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ABSTRACT

Memory-based temporal graph neural network (MTGNN) models

are effective for predicting temporal graphs by using node memory

and message-passing modules to capture temporal and structural

information, respectively. However, distributed training for large

graphs presents challenges such as accuracy loss and decreased effi-

ciency due to remote features andmemory transmission. Despite im-

provements in MTGNN system optimizations, issues like dynamic

load imbalances, communication overhead, and memory staleness

persist. To tackle these challenges, we introduce MemShare, a dis-

tributed MTGNN system. MemShare introduces a novel shared

node memory paradigm that utilizes a small subset of shared nodes

across machines and GPUs to reduce distributed communication for

memory management. It incorporates techniques like shared nodes-

centric graph partitioning, shared nodes-aware boundary decay

sampling, and shared nodes-targeted synchronous smoothing ag-

gregation. Experiments show that MemShare outperforms existing

distributed MTGNN systems in accuracy and training efficiency.
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1 INTRODUCTION

Temporal graph data, which captures evolving node and edge re-

lationships, is increasingly utilized in applications like social net-

works [1, 2], transportation networks [3, 4], and financial transac-

tions [5, 6]. Temporal graph neural networks (TGNNs) [7, 8] are cru-

cial for learning representations from these graphs, modeling com-

plex temporal and structural relationships. Among them, memory-

based TGNNs (MTGNNs) [7–10] effectively capture evolving dy-

namics through integrated node memory and message-passing

modules to enhance predictive accuracy

Efficient MTGNN training and inference depend on frameworks

like TGL [11], which abstracts training into core components and

optimizes temporal graph storage and batch parallelism for faster

training. As graph sizes increase, distributed parallel MTGNN com-

puting becomes essential, utilizing multiple GPUs or machines

for training [12–17]. These frameworks divide the graph into sub-

graphs, with each GPU managing a portion and handling data

retrieval, memory updates, and message aggregation in parallel.

However, communication bottlenecks can arise from distributed

feature retrieval and memory aggregation across remote GPUs

and machines [14, 16]. To reduce communication costs, various

optimizations have been explored in distributed MTGNN train-

ing, including memory replicas to eliminate communication during

batch training [17], distributed cache strategies to lower data re-

trieval overhead [15, 16, 18], and parallelizing communication and

computation through background thread execution to minimize

synchronization delays [13, 14, 18]. Optimizations also focus on

graph partitioning to minimize edge cuts, achieve load balance, and

reduce communication and synchronization costs [13, 14, 16].

Despite advancements in distributed MTGNN frameworks, sev-

eral limitations persist. Firstly, existing graph partitioning algo-

rithms struggle to maintain a dynamically balanced distribution as

the graph evolves, leading to high synchronization waiting costs

during training. While DisTGL [16] attempts to mitigate this by

keeping track of an average timestamp for each partition to main-

tain a balanced temporal distribution, it fails to evenly distribute the
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local and remote sampling using the same probability. To address

potential sampling bias between local and global negatives, we

introduce weight compensation for negative samples from different

partitions. The loss function incorporates weighted binary cross-

entropy (BCE) loss:

BCELoss = − 1

�푁

#∑

8=1

�푤8 · (~8 · log(~̂8 ) + (1 −~8 ) · log(1 − ~̂8 )) . (27)

Let �푝A be the sampling probability for remote negative destina-

tions related to �휃 in Equation (17). For trainer �푖 , �푁3 and �푁!
3
denote

the total number of neighbors in whole graph and partition ac-

cessed by trainer �푖 , respectively. The weight �푤8 is calculated as
#3

(1−?A ) ·#3+?A ·# ;

3

, if its neighbors generated from the negative sam-

pling method are stored locally, and�푤8 =
#3

# ;

3
·?A

otherwise.

5 EXPERIMENTS

5.1 Experiment Setups

Testbed. Our experiments are conducted on four machines inter-

connected using 10G NICs, each equipped with two Xeon 6342R@

2.8GHz processors, 1T DRAM, and four NVIDIA A40 (48G) GPUs.

The CPU-to-GPU and GPU-to-GPU connectivity was configured

using PCIe 4.0×16. To simplify notation, we use xMxG to denote x

machines with x GPUs for training, e.g., 2M8G signifies the utiliza-

tion of 2 machines with a total of 8 GPUs for training.

Datasets. We utilize four commonly used large temporal graph

datasets, Each graph is chronologically divided into a training set

(70%), a validation set (15%), and a test set (15%), as used in TGL [11]

and ETC [20].

Test MTGNNs. We evaluate three representative MTGNN models:

TGN [7], JODIE [8], and APAN [9]. Their implementations are

customized versions of TGL [11]. The attention aggregator uses

two heads for message passing, with node memory and hidden

dimensions set to 100. APAN has a mailbox size of 10 mails, while

other methods are set to 1 mail.

Comparison baselines. We compare MemShare with three state-

of-the-art open-sourceMTGNN training frameworks: TGL, DistTGL,

andMSPipe. Previous research has primarily focused on SM-MG sce-

narios, lacking support for MM-MG extensions. To address this, we

developed TGL-dist, a multi-machine extension that optimizes com-

munication through graph partitioning. We employed a dynamic

balanced graph partitioning algorithm to mitigate load imbalance

(see §3.2), with effects of different partition algorithms discussed in

§5.4. Parameters were configured according to the original works.

Since DistTGL only provides an open-source version of TGN, we

implemented the JODIE and APAN models based on its framework.

Table 2: Dataset statistics, where �푑E and �푑4 shows the dimen-

sions of node and edge features.

Dataset |�푉 | |�퐸 | �푑E �푑4

LASTFM [8] 1,980 1,293,103 172 172

WikiTalk [19] 1,140,149 7,833,139 172 172

StackOF [28] 2,601,977 63,497,049 172 172

GDELT [29] 16,681 191,290,882 413 186

Training setting. The training settings for each dataset are tailored

to improve convergence and scalability. For the LASTFM dataset,

we used 10 recent neighbors per node and an average batch size

of about 1000 per device for 100 epochs. For the larger datasets,

we increased the recent neighbors to 20 per node and set a batch

size of around 3000 per device for 50 epochs, except for GDELT,

which was trained for 10 epochs. During training and evaluation,

mini-batches were created with an equal number of positive and

negative node pairs. For MSPipe, the staleness mitigation ratio �휆 is

set to 0.9, with a maximum delay of 10 epochs. The learning rates

for DistTGL and MSPipe are proportional to the number of GPUs

(#GPU) and
√
#GPU, respectively as detailed in their source code.

We conducted a grid search for the optimal learning rate from the

set {0.0001, 0.0002, 0.0004}. Additionally, for MemShare, we set the

top-k value to 0.1.

5.2 Model Accuracy Comparison

Convergence accuracy. We initially conduct a comprehensive

analysis of model accuracy comparing MemShare with baseline

frameworks across diverse models and datasets, with varying num-

bers of machines. We train the three TGNN models under the

transductive setting, and use test average precision(AP) with best

validation AP for accuracy metrics.TGL only supports SM-MG sce-

narios, so results for other setups are missing. Table 3 illustrates

the consistent accuracy superiority of our MemShare across all

test scenarios with identical device configurations. For instance,

MemShare with the TGN model achieves a test AP of 94.18% on the

LASTFM dataset using 4M16G, surpassing the nearest competitor,

TGL-dist, by 12.97%. On average, MemShare enhances model train-

ing accuracy by 2.60%, 3.42%, 4.96%, and 4.29% over TGL, TGL-dist,

DistTGL, and MSPipe, respectively.MemShare also demonstrates

competitive or superior accuracy compared to the baseline results

achieved by TGL on a single GPU. The accuracy improvements of

MemShare result from several key factors: our hot nodes sharing

reduces variance and bias from boundary decay sampling, which

adds randomness for neighbor sampling and enhances model gener-

alization. Additionally, the smooth aggregation method minimizes

instability noise. The effects of each module on accuracy will be

discussed in §5.4.

Convergence efficiency. We further compare the convergence

efficiency by plotting the test average precision curves for TGL-

dist, DistTGL, MSPipe, and MemShare on TGN model in Figure 8.

The X-axis represents the total time cost for training, and the y-

axis represents the corresponding test precision curves. Noticeably,

MemShare achieves a significantly faster convergence rate and

higher accuracy compared to baseline frameworks under the same

time cost of training. Furthermore, MemShare exhibits a more

stable convergence curve during training, which can be attributed

to synchronous smoothing aggregation.

5.3 Efficiency Comparison

We perform a assessment of training and inference efficiency by

comparing our MemShare with TGL-dist, DistTGL, and MSPipe

across three models and four datasets. We vary the device configu-

rations with 1M4G, 2M8G, and 4M4G setups.
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