Effective and Efficient Distributed Temporal Graph Learning
through Hotspot Memory Sharing

Zhejiang Key Laboratory of

Longjiao Zhang Rui Wang”
Zhejiang University Zhejiang University
zhljJoan@zju.edu.cn High-Tech Zone (Binjiang)

Institute of Blockchain and

Data Security
rwang2l@zju.edu.cn

Wenjie Huang
Zhejiang University
wjie@zju.edu.cn

Xinyu Wang
Zhejiang University
wangxinyu@zju.edu.cn

Sai Wu
Zhejiang University
wusai@zju.edu.cn

ABSTRACT

Memory-based temporal graph neural network (MTGNN) models
are effective for predicting temporal graphs by using node memory
and message-passing modules to capture temporal and structural
information, respectively. However, distributed training for large
graphs presents challenges such as accuracy loss and decreased effi-
ciency due to remote features and memory transmission. Despite im-
provements in MTGNN system optimizations, issues like dynamic
load imbalances, communication overhead, and memory staleness
persist. To tackle these challenges, we introduce MemShare, a dis-
tributed MTGNN system. MemShare introduces a novel shared
node memory paradigm that utilizes a small subset of shared nodes
across machines and GPUs to reduce distributed communication for
memory management. It incorporates techniques like shared nodes-
centric graph partitioning, shared nodes-aware boundary decay
sampling, and shared nodes-targeted synchronous smoothing ag-
gregation. Experiments show that MemShare outperforms existing
distributed MTGNN systems in accuracy and training efficiency.

PVLDB Reference Format:

Longjiao Zhang, Rui Wang, Tongya Zheng, Ziqi Huang, Wenjie Huang,
Xinyu Wang, Can Wang, Mingli Song, Sai Wu, Shuibing He. Effective and
Efficient Distributed Temporal Graph Learning through Hotspot Memory
Sharing. PVLDB, 18(9): 3093 - 3105, 2025.

doi:10.14778/3746405.3746430

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/zhljJoan/MemShare.

*Corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.
doi:10.14778/3746405.3746430

Tongya Zheng Ziqi Huang
Zhejiang University

Big Data Intelligent ziqi@zju.edu.cn

Computing, Hangzhou City

University

doujiang_zheng@163.com

3093

Can Wang Mingli Song
Zhejiang University Zhejiang University
wcan@zju.edu.cn brooksong@zju.edu.cn
Shuibing He
Zhejiang University
heshuibing@zju.edu.cn

1 INTRODUCTION

Temporal graph data, which captures evolving node and edge re-
lationships, is increasingly utilized in applications like social net-
works [1, 2], transportation networks [3, 4], and financial transac-
tions [5, 6]. Temporal graph neural networks (TGNNs) [7, 8] are cru-
cial for learning representations from these graphs, modeling com-
plex temporal and structural relationships. Among them, memory-
based TGNNs (MTGNNs) [7-10] effectively capture evolving dy-
namics through integrated node memory and message-passing
modules to enhance predictive accuracy

Efficient MTGNN training and inference depend on frameworks
like TGL [11], which abstracts training into core components and
optimizes temporal graph storage and batch parallelism for faster
training. As graph sizes increase, distributed parallel MTGNN com-
puting becomes essential, utilizing multiple GPUs or machines
for training [12-17]. These frameworks divide the graph into sub-
graphs, with each GPU managing a portion and handling data
retrieval, memory updates, and message aggregation in parallel.
However, communication bottlenecks can arise from distributed
feature retrieval and memory aggregation across remote GPUs
and machines [14, 16]. To reduce communication costs, various
optimizations have been explored in distributed MTGNN train-
ing, including memory replicas to eliminate communication during
batch training [17], distributed cache strategies to lower data re-
trieval overhead [15, 16, 18], and parallelizing communication and
computation through background thread execution to minimize
synchronization delays [13, 14, 18]. Optimizations also focus on
graph partitioning to minimize edge cuts, achieve load balance, and
reduce communication and synchronization costs [13, 14, 16].

Despite advancements in distributed MTGNN frameworks, sev-
eral limitations persist. Firstly, existing graph partitioning algo-
rithms struggle to maintain a dynamically balanced distribution as
the graph evolves, leading to high synchronization waiting costs
during training. While DisTGL [16] attempts to mitigate this by
keeping track of an average timestamp for each partition to main-
tain a balanced temporal distribution, it fails to evenly distribute the

https://www.acm.org/publications/policies/artifact-review-and-badging-current

number of events among partitions within each batch. For example,
when applying DisTGL to the WikiTalk dataset [19], the highest
training load can exceed the average by more than two times in
each batch on average. Secondly, communication overhead signif-
icantly affects training time, particularly during remote feature
fetching and memory aggregation. In methods like MSPipe [18], it
can exceed 56.7% of total time with models like TGN [7], as tem-
poral dependencies prevent background processing. Additionally,
distributed training increases batch sizes, leading to greater infor-
mation loss and memory staleness [20]. Delayed synchronization
of cached node memory further worsens these issues, impacting
model accuracy and convergence [16, 18, 21].

To address the above challenges, we present MemShare, an effi-
cient distributed MTGNN training and inference system. MemShare
introduces a novel shared node memory paradigm that entails shar-
ing a small subset of hot nodes across machines to reduce dis-
tributed communication and memory management costs. Expand-
ing on this paradigm, we design several key techniques, i.e., shared
node-centric graph partitioning, shared node-aware boundary de-
cay sampling, and shared node-targeted synchronous smoothing
aggregation. In summary, our contributions are as follows:

e We introduce a novel shared node memory paradigm that
involves sharing a small subset of high-degree nodes across
machines. Our research has revealed that this small sub-
set of high-degree nodes serves as key connectors for the
remaining nodes in the graph, significantly reducing the
number of cut edges across subgraphs and minimizing com-
munication overhead during MTGNN training.
We propose three key optimizations based on the shared
node memory paradigm: (1) a shared nodes-centric graph
partitioning method that maximizes local neighbor atten-
tion weights while dynamically balancing workloads; (2) a
boundary decay sampling technique that reduces commu-
nication by lowering remote neighbor sampling; and (3) a
smoothing memory aggregation strategy that synchronizes
shared nodes only during significant memory changes, min-
imizing overhead while maintaining freshness. Addition-
ally, we propose pipeline-based adaptive parameter tuning
and analyze communication patterns for various shared
node configurations.

e We implement MemShare and conduct extensive experi-
ments to demonstrate its effectiveness. Our results show
that MemShare achieves the dominant highest accuracy,
with training and inference speeds improved by several
times, compared to the cutting-edge distributed methods
TGL [11], DistTGL [17], and MSPipe [18].

2 BACKGROUND AND MOTIVATION
2.1 Temporal Graph Neural Network

Dynamic graphs. We focus on the event-based organization for
dynamic graphs, specifically continuous-time dynamic graphs (CT-
DGs) [22]. A CTDG can be defined as a sequence of interaction
events G = (e(u;, 05, 1))/, where each event e(u;,v;,t;) is a di-
rected temporal edge from node u; to node v; at timestamp ¢;. For
simplicity, we represent a dynamic graph as G = (V, E, Xy, Xg),

3094

Remote
Memory
Aggregation

=1=1=!

B8 B

Node & Edge Memory
Features & Mailbox

Memory Message

re

Partition DistributedDataParallel

TGNN Model

izi Sequent Events

Batch MFGs

Figure 1: Distributed MTGNN training workflow.

New Message &
Memory from
each device

Remote Feature
& Memory Fetch
by AlltoALL

Gradient by
All-Reduce

where V and E are the node set and edge set, and Xy and Xf are
the feature matrices of nodes and edges.
Memory-based temporal graph neural networks (MTGNN).
MTGNN models capture both structural and temporal character-
istics in dynamic graphs [7-10]. Each node u has a memory state
s(u, t) to track prior interactions, with ¢ as the timestamp of the
latest event involving u. The node memory is continuously updated
with new events. MTGNN models involve two main operations:
(1) Node memory updating: When an event e(t) = (u, v, t) occurs,
messages m4? are generated for nodes u and v at timestamp ¢:

me” = MSG(s(u,t7)lls(v.t7)lle(wo. It —t7)). (1)

Here, s(u,t~) and s(v, t) are the recent memory vectors for nodes
u and v before timestamp ¢. ¢(-) is a time encoding function, ||
denotes concatenation, and MSG function generates final messages.

These messages are utilized to update the memories of the cor-
responding nodes:

s(u, t) = UPDATE(s(u, ™), m¥°). (2)

The UPDATE function typically involves an RNN [8] or GRU [7],
with some models incorporating an attention mechanism [9].

(2) Temporal message propagation: After node memory updating,
the message passing layer in MTGNN computes node embeddings
hy(t) and hy(t) by aggregating their temporal neighbors. Let Ny, ()
be the temporal neighbor set for node u at timestamp ¢. The tem-
poral message-passing process is described as follows:

Nu(t) = SAMPLE(Ny (1)), 3)

gu(t) = AGGREGATE({(s(v, t) llewu (D) (t — 1)) 4
(v, 7) € Nu(£)}), (5)

hy(t) = COMB(s(u, t ™), gu(t)). (6)

Here, the SAMPLE function selects neighbors using sampling
techniques like recent[7], uniform[23], weighted[24, 25], or adap-
tive methods[26]. ¢(-) encodes the time interval, and AGGREGATE
aggregates neighbors using functions like GAT [23]. The COMB
function is usually a linear layer that updates the node’s memory
with the aggregated neighbor information [11].

2.2 Distributed MTGNN Training

Distributed training for MTGNNs faces challenges due to dynamic
node memory synchronization. While prior work (e.g., TGL [11],
SPEED [12]) focused on single-machine multi-GPU setups, scal-
ing to larger graphs necessitates multi-machine collaboration for
parallel batch training. As illustrated in Figure 1, the graph is par-
titioned across machines, each handling a subgraph with nodes,
edges, features, and memory. Training occurs chronologically, with
each machine processing a batch of edges from its subgraph. They
sample negative samples, select temporal neighbors, and retrieve
nodes, edges, static features, and memory from local and remote
machines. The memory updater generates messages and updates
memory for positive root nodes, which are aggregated by index
and timestamp with remote machines. Message passing updates
node embeddings, with aggregated messages stored for future train-
ing. Remote feature fetching and memory aggregation introduce
communication bottlenecks [13, 14]. Recent approaches optimize
graph partitioning (e.g., balancing edge cuts and timestamps [16])
or dynamically repartition batches [13]. Some utilize caching for
remote features and memory [15, 16], though stale memory can
degrade accuracy [16, 18]. DisTGL [16] synchronizes caches based
on miss thresholds, while DistTGL [17] replicates memory to avoid
synchronization, incurring redundancy. MSPipe [18] and Sven [13]
overlap communication and computation via background threads,
reducing synchronization delays.

2.3 Limitation on Existing Training System

Limitation #1: High synchronization waiting overhead due
to dynamic load imbalances. In the distributed MTGNN training
process, each trainer sequentially processes a data subset per batch
and synchronizes memory after each batch. Existing graph parti-
tioning methods overlook data distribution within batches, leading
to dynamic load imbalances. This results in some trainers facing
significantly higher computational overhead than the average, caus-
ing increased synchronization waiting times. To illustrate this issue,
we tested computation load balancing using the METIS [27] graph
partitioning method and the recent temporal-aware method from
DisTGL [16] on the StackOF [28] dataset. As shown in Figure 2,
the x-axis represents the batch index, while the y-axis indicates the
average and maximum computational load across eight GPUs. As
batch IDs increase, computational load rises due to accumulating
temporal neighbors. Both METIS and DisTGL exhibit significant
load imbalances, especially in early training batches, with max-
imum loads often exceeding twice the average. This imbalance
stems from their holistic graph partitioning approach, which fails

—— average computation max computation

3 3 3

O 15 METIS O 15 DIisTGL O 1es Ours

C c c

o kel kel

571 571 5?2

a f‘——_—-—_- g_ (__________— g_ S
0 0 0

E°0 1000 E“0 1000 E”0 1000

o Index of batch © Index of batch © Index of batch

Figure 2: Dynamic load imbalance in existing graph partition.

3095

Table 1: Time cost breakdown (seconds/percentage).

Stage MSPipe DisTGL* Ours
Sampling 59.4/7.56% 38.5/4.91% 65.6/17.79%
Remote Fetching 107.5/13.68% 536.1/68.30% 99.0/26.85%
Memory Updating 48.0/6.11% 46.6/5.94% 46.6/12.63%
Message Passing 40.29/5.13% 43.2/5.50% 46.3/12.57%
Backward 192.6/24.51% 95.4/12.15% 97.7/26.50%

Remote Aggregation 338.0/43.02% 25.1/3.20% 13.49/3.66%

to distribute events within batches evenly. In contrast, our pro-
posed shared nodes-centric graph partitioning method achieves a
balanced distribution of computational load across eight partitions,
maintaining the highest computation volume closely aligned with
the average in each batch. This balance improves training efficiency
in our MemShare framework (see §3.2).

Limitation #2: High communication overhead in memory
fetching and updating. Despite various optimizations, communi-
cation overhead remains the main bottleneck in training time. We
tested MSPipe [18] and DisTGL* [16] ! on the GDELT [29] dataset
with a batch size of 3000, using the TGN [7] model across two
machines with eight GPUs and a 10 Gbps network. As shown in
Table 1, communication overhead is significant; in MSPipe, remote
memory aggregation via all-gather accounted for 43.02% of training
time, while DisTGL’s all-to-all feature fetching took 68.30%. These
communication phases are more time-consuming than computation
tasks and cannot be effectively overlapped due to memory depen-
dencies. MSPipe reduces fetching costs by redundantly storing data,
but incurs high synchronization costs during remote aggregation.
In contrast, DisTGL lowers synchronization costs through edge par-
titioning but increases remote fetch communication. Our approach
reduces remote fetches using shared hot node memory and node-
aware boundary decay sampling, cutting remote fetching time from
536.1 seconds to 99.0 seconds (about 1/5). We also minimize syn-
chronization costs through dynamic balanced graph partitioning
and historical memory techniques, reducing remote aggregation
time to 13.49 seconds (see §3.3).

Limitation #3: Memory staleness from delayed synchroniza-
tion. Delays in cache-related memory synchronization [12, 16] lead
to issues such as update lag, remote information loss, and insuffi-
cient event capture, worsening event discontinuity, and degrading
model accuracy [21]. A key problem is the obsolescence of node
memory inputs due to infrequent updates from remote machines
[16]. While strategies like staleness thresholds and similarity-based
aggregation [16, 18] aim to address this, the lack of access to the lat-
est information from remote nodes results in persistent update lag.
Furthermore, in distributed settings, local node memories may miss
valuable data from remote machines, as updates rely solely on local
events [7, 8, 16]. Additionally, aggregating events across multiple
devices reduces updates per batch for the MTGNN model, further
exacerbating event discontinuity and accuracy loss [17, 20, 21]. To
address these challenges, we propose a novel shared nodes-targeted
synchronous smoothing aggregation method to effectively reduce
memory staleness and improve accuracy (see §3.4).

IDisTGL is not open-sourced; we extended TGL for multi-machine environments and
reproduced its core streaming temporal-aware edge partitioning method.

10

30%

~
o
X

-
)
X

Cut Edge rat

2% 5% 8%
shared ratio

Cut Edge: 9
w/o shared

Cut Edge: 4
with shared

(a) w/o shared nodes (b) with shared nodes (c) Edge-cut Counting

Figure 3: Decreased number of cross edges via shared nodes.
In (a) and (b), nodes of different colors are allocated to dif-
ferent partitions, with red nodes being shared nodes. Red-
colored edges represent cross-edges.

3 SHARED NODE MEMORY PARADIGM

3.1 Overview

Observation. In distributed MTGNN training, primary communi-
cation costs arise from remote feature fetching and memory aggre-
gation, largely due to cut edges between subgraphs [30]. Traditional
graph partitioning methods [14, 16, 27, 31] often fail to minimize
these cut edges due to complex node connections.

High-degree nodes serve as critical connectors, especially in
power-law graphs where a few nodes have exceptionally high de-
grees [32, 33]. By sharing a small set of high-degree nodes, we
can significantly reduce cut edges. As shown in Figure 3(a) and
Figure 3(b), sharing node v; decreases the cut edges (highlighted in
red) among three partitioned subgraphs from nine to four.

We experimented with partitioning the GDELT dataset into eight
subgraphs using the METIS [27] method, measuring the cut edge
ratio with varying shares of high-degree nodes. Results in Figure 3(c)
indicate that sharing the top 10% of high-degree nodes reduced the
cut edge ratio from over 30% to 8%. In a power-law graph, it can
be shown that the number of cut edges generated after sharing
high-degree nodes will not exceed:

[VI(1=k)-1

m(k+)77,

Vi (7)

q=0

where k is the ratio of shared high-degree nodes, m is the minimum
node degree in the graph, and « is a parameter that indicates the
skewness of the graph. For a detailed proof, refer to [12].

Main idea. We propose a shared node memory paradigm that al-
lows high-degree nodes to exist in multiple subgraphs, enhancing
local event capture [12]. This significantly reduces communication
costs in distributed MTGNN training by minimizing access to criti-
cal nodes. While SPEED [12] shares weighted top-k nodes to reduce
replication in single-machine multi-GPU (SM-MG) training, our
focus is on multi-machine multi-GPU (MM-MG) scenarios, where
communication costs from remote data access and synchronization
are significant challenges. First, we aim to optimize shared node-
centric graph partitioning to minimize edge cuts while ensuring
dynamic load balancing. The node-cut method in SPEED is inade-
quate due to remote access and synchronization overhead. Second,
sharing hot nodes’ memory may still lead to frequent remote access,
which SPEED does not address. Lastly, frequent synchronization

3096

for aggregation adds communication overhead in multi-machine
setups, unlike SPEED’s efficient single-machine approach.
Overview. To address the challenges mentioned, we design a shared
node memory paradigm in multi-machine scenarios. We first in-
troduce a shared nodes-centric graph partitioning method, which
prioritizes maximizing the attention weight of local neighbors to
enhance neighbor locality within partitions and achieve dynamic
load balancing. Additionally, we propose a shared nodes-aware
boundary decay sampling technique to reduce communication vol-
ume by decreasing the sampling probability of remote neighbors.
We also introduce a shared nodes-targeted synchronous smoothing
aggregation method that synchronizes shared nodes’ memory only
when substantial changes happen, thereby reducing communica-
tion overhead while maintaining memory freshness. These three
techniques are elaborated on in the subsequent subsections.

3.2 Shared Nodes Centric Graph Partitioning

We propose a unique shared nodes-centric graph partitioning method
that integrates neighbor-weight awareness and load-balancing co-
efficients to address dynamic load imbalances.

Neighbor weight awareness. Existing graph partitioning methods
[14, 16, 27, 31] primarily aim to minimize cut edges, often overlook-
ing the varying importance of neighbors based on their timestamps.
In TGNN training, the attention weight of an edge event diminishes
as more events accumulate, leading to exponentially distributed
weights for neighbors at different timestamps [12, 25, 34]. The atten-
tion aggregation weight of a temporal neighbor (v, 7) contributing
to the embedding of node u at timestamp ¢ is defined as follows:

)

where att,,(t, 7) represents the attention aggregation weigh and &
is an exponential decay factor.

We aim to maximize neighbor aggregation information within
local subgraphs to minimize reliance on remote data, targeting:

attyy(t,7) o 77,

attyy(t, 1),
(u,-t)€E (v,r)eNL(¢)

©)

maximize

where N (1) is the local neighborhood of node w.

To efficiently approximate optimal graph partitioning solutions,
we apply the streaming heuristic algorithm paradigm [12, 16]. With
m trainers, the graph G(V, E, Xy, Xg) is divided into m subgraphs
Go, G1, . . ., Gm—1, with each trainer managing their assigned sub-
graph. Events with their features are allocated to the partition with
the highest sum of attention weights among neighboring partitions.
Edge e(u,v,t) is assigned to partition p with the highest score ac-
cording to the formula:

p= argn;}ax[Att(u, t,pi) + Att(v, £, pi) + 1] - Fpar(pi), (10)

where Att(u, t, p;) is the sum of estimated attention weights from
u’s previously assigned neighbors in partition p;, and Fgar (p;) is
the balance constraint coefficient. At¢(u, t, p;) is estimated as:

Att(u,t, p;) = ed(r=t)

(0,7) €N, (t).e(u,0,7)€E,

(11)

1

where § is set as ————.
maXe(y,o,t)cE t

Dynamic load balance. In Equation 10, the balance constraint
coefficient Fpar (p;) is designed for dynamic load balance:

Fpar(pi) = BN(pi) - BE(p;) - BT (pi), (12)
INp,| —ming. <mm |[Np|
BN(pi) =1- £ i SN)
€+maxp,<m [Np;| —minp,<m [Np;,|
BE(ps) = 1- |Ep;| —minp;<m |Ep,| (14)
! €+maij<m|Epj| —minpj<m|Epj|)
ming . <m Tp; — Tp,
BT (pi) = exp(d C) (15)

€+ maij<m ij - mil’lpj<m Tpl ’

where BN(p;), BE(p;), and BT (p;) represent the scores for node
balance, edge balance, and temporal balance, respectively. Specif-
ically, BN (p;) and BE(p;) normalize deviations in node and edge
counts in partition p; to ensure balanced distributions, with N,
and E,, being the sets of nodes and edges in p;. New events are
prioritized for partitions with fewer nodes or edges to maintain
minimal allocation differences over time, with € preventing division
by zero. BT (p;) measures the difference in event time relative to
partition p;, with Tj,, representing the timestamp of the last event as-
signed to partition p;. New events are prioritized for partitions with
smaller timestamps, ensuring a balanced timestamp distribution.
The exponential function smooths out outliers.

Shared nodes-centric graph partitioning. In the graph partition-
ing process, we begin by selecting the top-k nodes with the highest
node degrees as shared nodes present in every partition. Next, we
iterate through all edge events one by one in temporal order to de-
termine their partition assignment. Edges are treated as undirected
in the partitioning process. When either u or v is encountered for
the first time, it is assigned to partition p along with the current
edge. Specifically, for a new edge e(u, v, t), if it connects one shared
node and one non-shared node with an assigned partition p;, the
edge will be assigned to partition p;. For other new edges and their
connected emerging non-shared nodes, they will be assigned to
partition p; based on Equation 10.

3.3 Boundary-Decay Sampling

Tradeoff in neighbor sampling. In the graph partitioning pro-
cess, high-weighted neighbors are locally partitioned, while low-
weighted neighbors are distributed across partitions. During MT-
GNN training, common k-recent sampling involves remote neighbor
sampling, leading to inefficient communication due to remote fea-
ture retrieval. Conversely, local sampling avoids remote access for
high-weighted neighbors but introduces bias that can affect train-
ing accuracy. To address this tradeoff, we propose the shared node
aware 0-boundary decay sampling method, which balances commu-
nication efficiency and accuracy by approximating the effects of
sampling all recent neighbors and mitigating local sampling bias
through aggregating a small subset of neighbors across partitions.
See Figure 4 for a case comparison of the three sampling methods.
0-Boundary decay sampling. For a temporal node (u, t) with a

non-empty temporal neighbor set, we define N{;(t) and Nf(t) as
the local recent neighbor set and remote recent neighbor set in
the sampled subgraph, respectively. In our introduced 6-Boundary
decay sampling method, we sample local neighbors from the most

3097

4
@® ®6 No remote fetch ® ®
(a) recent sample (b) local sample (c) boundary decay

Figure 4: Illustration of different distributed neighbor sam-
pling methods, with nodes of different colors representing
different partitions, and nodes in red indicating shared nodes.

recent k neighbors and remote neighbors based on a probability
Pu,t (0, 7). The aggregation module output g,,(¢) is expressed as:

2

(0.1) N (2)

2

(0,7) €SAMPLE(NX (1))

g,(t) = attyy (b, T)xyo (8, 7)
(16)

+ a”uv(t: T)xuu(t, T),

_r
Put(0,7)

where atty,,(t, 7) and xy,(t, 7) are the aggregate weight and input
embedding for the recent neighbor (v, 7) of (u, t), respectively. To
address bias, m is applied. Studies [24, 25] suggest that the
aggregate weights of recent neighbors typically follow exponential
distributions, irrespective of input edge features and state vectors.
To minimize variance, the sampling probability is proportional to
these aggregate weights, favoring recently interacted neighbors,
as illustrated in Equation 8. The sampling probability for a recent
remote neighbor (v, 7) is calculated as:

0.5t

s b (7)

Pu,t (v, 7) = min[
(o) N () ©

where © = 0 |N’5 (t)]. 6 is the hyperparameter for boundary sample
probability, while © limits the expected number of remote neighbor
samples to be equal to 0 times the total number of remote nodes.
The impact of different 6 values is examined in §5.5. To ensure an
adequate sample size, local neighbor sampling for the root node is
repeated until a sufficient number of neighbors are sampled.

Unbiasedness and variance analysis. We compare the unbi-
asedness and variance of our boundary-decay sampling with the
common recent sampling [7, 9]. Firstly, the expected values of node
embeddings are equivalent between the two methods: E(g,,(¢)) =
E(gu(t)), where u; represents node u at time ¢, and § and g are
the embedding functions for boundary-decay sampling and re-

cent sampling, respectively. Secondly, the variance of boundary-

decay sampling is bounded as: Var(g,(¢)) < |3@|)§2’ where { =

maxyey||gy(t)|l2 and B represents the neighbor set from other
partitions, which is reduced by shared nodes among partitions.

3.4 Shared Node Memory Synchronization

Sharing high-degree nodes aids in reducing variance in boundary
decay sampling, minimizing cross-partition feature fetching and
costly write-backs of updated memory. However, synchronizing
shared memory replicas presents challenges.

StackOverflow

€20 220
(7] (7]
515 073 €15 0753
o] G]
£10 0.50 %E 10 0.50 %
fa o @
5 025£§ L
g s ES 0.25&
Q Q
20 000 = 0.00

0 10

5
log(degree)

log(degree)

Figure 5: Average memory increment varying node degrees.

Memory stability in high-degree nodes. We observed that high-
degree nodes show more stable memory increments than low-
degree nodes after updates. Their numerous connections result
in minor updates due to less new information. We analyzed mem-
ory changes in StackOverflow [28] and GDELT [29] datasets in
TGN [7] with a batch size of 3000. Figure 5 displays the results
under different node degrees, with the x-axis as log(degree) and
the y-axis as the average memory increment ||s(u, t) — s(u, t_)||§.
Each cell indicates the frequency of memory changes within spe-
cific ranges corresponding to node degrees. The results indicate
that highly connected nodes primarily exhibit memory changes in
the lower increment range.

Aging inspection strategy. Based on this observation, we propose
an aging inspection strategy that assesses the significance of mem-
ory changes over time and filters out data with minimal changes.
We introduce an aging factor that quantifies cumulative changes in
high-degree nodes. This aging factor is defined as:

(18)

where 5(u,t~) denotes the shared memory synchronized by all
trainers before updating node u at timestamp ¢, and sp, (u, t) de-
notes the generated memory after the memory updater module on
partition p;. Memory is sent to other partitions for synchronization
only if Asp, (u, t) exceeds a significant change detection threshold.
The shared node memory is updated as:

Asp, (u,t) = 1 — cosine_similarity(sp, (u, t),5(u, t 7)),

$(u,t) = Aggregate{sp, (u,t) - I(Asp, (u, 1) > a),i € [1,m]}. (19)

where a is a hyperparameter indicating the change detection thresh-
old. The impact of varying « values is investigated in §5.5.
Smooth Aggregation. Although significant change detection low-
ers synchronization overhead, it results in prolonged update inter-
vals for certain nodes, leading to the loss of recent data and outdated
memory states [18, 21]. To tackle this issue, we introduce a smooth
aggregation method that not only utilizes stable characteristics of
highly connected nodes from global graph to predict future memory
states but also retains the most recent locally captured memory.

Assuming §(u, t) represents the expected memory of node u at
timestamp ¢, it can be estimated as:

$(u,t) =5(u, t7) + AS(u, t — t7), (20)

where AS(u, t —t~) represents the bias introduced by aging shared
memory. Previous methods[21] employed a Gaussian Mixture Model
to estimate this bias distribution. To improve upon this, we estimate
AS(u,t —t7) using moving average increments to reduce disconti-
nuities. The memory of node u on trainer p; is then updated as:

sp; (u, t) = yUPDATE (sp, (u, t), mlgf;,i) +(1-py)s(ut), (21)

where y is a learnable parameter. The output of s, (, t) serves as
the input to the message passing layer, as depicted in Figure 6. This

3098

Local
M&M
Aggregation

k 2
*‘_[Remote Aggregation]1—[Worker 2]

Shared Memory

Figure 6: Smoothing aggregation of shared node memory.

method offers several advantages: it retains local recent charac-
teristics, leverages high-weight information in partitioning, miti-
gates noise and abrupt changes in memory trends by smoothing
AS(u,t —t7), and addresses the staleness issue in large batch train-
ing, thereby enhancing prediction performance.

4 MEMSHARE FRAMEWORK
4.1 Pipeline-based Adaptive Parameter Tuning

Training pipeline parallelism. During the training process in
MemShare, efficiency is enhanced through pipeline parallelism,
where CPU sampling, GPU model computation, and communica-
tion phases overlap. Specifically, remote fetching commences after
memory updater layer computation to prevent delayed memory
updates. Synchronization overhead is reduced by aligning the com-
munication stage with the subsequent batch’s memory updater
layer computation. The sampling stage runs continuously in the
background, with the backward phase leveraging PyTorch’s Dis-
tributed Data Parallel (DDP) operator for computation [35].
Adaptive tuning for boundary decay sample probability 6:
The parameter 0 is closely related to the communication volume
during the remote fetch phase. To ensure pipeline efficiency, we bal-
ance the average time spent on the embedding computation (Teyp)
and remote fetch communication (Tgetep), by updating 0 iteratively
after each batch during the early training epochs:

g = gli-1) Temb (i) [0.01,0.8]
Ttetch

(22)
where i is the iteration number. This equation balances the time
spent on both phases, keeping 6 within the range [0.01, 0.8], where
it minimally affects final accuracy (as discussed in §5.5).
Adaptive tuning for significant change detection threshold
a: The synchronization volume between a exhibits an approximate
exponential relationship (see §5.5). Similar to 6, « is updated iter-
atively to balance the average time costs for the message update
(Tupdate) and memory synchronization (Tsync):

aD = a1 —log(Typate) +10g(Teyne). @'V € [0,1] (23)

The threshold « is maintained in the range [0, 1].

4.2 Theoretical Analysis for Memory Share

Communication analysis. To analyze the communication cost in
distributed MTGNN training with our shared node memory para-
digm, we introduce AX as the ratio of cut edges after partitioning

the graph using partition policy 7 with top-k nodes sharing. This ra-
tio can be approximated as Afr ~ Ye(uor)eg P W) # P()]/|E|

2k
where P (u) is the partition of node u. Similarly, we define 1,, as
the ratio of remote temporal neighbors for hot nodes, estimated as:

)ALk B Ze(u,-,t) Z(U’T)e](]u(t) I[P (e(u,- 1)) # Pe(u,v,7))]
" Ze(u,-,t) |Nu(t)|

. (29

where u is hot node and Ny, (¢) is the set of recently sampled neigh-
bors. P(e) is the partition of edge e. This equation calculates the
likelihood of sampled neighbors for hot nodes in external partitions.

We observe that ;1];, is approximately equal to A2 for any k due to
the uniform neighbor weight policy during graph partition process.
The communication overhead in distributed temporal graph
learning mainly arises from the Remote Fetch and Memory Syn-
chronization phases. The Remote Fetch communication volume in-
cludes transfers of node memory and node/edge features, while the
Memory Synchronization communication volume involves broad-
casting the updated memory of hot shared nodes to m — 1 trainers.
Let’s denote Cy. as the expected total communication volume with
the top-k hot nodes, which is estimated as:

E

Cp ~ dyn - nOASEL (1 - TEI) +dp - n0AK (21E| - Ep) + dp 2K ||

Hots’ d,, Fetch vol. Colds’ dy, Fetch vol.

~k

+ de-nOA Ep +de-nOA(2|E| - Ep) +dmem - (m — 1)nEy .
=

Hots’ d, fetch vol.

Colds’ d, Fetch vol. Mem Sync vol.

(25)
where n and 6 denote the number of sampled neighbors for each
root node and the sampling probability of recent remote neighbors,
as discussed in §3.3. dj, de, and dyem represent the dimensionality
of node data, edge feature, and node memory, respectively. The
parameter 1 denotes the actual communication ratio after aging
inspection. Ej denotes the total number of event connected to
the topk-k shared nodes. The actual communication volume is
significantly smaller than dpem - (m — 1) Ex. because only the latest
memory per node is broadcast, with aging inspection filtering out
substantial data, as detailed in §5.5. The volume of remote neighbor
access for hot and cold nodes is estimated based on the ratio of
remote neighbors to cut edges as a general probability.

Analysis of variance: The variance of the output embedding g,, (),
primarily influenced by the message passing stage:

At + 6
g

Here, 1 and 5% denote the expectation and variance of x(-), re-

Var[g, (1] < (1 - AF*)8% + (26)

. sk Lo S
spectively.)Lf,’u equals to A, if u is hot node; otherwise, it is)t,k,.

Balancing tradeoffs in sharing top-k hot nodes: In our shared
node memory paradigm, a tradeoff exists in determining the propor-
tion of hot nodes (top-k). A higher value of k can reduce communica-
tion volume and enhance accuracy in distributed MTGNN training
and inference processes but also introduces additional storage costs
for shared nodes. We aim to identify the optimal hyperparameter

3099

Stacked Total Comm. Vol.

.5 mmm Colds'd, Fetch vol. dy - nAK(2|E| — Ei) + dnAK|E|
S " == Hots'd, Fetch vol. dy - neASEX(1 -)
€ Colds'de Fetch vol. de - nOAX(2|E| — Ex)
€39 mm Hots'd, Fetch vol. de - nBAXE,
8 Mem Sync vol. dmem - (M — 1)nEx
- 29 == Total Comm Vol.
©
o1 Em——
= i i i : :
0 | | i i i
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Hot Node Proportion (topk)

Figure 7: The stacked communication volume with differ-
ent hot node proportions (top-k) shows how each part con-
tributes to the total communication increase, as indicated
by the subscripts in Equation 25. As top-k rises, the cost of
fetching node data from other partitions decreases signifi-
cantly due to a lower cut edge ratio, which dominates total
communication when top-k is small. However, larger top-k
values increase the communication overhead for fetching
edge features of shared nodes. Therefore, it is recommended
to set k at 0.1 or below for optimal benefits, as higher values
offer limited advantages.

settings for top-k by analyzing its impact on communication vol-
ume and model accuracy. Regarding communication volume, we
simulate the estimation of communication overhead on GDELT
with 8 partitions and display the stacked communication volume
in Figure 7. As top-k increases, the overhead for node data fetching
decreases significantly due to the nonlinear decreasing trend of
the cut edge ratio. However, the communication volume for edge
feature fetching shows gradual changes as k reduces cut edges but
increases external partition access for hot nodes. Additionally, the
memory synchronization volume increases gradually with almost
no extra overhead. Regarding model accuracy, shared memory for
hot nodes reduces memory change discontinuity, enhancing model
accuracy. To minimize variance, top-k selection can be achieved
-

at & ﬁ, where f is the exponent of the power-law distribution
(typically B € [2,3]) and ¢ is approximately 0.46. Sharing top-k
neighbors incurs a storage cost of O((k + 1/m)|N]|). Based on Fig-
ure 12 and the aforementioned analysis, we recommend keeping
k no more than 0.1. Sharing some nodes can still be advantageous
by reducing cut edges on graphs without hot nodes, except for low
average degree graphs. Our work supports the case when top-k is
0, providing an acceleration scheme. The supplementary material
will provide proofs of the above analysis due to space limitations.

4.3 Optimizations and Implementation

Non-redundant message flow graph (MFG). Traditional MFG
structures in TGL [11] often exhibit significant redundancy [13, 36].
Neighbor nodes sampled from different root nodes receive unique
IDs, even with identical node IDs and timestamps. This redundancy
causes unnecessary calculations in the memory updater model.
To resolve this, we have removed duplicate node IDs and times-
tamps while maintaining their original sampling order, enabling
the expansion of multilayer structures.

Localism negative sampler. In the boundary decay sampling
method (see §3.3), we adjust the number of negative samples for

local and remote sampling using the same probability. To address
potential sampling bias between local and global negatives, we
introduce weight compensation for negative samples from different
partitions. The loss function incorporates weighted binary cross-
entropy (BCE) loss:

N
1 . N
BCELoss =~ ; wi - (yi - log(#;) + (1 - ;) - log(1 = ;). (27)

Let p, be the sampling probability for remote negative destina-
tions related to 6 in Equation (17). For trainer i, N; and Nﬁ denote
the total number of neighbors in whole graph and partition ac-

cessed by trainer i, respectively. The weight w; is calculated as
— Ng
(1=pr)-Na+p,-N§’

pling method are stored locally, and w;

if its neighbors generated from the negative sam-

Na
Nhp

otherwise.

-

5 EXPERIMENTS
5.1 Experiment Setups

Testbed. Our experiments are conducted on four machines inter-
connected using 10G NICs, each equipped with two Xeon 6342R@
2.8GHz processors, 1T DRAM, and four NVIDIA A40 (48G) GPUs.
The CPU-to-GPU and GPU-to-GPU connectivity was configured
using PCle 4.0x16. To simplify notation, we use xMxG to denote x
machines with x GPUs for training, e.g., 2M8G signifies the utiliza-
tion of 2 machines with a total of 8 GPUs for training.

Datasets. We utilize four commonly used large temporal graph
datasets, Each graph is chronologically divided into a training set

(70%), a validation set (15%), and a test set (15%), as used in TGL [11]

and ETC [20].

Test MTGNNSs. We evaluate three representative MTGNN models:
TGN [7], JODIE [8], and APAN [9]. Their implementations are

customized versions of TGL [11]. The attention aggregator uses

two heads for message passing, with node memory and hidden

dimensions set to 100. APAN has a mailbox size of 10 mails, while

other methods are set to 1 mail.

Comparison baselines. We compare MemShare with three state-
of-the-art open-source MTGNN training frameworks: TGL, DistTGL,
and MSPipe. Previous research has primarily focused on SM-MG sce-
narios, lacking support for MM-MG extensions. To address this, we

developed TGL-dist, a multi-machine extension that optimizes com-
munication through graph partitioning. We employed a dynamic

balanced graph partitioning algorithm to mitigate load imbalance

(see §3.2), with effects of different partition algorithms discussed in
§5.4. Parameters were configured according to the original works.
Since DistTGL only provides an open-source version of TGN, we

implemented the JODIE and APAN models based on its framework.

Table 2: Dataset statistics, where d, and d. shows the dimen-
sions of node and edge features.

Dataset V] |E| dy de
LASTFM [8] 1,980 1,293,103 172 172
WikiTalk [19] 1,140,149 7,833,139 172 172
StackOF [28] 2,601,977 63,497,049 172 172
GDELT [29] 16,681 191,290,882 413 186

3100

Training setting. The training settings for each dataset are tailored
to improve convergence and scalability. For the LASTFM dataset,
we used 10 recent neighbors per node and an average batch size
of about 1000 per device for 100 epochs. For the larger datasets,
we increased the recent neighbors to 20 per node and set a batch
size of around 3000 per device for 50 epochs, except for GDELT,
which was trained for 10 epochs. During training and evaluation,
mini-batches were created with an equal number of positive and
negative node pairs. For MSPipe, the staleness mitigation ratio A is
set to 0.9, with a maximum delay of 10 epochs. The learning rates
for DistTGL and MSPipe are proportional to the number of GPUs
(#GPU) and V#GPU, respectively as detailed in their source code.
We conducted a grid search for the optimal learning rate from the
set {0.0001, 0.0002, 0.0004}. Additionally, for MemShare, we set the
top-k value to 0.1.

5.2 Model Accuracy Comparison

Convergence accuracy. We initially conduct a comprehensive
analysis of model accuracy comparing MemShare with baseline
frameworks across diverse models and datasets, with varying num-
bers of machines. We train the three TGNN models under the
transductive setting, and use test average precision(AP) with best
validation AP for accuracy metrics.TGL only supports SM-MG sce-
narios, so results for other setups are missing. Table 3 illustrates
the consistent accuracy superiority of our MemShare across all
test scenarios with identical device configurations. For instance,
MemShare with the TGN model achieves a test AP of 94.18% on the
LASTFM dataset using 4M16G, surpassing the nearest competitor,
TGL-dist, by 12.97%. On average, MemShare enhances model train-
ing accuracy by 2.60%, 3.42%, 4.96%, and 4.29% over TGL, TGL-dist,
DistTGL, and MSPipe, respectively. MemShare also demonstrates
competitive or superior accuracy compared to the baseline results
achieved by TGL on a single GPU. The accuracy improvements of
MemShare result from several key factors: our hot nodes sharing
reduces variance and bias from boundary decay sampling, which
adds randomness for neighbor sampling and enhances model gener-
alization. Additionally, the smooth aggregation method minimizes
instability noise. The effects of each module on accuracy will be
discussed in §5.4.

Convergence efficiency. We further compare the convergence
efficiency by plotting the test average precision curves for TGL-
dist, DistTGL, MSPipe, and MemShare on TGN model in Figure 8.
The X-axis represents the total time cost for training, and the y-
axis represents the corresponding test precision curves. Noticeably,
MemShare achieves a significantly faster convergence rate and
higher accuracy compared to baseline frameworks under the same
time cost of training. Furthermore, MemShare exhibits a more
stable convergence curve during training, which can be attributed
to synchronous smoothing aggregation.

5.3 Efficiency Comparison
We perform a assessment of training and inference efficiency by
comparing our MemShare with TGL-dist, DistTGL, and MSPipe

across three models and four datasets. We vary the device configu-
rations with 1M4G, 2M8G, and 4M4G setups.

Table 3: Test Average Precision (AP) across datasets and MTGNNSs.

#.GPUs Methods TON JODIE APAN
’ LASTFM WikiTalk StackOF GDELT|LASTFM WikiTalk StackOF GDELT|LASTFM WikiTalk StackOF GDELT
1M1G TGL[11] | 80.23% 96.11% 95.74% 98.37% | 62.02% 95.78% 96.20% 98.31% | 56.59% 90.43% 87.52% 96.12%
TGL[11] 78.20% 96.32% 95.47% 97.70% | 61.16% 94.63% 94.94% 98.25% | 57.11% 91.36% 88.86% 95.47%
IM4G TGL-dist 80.69% 96.58% 95.85% 97.84% | 58.84% 94.86% 95.10% 98.53% | 54.49% 92.31% 86.97% 97.66%
DistTGL[17]| 76.83% 94.40% 93.38% 98.60% | 56.28% 92.71% 93.71% 98.25 %| 53.59% 90.06% 89.80% 97.29%
MSPipe[18] | 82.77% 95.52% 95.48% 98.32% | 49.98% 91.23% 88.56% 98.31% | 59.75% 91.47% 86.15% 93.61%
Ours 91.52% 97.88% 97.79% 98.92%| 61.47% 95.28% 95.18% 98.62%| 59.39% 94.26% 92.43% 97.90%
TGL-dist 80.73% 96.50% 95.65% 98.20% | 56.48% 94.90% 94.29% 98.34% | 54.06% 92.49% 88.34% 97.10%
2M8G DistTGL[17]| 74.19% 93.01% 93.28% 98.60% | 55.70% 93.09% 92.32% 98.04% | 54.44% 90.13% 88.29% 97.03%
MSPipe[lS] 77.39% 95.77% 95.95% 98.77% | 57.03% 88.22% 94.01% 98.25% | 60.79% 91.36% 89.89% 95.12%
Ours 92.99% 97.83% 97.84% 98.93%| 63.78% 94.92% 94.37% 98.93%| 62.24% 93.06% 94.48% 98.71%
TGL-dist 81.21% 96.45% 94.98% 98.15% | 56.23% 94.11% 92.92% 98.12% | 53.73% 91.76% 86.75% 97.66%
4M16G DistTGL[17]| 78.47% 91.59% 90.31% 98.62% | 56.47% 91.56% 92.43% 97.86% | 53.84% 89.87% 83.17% 96.09%
MSPipe[18] | 78.41% 95.86% 95.15% 98.64% | 56.77% 90.66% 92.67% 98.30% | 57.80% 89.54% 87.23% 92.65%
Ours 94.18% 97.96% 98.09% 99.17%| 63.78% 94.92% 94.37% 98.93%| 64.94% 93.53% 94.32% 99.00%
TGL-dist —— DistTGL —— MSPipe @ —— Ours
10 LASTFM-8GPUs 100 WikiTalk-8GPUs StackOverflow-8GPUs 100 GDELT-8GPUs
o 0.9 : Q oos] ‘ 3 o o 0.98 ‘
-1V S % 0.95 44— — % 0.95 ————— %
2 07 {45 % 0.90{ = 4 0.90 1N 0.9¢
@ 28 2 0.85 @ 0.85 @ 0921
0.4 0.80 0.80 0.90 ;
0 100 200 0 200 400 600 0 2000 4000 0 1000 2000

Training Time(s) Training Time(s)

Training Time(s) Training Time(s)

Figure 8: Convergence of TGN.

Training Efficiency. The training time cost and the correspond-
ing test AP values are presented in Figure 9. Compared to TGL,
TGL-dist, MSPipe and DistTGL, MemShare achieves an average
speedup of 2.02x 2.34x 6.43% and 1.30X on average, respectively.
Our method surpasses subgraph-parallel approaches in MM-MG
while training time per epoch matches DistTGL,which avoids inter-
machine dependencies and requires only gradient synchronization.
However, DistTGL’s epoch-level parallel design limits throughput
during multi-machine inference. Our inference speed is 4.98% faster
than DistTGL (see Figure 10). While DistTGL benefits from offline
pre-sampling, it restricts training accuracy and convergence speed.
With the same training time, our accuracy consistently exceeds
that of DistTGL as Figure 8 shows. In SM-MG scenarios, we achieve
comparable performance with other methods, even with the incor-
poration of a smooth aggregation module.

Training scalability. We assess the scalability of our MemShare
with varying numbers of machines, comparing training throughput
(time cost per epoch). As shown in Figure 9, when expanding from
one to two machines, MemShare achieves speedups of 1.83% 1.67x
1.54x and 2.09x on LASTFM, WikiTalk, StackOF, and GDELT, re-
spectively. With four machines, speedups increase to 3.13X 3.29%
2.06x and 3.60x for these datasets on the TGN model. Our ad-
vantages become increasingly evident as the number of machines
escalates. TGL-dist and MSPipe often show no reduction in training
times, and may even experience increased times due to significant
communication overhead in distributed environments. We improve

3101

our approximate linear scalability by mitigating inter-machine com-
munication through boundary decay sampling and smooth aggrega-
tion synchronization. Although DistTGL also achieves approximate
linear scalability, it does not facilitate scaling for inference.

Inference Efficiency Comparison. To verify our inference effi-
ciency, we measure the average time taken to perform a single infer-
ence pass of the TGN model on the test dataset, as Figure 10 presents.
We conduct experiments with TGL-dist, DistTGL and MSPipe on
various machines, each equipped with 4 GPUs. Our inference per-
formance is on average 2.53X 3.42 X and 5.03X faster than DistTGL
across different numbers of machines. And MemShare achieves
4.55X%, 2.33X%, and 3.43X on average speed up over TGL, TGL-dist,
and MSPipe among various settings, respectively. DistTGL, while
scalable during training, is limited to single-GPU inference. Our ap-
proach extends this to the MM-MG setup, improving performance
despite significant communication overhead from global negative
sampling for evaluation. Both TGL-dist and our method perform
well with 4 GPUs due to the absence of feature pre-extraction.
DistTGL and MSPipe use RAM for data access, whereas our method
leverages VRAM, benefiting from higher GPU-to-GPU bandwidth.

5.4 Ablation study

Breakdown To evaluate the performance and efficiency of the
key components of MemShare, we employ the naive TGL-dist as
the reference baseline and progressively integrate the following

I TGL-dist Time Emm MSPipe Time -eo- TGL-dist AP -e- MSPipe AP
I DistTGL Time I Ours Time -e- DistTGL AP —-o- Ours AP
g LASTFM(TGN) WlleaIk(TGN) StackOverflow(TGN) GDELT(TGN)
£ 10 o--———w--——_ v 109 60 ==== = = 600 cmoo 0.99
F 78] @zz=ssgoc===8 [08 & 095 o z =3 098 %
2 6 == 0.7 0.90 0.97 &
= g 8:2 0.85 200 0.96 &
C 0 0.4 0.80 0 . 0.95
F 4 8 16 4 8 16 4 8 16 4 8 16
Number of GPUs Number of GPUs Number of GPUs Number of GPUs
o LASTFM(JODIE) WlleaIk(JODIE) StackOverflow(JODIE) GDELT(JODIE)
£ Ep—— Ep——— 0.95 0.95 0.98
= EEpsagoooC 0.6
10 g====% 0.90 0.90 1;88 9.% <
£ 0.85 085 300 0928
B 0.80 080 10 0.90 £
© | : : 8 0.88
F 4 8 16 4 8 16 4 8 16
Number of GPUs Number of GPUs Number of GPUs Number of GPUs
o LASTFM(APAN) WikiTalk(APAN) StackOverrow(APAN)0 0 GDELT(APAN)
£ [== ' T ===
;%é | e SRR 0.6 0.90 .___-——:£~-_:_. 0.95%
£ 6 0.85 0.90 %
c 4 ' &
© (ZJ 0.80 085
= 4 8 16 4 8 16 4 8 16
Number of GPUs Number of GPUs Number of GPUs Number of GPUs
Figure 9: Test AP and training time (seconds) with different numbers of GPUs.
I TGL-dist Time I DistTGL Time I MSPipe Time I Ours Time
()]
.E LASTFM WikiTalk StackOverflow GDELT
- 2.0 1 160 160
= 1.0
© 0.5
3 0.0
g 4 8 16 4 8 16
w Number of GPUs Number of GPUs Number of GPUs Number of GPUs

Figure 10: Inference time (seconds) with different number of GPUs on the TGN model.

components: shared hot nodes (shared), historical memory synchro-
nization (his-mem), boundary decay sampling (b-decay), localism
negative sampler (local-neg), and pipeline. This methodology en-
ables the assessment of performance enhancements across each
module, as illustrated in Figure 11. The experiments are conducted
on two machines, equipped with eight GPUs. The x-axis represents
the components stacked to MemShare, while the left y-axis indi-
cates the training time per epoch and inference time. The right
y-axis shows the test dataset’s average precision after each in-
tegrated component. After integrating key components into the

E Train Time B Test Time —e— Test AP
LASTFM WikiTalk
= = 259 .
24 gz TH 58
w3 ¥ VLY 0.96 3
£ 2 806 0 £ 10 9% ¢
=1 -85 1@ = 54 0.95 @
Fo : F o 0.94
\ c’o‘l Qe‘\\(\ \9,6«, & ca‘* ‘\eﬁ(\o
—(G\’% »(6 \9"%’6
StackOverrow 0.8 GDELT 0.9
n = 800 -
£ 300 0972 < 600/ 0.98 <
© 200 0.96 4% 2 400 ‘97
£ 100 09538 £ 2001 097 8
F o o 94 L 0.96

e‘:‘ﬂ X\ee

@ o5 e e
«eve\\a A (B R S

Figure 11: Breakdown of MemShare’s key components.

baseline model, accuracy improvements were 3.24% for his-mem,
0.99% for b-decay, and 0.14% for local-neg, although the pipeline
implementation slightly reduced test AP. Training speed increased
by an average of 1.06X 1.12X 1.62X 1.11X and 1.45X across various
settings, and inference throughput improved by 1.09x 1.12x and
1.91X for sharing nodes, his-mem, and b-decay, respectively. The
localism negative sampler and pipeline mechanism do not affect the
inference phase. The historical memory synchronization module
achieved the most significant improvement, particularly on the
LASTFM dataset, with 7.9% gain. The boundary decay sampling
module provided the highest efficiency boost and also contributed
to a modest increase in accuracy. Sharing nodes affects training and
inference efficiency by changing partitioning without altering the
training method or data distribution. While sharing hot nodes can
lower fetch costs, it may not always improve speed due to higher
memory synchronization costs. In contrast, sharing high-degree
nodes reduces sampling variance in boundary decay sampling and
enhances memory synchronization consistency.

Analysis of Graph Partitioning To evaluate MemShare’s effec-
tiveness, we compare it with four baseline graph partition methods:
METIS [27], DisTGL’s [16], METIS with shared nodes, and our
method without shared nodes. METIS is implemented using the
NetworkX [37] library. We implement DisTGL’s method based on

3102

Table 4: Training time (in seconds) per epoch of different
graph partition methods on TGN.

Dataset w/o shared nodes w/ shared nodes
METIS DisTGL Ours | METIS Ours
LASTFM 2.51 2.45 2.41 2.40 2.37
WikiTalk 19.95 17.72 8.57 8.74 7.78
StackOF 100.36 159.68 85.93 97.99 74.98
GDELT 1032.23 292.21 276.65 | 276.75 267.73

Table 5: Test average precision (AP) of different graph parti-
tion methods on TGN.

Dataset w/o shared nodes w/ shared nodes
METIS DisTGL Ours METIS Ours

LASTFM | 79.46% 78.66% 78.20% 90.98 93.96%

WikiTalk | 94.40% 95.23% 96.17% | 96.52% 97.04%

StackOF | 94.76% 93.89% 94.29% 97.23 97.90%

GDELT 98.46% 99.07% 98.94% | 98.68% 99.10%

TGL, setting its load balance parameter y to 1.5, as specified in their
paper. The shared nodes consist of the top 10% high-degree nodes
for both METIS with shared nodes and MemShare. For METIS with
shared nodes, we partition the connected subgraph of the remain-
ing nodes, randomly dividing edges between shared nodes across
partitions and connecting remaining nodes to all shared nodes in
each partition. To ensure a fair comparison, we maintain the same
number of training samples, setting the boundary decay sampling
parameter 6 to 0.1 for all methods. The smooth aggregation change
detection threshold « is set to 0.3 for methods with shared nodes
to minimize variations during adaptive parameter tuning. Experi-
ments are conducted on a TGN model using a 2M8G cluster.

Table 4 shows the training time per epoch for various TGN par-
tition methods across four datasets. MemShare achieves the lowest
training costs among these methods, with speedups of 2.06x and
1.51x over METIS and DisTGL, respectively, even without shared
nodes, due to dynamic workload imbalances in those methods (see
Figure 2). Additionally, MemShare offers a slight speedup of 1.01x
to 1.15X compared to its version without shared nodes, thanks to
reduced data-fetching needs. Finally, MemShare matches METIS’s
training speeds with shared nodes, indicating that our graph parti-
tioning maintains training efficiency.

Table 5 further illustrates the effectiveness of MemShare com-
pared to other graph partition baselines. MemShare achieves the
highest AP among all partition methods, significantly outperform-
ing methods without shared nodes by 15.1%, 1.8%, 3.6%, and 0.3%
on the LASTFM, WikiTalk, StackOF, and GDELT datasets, respec-
tively. Additionally, MemShare shows consistent improvements,
averaging a 1.15% increase over METIS with shared nodes. This
enhancement is due to the high-degree node sharing and neigh-
bor weight-aware mechanisms, which effectively preserve more
important neighbors within local partitions.

5.5 Analysis of Hyper-parameters

Analysis of top k Shared Nodes. To assess the impact of the top-k
hot nodes shared memory, we analyzed different k ranging from 0

3103

Test AP(b-decay) —e— Test AP(recent) Train Time(b-decay) --»- Train Time(recent)

LASTFM —_ WikiTalk —_

= 0.98 1 2

a 0.91 73 a 8ds] 1400

g [¢g %097 2

— 081 65 0.96 1 t30 €

] LT TR ST PRI ol 5= % 0951 [=

@ 0.7 1 ta c © 0,921 ZO.E

0.6 I3 0 0.934 F10 ©

645 ; . +30 934 ~S10e

00 01 0.2 03 0.0 0.3
TopK
StackOverflow = =
0.98 9 F600 <=] | a
o 096{/ 1500 2g 0.990 1200 @
0.94 t200 £ 0.9851 lgoo E
4 s, 300 F % F
0 0.921 s, 3004 0,980 1
i 0.90 e *[200 @ 400 £
0.88 1+ : . 21100 8 0.9751, : : ; o
00 01 02 03 © 00 01 02 03 =
TopK TopK

Figure 12: Comparison of TGN accuracy and training time
(in seconds) per epoch across different shared nodes ratios
with recent sampling and boundary decay sampling,.

B Forward & Backward Computation B Others —e— Test AP
Memory Sync B Remote Fetch
@ LASTFM 0 WikiTalk
%4 090% %322 0.980%
. 5 <
83 T L 08545 G104 --..|II 0.975 &
g3 0.80 & 2 g 0.970 @
= > X = > L)
= \oipgﬁéég%?%?o?w o c‘i&& = \oi@ﬁgbg?z,é%?’bww o o‘f é‘e,é'
6 6
“ StackOverflow) 800 GDELT
= 200 0.98 0 1 800 e e s 0.990
8 150 II 0968 ggg III 0.98 <
S 199 —1 0.94 89 500 ——1 0974
2200 MERANRARRNE (53 ®
E 7% S AV O 2 §0.92 E o7y & A O? < 0%
= @&%@8%9 > www&&“ = \in%°9%~ (NN e;e&“
6 6

Figure 13: Comparison of time costs (in seconds) per epoch
for each stage and test AP using recent sampling and bound-
ary decay sampling with various hyperparameters 6 without
pipelining on TGN.

to 0.3 with the recent sample policy and boundary decay sample
policy under historical smooth aggregation, because larger top-k
values increase memory usage. The experiments are conducted on
2M8G clusters. Figure 12 shows the accuracy and training time
across different settings. Firstly, training time generally decreases
with an increasing number of shared nodes using recent sampling.
Specifically, when k is set to 0.1, training speed improves by 1.2x
and 1.6 for the WikiTalk and StackOF datasets, respectively. Sec-
ondly, training time initially rises and then stabilizes with boundary
decay sampling. This rise is due to a high number of cut edges
from limited hotspot data, resulting in insufficient samples at the
same sampling probability. Additionally, boundary decay sampling
is significantly lower in time costs compared to recent sampling.
Moreover, increasing the proportion of shared hotspots enhances
accuracy initially, but accuracy gradually declines as k increases.
This is consistent with our theoretical analysis. A moderate amount
of shared data reduces external neighbors, lowering edge sampling
variance and improving historical aggregation. However, excessive
sharing may cause minimal information loss between hot node.

Analysis of Boundary Decay Sampling. To assess the impact
of our boundary decay sampling method, we conducted a com-
parative analysis of our boundary decay sampling with various 6

Sync Volume ==« All-Update

= Smooth Aggregation = = |ocal
o [an]
= LASTFM s WikiTalk
~ o ~ 103 E }0.98 o
S 104 loo2<t 3 =S
> 1o (0904 > feiiElREEILE (07 4
o oy ey o 0.88 @ PR e — 0.96 12
s, QHMINAMIINN s QMmN OMINY
) [SISItta %) OO~~~
— a — a
m m
= StackOverflow = GDELT
= 10%4 L o =104 - a
o passssenenenf() <3 ssssssssasafd <
> 103 tR9/p 4 > 1027 FQ:98D 4
g Eme=meme=lided®d = L 978 @
S QMiahoMINY S QHMINOMINNN
n [SISISI T %) OO~~~

a a

Figure 14: Comparison of TGN accuracy and synchronization
volume across different synchronization aggregation meth-
ods, with varying significant change detection threshold o

which range from 0.01 to 0.8 against the traditional recent sampling
methods and only local sampling method, i.e. 6=0. The experiments
are conducted on TGN with a 2M8G cluster. Figure 13 illustrates
time costs for each stage per epoch and the impact on accuracy
for the recent sampling method and our boundary decay sampling
method with various 6. Boundary decay sampling significantly re-
duces the time costs of the memory fetch stage, which accounts
for the majority of the overhead. When 6 = 0.1, the remote fetch
time costs are reduced by an average of 74%. As 6 decreases, the
impact on time consumption gradually diminishes until reaching
a limit when 6=0.01, and the remote fetch time costs is reduced
by up to 84% on average. Additionally, Boundary decay sampling
not only demonstrates excellent time efficiency but also maintains
accuracy, often outperforming the recent sampling method when
0 > 0.01. In most cases, boundary decay sampling can achieve a
slight improvement compared to recent sampling, while the highest
test accuracy achieves 3.9% improvement on the LASTFM dataset.
Analysis of Smooth Aggregation To evaluate our historical mem-
ory synchronization method, we compared it against traditional
all-update synchronization, where each GPU collects all shared
memory from others, and a no-synchronization approach (local).
We tested significant change detection thresholds « in the range
[0,2] on a TGN with a 2M8G cluster. Figure 14 illustrates the signif-
icant reduction in synchronization volume achieved by the aging
inspection strategy compared to the vanilla all-update strategy. The
hyperparameter a controls the update frequency of the shared node
memory. Larger a results in less frequent synchronization. Notably,
the communication volume significantly reduces since a = 0.3, that
leads to 92% and 99% reduction in communication volume compared
to the all-update strategy on StackOF and GDELT, respectively.
Furthermore, a slight increase in « exhibits an inverse exponential
relationship with communication volume, reducing communication
time costs by up to 60% compared to no aging inspection. Figure 14
also presents the test AP of smooth aggregation synchronization
with various values of @, compared to the vanilla all-update strategy
and the local strategy, consistently outperforming both baselines.
Additionally, the varying values of « yield statistically insignifi-
cant results across all datasets, suggesting that smooth aggregation
synchronization is robust to hyperparameter selection.

3104

6 RELATED WORKS

Distributed Static GNN Training Systems. Many efforts focus on
accelerating distributed training for static GNNs through graph par-
titioning algorithms that minimize cut edges and maintain workload
balance [38, 39], caching strategies [39-43], and pre-fetch methods
[40, 44] to enable simultaneous computation and communication.
However, these approaches are not suitable for MTGNN training as
they overlook node memory dependencies across temporal batches.
Distributed Temporal GNN Training Systems. Dynamic node
memory synchronization is a major challenge for MTGNN training.
Initial approaches focused on single-machine, multi-GPU setups
using shared memory to reduce communication overhead, with
TGL [11] and SPEED [12] introducing batch parallel and subgraph
partitioning strategies, respectively. However, shared memory does
not resolve communication overhead in multi-machine scenarios.
Recent strategies include temporal-aware graph partitioning [16],
node memory caching [16] with staleness mechanisms [18]. GNN-
Flow [15] sorely employs hash partitioning, while DisTGL [16] uses
an edge streaming partition method based on average timestamp
and neighbor counts. Sven [13] implements incremental reparti-
tioning. To reduce synchronization overhead, DisTGL adjusts syn-
chronization frequency with a cache miss threshold, and DistTGL
[17] creates memory replicas. MSPipe [18] and Sven [13] parallelize
communication by fetching memory in background threads.
Single-Machine Temporal GNN Training Systems. To bridge
the gap between distributed and single-machine temporal GNN
training, advancements have focused on dynamic node memory
challenges. Some works aim to reduce information loss during train-
ing with large batch sizes by limiting duplicate nodes [20], using
sliding windows [45], and applying memory-smoothing learning
[21]. Other approaches enhance efficiency through caching [46]
and data reuse [47] to minimize redundant computations.

7 CONCLUSION

This paper introduces MemShare, a distributed memory-based tem-
poral graph neural network training system based on shared node
memory. By incorporating shared node-centric graph partitioning,
boundary decay sampling, and shared node-targeted synchronous
smoothing aggregation, MemShare effectively addresses the chal-
lenges of high communication overhead in distributed training
scenarios. Additionally, MemShare integrates localism negative
sampling, pipelining parallelism, and data deduplication to enhance
its overall effectiveness. Our results demonstrate that MemShare
achieves the highest accuracy within the same machine cluster
configuration, with overall improvements in training and inference
efficiency compared to state-of-the-art distributed methods.

ACKNOWLEDGMENTS

This research is supported by the Starry Night Science Fund of Zhe-
jiang University Shanghai Institute for Advanced Study (Grant No.
SN-ZJU-SIAS-001), Hangzhou Joint Fund of the Zhejiang Provincial
Natural Science Foundation of China (Grant No.LHZSD24F020001),
the “Pioneer” R&D Program of Zhejiang (Grant No. 2024C01019),
and the National Natural Science Foundation of China (Grant No.
62476238). The author gratefully acknowledges the support of Zhe-
jlang University Education Foundation Qizhen Scholar Foundation.

REFERENCES

(1]

(2]

(3]
(4]

=
A=A

[11]

[12]

[13

[14]

[15]

[16

[22]

[23]

[24

[25]

Wengi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
Graph neural networks for social recommendation. In The world wide web
conference, pages 417-426, 2019.

Shengjie Min, Zhan Gao, Jing Peng, Liang Wang, Ke Qin, and Bo Fang. Stgsna
spatial-temporal graph neural network framework for time-evolving social
networks. Knowledge-Based Systems, 214:106746, 2021.

Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A
survey. Expert systems with applications, 207:117921, 2022.

Saeed Rahmani, Asiye Baghbani, Nizar Bouguila, and Zachary Patterson. Graph
neural networks for intelligent transportation systems: A survey. IEEE Transac-
tions on Intelligent Transportation Systems, 24(8):8846—-8885, 2023.

Soroor Motie and Bijan Raahemi. Financial fraud detection using graph neural
networks: A systematic review. Expert Systems with Applications, 240:122156,
2024.

Jianian Wang, Sheng Zhang, Yanghua Xiao, and Rui Song. A review on graph
neural network methods in financial applications. arXiv preprint arXiv:2111.15367,
2021.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. Temporal graph networks for deep learning on
dynamic graphs. arxiv 2020. arXiv preprint arXiv:2006.10637.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding
trajectory in temporal interaction networks. In ACM SIGKDD, pages 1269-1278,
2019.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xin-
guang Wang, Ping Cui, Yupu Yang, Bowen Sun, et al. Apan: Asynchronous
propagation attention network for real-time temporal graph embedding. In
Proceedings of the 2021 international conference on management of data, pages
2628-2638, 2021.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhao Li,
and Can Wang. Learning temporal interaction graph embedding via coupled
memory networks. In Proceedings of the web conference 2020, pages 3049-3055,
2020.

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and
George Karypis. Tgl: A general framework for temporal gnn training on billion-
scale graphs. Proceedings of the VLDB Endowment, 15(8):1572-1580, 2022.

Xi Chen, Yongxiang Liao, Yun Xiong, Yao Zhang, Siwei Zhang, Jiawei Zhang, and
Yiheng Sun. Speed: Streaming partition and parallel acceleration for temporal
interaction graph embedding. arXiv preprint arXiv:2308.14129, 2023.

Yaqi Xia, Zheng Zhang, Donglin Yang, Chuang Hu, and et.al. Zhou. Redundancy-
free and load-balanced tgnn training with hierarchical pipeline parallelism. IEEE
Transactions on Parallel and Distributed Systems, 2024.

Yaqi Xia, Zheng Zhang, Hulin Wang, Donglin Yang, Xiaobo Zhou, and Dazhao
Cheng. Redundancy-free high-performance dynamic gnn training with hierar-
chical pipeline parallelism. In Proceedings of the 32nd International Symposium
on High-Performance Parallel and Distributed Computing, pages 17-30, 2023.
Yuchen Zhong, Guangming Sheng, Tianzuo Qin, Minjie Wang, Quan Gan, and
Chuan Wu. Gnnflow: A distributed framework for continuous temporal gnn
learning on dynamic graphs. arXiv preprint arXiv:2311.17410, 2023.

Ziquan Fang, Qichen Sun, Qilong Wang, Lu Chen, and Yunjun Gao. Distributed
temporal graph neural network learning over large-scale dynamic graphs. In
Proceedings of the International Conference on Database Systems for Advanced
Applications, 2024.

Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, and Viktor Prasanna.
Disttgl: Distributed memory-based temporal graph neural network training. In
SC, pages 1-12, 2023.

Guangming Sheng, Junwei Su, Chao Huang, and Chuan Wu. Mspipe: Efficient
temporal gnn training via staleness-aware pipeline. In ACM SIGKDD, pages
2651-2662, 2024.

Wiki-talk. http://snap.stanford.edu/data/wiki-talk-temporal html.

Shihong Gao, Yiming Li, Yanyan Shen, Yingxia Shao, and Lei Chen. Etc: Efficient
training of temporal graph neural networks over large-scale dynamic graphs.
Proceedings of the VLDB Endowment, 17(5):1060-1072, 2024.

Junwei Su, Difan Zou, and Chuan Wu. Pres: Toward scalable memory-based
dynamic graph neural networks. In The Twelfth International Conference on
Learning Representations.

Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations and
modeling of dynamic networks using dynamic graph neural networks: A survey.
iEEE Access, 9:79143-79168, 2021.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. Inductive representation learning on temporal graphs. arXiv preprint
arXiv:2002.07962, 2020.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive
representation learning in temporal networks via causal anonymous walks. In
International Conference on Learning Representations (ICLR), 2021.

Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. Zebra: When temporal
graph neural networks meet temporal personalized pagerank. Proceedings of the

3105

[26]

(32

(33]

(35]

(36]

[37

'@
&

[39

[40

(41

[43]

[44]

[45

=
&

[47

VLDB Endowment, 16(6):1332-1345, 2023.

Gangda Deng, Hongkuan Zhou, Hanqing Zeng, Yinglong Xia, Christopher Leung,
Jianbo Li, Rajgopal Kannan, and Viktor Prasanna. Taser: Temporal adaptive
sampling for fast and accurate dynamic graph representation learning. In 2024
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
926-937. IEEE, 2024.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing,
20(1):359-392, 1998.

Stack-overflow. https://snap.stanford.edu/data/sx-stackoverflow.html.

Kalev Leetaru and Philip A Schrodt. Gdelt: Global data on events, location, and
tone, 1979-2012. In ISA annual convention, volume 2, pages 1-49. Citeseer, 2013.
Yaqi Xia, Donglin Yang, Xiaobo Zhou, and Dazhao Cheng. Scaling new heights:
Transformative cross-gpu sampling for training billion-edge graphs. In SC, pages
1-15, 2024.

Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan
Vojnovic. Fennel: Streaming graph partitioning for massive scale graphs. In
Proceedings of the 7th ACM international conference on Web search and data
mining, pages 333-342, 2014.

Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In
USENIX OSDI, pages 17-30, 2012.

Rui Wang, Shuibing He, Weixu Zong, Yongkun Li, and Yinlong Xu. Xpgraph:
Xpline-friendly persistent memory graph stores for large-scale evolving graphs.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1308-1325, 2022.

Amauri Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably ex-
pressive temporal graph networks. Advances in neural information processing
systems, 35:32257-32269, 2022.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng
Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704, 2020.

Yufeng Wang and Charith Mendis. Tglite: A lightweight programming framework
for continuous-time temporal graph neural networks. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 1183-1199, 2024.

NetworkX Developers. networkx-metis: Metis integration for networkx. https:
//github.com/networkx/networkx-metis.

Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evange-
los Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nesreen K Ahmed, and
Sasikanth Avancha. Distgnn: Scalable distributed training for large-scale graph
neural networks. In SC, pages 1-14, 2021.

Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu,
Changji Li, James Cheng, Hao Yang, and Shuai Zhang. Bytegnn: efficient graph
neural network training at large scale. Proceedings of the VLDB Endowment,
15(6):1228-1242, 2022.

Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen,
Wenyuan Yu, and Jingren Zhou. Gnnlab: a factored system for sample-based
gnn training over gpus. In Proceedings of the Seventeenth European Conference
on Computer Systems, pages 417-434, 2022.

Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He, and et.al. Peng.
Bgl:gpu-efficient gnn training by optimizing graph data i/o and preprocessing.
In USENIX NSDI, pages 103-118, 2023.

Tim Kaler, Alexandros Iliopoulos, Philip Murzynowski, Tao Schardl, Charles E
Leiserson, and Jie Chen. Communication-efficient graph neural networks with
probabilistic neighborhood expansion analysis and caching. Proceedings of
Machine Learning and Systems, 5:477-494, 2023.

Lei Wang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen, Wenyuan Yu, Zihang
Yao, and Jingren Zhou. Flexgraph: a flexible and efficient distributed framework
for gnn training. In Proceedings of the European Conference on Computer Systems,
pages 67-82, 2021.

Cheng Wan, Youjie Li, Cameron R Wolfe, Anastasios Kyrillidis, Nam Sung Kim,
and Yingyan Lin. Pipegen: Efficient full-graph training of graph convolutional
networks with pipelined feature communication. In International Conference on
Learning Representations.

Chaoyi Chen, Dechao Gao, Yanfeng Zhang, Qiange Wang, Zhenbo Fu, Xuecang
Zhang, Junhua Zhu, Yu Gu, and Ge Yu. Neutronstream: A dynamic gnn training
framework with sliding window for graph streams. Proceedings of the VLDB
Endowment, 17(3):455-468, 2023.

Shihong Gao, Yiming Li, Xin Zhang, Yanyan Shen, Yingxia Shao, and Lei Chen.
Simple: Efficient temporal graph neural network training at scale with dynamic
data placement. Proceedings of the ACM on Management of Data, 2(3):1-25, 2024.
Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. Orca: Scalable temporal
graph neural network training with theoretical guarantees. Proceedings of the
ACM on Management of Data, 1(1):1-27, 2023.

