
Effective and Efficient Distributed Temporal Graph Learning
through Hotspot Memory Sharing

Longjiao Zhang
Zhejiang University

zhljJoan@zju.edu.cn

Rui Wang∗

Zhejiang University

High-Tech Zone (Binjiang)

Institute of Blockchain and

Data Security

rwang21@zju.edu.cn

Tongya Zheng
Zhejiang Key Laboratory of

Big Data Intelligent

Computing, Hangzhou City

University

doujiang_zheng@163.com

Ziqi Huang
Zhejiang University

ziqi@zju.edu.cn

Wenjie Huang
Zhejiang University

wjie@zju.edu.cn

Xinyu Wang
Zhejiang University

wangxinyu@zju.edu.cn

Can Wang
Zhejiang University

wcan@zju.edu.cn

Mingli Song
Zhejiang University

brooksong@zju.edu.cn

Sai Wu
Zhejiang University

wusai@zju.edu.cn

Shuibing He
Zhejiang University

heshuibing@zju.edu.cn

ABSTRACT

Memory-based temporal graph neural network (MTGNN) models

are effective for predicting temporal graphs by using node memory

and message-passing modules to capture temporal and structural

information, respectively. However, distributed training for large

graphs presents challenges such as accuracy loss and decreased effi-

ciency due to remote features andmemory transmission. Despite im-

provements in MTGNN system optimizations, issues like dynamic

load imbalances, communication overhead, and memory staleness

persist. To tackle these challenges, we introduce MemShare, a dis-

tributed MTGNN system. MemShare introduces a novel shared

node memory paradigm that utilizes a small subset of shared nodes

across machines and GPUs to reduce distributed communication for

memory management. It incorporates techniques like shared nodes-

centric graph partitioning, shared nodes-aware boundary decay

sampling, and shared nodes-targeted synchronous smoothing ag-

gregation. Experiments show that MemShare outperforms existing

distributed MTGNN systems in accuracy and training efficiency.

PVLDB Reference Format:

Longjiao Zhang, Rui Wang, Tongya Zheng, Ziqi Huang, Wenjie Huang,

Xinyu Wang, Can Wang, Mingli Song, Sai Wu, Shuibing He. Effective and

Efficient Distributed Temporal Graph Learning through Hotspot Memory

Sharing. PVLDB, 18(9): 3093 - 3105, 2025.

doi:10.14778/3746405.3746430

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/zhljJoan/MemShare.

*Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.
doi:10.14778/3746405.3746430

1 INTRODUCTION

Temporal graph data, which captures evolving node and edge re-

lationships, is increasingly utilized in applications like social net-

works [1, 2], transportation networks [3, 4], and financial transac-

tions [5, 6]. Temporal graph neural networks (TGNNs) [7, 8] are cru-

cial for learning representations from these graphs, modeling com-

plex temporal and structural relationships. Among them, memory-

based TGNNs (MTGNNs) [7–10] effectively capture evolving dy-

namics through integrated node memory and message-passing

modules to enhance predictive accuracy

Efficient MTGNN training and inference depend on frameworks

like TGL [11], which abstracts training into core components and

optimizes temporal graph storage and batch parallelism for faster

training. As graph sizes increase, distributed parallel MTGNN com-

puting becomes essential, utilizing multiple GPUs or machines

for training [12–17]. These frameworks divide the graph into sub-

graphs, with each GPU managing a portion and handling data

retrieval, memory updates, and message aggregation in parallel.

However, communication bottlenecks can arise from distributed

feature retrieval and memory aggregation across remote GPUs

and machines [14, 16]. To reduce communication costs, various

optimizations have been explored in distributed MTGNN train-

ing, including memory replicas to eliminate communication during

batch training [17], distributed cache strategies to lower data re-

trieval overhead [15, 16, 18], and parallelizing communication and

computation through background thread execution to minimize

synchronization delays [13, 14, 18]. Optimizations also focus on

graph partitioning to minimize edge cuts, achieve load balance, and

reduce communication and synchronization costs [13, 14, 16].

Despite advancements in distributed MTGNN frameworks, sev-

eral limitations persist. Firstly, existing graph partitioning algo-

rithms struggle to maintain a dynamically balanced distribution as

the graph evolves, leading to high synchronization waiting costs

during training. While DisTGL [16] attempts to mitigate this by

keeping track of an average timestamp for each partition to main-

tain a balanced temporal distribution, it fails to evenly distribute the

3093

https://www.acm.org/publications/policies/artifact-review-and-badging-current

3094

3095

3096

3097

3098

3099

local and remote sampling using the same probability. To address

potential sampling bias between local and global negatives, we

introduce weight compensation for negative samples from different

partitions. The loss function incorporates weighted binary cross-

entropy (BCE) loss:

BCELoss = − 1

�푁

#∑

8=1

�푤8 · (~8 · log(~̂8) + (1 −~8) · log(1 − ~̂8)) . (27)

Let �푝A be the sampling probability for remote negative destina-

tions related to �휃 in Equation (17). For trainer �푖 , �푁3 and �푁!
3
denote

the total number of neighbors in whole graph and partition ac-

cessed by trainer �푖 , respectively. The weight �푤8 is calculated as
#3

(1−?A) ·#3+?A ·# ;

3

, if its neighbors generated from the negative sam-

pling method are stored locally, and�푤8 =
#3

;

3
·?A

otherwise.

5 EXPERIMENTS

5.1 Experiment Setups

Testbed. Our experiments are conducted on four machines inter-

connected using 10G NICs, each equipped with two Xeon 6342R@

2.8GHz processors, 1T DRAM, and four NVIDIA A40 (48G) GPUs.

The CPU-to-GPU and GPU-to-GPU connectivity was configured

using PCIe 4.0×16. To simplify notation, we use xMxG to denote x

machines with x GPUs for training, e.g., 2M8G signifies the utiliza-

tion of 2 machines with a total of 8 GPUs for training.

Datasets. We utilize four commonly used large temporal graph

datasets, Each graph is chronologically divided into a training set

(70%), a validation set (15%), and a test set (15%), as used in TGL [11]

and ETC [20].

Test MTGNNs. We evaluate three representative MTGNN models:

TGN [7], JODIE [8], and APAN [9]. Their implementations are

customized versions of TGL [11]. The attention aggregator uses

two heads for message passing, with node memory and hidden

dimensions set to 100. APAN has a mailbox size of 10 mails, while

other methods are set to 1 mail.

Comparison baselines. We compare MemShare with three state-

of-the-art open-sourceMTGNN training frameworks: TGL, DistTGL,

andMSPipe. Previous research has primarily focused on SM-MG sce-

narios, lacking support for MM-MG extensions. To address this, we

developed TGL-dist, a multi-machine extension that optimizes com-

munication through graph partitioning. We employed a dynamic

balanced graph partitioning algorithm to mitigate load imbalance

(see §3.2), with effects of different partition algorithms discussed in

§5.4. Parameters were configured according to the original works.

Since DistTGL only provides an open-source version of TGN, we

implemented the JODIE and APAN models based on its framework.

Table 2: Dataset statistics, where �푑E and �푑4 shows the dimen-

sions of node and edge features.

Dataset |�푉 | |�퐸 | �푑E �푑4

LASTFM [8] 1,980 1,293,103 172 172

WikiTalk [19] 1,140,149 7,833,139 172 172

StackOF [28] 2,601,977 63,497,049 172 172

GDELT [29] 16,681 191,290,882 413 186

Training setting. The training settings for each dataset are tailored

to improve convergence and scalability. For the LASTFM dataset,

we used 10 recent neighbors per node and an average batch size

of about 1000 per device for 100 epochs. For the larger datasets,

we increased the recent neighbors to 20 per node and set a batch

size of around 3000 per device for 50 epochs, except for GDELT,

which was trained for 10 epochs. During training and evaluation,

mini-batches were created with an equal number of positive and

negative node pairs. For MSPipe, the staleness mitigation ratio �휆 is

set to 0.9, with a maximum delay of 10 epochs. The learning rates

for DistTGL and MSPipe are proportional to the number of GPUs

(#GPU) and
√
#GPU, respectively as detailed in their source code.

We conducted a grid search for the optimal learning rate from the

set {0.0001, 0.0002, 0.0004}. Additionally, for MemShare, we set the

top-k value to 0.1.

5.2 Model Accuracy Comparison

Convergence accuracy. We initially conduct a comprehensive

analysis of model accuracy comparing MemShare with baseline

frameworks across diverse models and datasets, with varying num-

bers of machines. We train the three TGNN models under the

transductive setting, and use test average precision(AP) with best

validation AP for accuracy metrics.TGL only supports SM-MG sce-

narios, so results for other setups are missing. Table 3 illustrates

the consistent accuracy superiority of our MemShare across all

test scenarios with identical device configurations. For instance,

MemShare with the TGN model achieves a test AP of 94.18% on the

LASTFM dataset using 4M16G, surpassing the nearest competitor,

TGL-dist, by 12.97%. On average, MemShare enhances model train-

ing accuracy by 2.60%, 3.42%, 4.96%, and 4.29% over TGL, TGL-dist,

DistTGL, and MSPipe, respectively.MemShare also demonstrates

competitive or superior accuracy compared to the baseline results

achieved by TGL on a single GPU. The accuracy improvements of

MemShare result from several key factors: our hot nodes sharing

reduces variance and bias from boundary decay sampling, which

adds randomness for neighbor sampling and enhances model gener-

alization. Additionally, the smooth aggregation method minimizes

instability noise. The effects of each module on accuracy will be

discussed in §5.4.

Convergence efficiency. We further compare the convergence

efficiency by plotting the test average precision curves for TGL-

dist, DistTGL, MSPipe, and MemShare on TGN model in Figure 8.

The X-axis represents the total time cost for training, and the y-

axis represents the corresponding test precision curves. Noticeably,

MemShare achieves a significantly faster convergence rate and

higher accuracy compared to baseline frameworks under the same

time cost of training. Furthermore, MemShare exhibits a more

stable convergence curve during training, which can be attributed

to synchronous smoothing aggregation.

5.3 Efficiency Comparison

We perform a assessment of training and inference efficiency by

comparing our MemShare with TGL-dist, DistTGL, and MSPipe

across three models and four datasets. We vary the device configu-

rations with 1M4G, 2M8G, and 4M4G setups.

3100

3101

3102

3103

3104

REFERENCES
[1] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

Graph neural networks for social recommendation. In The world wide web
conference, pages 417–426, 2019.

[2] Shengjie Min, Zhan Gao, Jing Peng, Liang Wang, Ke Qin, and Bo Fang. Stgsna
spatial–temporal graph neural network framework for time-evolving social
networks. Knowledge-Based Systems, 214:106746, 2021.

[3] Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A
survey. Expert systems with applications, 207:117921, 2022.

[4] Saeed Rahmani, Asiye Baghbani, Nizar Bouguila, and Zachary Patterson. Graph
neural networks for intelligent transportation systems: A survey. IEEE Transac-
tions on Intelligent Transportation Systems, 24(8):8846–8885, 2023.

[5] Soroor Motie and Bijan Raahemi. Financial fraud detection using graph neural
networks: A systematic review. Expert Systems with Applications, 240:122156,
2024.

[6] Jianian Wang, Sheng Zhang, Yanghua Xiao, and Rui Song. A review on graph
neural networkmethods in financial applications. arXiv preprint arXiv:2111.15367,
2021.

[7] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. Temporal graph networks for deep learning on
dynamic graphs. arxiv 2020. arXiv preprint arXiv:2006.10637.

[8] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding
trajectory in temporal interaction networks. In ACM SIGKDD, pages 1269–1278,
2019.

[9] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xin-
guang Wang, Ping Cui, Yupu Yang, Bowen Sun, et al. Apan: Asynchronous
propagation attention network for real-time temporal graph embedding. In
Proceedings of the 2021 international conference on management of data, pages
2628–2638, 2021.

[10] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhao Li,
and Can Wang. Learning temporal interaction graph embedding via coupled
memory networks. In Proceedings of the web conference 2020, pages 3049–3055,
2020.

[11] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and
George Karypis. Tgl: A general framework for temporal gnn training on billion-
scale graphs. Proceedings of the VLDB Endowment, 15(8):1572–1580, 2022.

[12] Xi Chen, Yongxiang Liao, Yun Xiong, Yao Zhang, Siwei Zhang, Jiawei Zhang, and
Yiheng Sun. Speed: Streaming partition and parallel acceleration for temporal
interaction graph embedding. arXiv preprint arXiv:2308.14129, 2023.

[13] Yaqi Xia, Zheng Zhang, Donglin Yang, Chuang Hu, and et.al. Zhou. Redundancy-
free and load-balanced tgnn training with hierarchical pipeline parallelism. IEEE
Transactions on Parallel and Distributed Systems, 2024.

[14] Yaqi Xia, Zheng Zhang, Hulin Wang, Donglin Yang, Xiaobo Zhou, and Dazhao
Cheng. Redundancy-free high-performance dynamic gnn training with hierar-
chical pipeline parallelism. In Proceedings of the 32nd International Symposium
on High-Performance Parallel and Distributed Computing, pages 17–30, 2023.

[15] Yuchen Zhong, Guangming Sheng, Tianzuo Qin, Minjie Wang, Quan Gan, and
Chuan Wu. Gnnflow: A distributed framework for continuous temporal gnn
learning on dynamic graphs. arXiv preprint arXiv:2311.17410, 2023.

[16] Ziquan Fang, Qichen Sun, Qilong Wang, Lu Chen, and Yunjun Gao. Distributed
temporal graph neural network learning over large-scale dynamic graphs. In
Proceedings of the International Conference on Database Systems for Advanced
Applications, 2024.

[17] Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, and Viktor Prasanna.
Disttgl: Distributed memory-based temporal graph neural network training. In
SC, pages 1–12, 2023.

[18] Guangming Sheng, Junwei Su, Chao Huang, and Chuan Wu. Mspipe: Efficient
temporal gnn training via staleness-aware pipeline. In ACM SIGKDD, pages
2651–2662, 2024.

[19] Wiki-talk. http://snap.stanford.edu/data/wiki-talk-temporal.html.
[20] Shihong Gao, Yiming Li, Yanyan Shen, Yingxia Shao, and Lei Chen. Etc: Efficient

training of temporal graph neural networks over large-scale dynamic graphs.
Proceedings of the VLDB Endowment, 17(5):1060–1072, 2024.

[21] Junwei Su, Difan Zou, and Chuan Wu. Pres: Toward scalable memory-based
dynamic graph neural networks. In The Twelfth International Conference on
Learning Representations.

[22] Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations and
modeling of dynamic networks using dynamic graph neural networks: A survey.
iEEE Access, 9:79143–79168, 2021.

[23] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. Inductive representation learning on temporal graphs. arXiv preprint
arXiv:2002.07962, 2020.

[24] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive
representation learning in temporal networks via causal anonymous walks. In
International Conference on Learning Representations (ICLR), 2021.

[25] Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. Zebra: When temporal
graph neural networks meet temporal personalized pagerank. Proceedings of the

VLDB Endowment, 16(6):1332–1345, 2023.
[26] Gangda Deng, Hongkuan Zhou, Hanqing Zeng, Yinglong Xia, Christopher Leung,

Jianbo Li, Rajgopal Kannan, and Viktor Prasanna. Taser: Temporal adaptive
sampling for fast and accurate dynamic graph representation learning. In 2024
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
926–937. IEEE, 2024.

[27] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing,
20(1):359–392, 1998.

[28] Stack-overflow. https://snap.stanford.edu/data/sx-stackoverflow.html.
[29] Kalev Leetaru and Philip A Schrodt. Gdelt: Global data on events, location, and

tone, 1979–2012. In ISA annual convention, volume 2, pages 1–49. Citeseer, 2013.
[30] Yaqi Xia, Donglin Yang, Xiaobo Zhou, and Dazhao Cheng. Scaling new heights:

Transformative cross-gpu sampling for training billion-edge graphs. In SC, pages
1–15, 2024.

[31] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan
Vojnovic. Fennel: Streaming graph partitioning for massive scale graphs. In
Proceedings of the 7th ACM international conference on Web search and data
mining, pages 333–342, 2014.

[32] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In
USENIX OSDI, pages 17–30, 2012.

[33] Rui Wang, Shuibing He, Weixu Zong, Yongkun Li, and Yinlong Xu. Xpgraph:
Xpline-friendly persistent memory graph stores for large-scale evolving graphs.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1308–1325, 2022.

[34] Amauri Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably ex-
pressive temporal graph networks. Advances in neural information processing
systems, 35:32257–32269, 2022.

[35] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng
Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704, 2020.

[36] YufengWang andCharithMendis. Tglite: A lightweight programming framework
for continuous-time temporal graph neural networks. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 1183–1199, 2024.

[37] NetworkX Developers. networkx-metis: Metis integration for networkx. https:
//github.com/networkx/networkx-metis.

[38] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evange-
los Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nesreen K Ahmed, and
Sasikanth Avancha. Distgnn: Scalable distributed training for large-scale graph
neural networks. In SC, pages 1–14, 2021.

[39] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu,
Changji Li, James Cheng, Hao Yang, and Shuai Zhang. Bytegnn: efficient graph
neural network training at large scale. Proceedings of the VLDB Endowment,
15(6):1228–1242, 2022.

[40] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen,
Wenyuan Yu, and Jingren Zhou. Gnnlab: a factored system for sample-based
gnn training over gpus. In Proceedings of the Seventeenth European Conference
on Computer Systems, pages 417–434, 2022.

[41] Tianfeng Liu, Yangrui Chen, Dan Li, ChuanWu, Yibo Zhu, Jun He, and et.al. Peng.
Bgl:gpu-efficient gnn training by optimizing graph data i/o and preprocessing.
In USENIX NSDI, pages 103–118, 2023.

[42] Tim Kaler, Alexandros Iliopoulos, Philip Murzynowski, Tao Schardl, Charles E
Leiserson, and Jie Chen. Communication-efficient graph neural networks with
probabilistic neighborhood expansion analysis and caching. Proceedings of
Machine Learning and Systems, 5:477–494, 2023.

[43] LeiWang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen,Wenyuan Yu, Zihang
Yao, and Jingren Zhou. Flexgraph: a flexible and efficient distributed framework
for gnn training. In Proceedings of the European Conference on Computer Systems,
pages 67–82, 2021.

[44] Cheng Wan, Youjie Li, Cameron R Wolfe, Anastasios Kyrillidis, Nam Sung Kim,
and Yingyan Lin. Pipegcn: Efficient full-graph training of graph convolutional
networks with pipelined feature communication. In International Conference on
Learning Representations.

[45] Chaoyi Chen, Dechao Gao, Yanfeng Zhang, Qiange Wang, Zhenbo Fu, Xuecang
Zhang, Junhua Zhu, Yu Gu, and Ge Yu. Neutronstream: A dynamic gnn training
framework with sliding window for graph streams. Proceedings of the VLDB
Endowment, 17(3):455–468, 2023.

[46] Shihong Gao, Yiming Li, Xin Zhang, Yanyan Shen, Yingxia Shao, and Lei Chen.
Simple: Efficient temporal graph neural network training at scale with dynamic
data placement. Proceedings of the ACM on Management of Data, 2(3):1–25, 2024.

[47] Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. Orca: Scalable temporal
graph neural network training with theoretical guarantees. Proceedings of the
ACM on Management of Data, 1(1):1–27, 2023.

3105

