC, adaptive demonstration

can cover all the words within 1 or 2 log. Compared to 𝑘𝑐 = 5

setting in DivLog and AdaICL, the generation time of our proposed

LLMLog is significantly decreased. On datasets with more words

and templates like mac, it requires more example logs to cover

the words. The difference of generation time between AdaICL and

LLMLog is less than that on simpler datasets. API Cost experiments

also prove the claim.

4.2.3 API Cost Evaluation. We compare the total API monetary

costs for LLMLog and the state-of-the-art baselines, DivLog [74]

and AdaICL [45], as summarized in Table 4. The cost of GPT-4o is

approximately $3.6 USD per one million tokens. In Table 4, the cost

Table 4: Template generation time (time with seconds) and
API Cost (in USD) across 16 log datasets. The bold number
indicates the most efficient and lower API cost results.

Generation Time (s) API Cost (USD)
Dataset DivLog AdaICL LLMLog DivLog AdaICL LLMLog
Android 1.1 1.1 0.7 3.5 3.5 2.1
BGL 1.4 1.1 0.8 3.8 3.7 2.8

Hadoop 1.1 1.0 0.6 3.7 3.7 2.0
HDFS 1.0 1.0 0.7 7.6 7.6 5.1
Linux 1.2 1.1 0.7 3.1 3.1 2.0
Mac 1.1 1.1 0.8 5.5 5.4 5.0

Thunderbird 1.1 1.0 0.6 3.3 3.2 2.7
Zookeeper 1.1 1.1 0.3 3.1 3.1 2.1
HealthApp 1.8 1.4 0.8 4.4 3.7 2.3

Spark 2.1 1.5 1.4 6.5 5.7 3.3
Windows 2.2 0.7 0.7 5.3 5.3 2.6
OpenSSH 1.1 1.1 0.7 7.8 7.8 2.5
OpenStack 1.8 1.9 1.0 9.8 10.0 4.2
Proxifier 0.9 0.9 0.8 5.7 5.7 3.5
HPC 1.6 0.5 0.3 2.6 1.8 1.3

Apache 1.8 0.5 0.4 2.7 2.4 1.6

of our LLMLog ranges from $1 to $5 USD per dataset, where the

cost of processing each log is only $0.0025-$0.005 USD. Therefore,

the cost of LLMLog is both cheap and practical. Moreover, LLMLog

incurs less API cost than the state-of-the-art baselines, as it adap-

tively selects the number of labeled logs to use as demonstrations

for each unlabeled log, whereas AdaICL relies on a fixed number of

demonstrations. By eliminating unnecessary log demonstrations,

LLMLog significantly reduces the input token length for LLMs,

further lowering the computational cost. LLMLog can effectively

reduce costs for simple datasets like HDFS and Proxifier since the

words can be adequately covered by one or two logs. As for com-

plex datasets like Mac, the amount of cost savings is smaller while

still better than the baselines, as each unlabeled log requires more

example logs to cover the words.

3143

Table 5: Ablation study on GPT-4o.

Dataset

Model Mac BGL Hadoop Proxifier

MLA PTA RTA MLA PTA RTA MLA PTA RTA MLA PTA RTA

LLMLog\SED 93.7(−3.3) 65.6(−15.7) 77.1(−9.1) 87.2(−12.7) 35.3(−61.4) 52.5(−45.8) 95.5(−4.5) 85.4(−14.6) 92.1(−7.9) 75.7(−24.3) 37.5(−62.5) 37.5(−62.5)

LLMLog\RS 93.9(−3.1) 66.5(−14.8) 77.7(−8.5) 94.5(−5.4) 83.0(−13.7) 89.2(−9.1) 94.1(−5.9) 82.9(−17.1) 97.4(−2.6) 99.4(−0.6) 37.5(−62.5) 37.5(−62.5)

LLMLog\PC 96.0(−1.0) 77.10(−4.2) 85.9(−0.3) 99.0(−0.9) 93.5(−3.2) 95.8(−2.5) 99.5(−0.5) 98.3(−1.7) 99.1(−0.9) 100.0(−0.0) 100.0(−0.0) 100.0(−0.0)

LLMLog\AD 93.1(−3.9) 67.6(−13.7) 76.3(−9.9) 97.3(−2.6) 93.5(−3.2) 96.7(−1.6) 99.5(−0.5) 92.6(−7.4) 98.2(−1.8) 100.0(−0.0) 100.0(−0.0) 100.0(−0.0)

LLMLog\AB 96.9(−0.1) 80.2(−1.1) 86.2(−0.0) 97.6(−3.2) 90.6(−6.1) 96.7(−1.6) 100.0(−0.0) 100.0(−0.0) 100.0(−0.0) 100.0(−0.0) 100.0(−0.0) 100.0(−0.0)

LLMLog 97.0 81.3 86.2 99.9 96.7 98.3 100.0 100.0 100.0 100.0 100.0 100.0

4.3 Ablation Study
This subsection analyzes the impact of components in LLMLog. For

the log annotation, it introduces the SED metric to calculate the

representative score of logs. Logs are selected for annotation by opti-

mizing a weighted combination of the LLM’s prediction confidence

and the representative score. In the adaptive demonstration selec-

tion component, Algorithm 3 is proposed to adaptively determine

suitable contexts for each unlabeled log. Additionally, an adaptive

budget strategy (Equation (11)) dynamically allocates the anno-

tation budget for each round. To verify these designs, we denote

LLMLog with SED replaced by cosine similarity as LLMLog\SED,
without the representative score as LLMLog\RS, without LLM pre-

diction confidence as LLMLog\PC, with Algorithm 3 replaced by

a fixed top-𝑘𝑐 strategy as LLMLog\AD, and with Equation (11)

replaced by a fixed budget for each round as LLMLog\AB. For
LLMLog\AB, we set the budget for each round to 10 for Proxifier

and 40 for Mac, BGL, and Hadoop. We conduct experiments on 4

datasets with different template distributions, including Mac, BGL,

Hadoop, and Proxifier.

As shown in Table 5, LLMLog\SED suffers from a significant

accuracy drop because SED eliminates redundant words in logs,

treating logs with the same template as similar. Regarding the rep-

resentative score, the performance decrease of LLMLog\RS shows

that logs similar to the majority provide useful contexts for gener-

ating templates. On the other hand, LLMLog\PC performs slightly

better by selecting challenging logs for the LLM, but these logs

are less representative, making their overall impact smaller. Re-

garding the adaptive demonstration strategy, LLMLog\AD shows

reduced accuracy as template complexity increases. While a fixed

top-𝑘𝑐 strategy works well for simpler datasets, it struggles on

complex datasets like Mac, where insufficient context leads to ir-

regular processing and more generated templates. This results in a

larger accuracy drop compared to simpler datasets like PTA. For

the adaptive budget strategy, LLMLog\AB shows that both fixed

and adaptive strategies perform well on simpler datasets. However,

in complex datasets with more templates and words, the adaptive

strategy limits annotations per round, selecting labeled logs that

are more diverse in word count and template variety.

4.4 Parameter Sensitivity
We evaluate the effectiveness of different hyper-parameter settings

of LLMLog over two datasets, Hadoop and Proxifier.

4.4.1 Annotation Budget 𝐵 in Algorithm 3 . The annotation bud-

get 𝐵 represents the total budget for human annotation. We vary

𝐵 within {50, 100, 150, 200, 250}. On the Hadoop dataset in Fig-

ure 3 (a), the three accuracy metrics increase first and then stabilize

at 𝐵 = 200, indicating 𝐵 = 200 is sufficient to cover most templates

on Hadoop. Besides, the increment of PTA is larger than other two

metrics due to the LLM falsely generating incorrect word types un-

der insufficient 𝐵. As Proxifier is a much simpler dataset containing

only 4 templates in Figure 3 (b), all three metrics stabilize at 𝐵 = 50

which can provide sufficient contextual information for each word

in unlabled logs. To sum up, the performance stabilizes after 𝐵 is

large enough, rather than peaking, making tuning easier.

4.4.2 The weight 𝜆 in Equation (8). 𝜆 is a trade-off parameter be-

tween the representative score and the LLM prediction confidence.

We vary 𝜆 ∈ {0, 0.25, 0.5, 0.75, 1}. As demonstrated in Figure 3(c),

MLA, PTA, and RTA initially increase and subsequently decrease

over Hadoop, peaking within 0.25 to 0.75. Small value of 𝜆 under-

values the impact of LLM confidence, resulting in the selection of

annotation logs with redundant information. In contrast, large 𝜆

prioritizes logs with low template generation confidence. In Fig-

ure 3 (d), most logs are easily identified using representative contex-

tual information, achieving 100% accuracy even when 𝜆 = 0 over

Proxifier. However, relying solely on LLM prediction confidence

(𝜆 = 1) causes LLMLog to focus only on low-confidence logs which

is not appropriate even over simple datasets.

4.4.3 The threshold 𝛿 in Equation (4). 𝛿 controls the threshold of

representative score. We vary it within {0, 0.25, 0.5, 1.0}. As shown
in Figure 3 (e), MLA, PTA, and RTA exhibit a trend of rising and then

falling, roughly peaking at 𝛿 = 0.5. A low threshold underestimates

the informativeness of logs. The annotation focuses excessively on

LLM confidence. On the contrary, a high threshold causes only a

subset of unlabeled logs obtaining enough context.

4.4.4 Cosine Similarity Threshold in Equation (3) and (13). Cosine
similarity 𝑐𝑜𝑠𝑖𝑛𝑒 (·) measures word similarity. Two words are con-

sidered similar if their embedding cosine similarity is greater than

the threshold 0. We vary it within {0, 0.25, 0.5, 0.75, 1}. As shown
in Figure 4 (a) and (b), the effect of varying threshold of cosine sim-

ilarity has converged over two datasets. This implies that LLMLog

is robust to different settings of word similarity under a certain

budget. Since the total number of distinct words is relatively small

in system events, it is sufficient to distinguish words by 0.

3144

50 100 150 200 25060

70

80

90

100
MLA PTA RTA

(a) 𝐵 over Hadoop

50 100 150 200 25060

70

80

90

100
MLA PTA RTA

(b) 𝐵 over Proxifier

0 0.25 0.5 0.75 1.060

70

80

90

100
MLA PTA RTA

(c) 𝜆 over Hadoop

0 0.25 0.5 0.75 1.060

70

80

90

100
MLA PTA RTA

(d) 𝜆 over Proxifier

0 0.25 0.5 160

70

80

90

100
MLA PTA RTA

(e) 𝛿 over Hadoop

Figure 3: Parameter sensitivity evaluations

0 0.25 0.5 0.75 1.060

70

80

90

100
MLA PTA RTA

(a) Word similarity over Hadoop

0 0.25 0.5 0.75 1.060

70

80

90

100
MLA PTA RTA

(b) Word similarity over Proxifier

Figure 4: Parameter sensitivity for word similarity

4.5 Case Study
Hallucination is that LLM generates outputs without following the

prompts, which is a common problem in LLM-related tasks [28, 37,

45, 74]. There are mainly two types of error caused by hallucina-

tion. The first is generation error that LLM falsely generates or

deletes words in input logs. For instance, input log is rts: kernel
terminated for reason 1004with the ground truth rts: kernel
terminated for reason [CODE]. However, LLMmay predict rts:
kernel terminated where for reason 1004 are falsely deleted.

The second case is word error that even the type of a target word

is included in prompt, LLM still makes wrong predictions. For ex-

ample, input log is rts: kernel terminated for reason 1004
and the prompt has instructed to replace 1004 to word type [CODE],
LLM still mistakenly remains 1004 in predicted template.

To investigate how confidence score in Equation (7) help alleviate

the hallucination issue, we vary two hyperparameters related to the

confidence score. One is 𝜆 in Equation (8), the trade-off parameter

for prediction confidence. The other is 𝑎 in Equation (7), the trade-

off parameter for the effect of token probability in the prediction

confidence score. First, we vary 𝜆 ∈ {0, 0.25, 0.5}. As shown in

Figure 5 (a), as 𝜆 increases, both generation error and word error are

reduced, implying that the confidence score can effectively select

several "hard" logs, allowing human annotation to replace the LLM’s

hallucinated output. On the other hand, we vary 𝑎 ∈ {0.2, 0.5, 0.8}.
As shown in Figure 5 (b), as 𝑎 increases, logs with low prediction

probability are included in the labeled log set. Thus, the labeled

log set becomes effective at preventing word errors associated with

low prediction probabilities. However, generation errors increase

because several word-inconsistent error logs cannot be selected

due to the decreasing weight of word consistency.

Generation Word0
2
4
6
8

10
12
14

λ=0 λ=0.25 λ=0.5

(a) Error cases with 𝜆

Generation Word0
2
4
6
8

10
12

a=0.2 a=0.5 a=0.8

(b) Error cases with 𝑎

Figure 5: Confidence score on hallucination errors

5 CONCLUSION
In this paper, we present LLMLog, an LLM-driven multi-round

annotation framework with adaptive in-context learning for log

template generation. Firstly, we propose a distance metric to mea-

sure the log similarity, along with a confidence metric to assess the

difficulty faced by LLM. Based on the two metrics, we identify the

most valuable unlabeled logs for human annotation in each round.

Second, we introduce an adaptive approach for selecting demon-

strative contexts of each log to generate more accurate templates

by LLM. Experimental results demonstrate that LLMLog achieves

superior performance compared to the state-of-the-art baselines.

ACKNOWLEDGMENTS
Lei Chen’s work is partially supported by National Key Research

and Development Program of China Grant No. 2023YFF0725100,

National Science Foundation of China (NSFC) under Grant No.

U22B2060, Guangdong-Hong Kong Technology Innovation Joint

Funding Scheme Project No. 2024A0505040012, the Hong Kong

RGC GRF Project 16213620, RIF Project R6020-19, AOE Project

AoE/E-603/18, Theme-based project TRS T41-603/20R, CRF Project

C2004-21G, Key Areas Special Project of Guangdong Provincial

Universities 2024ZDZX1006, Guangdong Province Science and

Technology Plan Project 2023A0505030011, Guangzhou munici-

pality big data intelligence key lab, 2023A03J0012, Hong Kong ITC

ITF grants MHX/078/21 and PRP/004/22FX, Zhujiang scholar pro-

gram 2021JC02X170, Microsoft Research Asia Collaborative Re-

search Grant, HKUST-Webank joint research lab and 2023 HKUST

Shenzhen-Hong Kong Collaborative Innovation Institute Green Sus-

tainability Special Fund, from Shui On Xintiandi and the InnoSpace

GBA.

3145

REFERENCES
[1] Anunay Amar and Peter C. Rigby. 2019. Mining historical test logs to predict

bugs and localize faults in the test logs. In Proceedings of the 41st International
Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE
Press, 140–151. https://doi.org/10.1109/ICSE.2019.00031

[2] Apache Software Foundation. [n.d.]. Hadoop. https://hadoop.apache.org

[3] Anna Arpaci-Dusseau, Zixiang Zhou, and Xuhao Chen. 2025. Accurate and Fast

Approximate Graph Pattern Mining at Scale. Proc. VLDB Endow. 18, 2 (Feb. 2025),
93–107. https://doi.org/10.14778/3705829.3705831

[4] Tanveer I. Bagban and Prakash J. Kulkarni. 2020. Template Based Clustering

of Web Documents Using Locality Sensitive Hashing (LSH). In Computing in
Engineering and Technology, Brijesh Iyer, P. S. Deshpande, S. C. Sharma, and

Ulhas Shiurkar (Eds.). Springer Singapore, Singapore, 567–584.

[5] Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau,

Nicolas Chapados, and Siva Reddy. 2024. LLM2Vec: Large Language Models

Are Secretly Powerful Text Encoders. In First Conference on Language Modeling.
https://openreview.net/forum?id=IW1PR7vEBf

[6] Satadisha Saha Bhowmick, Eduard C. Dragut, and Weiyi Meng. 2023. Globally

Aware Contextual Embeddings for Named Entity Recognition in Social Media

Streams. In 2023 IEEE 39th International Conference on Data Engineering (ICDE).
1544–1557. https://doi.org/10.1109/ICDE55515.2023.00122

[7] Angela Bonifati, Wim Martens, and Thomas Timm. 2017. An analytical study

of large SPARQL query logs. Proc. VLDB Endow. 11, 2 (Oct. 2017), 149–161.

https://doi.org/10.14778/3149193.3149196

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,

Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.

In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-

zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,

Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/

1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[9] Chia-Hui Chang, M. Kayed, M.R. Girgis, and K.F. Shaalan. 2006. A Survey of

Web Information Extraction Systems. IEEE Transactions on Knowledge and Data
Engineering 18, 10 (2006), 1411–1428. https://doi.org/10.1109/TKDE.2006.152

[10] Laming Chen, Guoxin Zhang, and Hanning Zhou. 2018. Fast greedy MAP infer-

ence for determinantal point process to improve recommendation diversity. In

Proceedings of the 32nd International Conference on Neural Information Processing
Systems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY,

USA, 5627–5638.

[11] Yurong Cheng, Zhaohe Liao, Xiaosong Huang, Yi Yang, Xiangmin Zhou, Ye Yuan,

and Guoren Wang. 2024. Cross Online Ride-Sharing for Multiple-Platform Coop-

erations in Spatial Crowdsourcing. In 2024 IEEE 40th International Conference on
Data Engineering (ICDE). 4140–4152. https://doi.org/10.1109/ICDE60146.2024.

00317

[12] Robert Christensen and Feifei Li. 2013. Adaptive log compression for massive

log data. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data (New York, New York, USA) (SIGMOD ’13). Association for

Computing Machinery, New York, NY, USA, 1283–1284. https://doi.org/10.1145/

2463676.2465341

[13] V. Chvatal. 1979. A Greedy Heuristic for the Set-Covering Problem. Math. Oper.
Res. 4, 3 (Aug. 1979), 233–235. https://doi.org/10.1287/moor.4.3.233

[14] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly

Detection and Diagnosis from System Logs through Deep Learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery,

New York, NY, USA, 1285–1298. https://doi.org/10.1145/3133956.3134015

[15] Ju Fan, Guoliang Li, and Lizhu Zhou. 2011. Interactive SQL query suggestion:

Making databases user-friendly. In 2011 IEEE 27th International Conference on
Data Engineering. 351–362. https://doi.org/10.1109/ICDE.2011.5767843

[16] Meihao Fan, Xiaoyue Han, Ju Fan, Chengliang Chai, Nan Tang, Guoliang Li, and

Xiaoyong Du. 2024. Cost-Effective In-Context Learning for Entity Resolution: A

Design Space Exploration . In 2024 IEEE 40th International Conference on Data
Engineering (ICDE). IEEE Computer Society, Los Alamitos, CA, USA, 3696–3709.

https://doi.org/10.1109/ICDE60146.2024.00284

[17] Jieming Feng, Zhanhuai Li, and Qun Chen. 2024. Towards Exploratory Query

Optimization for Template-Based SQL Workloads. In 2024 IEEE 40th Interna-
tional Conference on Data Engineering (ICDE). 151–164. https://doi.org/10.1109/

ICDE60146.2024.00019

[18] Raul Castro Fernandez, Aaron J. Elmore,Michael J. Franklin, Sanjay Krishnan, and

Chenhao Tan. 2023. How Large LanguageModelsWill Disrupt DataManagement.

Proc. VLDB Endow. 16, 11 (July 2023), 3302–3309. https://doi.org/10.14778/

3611479.3611527

[19] Benjamin Feuer, Yurong Liu, Chinmay Hegde, and Juliana Freire. 2024.

ArcheType: A Novel Framework for Open-Source Column Type Annotation

Using Large Language Models. Proc. VLDB Endow. 17, 9 (Aug. 2024), 2279–2292.
https://doi.org/10.14778/3665844.3665857

[20] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding,

and Jingren Zhou. 2024. Text-to-SQL Empowered by Large Language Models:

A Benchmark Evaluation. Proc. VLDB Endow. 17, 5 (May 2024), 1132–1145.

https://doi.org/10.14778/3641204.3641221

[21] Daniel Golovin and Andreas Krause. 2011. Adaptive submodularity: theory and

applications in active learning and stochastic optimization. J. Artif. Int. Res. 42, 1
(Sept. 2011), 427–486.

[22] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and

Abdullah Mueen. 2016. LogMine: Fast Pattern Recognition for Log Analytics.

In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management (Indianapolis, Indiana, USA) (CIKM ’16). Association
for Computing Machinery, New York, NY, USA, 1573–1582. https://doi.org/10.

1145/2983323.2983358

[23] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. 2017. Drain: An

Online Log Parsing Approach with Fixed Depth Tree. In 2017 IEEE International
Conference on Web Services (ICWS). 33–40. https://doi.org/10.1109/ICWS.2017.13

[24] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R. Lyu, and

Dongmei Zhang. 2018. Identifying impactful service system problems via log

analysis. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing

Machinery, New York, NY, USA, 60–70. https://doi.org/10.1145/3236024.3236083

[25] Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. 2016. Experience Report:

System Log Analysis for Anomaly Detection. In 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE). 207–218. https://doi.org/

10.1109/ISSRE.2016.21

[26] Yuncheng Huang, Qianyu He, Jiaqing Liang, Sihang Jiang, Yanghua Xiao, and

Yunwen Chen. 2024. Enhancing Quantitative Reasoning Skills of Large Language

Models throughDimension Perception . In 2024 IEEE 40th International Conference
on Data Engineering (ICDE). IEEE Computer Society, Los Alamitos, CA, USA,

789–802. https://doi.org/10.1109/ICDE60146.2024.00066

[27] Peng Jia, Pinghui Wang, Junzhou Zhao, Ye Yuan, Jing Tao, and Xiaohong Guan.

2021. LogLog Filter: Filtering Cold Items within a Large Range over High Speed

Data Streams. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE). 804–815. https://doi.org/10.1109/ICDE51399.2021.00075

[28] Wenqi Jiang, Marco Zeller, Roger Waleffe, Torsten Hoefler, and Gustavo Alonso.

2024. Chameleon: a Heterogeneous and Disaggregated Accelerator System for

Retrieval-Augmented Language Models. Proc. VLDB Endow. 18, 1 (2024), 42–52.
https://www.vldb.org/pvldb/vol18/p42-jiang.pdf

[29] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anas-

tasia Ailamaki. 2010. Aether: a scalable approach to logging. Proc. VLDB Endow.
3, 1–2 (Sept. 2010), 681–692. https://doi.org/10.14778/1920841.1920928

[30] Hung-Yu Kao, Shian-Hua Lin, Jan-Ming Ho, and Ming-Syan Chen. 2004. Min-

ing Web informative structures and contents based on entropy analysis. IEEE
Transactions on Knowledge and Data Engineering 16, 1 (2004), 41–55. https:

//doi.org/10.1109/TKDE.2004.1264821

[31] Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel Briand. 2022.

Guidelines for assessing the accuracy of log message template identification tech-

niques. In Proceedings of the 44th International Conference on Software Engineering
(Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery,

New York, NY, USA, 1095–1106. https://doi.org/10.1145/3510003.3510101

[32] Samir Khuller, Anna Moss, and Joseph (Seffi) Naor. 1999. The budgeted maximum

coverage problem. Inf. Process. Lett. 70, 1 (April 1999), 39–45. https://doi.org/10.

1016/S0020-0190(99)00031-9

[33] Van-Hoang Le and Hongyu Zhang. 2023. Log Parsing with Prompt-Based Few-

Shot Learning. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 2438–2449.

https://doi.org/10.1109/ICSE48619.2023.00204

[34] Guoliang Li, Xuanhe Zhou, and Xinyang Zhao. 2024. LLM for Data Management.

Proceedings of the VLDB Endowment 17, 12 (2024), 4213–4216.
[35] Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen,

Nicole Hu, Wei Dong, Qing Li, and Lei Chen. 2024. A survey on large lan-

guage model acceleration based on kv cache management. arXiv preprint
arXiv:2412.19442 (2024).

[36] Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He, and Guangba Yu. 2020. Swiss-

Log: Robust andUnifiedDeep Learning Based LogAnomalyDetection for Diverse

Faults. 92–103. https://doi.org/10.1109/ISSRE5003.2020.00018

[37] Zhaodonghui Li, Haitao Yuan, Huiming Wang, Gao Cong, and Lidong Bing.

2024. LLM-R2: A Large Language Model Enhanced Rule-based Rewrite System

for Boosting Query Efficiency. Proc. VLDB Endow. 18, 1 (2024), 53–65. https:

//www.vldb.org/pvldb/vol18/p53-yuan.pdf

[38] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.

2016. Log clustering based problem identification for online service systems. In

3146

https://doi.org/10.1109/ICSE.2019.00031
https://hadoop.apache.org
https://doi.org/10.14778/3705829.3705831
https://openreview.net/forum?id=IW1PR7vEBf
https://doi.org/10.1109/ICDE55515.2023.00122
https://doi.org/10.14778/3149193.3149196
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1109/TKDE.2006.152
https://doi.org/10.1109/ICDE60146.2024.00317
https://doi.org/10.1109/ICDE60146.2024.00317
https://doi.org/10.1145/2463676.2465341
https://doi.org/10.1145/2463676.2465341
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1109/ICDE.2011.5767843
https://doi.org/10.1109/ICDE60146.2024.00284
https://doi.org/10.1109/ICDE60146.2024.00019
https://doi.org/10.1109/ICDE60146.2024.00019
https://doi.org/10.14778/3611479.3611527
https://doi.org/10.14778/3611479.3611527
https://doi.org/10.14778/3665844.3665857
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1145/3236024.3236083
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ICDE60146.2024.00066
https://doi.org/10.1109/ICDE51399.2021.00075
https://www.vldb.org/pvldb/vol18/p42-jiang.pdf
https://doi.org/10.14778/1920841.1920928
https://doi.org/10.1109/TKDE.2004.1264821
https://doi.org/10.1109/TKDE.2004.1264821
https://doi.org/10.1145/3510003.3510101
https://doi.org/10.1016/S0020-0190(99)00031-9
https://doi.org/10.1016/S0020-0190(99)00031-9
https://doi.org/10.1109/ICSE48619.2023.00204
https://doi.org/10.1109/ISSRE5003.2020.00018
https://www.vldb.org/pvldb/vol18/p53-yuan.pdf
https://www.vldb.org/pvldb/vol18/p53-yuan.pdf

Proceedings of the 38th International Conference on Software Engineering Compan-
ion (Austin, Texas) (ICSE ’16). Association for Computing Machinery, New York,

NY, USA, 102–111. https://doi.org/10.1145/2889160.2889232

[39] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and

Graham Neubig. 2023. Pre-train, Prompt, and Predict: A Systematic Survey of

Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 9,
Article 195 (Jan. 2023), 35 pages. https://doi.org/10.1145/3560815

[40] Xinfu Liu, Yirui Wu, Yuting Zhou, Junyang Chen, Huan Wang, Ye Liu, and

Shaohua Wan. 2024. Enhancing Large Language Models with Multimodality

and Knowledge Graphs for Hallucination-free Open-set Object Recognition.

Proceedings of the VLDB Endowment. ISSN 2150 (2024), 8097.

[41] Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang, Liqun Li, Yu Kang, Yong Xu,

Minghua Ma, Qingwei Lin, Yingnong Dang, S. Rajmohan, and Dongmei Zhang.

2022. UniParser: A Unified Log Parser for Heterogeneous Log Data. Proceedings of
the ACM Web Conference 2022 (2022). https://api.semanticscholar.org/CorpusID:

246822534

[42] Adetokunbo Makanju, A. Nur Zincir-Heywood, and Evangelos E. Milios. 2012. A

Lightweight Algorithm for Message Type Extraction in System Application Logs.

IEEE Transactions on Knowledge and Data Engineering 24, 11 (2012), 1921–1936.

https://doi.org/10.1109/TKDE.2011.138

[43] Markos Markakis, Brit Youngmann, Trinity Gao, Ziyu Zhang, Rana Shahout,

Peter Baile Chen, Chunwei Liu, Ibrahim Sabek, and Michael Cafarella. 2025.

From Logs to Causal Inference: Diagnosing Large Systems. Proc. VLDB Endow.
18, 2 (Feb. 2025), 158–172. https://doi.org/10.14778/3705829.3705836

[44] Wim Martens, Matthias Niewerth, Tina Popp, Carlos Rojas, Stijn Vansum-

meren, and Domagoj Vrgoč. 2023. Representing Paths in Graph Database

Pattern Matching. Proc. VLDB Endow. 16, 7 (March 2023), 1790–1803. https:

//doi.org/10.14778/3587136.3587151

[45] Costas Mavromatis, Balasubramaniam Srinivasan, Zhengyuan Shen, Jiani Zhang,

Huzefa Rangwala, Christos Faloutsos, and George Karypis. 2023. Which Ex-

amples to Annotate for In-Context Learning? Towards Effective and Efficient

Selection. arXiv:2310.20046 [cs.CL] https://arxiv.org/abs/2310.20046

[46] Lang Mei, Jiaxin Mao, and Ji-Rong Wen. 2024. Optimizing Probabilistic Box

Embeddings with Distance Measures . In 2024 IEEE 40th International Conference
on Data Engineering (ICDE). IEEE Computer Society, Los Alamitos, CA, USA,

5088–5100. https://doi.org/10.1109/ICDE60146.2024.00106

[47] Masayoshi Mizutani. 2013. Incremental Mining of System Log Format. In 2013
IEEE International Conference on Services Computing. 595–602. https://doi.org/

10.1109/SCC.2013.73

[48] Animesh Nandi, Atri Mandal, Shubham Atreja, Gargi B. Dasgupta, and Subhrajit

Bhattacharya. 2016. Anomaly Detection Using Program Control Flow Graph

Mining From Execution Logs. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (San Francisco,

California, USA) (KDD ’16). Association for Computing Machinery, New York,

NY, USA, 215–224. https://doi.org/10.1145/2939672.2939712

[49] Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Cardoso, and

Odej Kao. 2021. Self-supervised Log Parsing. InMachine Learning and Knowledge
Discovery in Databases: Applied Data Science Track, Yuxiao Dong, Dunja Mladenić,

and Craig Saunders (Eds.). Springer International Publishing, Cham, 122–138.

[50] Reham Omar, Ishika Dhall, Panos Kalnis, and Essam Mansour. 2023. A Universal

Question-Answering Platform for Knowledge Graphs. Proceedings of the ACM on
Management of Data 1 (2023), 1 – 25. https://api.semanticscholar.org/CorpusID:

257254920

[51] OpenAI. 2024. Introducing gpt-4o: our fastest and most affordable flagship model.

https://platform.openai.com/docs/guides/vision 2024-11-07.

[52] Abdelghny Orogat and Ahmed El-Roby. 2023. Maestro: Automatic Generation of

Comprehensive Benchmarks for Question Answering Over Knowledge Graphs.

Proc. ACM Manag. Data 1, 2, Article 177 (June 2023), 24 pages. https://doi.org/

10.1145/3589322

[53] Zhencan Peng, Zhizhi Wang, and Dong Deng. 2023. Near-Duplicate Sequence

Search at Scale for Large Language Model Memorization Evaluation. Proc. ACM
Manag. Data 1, 2, Article 179 (June 2023), 18 pages. https://doi.org/10.1145/

3589324

[54] Tonghui Ren, Yuankai Fan, Zhenying He, Ren Huang, Jiaqi Dai, Can Huang,

Yinan Jing, Kai Zhang, Yifan Yang, and X. Sean Wang. 2024. PURPLE: Making

a Large Language Model a Better SQL Writer . In 2024 IEEE 40th International
Conference on Data Engineering (ICDE). IEEE Computer Society, Los Alamitos,

CA, USA, 15–28. https://doi.org/10.1109/ICDE60146.2024.00009

[55] Cedric Renggli, Xiaozhe Yao, Luka Kolar, Luka Rimanic, Ana Klimovic, and Ce

Zhang. 2022. SHiFT: an efficient, flexible search engine for transfer learning.

Proc. VLDB Endow. 16, 2 (Oct. 2022), 304–316. https://doi.org/10.14778/3565816.

3565831

[56] Shreya Shankar, Haotian Li, Parth Asawa, Madelon Hulsebos, Yiming Lin, J. D.

Zamfirescu-Pereira, Harrison Chase, Will Fu-Hinthorn, Aditya G. Parameswaran,

and Eugene Wu. 2024. spade: Synthesizing Data Quality Assertions for Large

Language Model Pipelines. Proc. VLDB Endow. 17, 12 (Nov. 2024), 4173–4186.
https://doi.org/10.14778/3685800.3685835

[57] Jie Song and Yeye He. 2021. Auto-Validate: Unsupervised Data Validation Using

Data-Domain Patterns Inferred from Data Lakes. In Proceedings of the 2021
International Conference on Management of Data (Virtual Event, China) (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 1678–1691.

https://doi.org/10.1145/3448016.3457250

[58] Hongjin SU, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin,

Rui Zhang, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu.

2023. Selective Annotation Makes Language Models Better Few-Shot Learners.

In The Eleventh International Conference on Learning Representations. https:

//openreview.net/forum?id=qY1hlv7gwg

[59] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demiralp, Chen

Chen, and Wang-Chiew Tan. 2022. Annotating Columns with Pre-trained Lan-

guage Models. In Proceedings of the 2022 International Conference on Manage-
ment of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing

Machinery, New York, NY, USA, 1493–1503. https://doi.org/10.1145/3514221.

3517906

[60] Yushi Sun, Wang Jiachuan, Peng Cheng, Libin Zheng, Lei Chen, and Jian Yin.

2024. Cross-Domain-Aware Worker Selection with Training for Crowdsourced

Annotation. 249–262. https://doi.org/10.1109/ICDE60146.2024.00026

[61] Yushi Sun, Hao Xin, and Lei Chen. 2023. RECA: Related Tables Enhanced Column

Semantic Type Annotation Framework. Proc. VLDB Endow. 16, 6 (Feb. 2023),

1319–1331. https://doi.org/10.14778/3583140.3583149

[62] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: generating system

events from raw textual logs. In Proceedings of the 20th ACM International Con-
ference on Information and Knowledge Management (Glasgow, Scotland, UK)
(CIKM ’11). Association for Computing Machinery, New York, NY, USA, 785–794.

https://doi.org/10.1145/2063576.2063690

[63] Yanni Tang, Zhuoxing Zhang, Kaiqi Zhao, Lanting Fang, Zhenhua Li, and Wu

Chen. 2025. Substructure-Aware Log Anomaly Detection. Proc. VLDB Endow. 18,
2 (Feb. 2025), 213–225. https://doi.org/10.14778/3705829.3705840

[64] Qwen Team. 2024. Qwen2.5: A Party of Foundation Models. https://qwenlm.

github.io/blog/qwen2.5/

[65] Fei Teng, Haoyang Li, and Lei Chen. 2025. LLMLog: Advanced Log Template

Generation via LLM-driven Multi-Round Annotation. Online (2025). https:

//github.com/XinTT/LLMLog

[66] The Apache Software Foundation. 2024. SparkR: R Front End for ’Apache
Spark’. https://www.apache.orghttps://spark.apache.org R package version

3.5.1https://www.apache.org https://spark.apache.org.

[67] Xiaobin Tian, Zequn Sun, and Wei Hu. 2024. Generating Explanations to

Understand and Repair Embedding-Based Entity Alignment . In 2024 IEEE 40th
International Conference on Data Engineering (ICDE). IEEE Computer Society, Los

Alamitos, CA, USA, 2205–2217. https://doi.org/10.1109/ICDE60146.2024.00175

[68] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2017. Query fresh: log

shipping on steroids. Proc. VLDB Endow. 11, 4 (Dec. 2017), 406–419. https:

//doi.org/10.1145/3186728.3164137

[69] Yuxiang Wang, Arijit Khan, Tianxing Wu, Jiahui Jin, and Haijiang Yan. 2020.

Semantic Guided and Response Times Bounded Top-k Similarity Search over

Knowledge Graphs . In 2020 IEEE 36th International Conference on Data En-
gineering (ICDE). IEEE Computer Society, Los Alamitos, CA, USA, 445–456.

https://doi.org/10.1109/ICDE48307.2020.00045

[70] Yubo Wang, Hao Xin, and Lei Chen. 2024. KGLink: A Column Type Annotation

Method that Combines Knowledge Graph and Pre-Trained Language Model. 2024
IEEE 40th International Conference on Data Engineering (ICDE) (2024), 1023–1035.
https://api.semanticscholar.org/CorpusID:270214355

[71] Zhenyu Wen, Jiaxu Qian, Bin Qian, Qin Yuan, Jianbin Qin, Qi Xuan, and Ye

Yuan. 2024. Across Images and Graphs for Question Answering. In 2024 IEEE
40th International Conference on Data Engineering (ICDE). 1366–1379. https:

//doi.org/10.1109/ICDE60146.2024.00112

[72] Anbiao Wu, Ye Yuan, Changsheng Li, Yuliang Ma, and Hao Zhang. 2024. At-

tributed Network Embedding in Streaming Style. In 2024 IEEE 40th International
Conference on Data Engineering (ICDE). 3138–3150. https://doi.org/10.1109/

ICDE60146.2024.00243

[73] Zeyu Xiong, Daizong Liu, Xiang Fang, Xiaoye Qu, Jianfeng Dong, Jiahao Zhu,

Keke Tang, and Pan Zhou. 2024. Rethinking Video Sentence Grounding From

a Tracking Perspective With Memory Network and Masked Attention. IEEE
Transactions on Multimedia 26 (2024), 11204–11218. https://doi.org/10.1109/

TMM.2024.3453062

[74] Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu Zhang, and Pinjia He.

2024. DivLog: Log Parsing with Prompt Enhanced In-Context Learning. 1–12.

https://doi.org/10.1145/3597503.3639155

[75] Lyu Xu, Byron Choi, Yun Peng, Jianliang Xu, and Sourav S Bhowmick. 2023. A

Framework for Privacy Preserving Localized Graph Pattern Query Processing.

Proc. ACM Manag. Data 1, 2, Article 129 (June 2023), 27 pages. https://doi.org/

10.1145/3589274

[76] Chengcheng Yang, Lisi Chen, Hao Wang, Shuo Shang, Rui Mao, and Xiangliang

Zhang. 2023. Dynamic Set Similarity Join: An Update Log Based Approach.

IEEE Transactions on Knowledge and Data Engineering 35, 4 (2023), 3727–3741.

https://doi.org/10.1109/TKDE.2021.3126631

3147

https://doi.org/10.1145/2889160.2889232
https://doi.org/10.1145/3560815
https://api.semanticscholar.org/CorpusID:246822534
https://api.semanticscholar.org/CorpusID:246822534
https://doi.org/10.1109/TKDE.2011.138
https://doi.org/10.14778/3705829.3705836
https://doi.org/10.14778/3587136.3587151
https://doi.org/10.14778/3587136.3587151
https://arxiv.org/abs/2310.20046
https://arxiv.org/abs/2310.20046
https://doi.org/10.1109/ICDE60146.2024.00106
https://doi.org/10.1109/SCC.2013.73
https://doi.org/10.1109/SCC.2013.73
https://doi.org/10.1145/2939672.2939712
https://api.semanticscholar.org/CorpusID:257254920
https://api.semanticscholar.org/CorpusID:257254920
https://platform.openai.com/docs/guides/vision
https://doi.org/10.1145/3589322
https://doi.org/10.1145/3589322
https://doi.org/10.1145/3589324
https://doi.org/10.1145/3589324
https://doi.org/10.1109/ICDE60146.2024.00009
https://doi.org/10.14778/3565816.3565831
https://doi.org/10.14778/3565816.3565831
https://doi.org/10.14778/3685800.3685835
https://doi.org/10.1145/3448016.3457250
https://openreview.net/forum?id=qY1hlv7gwg
https://openreview.net/forum?id=qY1hlv7gwg
https://doi.org/10.1145/3514221.3517906
https://doi.org/10.1145/3514221.3517906
https://doi.org/10.1109/ICDE60146.2024.00026
https://doi.org/10.14778/3583140.3583149
https://doi.org/10.1145/2063576.2063690
https://doi.org/10.14778/3705829.3705840
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://github.com/XinTT/LLMLog
https://github.com/XinTT/LLMLog
https://www.apache.org https://spark.apache.org
https://doi.org/10.1109/ICDE60146.2024.00175
https://doi.org/10.1145/3186728.3164137
https://doi.org/10.1145/3186728.3164137
https://doi.org/10.1109/ICDE48307.2020.00045
https://api.semanticscholar.org/CorpusID:270214355
https://doi.org/10.1109/ICDE60146.2024.00112
https://doi.org/10.1109/ICDE60146.2024.00112
https://doi.org/10.1109/ICDE60146.2024.00243
https://doi.org/10.1109/ICDE60146.2024.00243
https://doi.org/10.1109/TMM.2024.3453062
https://doi.org/10.1109/TMM.2024.3453062
https://doi.org/10.1145/3597503.3639155
https://doi.org/10.1145/3589274
https://doi.org/10.1145/3589274
https://doi.org/10.1109/TKDE.2021.3126631

[77] Muzhi Yu, Zhaoxiang Lin, Jinan Sun, Runyun Zhou, Guoqiang Jiang, Hua Huang,

and Shikun Zhang. 2022. TencentCLS: the cloud log service with high query

performances. Proc. VLDB Endow. 15, 12 (Aug. 2022), 3472–3482. https://doi.

org/10.14778/3554821.3554837

[78] Chen Zhang, Sen Zhang, Chen Lei, and Peiguang Lin. 2018. Burstiness in

Query Log: Web Search Analysis by Combining Global and Local Evidences. In

2018 IEEE 34th International Conference on Data Engineering (ICDE). 1388–1391.
https://doi.org/10.1109/ICDE.2018.00157

[79] Shaokun Zhang, Xiaobo Xia, ZhaoqingWang, Ling-Hao Chen, Jiale Liu, Qingyun

Wu, and Tongliang Liu. 2024. IDEAL: Influence-Driven Selective Annotations

Empower In-Context Learners in Large Language Models. In The Twelfth Inter-
national Conference on Learning Representations. https://openreview.net/forum?

id=Spp2i1hKwV

[80] Tianzhu Zhang, Han Qiu, Gabriele Castellano, Myriana Rifai, Chung Shue Chen,

and Fabio Pianese. 2023. System Log Parsing: A Survey. IEEE Transactions on
Knowledge and Data Engineering 35, 8 (2023), 8596–8614. https://doi.org/10.

1109/TKDE.2022.3222417

[81] Xinyi Zhang, Hong Wu, Yang Li, Zhengju Tang, Jian Tan, Feifei Li, and Bin Cui.

2023. An Efficient Transfer Learning Based Configuration Adviser for Database

Tuning. Proc. VLDB Endow. 17, 3 (2023), 539–552. https://doi.org/10.14778/

3632093.3632114

[82] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,

Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, Junjie Chen, Xiaoting He,

Randolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and Dongmei

Zhang. 2019. Robust log-based anomaly detection on unstable log data. In

Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Tallinn,

Estonia) (ESEC/FSE 2019). Association for Computing Machinery, New York, NY,

USA, 807–817. https://doi.org/10.1145/3338906.3338931

[83] Xinyang Zhao, Xuanhe Zhou, and Guoliang Li. 2024. Chat2Data: An Interactive

Data Analysis System with RAG, Vector Databases and LLMs. Proceedings of the
VLDB Endowment 17, 12 (2024), 4481–4484.

[84] Weiguo Zheng, Lei Zou, Xiang Lian, Jeffrey Xu Yu, Shaoxu Song, and Dongyan

Zhao. 2015. How to Build Templates for RDF Question/Answering: An Uncer-

tain Graph Similarity Join Approach. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (Melbourne, Victoria, Aus-

tralia) (SIGMOD ’15). Association for Computing Machinery, New York, NY, USA,

1809–1824. https://doi.org/10.1145/2723372.2747648

[85] Xiangmin Zhou, Chengkun He, Xi Chen, and Yanchun Zhang. 2024. HSAP: A

Human-in-the-Loop Social Media-Based Situation Awareness Platform. Proc.
VLDB Endow. 17, 12 (Aug. 2024), 4493–4496. https://doi.org/10.14778/3685800.

3685908

[86] Erkang Zhu, Silu Huang, and Surajit Chaudhuri. 2023. High-Performance Row

Pattern Recognition Using Joins. Proc. VLDB Endow. 16, 5 (Jan. 2023), 1181–1195.
https://doi.org/10.14778/3579075.3579090

[87] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R.

Lyu. 2019. Tools and benchmarks for automated log parsing. In Proceedings of
the 41st International Conference on Software Engineering: Software Engineering
in Practice (Montreal, Quebec, Canada) (ICSE-SEIP ’19). IEEE Press, 121–130.

https://doi.org/10.1109/ICSE-SEIP.2019.00021

[88] Zhen Zhu, Yibo Wang, Shouqing Yang, Lin Long, Runze Wu, Xiu Tang, Junbo

Zhao, and Haobo Wang. 2024. CORAL: Collaborative Automatic Labeling Sys-

tem Based on Large Language Models. Proc. VLDB Endow. 17, 12 (Nov. 2024),
4401–4404. https://doi.org/10.14778/3685800.3685885

3148

https://doi.org/10.14778/3554821.3554837
https://doi.org/10.14778/3554821.3554837
https://doi.org/10.1109/ICDE.2018.00157
https://openreview.net/forum?id=Spp2i1hKwV
https://openreview.net/forum?id=Spp2i1hKwV
https://doi.org/10.1109/TKDE.2022.3222417
https://doi.org/10.1109/TKDE.2022.3222417
https://doi.org/10.14778/3632093.3632114
https://doi.org/10.14778/3632093.3632114
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/2723372.2747648
https://doi.org/10.14778/3685800.3685908
https://doi.org/10.14778/3685800.3685908
https://doi.org/10.14778/3579075.3579090
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.14778/3685800.3685885

	Abstract
	1 Introduction
	2 Preliminary and Related Works
	2.1 Log Template Generation Problem
	2.2 Log Template Generation Approaches

	3 Method
	3.1 Framework Overview
	3.2 Log Similarity
	3.3 Multiple Round Log Annotation
	3.4 Adaptive Demonstration Selection

	4 Experiments
	4.1 Experiment Setting
	4.2 Main Results
	4.3 Ablation Study
	4.4 Parameter Sensitivity
	4.5 Case Study

	5 Conclusion
	Acknowledgments
	References

