
CXL Memory Performance for In-Memory Data Processing
Marcel Weisgut

Hasso Plattner Institute,
University of Potsdam

Potsdam, Germany
marcel.weisgut@hpi.de

Daniel Ritter
SAP

Walldorf, Germany
daniel.ritter@sap.com

Pınar Tözün
IT University of Copenhagen

Copenhagen, Denmark
pito@itu.dk

Lawrence Benson
Technische Universität Munich

Munich, Germany
lawrence.benson@tum.de

Tilmann Rabl
Hasso Plattner Institute,
University of Potsdam

Potsdam, Germany
tilmann.rabl@hpi.de

ABSTRACT
The Compute Express Link (CXL) standard enables new forms of
memory management and access across devices and servers. Based
on PCIe, it enables cache-coherent access to remote memory. This
widens the design space for database systems by expanding the
available memory beyond memory local to the CPU. Efficiently
utilizing CXL-attached memory requires conscious decisions by
data systems about data placement and management. In this paper,
we provide an in-depth analysis of database operation performance
with data interleaved across multiple CXL memory devices. We
experimentally evaluate the memory access performance for basic
access patterns, the performance impact of placing data across
multiple CXL memory devices for in-memory column scans and in-
memory B+tree operations, and the performance impact of placing
data in CXL memory for an in-memory database system when
running the analytical TPC-H workload. Our experiments show
that access to CXL-attached memory does not have to penalize
performance over local access, but careful workload-aware data
management is required. Our TPC-H evaluation shows that placing
table columns based on access frequencies allows storing over 80%
of the table data in CXL memory with a performance of 85% of a
local-memory-only solution.

PVLDB Reference Format:
Marcel Weisgut, Daniel Ritter, Pınar Tözün, Lawrence Benson,
and Tilmann Rabl. CXL Memory Performance for In-Memory Data
Processing . PVLDB, 18(9): 3119 - 3133, 2025.
doi:10.14778/3746405.3746432

PVLDB Artifact Availability:
The source code have been made available at https://github.com/hpides/
cxlbench/tree/paper/vldb25 (microbenchmarks) and https://github.com/
hyrise/hyrise/tree/paper/vldb25 (Hyrise).

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.
doi:10.14778/3746405.3746432

1 INTRODUCTION
Database systems have widely adopted the separation of compute
and storage resources to benefit from elastic scaling of individual
hardware resources on demand [22, 58, 66, 82]. The individual
scaling capabilities avoid resource over-provisioning, which results
in significant total cost of ownership (TCO) reduction [12, 58].
In contrast, compute and memory resources are usually tightly
coupled, leading to stranded memory [47, 48, 53, 75].

Both the database research community and industry propose
memory-disaggregated database systems to separate memory from
compute resources [2, 3, 28, 41, 44, 47, 54, 75–79, 85, 86]. These ef-
forts are mainly based on fast remote direct memory access (RDMA)
network technology. The new Compute Express Link (CXL) tech-
nology is an alternative for implementing memory-disaggregated
database systems [2, 3, 14, 28, 32, 44, 47].

CXL allows adding memory to a server’s unified memory address
space using PCI Express (PCIe) [16]. The additional memory and
memory controller(s) are located on CXL devices. Traditional CPU-
local memory is attached via the double data rate (DDR) interface
and in the form of DRAM dual inline memory modules (DIMMs).
CXL memory is — like CPU-local memory — cache coherent [68].

Memory expansion via CXL-attached memory devices has re-
ceived attention in research and industry [2, 3, 29, 31, 44, 62]. A
reason for using CXL memory expansion is to reduce the cost of
a server’s memory hardware. As main memory has become a ma-
jor cost driver of server hardware [14, 48, 56, 80], reusing DIMMs
of decommissioned servers can significantly reduce the TCO of a
server [8, 14, 74, 87]. Memory attached via CXL does not need to
match the CPU’s DDR version and can be of any media type [68].
In a pooled memory scenario, where CXL memory is connected to
multiple servers, the TCO can be reduced as administrators can pop-
ulate servers with smaller CPU-local DRAM capacities, while larger
capacities of cheaper memory can be attached via CXL [14, 53].

Incorporating CXL memory into database systems invalidates
the assumption that memory-resident data is close to the CPU [47].
It requires extensive experimentation to identify what part of a
database engine can be stored in CXL memory and what part should
reside in CPU memory [47].

Our analysis provides insights into the use of CXL memory
expansion devices. Our work is an in-depth performance study

3119

https://doi.org/10.14778/3746405.3746432
https://github.com/hpides/cxlbench/tree/paper/vldb25
https://github.com/hpides/cxlbench/tree/paper/vldb25
https://github.com/hyrise/hyrise/tree/paper/vldb25
https://github.com/hyrise/hyrise/tree/paper/vldb25
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746432
https://www.acm.org/publications/policies/artifact-review-and-badging-current

investigating the impact of placing data across multiple real CXL
memory devices for database operations.
Contributions. Our main contributions are the following:
(1) A detailed CXL memory access performance evaluation on a

server with four CXL memory devices.
(2) A performance analysis of vectorized column scans and B+tree

operations with data interleaved across up to four CXL devices.
(3) A performance evaluation of two data placement strategies

using the TPC-H workload on an in-memory database system.
The rest of this paper is structured as follows: In Section 2, we
discuss relevant background on memory interconnects and CXL.
Section 3 gives an overview of our benchmarking framework. We
present results of our microbenchmarks in Section 4, the result of
different isolated DBMS operations in Section 5, and end-to-end
experiments using the in-memory database management system
Hyrise in Section 6. We analyze the economic viability of CXL
setups in Section 7 and summarize our insights in Section 8. We
survey related work in Section 9, before concluding in Section 10.

2 BACKGROUND
We introduce technical knowledge relevant to the remainder of this
paper, including memory interconnects and CXL.

2.1 Memory Interconnects
Table 1 details the memory interconnects of the CPU we use in
our evaluation. We classify them as Socket-Local (CPU-to-memory
at one socket), Inter-Socket (CPU-to-CPU), and Inter-Device (CPU-
to-device). The channel width determines how much data passes
through an interconnect channel with a single transfer. An inter-
connect’s theoretical maximum bandwidth is:

Bandwidth = # Channels × Transfer rate × Channel width .

Socket-Local. Memory local to a CPU is usually attached as DDR
DRAM DIMMs. DDR interfaces have a width of 64 bits [49]. The
latest generation supported by CPUs is DDR5, with data rates of
up to 8400 MT/s [70]. A modern CPU deploys multiple memory
channels. Current Intel Emerald Rapids CPUs support eight chan-
nels, leading to a theoretical peak bandwidth of ∼333 GB/s with a
maximum supported memory speed of 5200 MT/s.
Inter-Socket. If a core accesses memory whose memory controller
is located on a remote socket, data needs to be transferred via an
inter-socket interconnect. Ultra Path Interconnect (UPI) is Intel’s
cache-coherent interconnect for socket-to-socket communication
between CPUs [36]. UPI’s transfer rate and number of ports per
CPU can vary across CPU generations and models [34]. Current
5th Gen Intel Xeon Scalable CPUs (Emerald Rapids) have up to four
UPI ports with a transfer rate of up to 20 GT/s [35], leading to a
cumulative theoretical bandwidth of 160 GB/s.
Inter-Device. Several cache-coherent interconnects have been
specified, such as GenZ [30], OpenCAPI [71], Cache Coherent In-
terconnect for Accelerators (CCIX) [15], AMD’s Infinity Fabric
CPU-GPU links [1, 65], NVIDIA’s NVLink-C2C [18], and CXL [16].
The consortiums of GenZ, OpenCAPI, and CCIX have joined forces
with the CXL consortium. AMD’s and NVIDIA’s inter-device links
focus on connecting CPUs and GPUs and their memory rather than
connecting memory expansion devices to server CPUs.

Table 1: Interconnect characteristics per link (channel) of the
CPU and CXL setup used in our evaluation.

Type Width [Bits] Transfer rate [GT/s] Data rate [GB/s]

DDR 64 5.2 41.6
UPI 16 [64] 20 [37] 40
CXL 16 [16] 32 64

2.2 Compute Express Link (CXL)
CXL [16] is a standard for interconnects between CPUs and devices.
It allows them to cache data stored in each other’s memory.
Protocols. CXL specifies three protocols that CPUs and devices
communicate over the PCIe physical layer (PCIe PHY). CXL.io is
the mandatory base protocol containing PCIe transactions. It is
used for, e.g., device discovery, status reporting, address translation,
and direct memory access. Devices can cache data stored in CPU
memory via CXL.cache. CXL.mem allows CPUs to access and cache
data stored in CXL device memory.
Device Types. The standard specifies three device types. Type 1
devices (supporting CXL.cache) can access and cache data stored in
the CPU’s local memory. Type 1 devices do not have cache-coherent
memory exposed to the CPU. One example is a smart network
interface card with coherent access to host (CPU) memory [68].
Type 2 devices (supporting CXL.cache and CXL.mem) have on-
device memory exposed to a CPU and full coherent access both
to their own memory and CPU memory. A CPU can access and
cache device memory. Examples are accelerators with attached
memory, such as GPUs and FPGAs [68]. Type 3 devices (supporting
CXL.mem) have memory attached and allow CPUs to coherently
cache data stored in the device memory. Type 3 devices cannot
request data via CXL.cache and are used for memory expansion.
Memory Access Anatomy. Memory of Type 2 and Type 3 devices
exposed to the host system is called host-managed device memory
(HDM). A CPU’s caching agent interacts with HDM via CXL.mem.
This memory is integrated into the coherence domain of the host.
Data transfers via CXL.mem occur at 64 B cache line granularity.
If the HDM is only accessible by the host, the CPU manages the
coherence exclusively. Figure 1 illustrates the integration of CXL
memory into the CPU’s coherence domain. CPU-local memory
is directly connected to the CPU’s integrated memory controller
via DDR, and CXL memory is located in one or more CXL Type 3
devices. The CPU’s home agent manages cache coherence and
resolves conflicts across other caching agents, such as local cores,

CPU

Memory Memory Controller

Home Agent

Cores & Caches

PCIe PHY

CXL.memSe
rv

er

D
D

R

D
D

R

Type 3 Devices

M
em

or
y

A
pp

lia
nc

e

PCIe PHY
CXL.mem

PCIe PHY
CXL.mem

PCIe/CXL

Figure 1: Memory expansion with multiple CXL devices.

3120

other CPU sockets, and CXL Type 1 or 2 devices [67]. When the
CPU performs memory access to the CXL device, its home agent
communicates via CXL.mem over the PCIe PHY.
Memory Allocation. CXL memory can be configured as a
memory-only NUMA node [2, 72]. It allows utilizing NUMA-related
system calls to interact with the memory, such as mbind for setting a
memory policy for a given virtual memory region and move_pages
for moving operating system (OS) pages between nodes [62].

3 MICROBENCHMARK FRAMEWORK
We introduce CXL-Bench, a framework for benchmarking access
to heterogeneous memory. It is a successor of the persistent mem-
ory benchmark framework PerMA-Bench [7]. CXL-Bench allows
benchmarking access to memory exposed as a non-uniform memory
access (NUMA) node, including CXL memory. CXL-Bench supports
basic memory access patterns, including sequential and random
reads and writes, and chains of custom operations. Custom oper-
ations allow users to model complex access patterns for database
workloads. In this work, we use CXL-Bench for quantifying CXL
memory access characteristics for basic access patterns. CXL-Bench
allows users to specify different access sizes. It performs 8 B ac-
cesses as scalar loads and stores, 16 B and 32 B accesses as vector
load and store instructions with corresponding vector sizes, and
64 B and larger accesses as 64 B vector loads and stores.
Benchmark Workflow. For each benchmark task, a number of
threads perform memory accesses to a memory region based on a
user-defined configuration. Parallel benchmark tasks allow simu-
lating memory accesses of parallel database tasks. One parallel task
can benefit or penalize the other by loading or evicting data into or
from the cache that the other task will access. For each benchmark
run, CXL-Bench prepares the memory regions to be accessed, cre-
ates batches of access operations for the pre-defined set of threads,
performs the access operations, verifies memory page locations to
ensure that no pages were moved during the access execution, and
generates the results containing throughput and latency metrics.
Memory Region Preparation. The memory preparation step
includes allocating virtual memory, binding virtual memory regions
to user-defined NUMA nodes, and backing a memory region’s pages
by physical memory (by writing to each page, which forces the OS
to allocate physical memory). Pages can be allocated in any kind of
memory that is configured as a NUMA node. CXL-Bench allocates
pages in memory either in a non-partitioned or a partitioned mode.
The non-partitioned mode uses the entire memory region and pins
its pages to the user-defined NUMA nodes. The partitioned mode
allows users to split the memory region into two partitions with
different user-defined sizes relative to the region’s total size. It then
pins the partitions to different NUMA nodes. In both modes, pages
of a memory (sub-)region are pinned to the corresponding NUMA
nodes via the mbind system call with Linux’s interleaved allocation
policy. If the corresponding task’s memory operations include read
operations, the memory region is filled with data in advance.
Task Execution. CXL-Bench generates a user-defined num-
ber of worker threads executing the memory access opera-
tions. CXL-Bench pins a thread to a set of cores (via the
pthread_setaffinity_np GNU C library function). Users can
specify per task to which cores the thread pool is pinned. This

allows thread pools of parallel tasks to be pinned to different cores.
Worker threads continuously fetch memory access batches from a
shared queue and execute the corresponding memory access oper-
ations. This represents a common execution model where workers
operate on small work packages [7]. By default, the total number of
accessed bytes per batch is 64 MiB. Such batches are short-running
and, thus, avoid the skew of large, long-running batches [7].

4 CXL MEMORY ACCESS PERFORMANCE
Using CXL-Bench, we first investigate the memory access behav-
ior of CXL memory on a server with four CXL memory devices.
After introducing the evaluation server (Section 4.1), we quantify
the maximum throughput (Section 4.2) and the throughput scaling
with multiple devices (Section 4.3) for sequential and random reads
and writes. The results serve as upper bounds for the database oper-
ations in the remaining sections. We then investigate the memory
access latency (Section 4.4) and the performance impact of placing
an increasing number of pages in CXL memory (Section 4.5).

4.1 Hardware Setup
Table 2 details the evaluation server. Figure 2 shows the CPU mem-
ory and CXL device setup. The server is attached to four Seagate
Composable Memory Appliance (CMA) Blade prototypes [23, 55].
Each CMA blade is an FPGA-based memory expansion solution.
The FPGA-based design is not performance-optimized for produc-
tion. A CMA blade supports PCIe Gen5 x16 CXL 1.1 specification
connectivity. Each blade has four DDR4 channels with two DIMMs
connected per channel. We refer to a blade as a CXL device.

4.2 Maximum Sustained Throughput
Setup.CXL-Bench performs either memory reads or writes with dif-
ferent thread counts and memory access sizes. The access patterns

Table 2: Specifications of the evaluation server.

Server Supermicro SYS-741GE-TNRT

CPUs 2× Intel 5th Gen Xeon Scalable Gold 6542Y with 24 cores

Caches L1i: 32 KiB, L1d: 48 KiB, L2: 2 MiB, L3: 60 MiB

Memory 8× 32 GB DDR5 with a speed of 4800 MT/s

OS Ubuntu 24.04, Kernel 6.13
D

D
R

4

D
D

R
4

D
D

R
4

D
D

R
4

Inter-socket
interconnect (UPI)

Inter-die
interconnect

Memory Controller
Die

DIMM

Memory per CPU:
8 x 32 GiB DDR5 (4800 MT/s)

Memory per CMA blade:
8 x 128 GiB DDR4 (1866 MT/s)

64
 G

B
/s

Seagate CMA Blades

DDR5DDR5

CPU 0 CPU 1

Channel x1
6

PC
Ie

 5
 /

C
X

L
1.

1DDR5 DDR5

Figure 2: CPU memory and CXL device setup.

3121

are either sequential or uniform random. The executed benchmark
configurations start with one and four threads and incrementally
increase in steps of four. We use powers of two for the access sizes,
starting with 8 B and incrementally increasing to 8 KiB. For each
configuration, CXL-Bench performs memory accesses for ten sec-
onds to a virtual memory region of 7 GiB.
Results. Figures 3e to 3h show the throughput when accessing one
CXL device’s memory. Figures 3a to 3d show the sustained memory
throughput for CPU memory as a reference for comparison. Sequen-
tial reads achieve a maximum of ∼40 GB/s. Sequential writes peak
at 18 GB/s with 24 and 28 threads and an access size of 8 B. With
an increasing number of threads, the sequential read throughput
slightly decreases, stagnating at 95%. We observe a similar behav-
ior with random reads: while both CPU and CXL memory require
an access size of at least 4 KiB to achieve higher throughput, the
throughput for CXL memory decreases with an increasing number
of threads, stagnating at 93%.

The maximum write throughput is between 35% and 45% of
the maximum read throughput. This matches the relative write
throughput to CPU memory compared to read throughput.

The heatmaps for random accesses show a range of access sizes
for which the throughput is significantly lower than with lower and
higher access sizes. With CPU memory, the throughput decreases
between 512 B and 2 KiB for random reads (see Figure 3b) and at
1 KiB for random writes (see Figure 3d). We measure this through-
put drop for random access patterns to CPU memory on additional
servers with AMD Genoa, AMD Rome, Intel Sapphire Rapids, Intel
Ice Lake, and Intel Cascade Lake CPUs in the range from 512 B to
8 KiB (not shown). In these cases, the hardware prefetcher causes
poor throughput for a range of access sizes. When disabling the
hardware prefetcher, the performance does not decrease. The dom-
inant access sizes causing the throughput decrease are 1 KiB and
2 KiB for the evaluated CPUs.

4.3 Scaling-Up Throughput With Devices
Setup. We evaluate the throughput with one, two, three, and four
CXL devices. We use CXL-Bench with a memory region of 7 GiB
pinned to a set of the CXL devices’ NUMA nodes. This results in a
round-robin interleaving of pages with two or more devices.
Results. Figure 4 shows the memory access throughput for different
numbers of CXL devices, threads, and access sizes. The throughput
for random access varies depending on the access size. The through-
put converges to approximately the same level for sequential ac-
cesses. Sequential writes show the lowest throughput variance.
Interleaving pages round-robin across multiple devices increases
each workload’s throughput. For sequential 4 KiB reads with 24
threads (matching the core count), the throughput achieves 1.9×,
2.3×, and 2.5× with two, three, and four devices compared to one
device (with 38 GB/s). For sequential 4 KiB writes with 24 threads,
the throughput achieves 2×, 3×, and 3.7× compared to one device
(with 13.5 GB/s). The number of contiguous, sequentially accessed
cache lines is higher with larger access sizes. This allows the CPU
to utilize the hardware prefetcher, which benefits the throughput.

4.4 Latency
Database operations, such as joins or aggregates [63], as well as
transaction processing [50] are typically memory latency-bound.
With CXL memory, the interconnects and controllers involved
when accessing memory differ from DDR-attached CPU memory,
hence impacting data access latency.
Setup. We quantify idle latency percentiles for 8-B reads and writes
to CPU, remote CPU, and CXL memory. For reads, we measure
the latency of the load instruction followed by a memory fence
(mfence) with sequential and random access patterns. For writes,
we first load the cache line into the cache and then measure the store
instruction followed by a cache line write back (clwb) instruction
and a memory fence (similar to previous work on benchmarking

1 4 8 12 16 20 24 28
�read Count

8
16
32
64

128
256
512

1024
2048
4096
8192

Ac
ce

ss
siz

e
[B

yt
es

]

7 28 53 76 95 110 121 123
11 41 79 112 139 159 170 171
14 57 108 151 184 203 210 209
18 71 135 187 221 234 234 233
19 74 142 196 233 249 250 249
20 78 149 207 245 257 257 256
21 81 154 213 250 262 262 260
21 83 157 217 254 264 263 262
22 84 158 219 255 265 265 264
22 83 158 218 254 263 263 262
21 84 158 218 253 261 262 261

(a) Sequential Reads (CPU)

1 4 8 12 16 20 24 28
�read Count

1 3 6 8 11 14 16 16
1 6 11 17 22 27 32 32
3 11 23 34 45 55 64 63
5 21 42 62 83 101 117 116
8 34 67 99 129 155 179 178
11 46 90 131 168 199 221 219
14 57 109 149 177 194 217 215
15 62 117 161 190 201 206 206
17 67 127 175 207 215 208 208
18 73 139 192 232 252 256 255
18 74 142 198 239 256 259 259

(b) Random Reads (CPU)

1 4 8 12 16 20 24 28
�read Count

7 27 46 59 67 73 76 77
9 35 58 72 81 87 91 91
10 38 63 79 89 95 99 100
11 41 67 83 93 100 104 105
11 42 69 85 95 101 106 107
11 42 69 85 95 101 107 108
12 42 69 85 95 102 107 108
12 42 69 86 96 102 107 108
12 43 70 86 96 103 108 108
12 42 70 86 96 103 108 109
12 43 70 86 96 103 108 108

(c) Sequential Writes (CPU)

1 4 8 12 16 20 24 28
�read Count

1 3 5 8 10 11 12 11
1 6 12 17 20 22 24 23
3 12 23 33 41 45 47 47
5 23 46 68 81 91 95 94
7 27 49 66 78 86 92 94
6 24 44 60 72 81 88 89
6 23 43 57 69 78 84 85
6 24 43 57 66 73 77 78
9 33 57 72 82 89 93 94
11 42 69 86 96 103 108 109
12 42 69 86 96 103 109 109

(d) RandomWrites (CPU)

1 4 8 12 16 20 24 28
�read Count

8
16
32
64

128
256
512

1024
2048
4096
8192

Ac
ce

ss
siz

e
[B

yt
es

]

3 11 21 29 35 38 39 39
4 14 27 36 39 39 39 38
4 16 31 38 39 39 38 38
5 20 35 40 39 38 38 38
5 20 34 40 39 39 38 38
6 22 37 39 39 39 38 38
6 22 37 39 39 38 38 38
6 23 37 39 39 38 38 38
6 23 38 39 39 38 38 38
6 23 38 39 39 38 38 38
6 22 37 39 39 38 38 38

(e) Sequential Reads (CXL)

1 4 8 12 16 20 24 28
�read Count

0 1 2 3 4 4 4 5
0 2 4 6 7 8 9 9
1 4 8 11 14 16 18 18
2 7 15 21 27 32 35 35
2 9 18 26 32 35 37 37
3 12 23 31 36 37 37 37
4 14 24 26 27 28 29 29
4 16 27 29 30 30 31 31
5 18 31 34 35 34 32 32
5 20 34 39 39 38 37 37
5 20 35 40 39 38 38 37

(f) Random Reads (CXL)

1 4 8 12 16 20 24 28
�read Count

3 10 13 13 15 17 18 18
3 11 14 13 13 15 17 16
3 11 14 14 14 14 15 14
3 12 14 14 14 14 14 14
3 12 14 14 14 14 14 14
3 12 14 14 14 14 14 14
3 12 14 14 14 14 14 14
3 12 14 14 14 14 14 14
3 12 14 14 14 14 14 14
4 12 14 14 14 14 14 14
3 12 14 14 14 14 14 14

(g) Sequential Writes (CXL)

1 4 8 12 16 20 24 28
�read Count

0 1 1 2 2 2 2 2
0 1 3 3 3 3 3 3
1 3 5 6 6 6 6 6
2 6 10 12 13 13 13 13
2 6 10 12 13 13 13 13
2 6 10 13 13 13 13 13
2 6 10 12 12 12 12 12
2 6 10 10 10 10 10 10
3 9 12 12 12 12 12 12
3 11 14 14 14 14 14 14
4 12 14 14 14 14 14 14

(h) RandomWrites (CXL)

Figure 3: CPU and CXL memory throughput [GB/s]. We use one CXL device for CXL memory.

3122

1 4 8 12 16 20 24 28 32 36 40 44 48
�read Count

0
10
20
30
40
50
60
70
80
90

�
ro

ug
hp

ut
[G

B/
s]

Sequential Reads

1 4 8 12 16 20 24 28 32 36 40 44 48
�read Count

Random Reads

1 4 8 12 16 20 24 28 32 36 40 44 48
�read Count

Sequential Writes

1 4 8 12 16 20 24 28 32 36 40 44 48
�read Count

Random Writes

Device Count 4 3 2 1 Access Size 64 256 1024 4096

Figure 4: Accesses throughput to memory of multiple CXL devices.

memory accesses [83]). We perform the clwb to ensure that the
target cache line is written back to memory. We increase the address
to be accessed by 8-B after each access for a sequential pattern.
For random accesses, each accessed cache line stores the position
of the next memory access. This results in a chain of dependent
accesses and ensures that a subsequent access operation can only
be performed after the current read is finished. We run 100 M
accesses and measure the latency in nanoseconds (ns) for every
10 000th memory access. A single thread executes the respective
access operation to an 8 GiB memory region.
Results. Figure 5 shows the latency across different percentiles
for 8 B accesses to CPU, remote CPU, and CXL memory. We round
absolute latencies to the nearest multiple of five ns. For sequential
reads, 90% of the accesses to all types of memory finish within 40 ns.
For random reads, compared to the median access latency of CPU
memory, the 99.9th percentile latencies for CPU, remote CPU, and
CXL memory are about 160 ns, 280 ns, and 785 ns higher.

When writing to a cache line that already resides in the cache
and flushing the modified cache line shows median latencies of
125 ns, 240 ns, and 345 ns. Compared to the median access latency
of CPU memory, the 99.9th percentile latencies for CPU, remote
CPU, and CXL memory are about 180 ns, 300 ns, and 410 ns higher.

On average, random reads show the highest CXL memory access
latency of 520 ns, followed by a write latency of 350 ns. Sequential
reads show the lowest average access latency of 65 ns, which is
only slightly higher than 45 ns for CPU memory. We conclude that,
despite the higher access latency of CXL memory, the hardware
prefetcher can hide the access latency for 8-B sequential accesses.

25 50 75 90 95 99 99
.9

0
100
200
300
400
500
600
700
800
900

La
te

nc
y

[n
s]

Sequential Read

25 50 75 90 95 99 99
.9

Random Read

25 50 75 90 95 99 99
.9

Write (clwb)

Percentile

CPU
AVG CPU

Remote CPU
AVG Remote CPU

CXL
AVG CXL

Figure 5: Latency of reads and cached writes with flushes.

4.5 Cost of CXL Memory Accesses
Database management systems (DBMSs) often need to serve work-
loads with datasets larger than CPU memory. Such DBMSs use a
memory buffer and flush buffer pages to disk when the buffer is
full [27, 45]. The resulting storage I/O is a key performance bottle-
neck [27]. CXL memory attached to a server system expands the
system’s total memory capacity with CXL memory as an additional
memory tier [62]. In this experiment, we investigate the impact of
storing data in CXL memory on access performance.
Setup. CXL-Bench runs a workload with a virtual memory region
of 7 GiB and one pool of worker threads performing the memory
accesses. We partition the memory region and pin one partition to
CPU memory and the other to CXL memory. The partition sizes are
set according to the share of pages in CPU or CXL memory. The
shares of pages vary from 100% in CPU and 0% in CXL memory to
0% in CPU and 100% in CXL memory in steps of 5%. A workload
performs either read or write operations with uniform random
access patterns. We vary the number of threads used to execute the
memory accesses. A workload runs for 10 seconds.
Results. Figure 6 shows the results with access sizes of 64 B and
4 KiB. The overall throughput is higher the more threads are used.
The throughput decrease with an increasing share of data stored in
CXL memory varies significantly depending on the access sizes and
access operations (i.e., reads or writes). A larger share of sequential
accesses with an access size of 4 KiB allows the CPU to prefetch
cache lines, which benefits throughput. The figure shows that the
decrease in throughput flattens out the more threads access the
data. The configuration with 4 KiB accesses and 10% of data in
CXL memory is a notable example demonstrating this behavior.
While the performance decreases to a marginal extent with 12
threads, we do not observe a decrease with 16 threads. Using more
threads increases the number of requests sent to the CPU memory
controllers, which are a common point of contention for sequential
accesses [40]. This contention is amplified by the sequential access
pattern, triggering the CPU’s prefetcher to send load requests to
the controllers. In this microbenchmark, the contention at the CPU
memory controllers is the highest when all data is stored in CPU
memory. In the CPU memory-only case, the memory controller of
the CXL device (see Figure 2) is underutilized. Increasing the share
of data located in CXL memory moves the corresponding share of
memory requests to the CXL device’s memory controller. This, in
turn, releases the contention at CPU memory controllers.

3123

0 10 20 30 40 50 60 70 80 90 10
0

0
20
40
60
80

Rand’ Reads, 64 B Access Size

0 10 20 30 40 50 60 70 80 90 10
0

0
20
40
60
80

Rand’ Writes, 64 B Access Size

0 10 20 30 40 50 60 70 80 90 10
0

0
40
80

120
160
200
240

Rand’ Reads, 4096 B Access Size

0 10 20 30 40 50 60 70 80 90 10
0

0
20
40
60
80

100
Rand’ Writes, 4096 B Access Size

Pages in device memory [%]

�
ro

ug
hp

ut
[G

B/
s]

�read Count 1 4 8 12 16

Figure 6: Impact of storing pages in CXL device memory.

5 INDIVIDUAL DATABASE OPERATIONS
Database operations include aspects such as value comparisons,
predicate evaluation, and index operations. We evaluate the impact
of storing data in CXL memory with filtering vectorized column
scans and B+tree index operations. We particularly investigate the
performance impact of placing data in multiple CXL devices. We
characterize the workloads’ memory bottleneck into latency- and
bandwidth-bound using Intel’s VTune Profiler and the top-down
microarchitecture analysis (TMA) method [4, 59, 69, 84].

5.1 Top-Down Microarchitecture Analysis
Micro-Operations and Pipeline Slots. The instruction pipeline
of modern out-of-order CPU cores contains two major components:
the front-end and the back-end. The front-end fetches program
instructions, decodes them into micro-operations (𝜇Ops), and issues
them to the back-end. The back-end executes the 𝜇Ops on available
execution units. TMA abstracts the hardware resources required to
execute a 𝜇Op into pipeline slots, assuming four slots being available
per cycle and core.
Classification Categories. TMA classifies each pipeline slot as
retiring, bad speculation, front-end-bound, or back-end-bound. In
each cycle, a slot can be empty or filled with a 𝜇Op. If it is filled,
the 𝜇Op either retires or does non-useful work due to bad spec-
ulation. An empty slot is caused by a front-end or back-end stall.
We focus on workloads that are memory-bound — a sub-category
of back-end-bound. TMA breaks down memory-bound into store-
bound, L1-bound, L2-bound, L3-bound, and external memory-bound
(also DRAM-bound). DRAM-bound consists of the sub-categories
(memory) bandwidth and (memory) latency. The TMA reports the
share of the total pipeline slots corresponding to each category.
Normalized Metrics. Overlaps in stall time can be counted dou-
ble when measuring the memory-bound and DRAM-bound sub-
categories. In this case, the combined share of the sub-categories
can exceed the parent’s value. Following previous work [4, 69], we
normalize the sub-categories’ values to match the parent-level:

DRAM𝑛𝑜𝑟𝑚 =
DRAM ×memory bound

L1 + L2 + L3 + DRAM + Store
,

S𝑛𝑜𝑟𝑚 =
S × DRAM𝑛𝑜𝑟𝑚

Bandwidth + Latency
,

where 𝑆 represents the sub-category bandwidth or latency.

5.2 In-Memory Scan
We evaluate a vectorized filtering integer scan with 4-B unsigned
integer values. Each scan processes a separate column, storing
512 MiB of data (i.e., about 134 M values). We use an AVX-512 scan
implementation [6] and adapt it for different data placements. The
implementation writes (4-B unsigned integer) offsets as tuple iden-
tifiers (TIDs) for tuples matching the filter predicate to a memory
region. This is common in several database systems [43, 60, 88].
Data Placement. We allocate a memory region for each column
and each TID list. We bind a region to the target NUMA nodes
via the mbind system call. We differentiate between the location
of the columns and the TIDs. The column placement determines
what memory type the CPU reads data from, while the TID list
placement determines the memory type the CPU writes data to. We
evaluate different data placement configurations. A configuration
either stores columns and TIDs in CPU memory (CPU), in CXL
memory (CXL), or columns in CXL memory while TIDs are written
to CPU memory (ColumnsCXL). We further store data placed in
CXL memory on one or four CXL devices (indicated with the suffix
1 or 4). The implementation stores only heap memory allocations
for these two types of data either in CPU or CXL memory. Other
data structures remain in stack memory, which is CPU memory.
Workload. We perform scan executions with multiple numbers of
threads and different selectivities. Each thread scans an individual
column with one less-than predicate. The integer values in the
columns are uniformly distributed. The filter selectivity steers the
read and write ratios. With a selectivity of 100%, each 4-B value
qualifies, and the scan operator writes the corresponding 4-B TID
to the result list. We measure the time required to finish all column
scans. We calculate the throughput in values per second, given the
total number of scanned values and the duration. We multiply this
metric by the value size of 4 B and report the scan throughput in
gigabytes per second. We execute each benchmark configuration
four times and report the average.
Results. Figure 7 shows that the throughput across all configu-
rations increases with lower selectivity. This is expected as lower
selectivity results in fewer writes. When all data is stored in CPU
memory, the scan processes about 260 GB/s with a selectivity of

1 8 16 24 32 40 48
0

40

80

120

160

200

240

�
ro

ug
hp

ut
[G

B/
s]

Selectivity: 100 %

1 8 16 24 32 40 48

Selectivity: 0.1 %

�reads

CPU
ColumnsCXL-1
ColumnsCXL-4
CXL-1
CXL-4

Figure 7: Filtering integer scan performance.

3124

0.1%, which is close to the maximum sequential read-only through-
put measured with CXL-Bench (see Figure 3a). With a selectivity
of 100%, the throughput plateaus at about 84 GB/s. This is close to
the maximum sequential write-only throughput quantified in Sec-
tion 4.2 (see Figure 3c). In the write microbenchmark, we minimize
control flow instructions and keep the fixed data to be written in a
vector register without loading new data into the register. This does
not apply to a database scan where the data to be written needs to
be loaded from memory first and where the read values need to be
compared with the filter predicate. While the CPU can read column
data faster, the write throughput limits the scan progress since it
writes a 4-B TID for each read 4-B value.

The scan achieves higher throughput with more data in CPU
memory. For a given number of CXL devices, the scan throughput is
equal for both ColumnsCXL and CXL configurations with a selectiv-
ity of 0.1% since the number of writes is marginal. With a selectivity
of 0.1%, the throughput reaches about 40 GB/s with one device. This
aligns with the maximum throughput measured with the sequen-
tial read microbenchmark (see Figure 3e). The throughput reaches
92 GB/s with four devices and 48 threads, which is close to the
maximum of 95 GB/s measured with the microbenchmark (see Fig-
ure 4). Unlike the low-selectivity scans, which perform only a few
writes, the placement decision has a significant performance impact
on high-selectivity scans. With a selectivity of 100% and one CXL
device, storing all data in CXL memory achieves 10 GB/s. Storing
only the columns in CXL memory while writing the TIDs to CPU
memory increases the throughput by 4×, reaching the maximum
read throughput of 40 GB/s for a single device.

Increasing the number of CXL memory devices across which the
columns are interleaved increases the scan throughput. When stor-
ing both columns and TIDs in CXL memory, the 100%-selectivity
scan achieves 42 GB/s with four devices and 48 threads. This
is an increase of 4× compared to a single device. The achieved
42 GB/s corresponds to 80% of the write throughput measured in
the write microbenchmark with four devices (see Figure 4). While
the microbenchmark achieves higher throughput due to its write-
optimized design, the scaling with four devices is similar (i.e., 3.7×).

With only columns in CXL memory, the throughput for a se-
lectivity of 100% with four devices increases by 1.8× with 73 GB/s
compared to 40 GB/s with one device. With a selectivity of 0.1%,
the throughput improves by 2.3× from 40 GB/s to 92 GB/s.

5.3 Hybrid Column Placement
We measure the throughput with a share of columns in CXL mem-
ory while TIDs are written to CPU memory.
Data Placement. We place a column entirely either in CPU or
CXL memory. We run threads concurrently, each thread scanning
an individual column. Unlike the previous experiment, we place a
share of columns in CXL memory and the remaining columns in
CPU memory. We vary the share of columns placed in CXL memory
in steps of 10%, starting from 0% up to 100%.
Results. Figure 8 shows the resulting throughput for scan selectiv-
ities of 0.1% and 100% with 10, 20, and 40 threads. The throughput
decreases with an increasing share of data in CXL memory in all
configurations. The throughput decrease is steep for a selectivity
of 0.1%, while the decrease is more gradual for a selectivity of 100%.

0 20 40 60 80 100
0

40

80

120

160

200

240

�
ro

ug
hp

ut
[G

B/
s]

40 �reads

0 20 40 60 80 100

20 �reads

0 20 40 60 80 100

10 �reads

Share of columns in CXL memory [%]

Devices 1 4 # Selectivity 100 % 0.1 %

Figure 8: Scans with a share of columns in CXL memory.

Since the scan throughput is limited by the writes, the absolute
throughput of the high-selectivity scan is significantly lower.

Four devices improve throughput compared to one device. We
discuss the throughput with 40 threads in the following. We mea-
sure throughput with all data in CPU memory as the baseline. With
a selectivity of 0.1%, the throughput achieves 16% of the baseline
throughput with one device when all data is in CXL memory. With
four devices, the throughput achieves 35%. This corresponds to a
speedup of 2.2× with four devices compared to one device.

With a selectivity of 100%, the throughput achieves 48% of
the baseline throughput with one device. With four devices, the
throughput achieves 86%. This corresponds to a speedup of 1.8×
with four devices compared to one device.

For the high-selectivity scan, interleaving a column’s memory
pages across multiple CXL devices improves throughput when data
is stored in CXL memory. With four devices and 20 threads, 50%
of the columns can be stored in CXL memory without a through-
put decrease. A higher level of parallelism with 40 threads allows
putting even 70% of the columns in CXL memory without decreas-
ing the throughput. For in-memory database workloads, including
column scans, the memory controllers are a common point of con-
tention [40]. The contention increases the more threads utilize
memory connected via the same set of memory controllers.

The random write microbenchmark with 4 KiB accesses in Sec-
tion 4.5 increases the load at the memory controllers with additional
threads and the vector store instructions. In this section’s workload,
the increased number of concurrently running scans increases both
read and write requests to the memory controller. In both experi-
ments, more data can be placed in CXL memory without a decrease
in throughput when the contention at the controllers is high.
Bottleneck Analysis. To better reason about the impact of inter-
leaving data across multiple CXL devices, we quantify the CPU’s
performance bottleneck while running the in-memory scan using
the TMA method (see Section 5.1). Figure 9a (left) shows the per-
formance breakdown for the scan with 40 threads and different
data placements. More than 85% of the scan’s 𝜇Ops are backend-
bound in all configurations, and more than 65% 𝜇Ops are DRAM-
bound. The breakdown into memory bandwidth-bound and mem-
ory latency-bound (Figure 9a, right) shows that the scan is by 37%
memory bandwidth-bound with all data in CPU memory. The share
of bandwidth-bound 𝜇Ops is significantly higher with about 70%
when all data is stored in CXL memory due to the lower bandwidth

3125

CP
U

CX
L-

1

CX
L-

4

CP
U

CX
L-

1

CX
L-

40

20

40

60

80

100

Sh
ar

e
of
µ

O
ps

[%
]

Selectivity 0.1 % 100 %

Back-End Bound
Bad Speculation

Front-End Bound
Retiring

CP
U

CX
L-

1

CX
L-

4

CP
U

CX
L-

1

CX
L-

40

20

40

60

80

100

N
or

m
al

iz
ed

sh
ar

e
of
µ

O
ps

[%
]

Selectivity 0.1 % 100 %

Memory Bandwidth
Memory Latency

(a) Scan.

CP
U

CX
L-

1

CX
L-

4

CP
U

CX
L-

1

CX
L-

40

20

40

60

80

100

Sh
ar

e
of
µ

O
ps

[%
]

95% Reads
5% Inserts

5% Reads
95% Inserts

Back-End Bound
Bad Speculation

Front-End Bound
Retiring

CP
U

CX
L-

1

CX
L-

4

CP
U

CX
L-

1

CX
L-

40

20

40

60

80

100

N
or

m
al

iz
ed

sh
ar

e
of
µ

O
ps

[%
]

95% Reads
5% Inserts

5% Reads
95% Inserts

Memory Bandwidth
Memory Latency

(b) B+Tree.

Figure 9: Performance breakdown with 40 threads and all data on one device (CXL-1), four devices (CXL-4), or CPU memory
(CPU) with normalized bandwidth- and latency-bound shares.

of the CXL device(s). With this high degree of bandwidth limitation,
adding more bandwidth with multiple CXL devices increases the
operation’s performance as Figure 8 shows.

5.4 In-Memory B+Tree
The B+tree is a ubiquitous tree-based index structure for DBMSs
and key-value stores. We evaluate a state-of-the-art B+tree with
optimistic lock coupling (BTreeOLC) [46] in CPU memory and CXL
memory, using Mühlig et al.’s implementation [57].1
Data Placement. We quantify the performance with different data
placements. All tree nodes are placed in either CPU memory (CPU)
or CXL memory (CXL). We evaluate these placement configurations
with one and four CXL devices. We allocate a consecutive memory
region and bind it to the corresponding NUMA memory nodes.
Tree node allocation requests receive pointers to chunks of that
memory region with the requested size.
Workloads. We use the YCSB [17] benchmark to run transactional
workloads on the BTreeOLC. We perform a read-heavy (95% reads,
5% inserts) and write-heavy (5% reads, 95% inserts) workload. Fol-
lowing previous work [57], each workload performs 100 M opera-
tions with a Zipfean request distribution on a tree initialized with
100 M records. We run the experiments with different thread counts.
Each thread executes operations in batches of 500. The tree stores
pairs with 8-B keys and 8-B values. Each node has a size of 1024 B.
Results. Figure 10 shows the resulting throughput in million oper-
ations per second. For a given number of CXL devices, storing all
data in CPU memory yields the highest throughput. More threads
increase the throughput across all placement configurations. 48
threads achieve the highest throughput of 94 M op/s and 56 M op/s
for the read-heavy and write-heavy workloads.
Read-Heavy. The throughput measured with all data in CPU mem-
ory is the baseline. We discuss the throughput with 48 threads.
Storing all nodes in CXL memory achieves 38% and 40% of the
baseline throughput with one and four CXL devices. Using four
devices instead of one increases the throughput by 6%.
Write-Heavy. All nodes in CXL memory achieves 25% and 39%
of the baseline throughput with one and four CXL devices. Four

1Source code: https://github.com/jmuehlig/btree-benchmarks

devices increases the throughput by 57% compared to one device.
Using multiple devices increases the throughput more for the write-
heavy workload than for the read-heavy workload.
Bottleneck Analysis. Figure 9b (left) shows the performance
breakdown for the two workloads with 40 threads and different
data placement configurations. The workload is significantly more
backend-bound with data in CXL memory (77% to 88%) than with
all data in CPU memory (47% to 59%). The breakdown into memory
bandwidth-bound and memory latency-bound (Figure 9b, right)
shows different shares between the two workloads. Overall, the
write-heavy workload is significantly more bandwidth-bound: The
read-heavy workload is by only 4% bandwidth-bound with all data
in CPU memory, while the write-heavy workload is 14% bandwidth-
bound. For both CXL data placements, the read-heavy workload
is by 21% bandwidth-bound. The write-heavy workload is by 46%
and 39% bandwidth-bound with one and four CXL devices. This
indicates the potential to increase the bandwidth-bound workload’s
throughput by interleaving the data across multiple devices as mea-
sured in the previous experiment (see Figure 10).

The results indicate that interleaving pages of tree nodes across
multiple memory devices is more beneficial for write-intense work-
loads than for read-intense workloads. The TMA shows that the
insert-heavy workload is more memory bandwidth-bound than the
read-heavy workload. This allows for improving the performance
of write-heavy workloads with additional CXL devices compared
to using only one device.

1 8 16 24 32 40 48

0
10
20
30
40
50
60
70
80
90

�
ro

ug
hp

ut
[M

O
ps

/s
] 95% Read, 5% Insert

1 8 16 24 32 40 48

5% Read, 95% Insert

�reads

CPU
CXL-1
CXL-4

Figure 10: BTreeOLC performance with different data place-
ment configurations (1024 B nodes).

3126

https://github.com/jmuehlig/btree-benchmarks

5.5 B+Tree Node Size Comparison
We analyze the performance impact of placing data across a differ-
ent number of CXL devices with different B+tree node sizes.
Setup. We investigate data placement options with all data in either
CPU or CXL memory. We perform the two B+tree workloads with
48 threads and different node sizes as shown in Figure 11.
Results. A node size of 1 KiB results in the highest throughput
across the three placement options for the read-heavy workload.
The throughput improvement when storing node pages on multiple
devices compared to a single device is higher with a larger node
size. Four devices increase the throughput with a node size of 256 B
by only 4% while the throughput increases by 18% with a node size
of 4 KiB. Interleaving node pages across multiple CXL devices also
shows a higher throughput increase for larger node sizes for the
write-heavy workload: four CXL devices increase the throughput
with a node size of 256 B by 10%, while the throughput increases
by 3.2× with a node size of 4 KiB.

The write-heavy workload with different node sizes shows that
the node size leading to the highest performance depends on the
data placement. A node size of 1 KiB results in the highest through-
put when all data is in CPU memory. When all data is stored on
one CXL device, the throughput is the highest with a node size
of 512 B. With data interleaved across four devices, a node size of
2 KiB yields the highest throughput.
Bottleneck Analysis. We quantify the memory latency and band-
width limitations of the write-heavy workload with the TMA
method. Figure 12 shows the results, where the share of DRAM-
bound 𝜇Ops is the sum of latency-bound and bandwidth-bound
shares. The share of latency-bound 𝜇Ops is the highest with a node
size of 256 B and decreases with higher node sizes. The opposite is
true for the bandwidth-bound share, which is the lowest with 256-B
nodes and increases with the node size. The share of latency-bound
𝜇Ops shows a similar trend for both placement configurations. The
share is slightly lower with four devices. In contrast, the bandwidth-
bound share of 𝜇Ops diverges with an increasing node size, where
the workload becomes more bandwidth-bound with the one-device
configuration due to the lower bandwidth.

Our node size investigation results in two findings. First, it shows
that the optimal node size for high throughput depends on whether
data is stored in CPU memory or CXL memory and the number
of CXL devices. Storing all nodes either in CPU memory, one CXL
device, or four CXL devices requires four different node sizes to
maximize throughput. Second, our investigation shows that chang-
ing the B+tree’s node sizes can shift the shares to which a workload
is bandwidth- or latency-bound. Storing the nodes on multiple CXL
devices compared to a single device enables the workload to utilize
the increased available CXL memory bandwidth. This reduces the
workload’s bandwidth-bound share.

6 ANALYTICAL DATABASE WORKLOAD
After evaluating CXL memory’s impact on isolated database opera-
tions with microbenchmarks, we investigate the impact of placing
data in CXL memory for analytical database workloads. We execute
the TPC-H benchmark on the in-memory database system Hyrise
(Section 6.1) with two data placement configurations (Section 6.2)
and compare the resulting performance (Section 6.3).

25
6

51
2

10
24

20
48

40
96

0

20

40

60

80

100

�
ro

ug
hp

ut
[M

O
ps

/s
] 95% Read, 5% Insert

25
6

51
2

10
24

20
48

40
96

5% Read, 95% Insert

Node Size [Bytes]

CPU
CXL-1
CXL-4

Figure 11: BTreeOLC performance with different data place-
ment configurations and node sizes for 48 threads.

256 512 1024 2048 4096
Node Size [Bytes]

0

20

40

60

80

N
or

m
al

iz
ed

sh
ar

eo
fµ

O
ps

[%
]

CXL-1
CXL-4
Latency Bound
Bandwidth Bound
DRAM Bound

Figure 12: Share of latency- and bandwidth-bound 𝜇Ops of
the write-heavy workload for different node sizes.

6.1 Database System: Hyrise
Hyrise [21] is an open-source, columnar, in-memory database sys-
tem. It uses a vectorized, push-based execution model with operator-
at-a-time execution [10]. Hyrise uses MVCC for transaction pro-
cessing and an append-only approach comparable to PostgreSQL.
Table Layout. Hyrise divides tables into horizontal partitions with
a fixed tuple count. This partitioning splits each column into seg-
ments. A partition stores one segment for each column. Segments
can be individually encoded with various encoding schemes [9],
with dictionary encoding as the default.
Data Placement. Hyrise uses the polymorphic memory resource
(PMR) from the C++ standard library to place data structures in dif-
ferent types of memory [19, 33, 81]. This is achieved by constructing
a data structure with a polymorphic allocator. This allocator uses a
PMR, which defines memory (de)allocation logic. We implement a
PMR (see Section 6.2) to place data in CPU and CXL memory.
Access Counters. Hyrise tracks how often column segments are
accessed [19]. For each segment, it counts accesses for sequential,
monotonic, random, and point access patterns. We use these ac-
cess count statistics in one of the placement strategies to identify
frequently accessed columns.

6.2 Data Placement Strategies
We store base table data in CPU or CXL memory using two dif-
ferent placement strategies. Other data, including temporary data
generated during query processing, is placed in CPU memory.
Linear Memory Allocator. We implement a simple linear mem-
ory allocator. It performs allocations by returning pointers to con-
secutive chunks of a pre-allocated memory region, starting from
the region’s base address. When pre-allocating the memory region

3127

CP
U

1×
CX

L
2×

CX
L

3×
CX

L
4×

CX
L

Placement

0
5

10
15
20
25
30
35
40

�
ro

ug
hp

ut
[�

er
ie

s/
h/

cli
en

t]

(a) Round-robin page
interleaving.

1:
40

1:
20

1:
10 1:
9

1:
8

1:
7

1:
6

1:
5

1:
4

1:
3

1:
2

1:
1

2:
1

3:
1

4:
1

5:
1

6:
1

7:
1

8:
1

9:
1

10
:1

20
:1

40
:1

Page placement ratios
[CPU memory:CXL memory]

0
5

10
15
20
25
30
35
40

�
ro

ug
hp

ut
[�

er
ie

s/
h/

cli
en

t]

Data in CPU memory (baseline)
≥ 0.85×baseline

(b) Weighted page interleaving across CPU memory
and one CXL device.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Columns in CPU memory [Top-n by access frequency]

0
5

10
15
20
25
30
35
40

�
ro

ug
hp

ut
[�

er
ie

s/
h/

cl
ie

nt
]

lo
rd

er
ke

y
+

lp
ar

tk
ey

+
ls

hi
pd

at
e

+
ls

up
pk

ey
+

lq
ua

nt
ity

+
ld

isc
ou

nt
+

ls
hi

pm
od

e
+

lr
et

ur
n�

ag
+

o
or

de
rk

ey
+

le
xt

en
de

dp
ric

e
+

ll
in

es
ta

tu
s

+
lt

ax
+

o
cu

st
ke

y
+

o
or

de
rd

at
e

+
ps

pa
rtk

ey
+

ps
su

pp
ke

y

Data in
CPU
memory
(baseline)

≥ 0.85×
baseline

(c) Column placement across CPU memory and one CXL device.

Figure 13: TPC-H throughput for different placements. (a) shows results for multiple CXL devices, (b,c) for one CXL device.

from which requests to the allocator are served, we place pages
in either CPU or CXL memory. For that pre-allocation, the allo-
cator requires a list of NUMA nodes 𝑛1, 𝑛2, ..., 𝑛𝑚 ∈ N0 and an
interleaving type as input parameters. The interleaving type can
either be round-robin or weighted interleaving. For the latter, we
additionally define a list of page counts 𝑝1, 𝑝2, ..., 𝑝𝑚 ∈ N0. Starting
with 𝑖 = 1 for the allocated memory region, 𝑝𝑖 specifies the number
of consecutive pages placed on node 𝑛𝑖 . The subsequent 𝑝𝑖+1 pages
are placed on 𝑛𝑖+1. If 𝑖 reaches𝑚 + 1, it rolls over to 1.

Regardless of the interleaving type, we pre-allocate the mem-
ory region using the mmap system call and place pages in physical
memory of NUMA nodes according to the interleaving type. We
implement the allocation logic as PMRs to use it with Hyrise’s data
placement approach (see Section 6.1).
Page Interleaving Strategy. This strategy places data with OS
page granularity in CPU and CXL memory. It uses the linear mem-
ory allocator to pre-allocate one large memory region and to inter-
leave pages using one of the described interleaving types. We then
use the allocator to construct the segments of all base tables in the
pre-allocated and interleaved memory region.
Column Placement Strategy. This strategy places data with table
column granularity. Using two linear allocators, we first pre-allocate
two separate memory regions: one for CPU memory and the other
for CXL memory. Pages of one memory region can still be inter-
leaved across multiple NUMA nodes. When using multiple CXL
devices, this allows interleaving pages across all devices, assuming
that each device is configured as a separate NUMA node. After pre-
allocating the two memory regions, we then construct all segments
of a table column in either the CPU or CXL memory region by re-
questing memory from the corresponding allocator. The placement
decision of whether column segments are constructed in CPU or
CXL memory is based on access frequencies. We sum all access
counters of a column to determine a column’s total access count.
The placement strategy then stores the (user-defined) 𝑛 most fre-
quently accessed columns in CPU memory, while the remaining
columns are placed in CXL memory.

6.3 Performance Evaluation
We quantify the average TPC-H query throughput for the two
data placement strategies. In all experiments, we run the TPC-H
benchmark on Hyrise with a scale factor of 100. 10 simulated clients
execute the 22 TPC-H queries in random order for 20 minutes. We

pin threads to the CPU directly connected to the CXL devices. We
use Hyrise’s default dictionary encoding for the segments.

6.3.1 Impact of Multiple Devices. Setup. We first evaluate the
TPC-H performance when placing data across multiple CXL de-
vices. We place all data in the local CPU’s memory and interleave
pages in a round-robin fashion across one to four devices.
Results. Figure 13a shows the results. Storing all segments in
CPU memory achieves a throughput of 38.5 queries per hour per
client (Q/h/c). This throughput is the baseline for the remaining
placement configurations in our evaluation. Placing all segments
in CXL memory with a round-robin page interleaving across one
to four devices yields 71% to 73% (i.e., 27.5 Q/h/c to 28 Q/h/c) of
the baseline throughput. Using multiple devices does not show
significant throughput increases (< 2%) over one CXL device.

The results indicate that the TPC-H workload on Hyrise is mainly
latency-bound. This is supported by Dreseler et al.’s [20] analysis,
showing that Hyrise spends most of the TPC-H query execution in
hash joins and hash aggregations, which results in a large share of
random accesses.

6.3.2 Page Interleaving Strategy. Setup. We interleave pages with
different page count ratios for CPU and CXL memory of one device,
starting with 1:40 (i.e., 98% in CXL memory) up to 40:1.
Results. Figure 13b shows the results. Starting with 73% (i.e.,
28 Q/h/c) of the baseline throughput for a 1:40 ratio, the throughput
converges to the baseline with an increasing share of pages in CPU
memory. The configuration with a 2:1 ratio is the first to place most
pages in CPU memory with only 1

3 of the pages in CXL memory.
This configuration achieves 87% percent of the baseline throughput.

6.3.3 Column Placement Strategy. Setup.We first run all 22 TPC-H
queries once to determine the most frequently accessed columns.
We then take the access counters of all table segments and calculate
the total accesses per column (see Section 6.2). Before running the
TPC-H workload for the main experiment, we place the 𝑛 most
frequently accessed columns in CPU memory and the remaining
columns in CXL memory.
Results. Figure 13c shows the results. Throughput increases with
more columns in CPU memory. Storing the 16 most frequently
accessed columns in CPU memory and the rest in CXL memory
achieves 94% (36 Q/h/c) of the baseline throughput. The cumulative
segment size of the 16 columns is 20.4 GB, which corresponds to

3128

23% of all encoded TPC-H columns (with a total size of 87.7 GB).
Storing the eight most frequently accessed columns (i.e., 15% of
all segments) in CPU memory results in 75% (29 Q/h/s) baseline
performance. Storing o_orderkey additionally in CPU memory
results in 87% (33.5 Q/h/s) with only 16% of all segments in CPU
memory. Keeping o_orderkey in fast CPU memory significantly
improves the throughput, as this is the join column for the most
expensive joins in the TPC-H workload in Hyrise.

We conclude that using CXL memory for cold and warm data
while hot data resides in CPU memory can significantly improve
the performance when a database system uses both CXL and CPU
memory. For workloads with more access skew, we expect an even
higher benefit of access frequency-based data placement.

7 ECONOMIC VIABILITY
Traditional Memory Setups. Increasing the memory capacity in
a traditional server setup with DDR-attached memory is limited
by the number of CPUs and the number of DIMMs that can be
attached to a CPU. Current 4th and 5th Gen Intel Xeon scalable
processors2 support eight memory channels with up to two DIMM
per channel (DPC) and 4 TiB memory capacity. A setup with 4 TiB
require DIMMs with 256 GiB (assuming eight memory channels
and two DPC per CPU). Comparing DIMM prices on NewEgg.com3

shows that current DDR5 DIMMs with such capacities have a more
than 2× higher price per GiB capacity than DIMMs with 64 GiB or
less. 128 GiB DIMMs are by 1.4× to 1.7× more expensiven per GiB
capacity. When avoiding expensive 128 GiB and 256 GiB DIMMs, a
CPU with 16 DIMMs can be configured with up to 1 TiB memory.

Alternatively, server administrators can purchase more expen-
sive servers with multiple CPU sockets, where each socket usu-
ally multiplies the number of DIMM slots. In our example with 16
DIMMs per CPU, an additional CPU per server only adds 1 TiB (i.e,
16×64 GiB) when avoiding large and expensive DIMM sizes.
CXL Memory Expansion devices can be cheaper than using
only CPU memory. The CXL devices used in this work host DDR4
DIMMs, which are cheaper (by > 2× for most DIMM sizes) than
DDR5 DIMMs. CXL devices are connected via a PCIe/CXL slot. A
few DDR4 DIMMs are sufficient to match the theoretical bandwidth
of a PCIe 5 link (e.g., ∼64 GB/s with 16 lanes).
Cost Analysis. To analyze the potential cost-benefit of CXL mem-
ory devices, we estimate prices of memory configurations with
and without CXL memory. A configuration’s price includes the
cost of CPUs and DIMMs. We use CPU data, including the recom-
mended price, from Intel’s product specifications and prices listed
on NewEgg.com for DIMMs. We consider the 4th and 5th Gen Intel
Xeon scalable processors, specifically the model 8452Y with a cost
of about $4 000 as it is the cheapest Platinum CPU supporting two
DPC. We further consider DDR4 and DDR5 DIMMs.

We assume CPUs with a full memory population (i.e.,
16×16/32/64/128/256 GiB DDR5 DIMMs) and a CXL memory device
with 8×128 GiB DDR4 DIMMs, like a CXL device used in our exper-
iments. We compare configurations with only CPU memory, CPU
memory plus one CXL device, and CPU memory plus one to four

2Intel Product Specifications: https://www.intel.com/content/www/us/en/ark.html
3We collected prices of NEMIX DDR4/DDR5 288-PIN RDIMMs in March 2025.

0 1 2 3 4 5 6 7 8

Memory capacity demand [TiB]

0

20

40

60

80

100

120

Pr
ic

e
[�

ou
sa

nd
$]

of
CP

Us
an

d
D

IM
M

s

CPU Memory

CPU Memory +
1 CXL Device

CPU Memory +
1 to 4 CXL Devices

Figure 14: Cheapest CPU and memory configurations with
and without CXL memory devices.

CXL devices. We choose the cheapest option for a given capacity
demand and consider setups with up to two CPUs.

Figure 14 shows the price of the cheapest configuration for a
given memory capacity demand. For demands less than 1 TiB, using
only CPU memory with up to 16×64 GiB is cheaper than a setup
with a CXL device. For demands larger than 3 TiB up to 4 TiB, a
setup with one CXL device and two CPUs with 32×64 GiB is not
sufficient (resulting in 3 TiB). The required configuration contains
CPU memory that is sufficiently large (i.e., 4 TiB with 128 GiB
DIMMs) plus the additional CXL device. This device generates cost
for capacity that is not required. With two devices, the CXL config-
uration is sufficiently large and cheaper. With 4 TiB < demand ≤
5 TiB, using one CXL device reduces cost by up to 61%. Demands
larger than 5 TiB require CPU memory with 32×256 GiB DIMMs,
even with one CXL device. The resulting CPU memory capacity
is sufficiently large for demands up to 8 TiB, making the config-
urations with one CXL device more expensive. Using up to four
devices reduces cost by 46% to 64% (4 TiB < demand ≤ 8 TiB).

Recent work suggests reusing memory DIMMs of decommis-
sioned servers [8, 14, 74, 87], which further reduces the TCO of
CXL devices, making them attractive for a wide range of setups.

8 DISCUSSION
Our experiments show the differences in various access character-
istics of CXL memory and CPU memory.
CXL for Sequential Accesses. In our latency study, especially
random reads exhibit high access latency, while sequential accesses
allow the hardware prefetcher to hide the increased access latency
for the majority of accesses. Results in Figure 5 demonstrate that
writes have a latency of almost 3× of CPU memory writes. These
results indicate that, when a database system utilizes both CPU and
CXL memory, data structures that are primarily read randomly (e.g.,
hash tables) or frequently written should be placed in CPU memory
to optimize performance, while sequentially accessed data (e.g.,
frequently scanned columns) can be placed in CXL memory. This
aligns with our column scan experiment for high selectivity, where
reading columns sequentially from four devices and writing data to
CPU memory achieves almost 90% of the baseline performance with
all data in CPU memory. While the hardware prefetcher cannot
hide the higher latency of random accesses to CXL memory, soft-
ware prefetching can be used [38, 42, 52]. When database systems
increasingly use CXL memory, software prefetching will become
even more attractive.

3129

https://www.intel.com/content/www/us/en/ark.html

Multiple Devices for Bandwidth Expansion. Attaching multi-
ple CXL memory expansion devices to a CPU increases the overall
memory bandwidth. Both our throughput microbenchmarks and
database operation analysis show that bandwidth-bound work-
loads can benefit from the bandwidth of multiple devices. Our
B+tree performance study with varying node sizes demonstrates
that hardware-conscious tuning of data structures can shift a work-
load accessing a data structure from memory latency-bound to
memory bandwidth-bound and vice versa. With limitations of CXL
memory both in terms of latency and bandwidth, memory bottle-
necks can shift significantly when the corresponding data is in CXL
memory. This shows the importance of careful hardware bottleneck
analysis of existing data structures and database operators and of
adapting them to the characteristics of CXL memory.
CXL for Warm and Cold Data. Our TPC-H performance evalua-
tion shows that prioritizing hot data for CPU memory and placing
warm and cold data in CXL memory allows for placing the majority
of data in CXL memory with only a moderate performance decrease.
As real-world workloads often have more access skew than the
TPC-H workload [11, 61], access frequency-based data placement
could be even more beneficial in real deployments. While finding an
optimal placement strategy is not the focus of this work, developing
lightweight approaches for identifying frequently accessed data
and studying the benefit of different placement granularities (e.g.,
table, column, or page) can improve the utilization of CXL mem-
ory in database systems. Such approaches may involve co-designs
between database systems and operating systems [5].
CXL Lowers Costs. In our economic viability study, we show that
server setups with CXL memory can be significantly cheaper. Com-
bined with access frequency-based data placement, CXL memory
serves as an option for processing larger amounts of data in mem-
ory with CXL-attached memory capacities for significantly lower
cost and with only a moderate performance decrease.
New Use Cases with CXL. While our work focuses on the mem-
ory expansion use case, recent work suggested database archi-
tectures with shared CXL memory attached to multiple compute
nodes [14, 32]. Traditionally, when large intermediate results exceed
the available CPU memory capacity, the database system spills data
partially to storage. Reading data sequentially from CXL memory
achieves more throughput than random accesses. Using CXL shared
memory as an alternative for storing large intermediate results can
be an approach for increasing performance in out-of-CPU-memory
scenarios. When intermediate results are subsequently processed
by a filtering scan or join—both of which involve scanning, i.e.,
sequentially processing the input table—spilling to CXL memory
can be a suitable use case for shared CXL memory.

9 RELATEDWORK
Our work is an in-depth performance study investigating the impact
of interleaving data across multiple real CXL memory devices on
individual database operations. Existing related studies focus on
a single CXL memory expansion device [24, 25, 31, 39, 72], or do
not investigate the CXL memory performance impact on individual
database operations [2, 3, 26, 44, 51, 68, 72, 73].

Research efforts on SAP HANA [2, 3, 44] have investigated the
impact of storing table and temporary operational data on CXL

memory devices with end-to-end database benchmarks. Recent
work [3] shows that the performance decrease is low when placing
data on CXL memory for transactional (TPC-C) workloads, while
it is significant for analytical (TPC-DS). The authors attribute the
low impact for transactional workloads to general synchronization
overhead due to many conflicting locks. Our work complements
end-to-end workload evaluations by a detailed analysis of the key
database operations from such workloads, which provides deeper
insights for algorithm and data structure designs on CXL.

Cho et al. [13] and Tang et al. [73] demonstrate the value of
reducing the memory controller contention using CXL with sim-
ulations and ASIC-based CXL memory devices, respectively. Our
findings on performance decrease when placing an increasing share
of data on CXL memory align with the results of these works.

Recent experimental evaluations [31, 51, 72, 73] investigate mem-
ory bandwidth expansion using Linux’s weighted page interleaving
to place pages across local and CXL memory. Liu et al. [51] show
that page interleaving can outperform CPU-only memory perfor-
mance, but the performance impact highly depends on the inter-
leaving ratio. The optimal interleaving ratio is workload-dependent,
and poor interleaving can significantly reduce performance. Similar
to our work, these works highlight the importance of examining
data structures and recent hardware for different approaches to
interleaving to develop generalizable recommendations.

10 CONCLUSION
In this paper, we experimentally evaluate and analyze CXL memory
performance with four x16 PCIe/CXL memory expansion devices
directly attached to a CPU. We quantify the CXL memory access
throughput and latency with microbenchmarks, study the perfor-
mance of single instruction multiple data (SIMD) column scans and
B+tree workloads, and quantify the impact of storing data in CXL
memory for concurrently running TPC-H queries. We investigate
the impact of interleaving data across multiple CXL devices.

Our evaluation shows that bandwidth-bound workloads (e.g.,
SIMD scans and write-heavy B+tree workloads) can benefit from
scaling up the CXL memory bandwidth with multiple devices. We
show that workloads limited by write-throughput profit from stor-
ing read-only data in CXL memory while performing writes to
faster CPU memory. We conclude from our B+tree study with mul-
tiple node sizes that, for memory-bound workloads, adapting data
structures according to the memory bottleneck (i.e., bandwidth- or
latency-bound) improves performance. We conclude that, for analyt-
ical workloads, server setups with CXL memory extension devices
have the potential to significantly reduce server costs while still
providing high query throughput when using placement strategies
that prioritize keeping frequently accessed data in CPU memory.

ACKNOWLEDGMENTS
We thank Seagate Technology LLC and Intel Corporation for their
support, and Martin Boissier and the anonymous reviewers for
their feedback. This work was partially funded by SAP, the German
Research Foundation (ref. 414984028), the European Union’s Hori-
zon 2020 research and innovation programme (ref. 957407), and
the Independent Research Fund Denmark’s Inge Lehmann program
(grant agreement number 0171-00062B).

3130

REFERENCES
[1] Advanced Micro Devices, Inc. 2023. AMD CDNA 3 Architecture.

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-
docs/white-papers/amd-cdna-3-white-paper.pdf Last access: 2025-06-13.

[2] Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin Kim, Jaemin
Jung, Oliver Rebholz, Vincent Pham, Krishna Malladi, and Yang Seok Ki. 2022.
Enabling CXL Memory Expansion for In-Memory Database Management Sys-
tems. In Proceedings of the International Workshop on Data Management on New
Hardware (DaMoN). 1–5.

[3] Minseon Ahn, Thomas Willhalm, Norman May, Donghun Lee, Suprasad Mutalik
Desai, Daniel Booss, Jungmin Kim, Navneet Singh, Daniel Ritter, and Oliver
Rebholz. 2024. An Examination of CXL Memory Use Cases for In-Memory
Database Management Systems using SAP HANA. Proceedings of the VLDB
Endowment (PVLDB) 17, 12 (2024), 3827–3840.

[4] Mikkel Møller Andersen and Pinar Tözün. 2022. Micro-architectural analysis
of a learned index. In Proceedings of the International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management (aiDM). 5:1–5:12.

[5] Alexander Baumstark, Marcus Paradies, and Kai-Uwe Sattler. 2025. Lightweight
Memory Access Monitoring for Dynamic Data Placement in Tiered Memory Sys-
tems. In Proceedings of the Conference Datenbanksysteme in Business, Technologie
und Web Technik (BTW). 265–276.

[6] Lawrence Benson, Richard Ebeling, and Tilmann Rabl. 2023. Evaluating SIMD
Compiler-Intrinsics for Database Systems. In Proceedings of the International
Workshop on Accelerating Analytics and Data Management Systems Using Modern
Processor and Storage Architectures (ADMS).

[7] Lawrence Benson, Leon Papke, and Tilmann Rabl. 2022. PerMA-bench: bench-
marking persistent memory access. Proceedings of the VLDB Endowment (PVLDB)
15, 11 (2022), 2463–2476.

[8] Daniel S Berger, Daniel Ernst, Huaicheng Li, Pantea Zardoshti, Monish Shah,
Samir Rajadnya, Scott Lee, Lisa Hsu, Ishwar Agarwal, Mark D Hill, et al. 2023.
Design tradeoffs in CXL-based memory pools for public cloud platforms. IEEE
Micro 43, 2 (2023), 30–38.

[9] Martin Boissier. 2021. Robust and Budget-Constrained Encoding Configurations
for In-Memory Database Systems. Proceedings of the VLDB Endowment (PVLDB)
15, 4 (2021), 780–793.

[10] Martin Boissier, Marcel Weisgut, and Tilmann Rabl. 2025. Compression in Main
Memory Database Systems: Cost and Performance Trade-Offs of Workload-
Driven Data Encoding. In Proceedings of the Conference Datenbanksysteme in
Business, Technologie und Web Technik (BTW). 779–786.

[11] Peter A. Boncz, Angelos-Christos G. Anadiotis, and Steffen Kläbe. 2017. JCC-H:
Adding Join Crossing Correlations with Skew to TPC-H. In Proceedings of the
TPC Technology Conference (TPCTC). 103–119.

[12] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu,
Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang,
Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei
Zhao, Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. Po-
larDB Serverless: A Cloud Native Database for Disaggregated Data Centers. In
Proceedings of the International Conference on Management of Data (SIGMOD).
2477–2489.

[13] Albert Cho, Anish Saxena, Moinuddin Qureshi, and Alexandros Daglis. 2024.
COAXIAL: A CXL-Centric Memory System for Scalable Servers. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC).

[14] Yannis Chronis, Anastasia Ailamaki, Lawrence Benson, Helena Caminal, Jana
Gičeva, Dave Patterson, Eric Sedlar, and Lisa Wu Wills. 2025. Databases in the
Era of Memory-Centric Computing. In Proceedings of the Conference on Innovative
Data Systems Research (CIDR).

[15] CCIX Consortium. 2019. An Introduction to CCIX - White Paper.
https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-
Paper-Rev111219.pdf. Last access: 2025-06-13.

[16] CXL Consortium. 2023. Compute Express Link Specification - Revision 3.1.
[17] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the ACM Symposium on Cloud Computing. 143–154.

[18] NVIDIA Corporation. 2024. NVIDIA GH200 Grace Hopper Superchip Architec-
ture. Whitepaper. Version V1.21.

[19] Markus Dreseler. 2022. Automatic Tiering for In-Memory Database Systems.
Doctoral Thesis. University of Potsdam.

[20] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H Choke Points and Their Optimizations. Proceedings of the
VLDB Endowment (PVLDB) 13, 8 (2020), 1206–1220.

[21] Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck, Matthias
Uflacker, and Hasso Plattner. 2019. Hyrise Re-engineered: An Extensible Database
System for Research in Relational In-Memory Data Management. In Proceed-
ings of the International Conference on Extending Database Technology (EDBT).
313–324.

[22] Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud Ob-
ject Storage for High-Performance Analytics. Proceedings of the VLDB Endowment
(PVLDB) 16, 11 (2023), 2769–2782.

[23] Mohamad El-Batal and Hongjian Fan. 2024. Seagate Composable Memory Ap-
pliance (Presentation at Open Compute Project). https://www.youtube.com/
watch?v=RjKP1mg7bu8&t=1660s Last access: 2025-06-13.

[24] Yehonatan Fridman, Suprasad Mutalik Desai, Navneet Singh, Thomas Willhalm,
and Gal Oren. 2023. CXL Memory as Persistent Memory for Disaggregated
HPC: A Practical Approach. In Proceedings of the Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis (SC-
W). 983–994.

[25] Andreas Geyer, Johannes Pietrzyk, Alexander Krause, Dirk Habich, Wolfgang
Lehner, Christian Färber, and Thomas Willhalm. 2023. Near to Far: An Evaluation
of Disaggregated Memory for In-Memory Data Processing. In Proceedings of the
Workshop on Disruptive Memory Systems (DIMES). 16–22.

[26] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022.
Direct Access, High-Performance Memory Disaggregation with DirectCXL. In
Proceedings of the USENIX Annual Technical Conference (USENIX ATC). 287–294.

[27] Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi A. Kuno, Joseph A. Tucek,
Mark Lillibridge, and Alistair C. Veitch. 2014. In-Memory Performance for Big
Data. Proceedings of the VLDB Endowment (PVLDB) 8, 1 (2014), 37–48.

[28] Yunyan Guo and Guoliang Li. 2024. A CXL-Powered Database System: Oppor-
tunities and Challenges. In Proceedings of the International Conference on Data
Engineering (ICDE). 5593–5604.

[29] Xiangpeng Hao, Xinjing Zhou, Xiangyao Yu, and Michael Stonebraker. 2024.
Towards Buffer Management with Tiered Main Memory. Proceedings of the ACM
on Management of Data (PACMMOD) 2, 1 (2024), 1–26.

[30] Seokbin Hong, Wonok Kwon, and Myeonghoon Oh. 2020. Hardware Implemen-
tation and Analysis of Gen-Z Protocol for Memory-Centric Architecture. IEEE
Access 8 (2020), 127244–127253.

[31] Wentao Huang, Mo Sha, Mian Lu, Yuqiang Chen, Bingsheng He, and Kian-Lee
Tan. 2024. Bandwidth Expansion via CXL: A Pathway to Accelerating In-Memory
Analytical Processing. In Proceedings of the International Workshop on Accelerating
Analytics and Data Management Systems Using Modern Processor and Storage
Architectures (ADMS).

[32] Yibo Huang, Newton Ni, Vijay Chidambaram, Emmett Witchel, and Dixin Tang.
2025. Pasha: An Efficient, Scalable Database Architecture for CXL Pods. Proceed-
ings of the Conference on Innovative Data Systems Research (CIDR).

[33] Ben Hurdelhey, Marcel Weisgut, and Martin Boissier. 2023. Workload-Driven
Data Placement for Tierless In-Memory Database Systems. In Proceedings of the
Conference Datenbanksysteme in Business, Technologie und Web Technik (BTW).
47–70.

[34] Intel Corporation. 2022. Technical Overview Of The 4th Gen Intel Xeon Scal-
able processor family. https://www.intel.com/content/www/us/en/developer/
articles/technical/fourth-generation-xeon-scalable-family-overview.html Last
access: 2025-06-13.

[35] Intel Corporation. 2023. Product Brief: 5th Gen Intel® Xeon® Scalable Processors
for Edge - Accelerate Demanding and Evolving Edge Workloads with Built-in
AI and Security. https://cdrdv2-public.intel.com/795371/5thgen-xeon-edge-
product-brief.pdf Last access: 2025-06-13.

[36] Intel Corporation. 2024. 4th Gen Intel® Xeon® Scalable Processor XCC (Co-
dename Sapphire Rapids) Uncore Performance–Monitoring Guide. Revision
001. https://cdrdv2.intel.com/v1/dl/downloadStart/639667?fileName=639667-
SPR_XCC_UPG_Guide-Rev_001.pdf Last access: 2025-06-13.

[37] Intel Corporation. 2024. Intel® Xeon® Gold 6542Y Prozessor.
https://www.intel.de/content/www/de/de/products/sku/237559/intel-xeon-
gold-6542y-processor-60m-cache-2-90-ghz/specifications.html Last access:
2025-06-13.

[38] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin J. Levandoski,
and Gor V. Nishanov. 2018. Exploiting Coroutines to Attack the "Killer Nanosec-
onds". Proceedings of the VLDB Endowment (PVLDB) 11, 11 (2018), 1702–1714.

[39] Kyungsan Kim, Hyunseok Kim, Jinin So, Wonjae Lee, Junhyuk Im, Sungjoo Park,
Jeonghyeon Cho, and Hoyoung Song. 2023. SMT: Software-Defined Memory
Tiering for Heterogeneous Computing Systems With CXL Memory Expander.
IEEE Micro 43, 2 (2023), 20–29.

[40] Thomas Kissinger, Dirk Habich, and Wolfgang Lehner. 2018. Adaptive Energy-
Control for In-Memory Database Systems. In Proceedings of the International
Conference on Management of Data (SIGMOD). 351–364.

[41] Dario Korolija, Dimitrios Koutsoukos, Kimberly Keeton, Konstantin Taranov,
Dejan S. Milojicic, and Gustavo Alonso. 2022. Farview: Disaggregated Memory
with Operator Off-loading for Database Engines. In Proceedings of the Conference
on Innovative Data Systems Research (CIDR).

[42] Roland Kühn, Jan Mühlig, and Jens Teubner. 2024. How to Be Fast and Not
Furious: Looking Under the Hood of CPU Cache Prefetching. In Proceedings of
the International Workshop on Data Management on New Hardware (DaMoN).
9:1–9:10.

[43] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas Neu-
mann, and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on

3131

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf
https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf
https://www.youtube.com/watch?v=RjKP1mg7bu8&t=1660s
https://www.youtube.com/watch?v=RjKP1mg7bu8&t=1660s
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://cdrdv2-public.intel.com/795371/5thgen-xeon-edge-product-brief.pdf
https://cdrdv2-public.intel.com/795371/5thgen-xeon-edge-product-brief.pdf
https://cdrdv2.intel.com/v1/dl/downloadStart/639667?fileName=639667-SPR_XCC_UPG_Guide-Rev_001.pdf
https://cdrdv2.intel.com/v1/dl/downloadStart/639667?fileName=639667-SPR_XCC_UPG_Guide-Rev_001.pdf
https://www.intel.de/content/www/de/de/products/sku/237559/intel-xeon-gold-6542y-processor-60m-cache-2-90-ghz/specifications.html
https://www.intel.de/content/www/de/de/products/sku/237559/intel-xeon-gold-6542y-processor-60m-cache-2-90-ghz/specifications.html

Compressed Storage using both Vectorization and Compilation. In Proceedings
of the International Conference on Management of Data (SIGMOD). 311–326.

[44] Donghun Lee, Thomas Willhalm, Minseon Ahn, Suprasad Mutalik Desai, Daniel
Booss, Navneet Singh, Daniel Ritter, Jungmin Kim, and Oliver Rebholz. 2023.
Elastic Use of Far Memory for In-Memory Database Management Systems. In
Proceedings of the International Workshop on Data Management on New Hardware
(DaMoN). 35–43.

[45] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In Proceedings
of the International Conference on Data Engineering (ICDE). 185–196.

[46] Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic Lock
Coupling: A Scalable and Efficient General-Purpose Synchronization Method.
IEEE Data Engineering Bulletin 42, 1 (2019), 73–84.

[47] Alberto Lerner and Gustavo Alonso. 2024. CXL and the Return of Scale-Up
Database Engines. Proceedings of the VLDB Endowment (PVLDB) 17, 10 (2024),
2568–2575.

[48] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-Based Memory
Pooling Systems for Cloud Platforms. In Proceedings of the International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 574–587.

[49] Shang Li, Dhiraj Reddy, and Bruce L. Jacob. 2018. A performance & power
comparison of modern high-speed DRAM architectures. In Proceedings of the
International Symposium on Memory Systems (MEMSYS). 341–353.

[50] Yinan Li, Ippokratis Pandis, René Müller, Vijayshankar Raman, and Guy M.
Lohman. 2013. NUMA-aware algorithms: the case of data shuffling. In Proceedings
of the Conference on Innovative Data Systems Research (CIDR).

[51] Jinshu Liu, Hamid Hadian, Hanchen Xu, Daniel S. Berger, and Huaicheng Li.
2024. Dissecting CXL Memory Performance at Scale: Analysis, Modeling, and
Optimization. CoRR abs/2409.14317 (2024). arXiv:2409.14317

[52] Fabian Mahling, Marcel Weisgut, and Tilmann Rabl. 2025. Fetch Me If You
Can: Evaluating CPU Cache Prefetching and Its Reliability on High Latency
Memory. In Proceedings of the International Workshop on Data Management on
New Hardware (DaMoN).

[53] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agar-
wal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit O.
Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent Page Placement for
CXL-Enabled Tiered-Memory. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS). 742–755.

[54] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava Min,
Mosha Pasumansky, and Jeff Shute. 2020. Dremel: A Decade of Interactive SQL
Analysis at Web Scale. Proceedings of the VLDB Endowment (PVLDB) 13, 12 (2020),
3461–3472.

[55] Seagate Technology Team Member(s). 2024. Composable Memory Appliance
(CMA) Base Specification V1.1. Open Compute Project.

[56] Timothy Prickett Morgan. 2020. CXL And Gen-Z Iron Out A Coherent Intercon-
nect Strategy. https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-
out-a-coherent-interconnect-strategy/ Last access: 2025-06-13.

[57] Jan Mühlig and Jens Teubner. 2021. MxTasks: How to Make Efficient Synchro-
nization and Prefetching Easy. In Proceedings of the International Conference on
Management of Data (SIGMOD). 1331–1344.

[58] Xi Pang and Jianguo Wang. 2024. Understanding the Performance Implications
of the Design Principles in Storage-Disaggregated Databases. Proceedings of the
ACM on Management of Data (PACMMOD) 2, 3 (2024), 1–26.

[59] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki.
2019. Interleaving with coroutines: a systematic and practical approach to hide
memory latency in index joins. Proceedings of the VLDB Endowment (PVLDB) 28,
4 (2019), 451–471.

[60] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proceedings of the International Conference on Management of Data
(SIGMOD). 1981–1984.

[61] Tilmann Rabl, Meikel Poess, Hans-Arno Jacobsen, Patrick E. O’Neil, and Eliza-
beth J. O’Neil. 2013. Variations of the star schema benchmark to test the effects
of data skew on query performance. In Proceedings of the International Conference
on Performance Engineering (ICPE). 361–372.

[62] Niklas Riekenbrauck, Marcel Weisgut, Daniel Lindner, and Tilmann Rabl. 2024. A
Three-Tier Buffer Manager Integrating CXL Device Memory for Database System.
In Proceedings of the Joint International Workshop on Big Data Management on
Emerging Hardware and Data Management on Virtualized Active Systems (HardBD
& Active).

[63] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. 2023. Query Processing on
Heterogeneous CPU/GPU Systems. ACM Computing Surveys (CSUR) 55, 2 (2023),
11:1–11:38.

[64] Subhash Saini, John Baron, Johnny Chang, Robert Hood, and Haoqiang Jin. 2022.
Performance Evaluation of a Supercomputer Based on AMD Rome and Intel

Cascade Lake Processors. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). 848–859.

[65] Gabin Schieffer, Ruimin Shi, Stefano Markidis, Andreas Herten, Jennifer Faj, and
Ivy Peng. 2024. Understanding Data Movement in AMD Multi-GPU Systems with
Infinity Fabric. In Proceedings of the Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis (SC-W). 567–576.

[66] Tobias Schmidt, Dominik Durner, Viktor Leis, and Thomas Neumann. 2024. Two
Birds With One Stone: Designing a Hybrid Cloud Storage Engine for HTAP.
Proceedings of the VLDB Endowment (PVLDB) 17, 11 (2024), 3290–3303.

[67] Debendra Das Sharma. 2023. Compute Express Link (CXL): Enabling Heteroge-
neous Data-Centric Computing With Heterogeneous Memory Hierarchy. IEEE
Micro 43, 2 (2023), 99–109. https://doi.org/10.1109/MM.2022.3228561

[68] Debendra Das Sharma, Robert Blankenship, and Daniel S. Berger. 2024. An
Introduction to the Compute Express Link (CXL) Interconnect. ACM Computing
Surveys (CSUR) 56, 11 (2024), 290:1–290:37.

[69] Utku Sirin, Ahmad Yasin, and Anastasia Ailamaki. 2017. A methodology for
OLTP micro-architectural analysis. In Proceedings of the International Workshop
on Data Management on New Hardware (DaMoN). 1:1–1:10.

[70] Lukas Steiner, Matthias Jung, and Norbert Wehn. 2021. Exploration of DDR5
with the Open-Source Simulator DRAMSys. In Proceedings of the Workshop on
Methods and Description Languages for Modelling and Verification of Circuits and
Systems (MBMV). 1–11.

[71] Jeffrey Stuecheli, William J. Starke, John D. Irish, L. Baba Arimilli, Daniel M.
Dreps, Bart Blaner, Curt Wollbrink, and Brian Allison. 2018. IBM POWER9 opens
up a new era of acceleration enablement: OpenCAPI. IBM Journal of Research
and Development 62, 4/5 (2018), 8:1–8:8.

[72] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, Ren Wang, Jung Ho
Ahn, Tianyin Xu, and Nam Sung Kim. 2023. Demystifying CXL Memory with
Genuine CXL-Ready Systems and Devices. In Proceedings of the International
Symposium on Microarchitecture (MICRO). 105–121.

[73] Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu, Qirui Yang, Hao Xiang,
Tongping Liu, Jiaxin Shan, Ruoyun Huang, Cheng Zhao, Cheng Chen, Hui Zhang,
Fei Liu, Shuai Zhang, Xiaoning Ding, and Jianjun Chen. 2024. Exploring Perfor-
mance and Cost Optimization with ASIC-Based CXL Memory. In Proceedings of
the European Conference on Computer Systems (EuroSys). 818–833.

[74] Jaylen Wang, Daniel S Berger, Fiodar Kazhamiaka, Celine Irvene, Chaojie Zhang,
Esha Choukse, Kali Frost, Rodrigo Fonseca, Brijesh Warrier, Chetan Bansal, et al.
2024. Designing cloud servers for lower carbon. In Proceedings of the International
Symposium on Computer Architecture (ISCA). 452–470.

[75] Jianguo Wang and Qizhen Zhang. 2023. Disaggregated Database Systems. In
Companion of the International Conference on Management of Data (SIGMOD /
PODS). 37–44.

[76] Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A Write-Optimized
Distributed B+Tree Index on Disaggregated Memory. In Proceedings of the Inter-
national Conference on Management of Data (SIGMOD). 1033–1048.

[77] Ruihong Wang, Chuqing Gao, Jianguo Wang, Prishita Kadam, M. Tamer Özsu,
and Walid G. Aref. 2024. Optimizing LSM-based indexes for disaggregated
memory. The VLDB Journal 33, 6 (2024), 1813–1836.

[78] Ruihong Wang, Jianguo Wang, Stratos Idreos, M. Tamer Özsu, and Walid G. Aref.
2022. The Case for Distributed Shared-Memory Databases with RDMA-Enabled
Memory Disaggregation. Proceedings of the VLDB Endowment (PVLDB) 16, 1
(2022), 15–22.

[79] Ruihong Wang, Jianguo Wang, Prishita Kadam, M. Tamer Özsu, and Walid G. Aref.
2023. dLSM: An LSM-Based Index for Memory Disaggregation. In Proceedings of
the International Conference on Data Engineering (ICDE). 2835–2849.

[80] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao Wang, Blaise
Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang, and Dim-
itrios Skarlatos. 2022. TMO: transparent memory offloading in datacenters. In
Proceedings of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). 609–621.

[81] Marcel Weisgut, Daniel Ritter, Martin Boissier, and Michael Perscheid. 2022.
Separated Allocator Metadata in Disaggregated In-Memory Databases: Friend or
Foe?. In Proceedings of the IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 1202–1208.

[82] Christian Winter, Jana Giceva, Thomas Neumann, and Alfons Kemper. 2022.
On-Demand State Separation for Cloud Data Warehousing. Proceedings of the
VLDB Endowment (PVLDB) 15, 11 (2022), 2966–2979.

[83] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-
son. 2020. An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory. In Proceedings of the USENIX Conference on File and Storage Technologies
(FAST). 169–182.

[84] Ahmad Yasin. 2014. A Top-Down method for performance analysis and counters
architecture. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 35–44.

[85] Qizhen Zhang, Yifan Cai, Sebastian Angel, Vincent Liu, Ang Chen, and
Boon Thau Loo. 2020. Rethinking Data Management Systems for Disaggre-
gated Data Centers. In Proceedings of the Conference on Innovative Data Systems

3132

https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://doi.org/10.1109/MM.2022.3228561

Research (CIDR).
[86] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Jimmy Yang, Wei Cao, Feifei Li, Bo

Wang, Jing Fang, Yuhui Wang, Jingze Huo, and Chao Bi. 2021. Towards Cost-
Effective and Elastic Cloud Database Deployment via Memory Disaggregation.
Proceedings of the VLDB Endowment (PVLDB) 14, 10 (2021), 1900–1912.

[87] Yuhong Zhong, Daniel S Berger, Carl Waldspurger, Ryan Wee, Ishwar Agarwal,
Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D Hill, Mosharaf Chowdhury,

et al. 2024. Managing Memory Tiers with CXL in Virtualized Environments. In
Proceedings of the USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI). 37–56.

[88] Marcin Zukowski, Peter A. Boncz, Niels Nes, and Sándor Héman. 2005. Mon-
etDB/X100 - A DBMS In The CPU Cache. IEEE Data Engineering Bulletin 28, 2
(2005), 17–22.

3133

	Abstract
	1 Introduction
	2 Background
	2.1 Memory Interconnects
	2.2 Compute Express Link (CXL)

	3 Microbenchmark Framework
	4 CXL Memory Access Performance
	4.1 Hardware Setup
	4.2 Maximum Sustained Throughput
	4.3 Scaling-Up Throughput With Devices
	4.4 Latency
	4.5 Cost of CXL Memory Accesses

	5 Individual Database Operations
	5.1 Top-Down Microarchitecture Analysis
	5.2 In-Memory Scan
	5.3 Hybrid Column Placement
	5.4 In-Memory B+Tree
	5.5 B+Tree Node Size Comparison

	6 Analytical Database Workload
	6.1 Database System: Hyrise
	6.2 Data Placement Strategies
	6.3 Performance Evaluation

	7 Economic Viability
	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

