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ABSTRACT

Over the recent years, Shapley value (SV), a solution concept from
cooperative game theory, has found numerous applications in data
analytics (DA). This paper presents the first comprehensive study
of SV used throughout the DA workflow, clarifying the key vari-
ables in defining DA-applicable SV and the essential functionalities
that SV can provide for data scientists. We condense four primary
challenges of using SV in DA, namely computation efficiency, ap-
proximation error, privacy preservation, and interpretability, disen-
tangle the resolution techniques from existing arts in this field, then
analyze and discuss the techniques w.r.t. each challenge and the
potential conflicts between challenges. We also implement SVBench,
a modular and extensible open-source framework for developing
SV applications in different DA tasks, and conduct extensive eval-
uations to validate our analyses and discussions. Based on the
qualitative and quantitative results, we identify the limitations of
current efforts for applying SV to DA and highlight the directions
of future research and engineering.
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1 INTRODUCTION

Data analytics (DA), exploring data to mine insightful information
for problem-solving, has garnered significant attention in industry
and academia over the past few years [52, 114]. The global DA mar-
ket was valued at USD 64.99 billion in 2024 and is projected to reach
USD 402.70 billion by 2032, with a compound annual growth rate
of 25.5% from 2024 to 2032 [105]. A typical DA workflow generally
follows three key stages: (1) Data Fabrication [46, 95], encompass-
ing tasks such as data collection (DC) 7, 20] to identify, retrieve,
and transfer data from diverse data sources to the analysis platform,
and data orchestration (DO) [82, 170] to cleanse and transform data
to align with downstream analytical requirements. (2) Data Ex-
ploration, including data valuation (DV) to preserve high-value,
refined data, and data mining (DM) to uncover patterns and insights
using techniques such as Machine Learning (ML). (3) Result Re-
porting, involving result interpretation (RI) [12, 18, 29] to render
the analytical outcomes comprehensible, and result trading (RT) to
bargain and exchange DA derivatives such as trained ML models
in data marketplaces [19, 157].

Recently, data scientists have applied Shapley value (SV), a method
derived from cooperative game theory for fairly distributing the
total gains generated by the coalition of all players [113], to numer-
ous tasks throughout the DA workflow. Figure 1 depicts a series
of examples applying SV to the tasks analyzing medical images,
where the analytical objects include pixels, images, image sets, ML
models, etc. The application purposes can be summarized into four
categories: (1) pricing, to determine the net worth of analytical
objects for trading, such as buying image datasets in the DC task
and selling well-trained models in the RT task; (2) selection, to
select qualified and important analytical objects for exploration,
for example, selecting pixels important to reduce training losses to
learn models in the DO task; (3) weighting, to assign reasonable
weights to analytical objects collected from multiple sources for
valid fusion of those objects, for instance, weighting local models
collected in the DM task, where federated learning (FL) [70, 85]
is used to protect privacy within medical images, for fusing as a
valid global model whose accuracy exceeds a certain threshold; (4)
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Figure 1: An example of using Shapley values (¢1, ¢2, ¢3,- - -)

throughout the data analytics workflow.

attribution, to explain data exploration outputs, e.g., explaining
how pixels impact the model predictions in the RI task.

To better understand the usage of SV in the DA domain, sev-
eral surveys have been proposed [12, 17, 65, 94, 100, 108, 122, 128].
However, they do not cover the entire life cycle of DA, leaving a
gap in a holistic guidance for applying SV to diverse DA tasks. As
summarized in Table 1, prior works predominantly concentrated
on ad-hoc SV implementations, mainly addressing computation
efficiency instead of other challenges such as interpretability. Fur-
thermore, they analyze SV applications or computing algorithms
as monolithic units rather than decomposing them into reusable
building blocks, which is a limitation that stifles the development of
modular extensible frameworks from a DA application perspective.
For instance, existing tools like SHAP [76] (tailored to RI tasks)
and DataShapley [43] (bound to DV tasks) are constrained by rigid
task-specific configurations, sacrificing flexibility and universal-
ity. These gaps leave practitioners ill-equipped to navigate SV’s
foundational design principles (such as cooperative game model-
ing) or resolve conflicting challenges (e.g., approximation error vs.
efficiency) when adapting SV to new DA tasks.

In this work, we endeavor to bridge existing gaps through an
in-depth survey analyzing the application of SV across the entire
spectrum of DA. By synthesizing the insights, this paper contributes
to not only a deeper understanding of the SV’s potential to enhance
DA but also the implementation of a modular extensible framework
for SV application development, laying the groundwork for both
the practical implementation of SV in real-world DA systems and
the advancement of academic research in this exciting field. We
expect this paper to be a helpful resource for both newcomers to the
field and seasoned experts seeking a consolidated and systematic
update on current developments.

The contributions of this paper are outlined as follows:
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Table 1: Comparison with related works. Our work focuses on
the techniques (or called building blocks of SV applications
and algorithms) solving four challenges of SV: computation
efficiency (eff.), approximation error (err.), privacy preserva-
tion (priv.), and interpretability (int.).

We present the first comprehensive survey of SV applied through-
out the DA workflow, clarify the key variables in defining DA-
applicable SV, and reveal the essential functionalities that SV
can provide for DA. We also condense four technical challenges
of using SV in DA, analyze and discuss the building blocks of
solutions w.r.t. each challenge and potential conflicts between
challenges. (§3)

We propose SVBench, a modular and extensible open-source
framework for developing SV applications. SVBench integrates
abundant techniques addressing key challenges of using SV in
DA and allows a flexible usage of these techniques to build up
new algorithms. The developers, as well as the academicians,
could extend the framework with flexible APIs for succeeding
studies on SV. (§4)

We conduct extensive evaluations to consolidate our analyses
and discussions, involving possible technical combinations for
efficient computation, trade-offs in handling different challenges,
and key factors affecting mainstream SV interpretations. Ex-
periment results also validate the usability and modularity of
SVBench. Through experiments, we reveal limiting factors of
existing efforts and highlight future research and engineering
directions. (§5)

2 PRELIMINARIES

This section introduces a general definition of the SV used in DA.
For a more accessible presentation, we start by introducing the
cooperative game, an important concept used in SV definition.

A cooperative game is composed of a player set and a utility
function that defines the utility of each coalition (i.e., a subset of
the player set). The formal definitions are stated as follows.

Definition 1. Player set, coalition, and cooperative game. Let
N ={p1, - ,pn} bea finite set of players. A coalition is a nonempty
subset S C N and the grand coalition is N itself. A cooperative game,
denoted by C(N,U), consists of a player set N and a utility function
U (-) that maps each coalition to a scalar value, i.e., U : P(N) — R,
where P (N) is the power set of N and U(0) = 0.

For any S € N, U(S) represents the sum of the expected utility
that the members of S can achieve through cooperation and is
available for distribution among the members of S.



SV is a method in cooperative game theory designed to fairly
allocate the overall utility generated by the collective efforts of all
players within a game. SV assigns a value to each player in the
game, based on the player’s marginal contribution to each possible
coalition’s utility, especially considering the case where the player
is not part of the coalition. Intuitively, SV captures the essence of
how much one coalition’s utility increases (or decreases) with the
inclusion of a new player, providing a fair and quantifiable measure
of each player’s influence on the game’s overall utility.

SV has already been widely applied in numerous DA tasks mod-
eled as cooperative games. According to the application purpose,
existing works fall into 4 high-level categories, i.e., pricing, selection,
weighting, and attribution, as presented in §1. Within each cate-
gory, SV applications can be further classified into 8 finer-grained
subcategories based on the definition of player and utility in the
cooperative game, as shown in Figure 2. Through a comprehensive
review of these applications, we formalize a general definition of
SV used in DA as follows. A detailed discussion of SV applied for
different purposes will be presented in the next section.

Definition 2. Shapley value in data analytics. Given a task
modeled as C(N,U), where each player p; € N is an analytical
object and the utility U(-) refers to an analytical outcome or the
outcome evaluation score, the Shapley value ¢; is a numerical value
representing the weighted average of marginal contributions made
by the player p; to U(S) produced by each coalition S € N\{pi}.

pi = == s upp -vsi @
ScMipite— "
weight factor marginal contribution
= Y e v -veoml. @

n:
Oen(N)
marginal contribution

Equations 1 and 2 show the mathematical formulation of SV
from different perspectives. Equation 1 is given based on Definition
2, while Equation 2 is given from the perspective of expectation
calculation. The two formulas are interchangeable in SV computa-
tion. However, Equation 2 would be preferred if a developer expects
to compute SV using expectation calculation techniques in mathe-
matical statistics (even if not originally devised for SV, e.g., Monte
Carlo methods). In Equation 2, 7(/N) is the set of all possible per-
mutations of players in the grand coalition, and P(O, p;) is the set
of predecessors of player p; in a specific permutation O € 7(N).

3 THE SHAPLEY VALUE IN DATA ANALYTICS

In this section, we first introduce cooperative game modeling, a
critical step to apply SV to DA tasks (§3.1), and then discuss the
challenges of using SV in DA and the corresponding solutions (§3.2).

3.1 Cooperative Game Modeling

The fundamental step of applying SV for a DA task is cooperative
game modeling. The core is to properly match the player and the
utility to the elements in the task. Figure 2 summarizes existing com-
binations of the player and utility in DA tasks and their associated
SV application purposes.

From the figure, we can see that the player is taxonomized into
four types: (1) the data feature, (2) the data tuple (or called sample)
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Figure 2: Cooperative game modeling for applying SV in
the DA domain (@, ©, ® refer to the three functionalities
summarized in Finding 3).

composed of several features and label(s), (3) the dataset composed
of several data tuples, or (4) the data derivative, e.g., the ML model
trained on several datasets.

Finding 1. Players may differ from the analytical object.
While players in SV typically align with the analytical objects of a
DA task, they can also represent sub-components of the analytical
object for specialized objectives.

Discussion. Figure 1 demonstrates how the players align with
the analytical objects of each task: in DO, the players are pixels (i.e.,
data features); in DV, they are images (i.e., data tuples); in DC, they
correspond to image sets (namely datasets); in RT, players are ML
models (data derivatives). Such alignments ensure that SV quantifies
contributions at the granularity of the task’s core analytical object.

In contrast, Wang et al. [136] defined the players as the sub-
components of the analytical object in a multi-group data valua-
tion task. The task is to evaluate contributions to Cervical cancer
prediction across five disjoint groups, where each group’s dataset
contains three unique data features (e.g., age) with no feature over-
lap between groups. Here, the player is the data feature, a sub-
component of the core analytical object (each group’s dataset). The
flexibility in defining players as either the analytical object or its
sub-components underscores the adaptability to DA task-specific
interpretability needs.

The utility function has two kinds of outputs: (1) the goodness-
of-fit score between the DA task’s outputs and ground truth facts,
including but not limited to test accuracy, training loss, confidence



score, etc., (2) the task outputs themselves, more specifically, pre-
dictive outputs from the ML models learned in DA tasks or the
answers to queries/questions on the data used in the DA workflow.

Finding 2. Utility definitions are task-dependent. The choice
of utility is dictated by the objectives of the DA task. When max-
imizing or minimizing goodness-of-fit scores (e.g., accuracy), the
utility directly reflects those scores. Conversely, when explaining
task outputs or quantifying data impacts on those outputs, the
utility is defined by the outputs themselves.

Discussion. Figure 1 exemplifies this duality. In the DV task,
utility is tied to test accuracy to optimize a medical image classifier,
while in the RI task, utility derives from predictive outputs to ex-
plain how pixel-level variations influence results. Notably, a single
player-utility pairing, such as defining players as ML models and
utility as test accuracy, can serve multiple DA tasks (e.g., DM and
RT in the figure). Similarly, one task may leverage SV for diverse
purposes: the DM task, for instance, can use SV both to weight local
models and to assign pricing incentives, ensuring higher model
quality while aligning contributions with economic rewards. This
adaptability reveals SV’s capacity to address heterogeneous analyt-
ical goals through context-aware utility design.

Finding 3. The real-world functionality of applying SV
lies in three aspects: (1) to construct fair marketplaces for data
and related products, incentivizing data sharing; (2) to improve
the quality of DA outputs while reducing the economic cost; (3) to
transfer DA outputs into actions to solve real-world problems.

Discussion. Figure 1 exemplifies the three functionalities that
different DA tasks target to achieve. DC and RT tasks seek to pro-
vide helpful results to construct fair marketplaces for data in the
medical domain. DV and DM tasks strive to improve the test ac-
curacy of a medical image classification model while reducing the
learning cost. The RI task intends to transfer predictions from a
medical image classification model into actions assisting diagno-
sis. As summarized in Figure 2, to serve the first functionality, the
purpose of applying SV is typically pricing. For the second function-
ality, the purposes of applying SV include pricing, selection, and
weighting. To fulfill the last functionality, the purpose of applying
SV is primarily attribution. Demanders can design SV applications
that satisfy their specific requirements according to Figure 2 and
Findings 1-3.

3.2 Challenges and Solutions of Applying SV

In this section, we taxonomize existing studies on applying SV in
the DA domain according to the challenges they tackle, namely,
computation efficiency, approximation error, privacy preservation,
and interpretability. Subsequently, we conduct a thorough analysis
and discussion of the countermeasures, highlighting key takeaways
and remaining questions that we will study further through experi-
ments in §5.1-85.4. For more details of the techniques summarized
in §3.2.1-§3.2.4, please refer to our technical report [66].

3.2.1 Computation Efficiency. Based on Definition 2 and Equa-
tion 1, the total cost of SV computation is determined by Ny¢ X Ty¢,
where Ny is the total number of utility computations, and Ty, is
the average time cost of every utility computation. To compute
exact SV, the algorithm generally enumerates all possible coalitions
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of players in the cooperative game by iterations, with each iteration
computing the utility on one coalition.

Exact SV computing algorithm is known costly [12, 17, 108],
with the number of iterations reaching an exponential level, i.e.,
Nyc = 2". Thus, the computation complexity of exact SV is O(2").
In DA tasks, the quantity of players (i.e.,n) is much higher than
expected, resulting in the prohibitive computation cost. Moreover,
as highlighted by Jethani et al. [53], the total cost of SV computing
in DA can be further increased when DA tasks involve ML models,
since each iteration typically necessitates retraining these models,
associated with non-trivial expenses. For example, the DO task in
Figure 1 analyzes 224 X 224 players (pixels), thus Ny, = 2224224,
Depending on the task’s model size and computation resources, Ty¢
can reach hours to months [25], much longer than milliseconds in
traditional game theory.

To efficiently compute SV, the research focus has shifted from
the exact computation to the approximate algorithms. Abundant
approximate SV computing algorithms have been proposed and
most existing surveys [12, 17, 65, 94, 100, 108, 122, 128] classified
the algorithms into two categories: task-agnostic, i.e., covering
general usage for different DA tasks, and task-specific, i.e., relying
on certain assumptions about DA tasks.

Different from previous surveys, our paper disentangles the
vital techniques that can be used flexibly to develop new efficient
SV computing algorithms from existing applications. Generally,
these techniques fall into two categories: (1) iteration reduction for
reducing Ny,¢, and (2) ML speedup for reducing Ty,c.

Table 2 summarizes the iteration reduction techniques disen-
tangled from task-agnostic algorithms, which can be outlined into
three types: (1) sampling-based, to estimate SV using randomly-
sampled coalitions or permutations, involving Monte Carlo (MC),
regression (RE), multilinear extension (MLE), group testing (GT),
compressive permutation sampling (CP), (2) truncation (TC), to
avoid computing the marginal contribution of new players who
join a coalition unnecessarily, (3) fitting-based, to train a predictive
ML model whose outputs are the estimations of the targeted SVs,
including SV predictor learning (PL).

Finding 4. For task-agnostic iteration reduction, sampling-
based techniques gain the leading place in practical applica-
tions. Each sampling-based technique can be deployed indepen-
dently as a base SV computing algorithm.

Discussion. Among the sampling-based iteration techniques,
MC gains the widest application. Theoretically, GT and CP can
further reduce the complexity of SV computation, but these two
techniques do not gain much wider application than MC. We spec-
ulate that GT is limited by its assumption on the correctness of
mirroring the difference between the SVs of any two players, while
CP is limited by its strong reliance on the sparse SV assumption.
The other sampling-based iteration techniques, RE and MLE, are
also relatively limited in practical applications compared with MC.
These two techniques are heuristic and the corresponding big-O
notations are not given by existing arts.

Compared with sampling-based techniques, fitting-based tech-
niques can generate SV at a much lower complexity. However,
these techniques work effectively only with access to abundant
ground-truth SVs (or high-quality surrogates of the ground-truth)
for training the SV predictor, and the training incurs extra cost.



Tech. ‘Main Idea‘ Complexity ‘Extra Cost Use Scenarios

DCJ3, 68, 91, 121, 123, 154, 173],
DOj24, 40, 83, 112],
2
MC O(n* log(n)) x DV[42, 43, 54, 62], EL[13, 107],
y FL[21, 35, 69, 90, 136, 141], RI[88]
RE sampling / X RI[28, 53, 76]
MLE Polynomial x EL[107], RI[88, 92]
GT O(y/nlog(n)?) x DV{[54], FL[141]
Cp O(nloglog(n)) x DV[54]
TC . DCIs, 79, 131], DV[79, 99, 153],
truncation / x FL[44, 70, 70, 71, 71, 159, 160, 160]
PL | fitting | 01 | v | RI[53]

Table 2: Summary of iteration reduction techniques disentan-
gled from task-agnostic SV computing algorithms. Based on
learning paradigms, our work further classifies the DM tasks
having applied SV into five types: semi-supervised learning
(SSL), active learning (AL), continuous learning (CL), ensem-
ble learning (EL), and federated learning (FL).

Finding 5. The truncation-based technique tends to be
employed in conjunction with a sampling-based technique.

Discussion. Many works [8, 24, 43, 70, 79, 99, 131, 153, 160, 173]
have attempted the combination of MC+TC to develop hybrid! SV
computing algorithms. As a flexible technique, TC is also compati-
ble with other sampling-based iteration reduction techniques, e.g.,
RE, MLE, GT, and CP. However, these combinations have not been
evaluated yet, since prior works analyze SV applications or com-
puting algorithms as monolithic units rather than decomposing
them into reusable building blocks. Later in §5.1, we will evaluate
the performance of TC integrated with different sampling-based
techniques to validate its flexibility.

Table 3 summarizes the iteration reduction techniques disen-
tangled from task-specific algorithms, including linear-based, tree-
based, K-nearest-neighbor(KNN)-based, deep-neural-network(DNN)-
based, uniform division, and influence function.

Finding 6. For task-specific iteration reduction, leveraging
simple-structured ML models or loss-bounded learning algo-
rithms is the key to lowering the complexity of SV computa-
tion. However, with the rising popularity of large-scale pre-trained
models in the DA domain, the usability of this solution direction
might be compromised.

Discussion. Although some task-specific techniques are de-
signed based on DNN, the complexity of those techniques is deter-
mined by the number of hidden layers in the model and the number
of parameters in each layer. Therefore, if a DA task relies on large-
scale pre-trained models (such as GPT-4 [96]), those techniques
may not work efficiently to generate accurate SV approximation
results in this case.

Table 4 summarizes the ML speedup techniques: gradient approx-
imation (GA), test sample skip (TSS), and model appraiser (MA). All
these techniques, disentangled from task-specific algorithms, are
heuristic (thus not given with big-O notations). GA expedites the

!In this paper, we call the SV computing algorithm adopting different techniques for
efficient computation as the hybrid algorithm.
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Tech. ‘ Main Idea ‘Complexity‘ Use Scenario
Linear-based O(n) RI[76]
Tree-based del O(TLD?)* | RI[75, 89, 161, 169]
mode

DV[139], SSL[27],

KNN-based structure O(nlog(n)) AL{44], CL{115]
DNN-based / RI[4, 140]
Uniform division ‘stable learning‘ o(1) ‘ DV[54]
Influence function‘ smooth utility ‘ O(n) DV[54]

* T: number of trees; L: maximum number of leaves in a tree; D: maximum tree depth.
Table 3: Summary of iteration reduction techniques disen-
tangled from task-specific SV computing algorithms.

Tech. ‘ Objective ‘ Main Idea ‘ Use Scenarios

replace gradients from costly
multi-step computations with
easy-to-obtain surrogates

training
speedup

DV[54], AL[44],

GA FL[125, 130, 158]

evaluate on only ambiguous
TSS test data whose predictive
inference | results vary across models
speedup | train a model whose outputs
MA are estimations of the given [DC[132], DV [42], RT[157]
model’s performance score

FL[176]

Table 4: Summary of ML speedup techniques.

model training needed at each time of utility computation, while
TSS and MA accelerate model inference processes.

Finding 7. ML speedup techniques are compatible with
iteration reduction techniques.

Discussion. There are many works on hybrid SV computing
algorithms integrating these two types of techniques. An example
is MC+GA, utilized by both DV tasks selecting high-quality data
tuples from the UK Biobank dataset to train logistic regression [43]
and FL tasks selecting high-quality local models to generate the
global model for image classification [9, 70, 160]. MC + GA + TSS
is another typical combination designed for tasks with the players
being ML models [176]. We note that integrating ML speedup with
iteration reduction is well-suited for tasks, like DV or FL, which
have (one of) the following characteristics. The first characteristic
is that computing a utility involves the costly multi-step gradient
descent for model training. Another characteristic is that the utility
computation relies on numerous test data samples or complicated
models, e.g., pre-trained models with billions of parameters.

Though heaps of hybrid algorithms have been proposed, provid-
ing empirical usage of SV, a question remains open for rigorous
demanders: Can the hybrid SV computing algorithms always
ensure higher efficiency than the algorithm using only one
of the integrated techniques? Concluding this subsection with
the question, we attempt to answer this question later in §5.1.

3.2.2 Approximation Error. SV approximate computation, though
faster than exact computation, introduces the variance caused by
the randomness in sampling the player coalitions and the bias
caused by incomplete exploration of all the possible coalitions.
Hence, it poses a new challenge that the approximate SV may not



Tech. Main Idea Compatible With‘ Use Scenarios Tech. ‘ Objective ‘Lightweight ‘ Rigorous ‘ Use Scenarios
sample permutations or DCl151], DO[57], NPM exposure v X RI [15]
stratified | coalitions from disjoint DV[s54, 146, 172], HE | .jimination x v FL[176]
strata proportionally MG, RE, MLE,  |FL{67,97], RI[57, 58, 88] SMPC x v DC[132]
| samplenegatively GL.CP OT | inference v x RI[77]
antithetic | correlated permutations FL[97],RI[28, 88, 92] DR | prevention v x RI77]
or coalitions
- DP ‘ both ‘ v ‘ v ‘DV[139, 146], RI[15, 77], RT([68]
Kkernel- sample permutations - - -
based | With good distributions MC, CP RI[ss] Table 6: Summary of privacy protection techniques.
relative to kernels

Table 5: Summary of variance reduction techniques.

be an accurate and unbiased estimation of the exact SV, and thus
may fail to serve its expected application purposes. The key to
reducing the SV approximation error is variance reduction. Ta-
ble 5 summarizes the techniques falling into three types: stratified,
antithetic, and kernel-based.

Finding 8. Stratified and antithetic techniques are com-
patible with sampling-based iteration reduction techniques,
regardless of the sampling objects being coalitions or per-
mutations. The two techniques can be integrated seamlessly with
MG, RE, MLE, GT, or CP. However, the kernel-based technique is
designed exclusively for permutation sampling, e.g., in algorithms
based on MC or CP.

Discussion. The stratified technique is applicable regardless of
the sampling objects, because the coalitions can be divided into
disjoint strata based on the number of players included in each
coalition, and the permutations can be stratified according to the
position of a player. The antithetic technique also works for sam-
pling the two objects, since each coalition S has a negatively corre-
lated counterpart N'\S, and any two permutations are negatively
correlated if the order of players is completely reversed. Existing
kernel-based technique, in contrast, only defines the distance and
similarity between permutations, and thus cannot work when the
sampling object is a coalition.

Finding 9. Reducing the approximation error of SV might
compromise its computation efficiency.

Discussion. The mainstream algorithms for computing approx-
imate SV rely on sampling. However, according to the law of large
numbers [148], no matter which sampling strategy is adopted, it is
inevitable to sample more coalitions and compute their utilities to
reduce approximation error, which, on the other hand, increases
computation complexity. This leaves a riddle: Given a sampling
strategy, how to strike a balance between SV approximation
error and computation efficiency? Similarly, we conduct certain
experiments in §5.2 to bridge this gap.

3.2.3  Privacy Preservation. Applying SV in DA can raise privacy
concerns when the data in analysis contain sensitive or personal
information [139]. The privacy issues come from two aspects: (1)
computing SV in DA, especially in distributed tasks like FL, requires
exposure of data or data derivatives such as ML models; and (2)
attackers can leverage SV to infer private and sensitive information
about individuals in the dataset when the SV is reported by private
data owners themselves or a cloud service. The current research has
explored the potential of SV for feature inference attacks (FIA) [77],
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to reconstruct private data by deducing the features of those data
using the feature’s SV, and membership inference attacks (MIA)
[139], to detect the presence or absence of data samples in a private
dataset using the sample’s SV.

Studies of SV-driven privacy issues are aimed at two kinds of
objectives: (1) exposure elimination, which safeguards raw data and
derivatives during SV computation, and (2) inference prevention,
which handles privacy inference attacks. As cataloged in Table 6,
countermeasures include non-perturbation masking (NPM), ho-
momorphic encryption (HE), and secure multiparty computation
(SMPC) for the first objective, quantization (QT) and dimensionality
reduction (DR) for the second objective, and differential privacy
(DP) which serves both.

Finding 10. Lightweight privacy protection techniques,
including NPM, QT, DR, and DP, balance efficiency and pro-
tection, while rigorous techniques, containing HE and SMPC,
prioritize security at a higher computation cost. To achieve
both privacy preservation and secure computation, hybrid schemes
that combine HE or SMPC with QT, DR, or DP are recommended.

Discussion. Lightweight and rigorous theoretical privacy guar-
antees are two primary factors affecting the selection of privacy pro-
tection measures for SV. For applications related to cross-institutional
highly-sensitive data (e.g., cross-hospital medical images in Fig-
ure 1), rigorous techniques like HE or SMPC are needed. While if
computing resources are constrained (e.g., in applications deployed
across edge devices), the lightweight NPM, QT, or DR techniques
are preferred. We note that DP, possessing the lightweight property
and rigorous theoretical guarantees simultaneously, is applicable
to both cases.

Finding 11. Adopting privacy-preserving measures may
compromise SV’s computation efficiency and effectiveness.

Discussion. The impacts on the efficiency can originate from
three factors: (1) the noise (introduced by measures such as DP and
NPM) which may slow down computation convergence, (2) the ex-
tra time cost needed for encrypting and decrypting data (introduced
by measures such as HE), and (3) the extra time cost for multiparty
interactions (needed by measures such as SMCP). Several studies
[68, 77,132, 139, 146, 176] have attempted to achieve a compromise
between SV’s computation efficiency and privacy preservation.
Their key idea is to combine privacy-preserving measures with
hybrid SV computing algorithms which improve efficiency by inte-
grating techniques summarized in §3.2.1. For example, Tian et al.
[132] adopted SMCP on top of a hybrid scheme that computes SV
using both MC and MA techniques, ensuring the efficiency of SV
computation on data held by different data owners while eliminat-
ing the need to expose data before buyers pay for them.



Tech. ‘ Interpretations

Altering the value of data features with high SV tends to
incur more changes in model predictions [59-61].
High-valued data tuples result in more increase in test
accuracy [43, 54, 119, 120].

Utility-based

Data tuples with low SV are inclined to be noisy data with
false labels [54], outliers [43], or corruptions [43].

ML models with high SV are those that have high test
accuracy and certainty [107, 157].

Characteristic-

based

Given a dataset, there exists a minimum set of tuples in this
dataset such that transferring the found set from this
dataset to another dataset can flip the direction of the
inequality between the SVs of those two datasets [121].

Counterfactual

Table 7: Summary of SV interpretations.

Privacy protection can also influence the effectiveness of SV. The
mainstream arts rely on the scaling [33, 38, 110, 125, 129, 150, 159]
or ranking [43, 54, 62, 86, 132, 177] of final SV results to perform
pricing, selection, weighting, and attribution in DA. However, the
scaled SV results or the ranking results can be easily altered [15]
when integrated with techniques like DP, QT, and DR. We notice
a scarcity of quantitative results for answering the question: Can
a balance be achieved between the effectiveness of privacy
protection with the effectiveness of SV? Therefore, we offer
insights into this question with the experimental study in §5.3.

Overall, we advocate a deeper cost-benefit study analyzing the
marginal gains in privacy protection against the computation cost
and effectiveness loss of SV, both qualitatively and quantitatively.
Besides, a dynamic adjustment on the efficiency, privacy, and effec-
tiveness of SV according to DA task settings, system constraints,
user requirements, etc., merits further investigation.

3.24 Interpretability. In addition to the aforementioned challenges,
applying SV to DA also faces the trouble of how to properly trans-
late the obtained SVs to exact actions (e.g., adding or deleting a data
sample, normalizing data features in some dimensions, etc.) in the
DA workflow [61].

For understandable SV interpretations, researchers have relied
on three paradigms: (1) utility-based, pointing out that players with
high SV are those who have more impact on the overall utility of
the targeted DA tasks; (2) characteristic-based, seeking to reveal
the relationship between the intrinsic characteristics of each player
and its SV; (3) counterfactual, aiming to find out the minimum
change between two players that can flip the direction of the in-
equality between the SVs of those players. Table 7 summarizes the
interpretations produced by three paradigms.

Finding 12. The utility-based interpretation paradigm is
the most universal for interpreting SV in DA. In contrast, the
characteristic-based paradigm needs sufficient expert knowledge
to elaborate intrinsic characteristics of data, and the counterfactual
explanation needs costly computations.

Discussion. With requirements on expert knowledge or extra
computations, the characteristic-based paradigm and the coun-
terfactual explanation did not gain a wider application than the
utility-based paradigm. Despite the popularity of utility-based in-
terpretations, many works [59, 61, 81, 174] have claimed that the
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player with a larger SV may have less influence on the overall util-
ity of the associated DA task, which contradicts the mainstream
interpretations. However, these works studied only the cases defin-
ing data features as the player and thus cannot fully answer the
following questions: Can the SVs of the four types of players
in DA be correctly interpreted by the mainstream paradigm?
If cannot, why? Is there any general reason applicable to all
four types of players? We endeavor to answer these questions
through a comprehensive evaluation in §5.4.

3.25 Summary of Findings. Firstly, our findings, summarized from
a wide range of the arts, provide general and comprehensive guide-
lines for academicians and engineers to study and develop SV ap-
plications when confronted with DA tasks. Secondly, our findings
analyze the arts in this field through a finer-grained perspective. We
analyze the pros and cons of the resolution techniques disentangled
from complete algorithms in addressing four challenges of using
SV in DA (Findings 4, 6, 10, 12), propose the possible combinations
of the techniques for developing new algorithms (Findings 5, 7, 8),
and discuss the potential conflicts between different challenges,
e.g., computation efficiency vs. approximation error (Finding 9) or
privacy preservation (Finding 11). Finally, as a consequence of the
finer-grained understanding of SV, our findings can instruct the
design of a modular and extensible framework for developing SV
applications, presented in the next section.

4 SVBENCH

In this section, we propose SVBench, a modular and extensible
framework for developing SV applications for DA tasks, aiming to
bridge the gap in a unified library supporting flexible integrations
of state-of-the-art countermeasures to different challenges of SV.

Overview. As shown in Figure 3, SVBench consists of a configu-
ration loader, a sampler, a utility calculator, a convergence checker,
and an output aggregator. The configuration loader loads the SV
computing parameters specified by the users. The sampler generates
the coalitions or permutations of players based on the configured
sampling strategy. The utility calculator takes the sampled coali-
tions or permutations as the input to a utility function and drives
the computation. When users specify an efficiency optimization
strategy, the utility calculator will use that strategy to accelerate
the computation. The convergence checker determines whether to
terminate the SV computation based on the convergence criterion
specified in the configuration. An iteration of SV calculation is con-
ducted starting from the sampler and ending at the convergence
checker. Once the convergence criterion is not met, another iter-
ation will be initiated as demonstrated in the figure (with dashed
arrow). The output aggregator generates the final SV of each player.
If users specify privacy protection measures, the aggregator will
execute those measures before reporting the final results.

Usage Instructions. Users of SVBench, including seasoned en-
gineers and researchers seeking updates on the building blocks of
SV applications and newcomers to this field, need to initialize the
framework in three steps. Firstly, cooperative game modeling, in
which the users properly define the players and the utility function
of their targeted DA task. SVBench suggests users perform this step
according to Figure 2 and also allows new definitions of player
and utility not included in this figure. Secondly, SV computation,
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Figure 3: The SVBench overview.

Config Parameters (Default setting is in italics.)
Base Algo | MC, RE, MLE, GT, CP, user-specific
Sampling None, random, stratified, antithetic, user-specific
Optimization None, TC, GA, TC+GA, GA+TSS,

TC+GA+TSS, user-specific
Privacy None, DP, QT, DR, user-specific

Table 8: Configuration parameters used by SVBench.

in which users specify the configuration parameters listed in Ta-
ble 8. The default settings are marked in the table. Thirdly, data
analysis application/evaluation, in which users utilize SV results to
perform pricing, selection, weighting, or attribution on data or data
derivatives according to the specific DA task requirements.

Use Case. Take the DV task in Figure 1 as an example. Suppose
the user plans to use SVBench to implement a hybrid SV algo-
rithm, which combines MC and TC techniques with DP for privacy
protection, to generate SVs of 6000 images from a ‘Medicallmg’
dataset in DV. The user defines 6000 images as the players and a
‘DV-MI function, which takes images as inputs to train a classifi-
cation model and outputs the test accuracy of this model, as the
utility function. Next, the user configures SVBench with the follow-
ing parameters: task="DV’, dataset="medicallmg’, player="tuple’,
utility_function="DV-MT’, base_algo="MC’, optimization_strategy=
‘TC’, privacy_protection_measure="DP’, then invokes the SV com-
puting function in SVBench to obtain SVs. After that, the user selects
the images assigned with the top 50% SV results to learn the classi-
fication model. More use cases can be found at GitHub 2.

Extension Supports. Besides implementing the mainstream
techniques for computing SV, we provide several APIs in the mod-
ules of SVBench (marked by an API icon in Figure 3) for users to
extend this framework. One can configure the module he expects
to extend by a user-specific parameter at the SV computation step
and submit the new functions corresponding to that module. For
example, in the above use case, the user submits a user-specific
utility function namely DV-MI and configures the utility calculator
module by setting utility_function="DV-MTI". Similarly, the user can
also configure a user-specific aggregator module by submitting a
new privacy protection function (e.g., namely newMaskSV, which
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Configuration of SVBench ‘Section
X . .. N Index
Base Algo |Sampling Optimization Privacy
MC / RE* / GT*/ None / TC/ GA/ TC+GA /
MLE* /CP* | "30dOM 1 A LTSS /TCHGASTSS None 351
random/
stratified/ None None §5.2
MLE antithetic
random None DP/QT/DR| 8§53
random None None §5.4

Table 9: The configuration of SVBench for implementing
different SV computing algorithms in §5.1-§5.4.

takes original SV computing results as inputs and outputs masked
SV results) and setting privacy_protection_measure="newMaskSV".
SVBench will check the legitimacy and validity of the received
functions and use the valid functions to execute the operations in
the corresponding modules. Moreover, with the user permission,
SVBench will embed the valid new functions into their correspond-
ing modules to provide more development choices for future use.

Summary. The application of SV in DA requires to be flexible
in engineering implementation, yet most existing works overlook
such demands. The application should feature a modular architec-
ture with configurable parameters, empowering engineers to tailor
the usage of SV according to task-specific requirements. Moreover,
the application should possess the ability to be parallelized and
disaggregated. In this manner, it can leverage diverse computing ar-
chitectures, including multi-core CPUs, GPUs, and distributed com-
puting paradigms, to enhance scalability and efficiency. With these
considerations, we propose SVBench. While SVBench has demon-
strated usability, modularity, and flexibility through the success of
implementing dozens of algorithms in the next section, we antici-
pate future extensions to further enhance its potential to develop
efficient, secure, and effective SV applications in DA.

5 EVALUATION

In this section, we use SVBench to implement multiple SV comput-
ing algorithms, including both the base algorithms that have been
studied by prior works and the hybrid algorithms with novel combi-
nations of SV computing techniques. Using the implemented algo-
rithms, we not only validate the usability, modularity, and flexibility
of SVBench but also study the following four sets of evaluations in
order to answer the aforementioned questions:

e §5.1 compares the efficiency of five base SV computing algo-
rithms with several hybrid algorithms, answering the question
highlighted at the end of §3.2.1.

§5.2 investigates the relationship among the computation effi-
ciency, approximation error, and the effectiveness of SV, solving
the problem proposed at the end of §3.2.2.

§5.3 examines the effectiveness of existing measures for prevent-
ing SV-driven attacks and the impacts of the measures on the
effectiveness of SV, tackling the problem left in §3.2.3.

§5.4 explores the relationship between the SVs of the four types
of players in DA and the overall utility of their associated tasks,
offering insights to the question bold in §3.2.4.

Table 9 summarizes the detailed configurations specified for each
algorithm. We note that this work is the first attempt to combine



the a-tagged base algorithm with the five optimization techniques.
We use MLE as the base algorithm in §5.2-§5.4, since it generally
achieves better efficiency and accuracy performance than the other
base algorithms in §5.1 and varying base algorithms would not
influence conclusions in those subsections.

For the generality of findings from experiments, we select six
canonical datasets, Adult [84], Tic-Tac-Toe (Ttt) [84], Bank [84],
Dota2 [84], Wind [37, 134], 2Dplanes [37, 134], from a large number
of literature to conduct four types of DA tasks — result interpreta-
tion (RI), data tuple valuation (DV), dataset valuation (DSV), and
federated learning (FL), which enable evaluations of SV for different
types of players defined in the current DA domain. More details of
task settings and the code are available at GitHub 2.

5.1 Computation Efficiency

This section investigates the efficiency performance of five base
SV computing algorithms (MC, RE, MLE, GT, CP) and the hy-
brid algorithms, each of which selects an optimization strategy
from Table 8 and integrates this strategy with a base algorithm.
To control the time cost of each experiment, we follow previ-
ous work [70] to monitor the approximation stability by A¢A7 =

~e—mxn
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the convergence criterion (Ag;ﬁ < 7) is satisfied, where qAﬁf is the ap-

proximate SV of player p; after e times of utility computation, ¢

is the convergence threshold set to 0.05 for all tasks. We measure

the efficiency performance by the total time cost Ny X Ty, and

show the computation complexity Ny, and the approximation error
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Figure 4 presents the efficiency results. The number of bars
differs across tasks due to (1) no applicable GA/TSS techniques for
RI tasks and no TSS technique applicable for DV tasks; (2) MLE/GT
incompatible with the GA technique devised for DV tasks.

As denoted by blue bars, MLE generally achieves the leading
efficiency performance (lower T, X Ny and Ny¢) among the five
base algorithms. The major reason is that, unlike MLE, algorithms
such as RE, GT, and CP must solve auxiliary optimization problems
(e.g., weighted least squares in RE, feasibility constraints in GT,
or convex objectives in CP) in the computation, introducing an
extra cost. In particular, when it is hard to solve the corresponding
optimization problem for the DA task (e.g., RI-Adult, RI-2Dplanes,
and DV-Ttt), prolonged convergence will appear. Although CP can
converge faster than MLE in some tasks, e.g., RI-Ttt, DV-Wind,
FL-Wind, it has a strong dependency on the sparse SV assumption
and performs well only when that assumption is satisfied (to some
extent). We also notice that MC can outperform MLE occasionally
(e.g., in RI-Ttt, DSV-2Dplanes, FL-Dota2). However, MLE generally
achieves higher accuracy (lower €) than MC under identical conver-
gence criteria, due to its closed-form integral expression of SV (see
our technical report [66] for details), enabling more deterministic
computation with high precision (e.g., via Gaussian quadrature).

By comparing bars of different colors, we note that integrating
TC reduces the SV computation complexity (Ny¢) and thus reduces
the total time cost (Ny¢ X Tp,¢), in most cases. TC can reduce Ny

| and terminate the approximation when

e=1- [70], as a reference in the results.

Zhttps://github.com/zjuDBSystems/SVBench.
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Figure 4: Efficiency performance (x-axis: the base SV com-
puting algorithm). The smaller the three metrics, the more
efficient and accurate the computation.
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because it avoids computing the marginal contribution of new
players who join a coalition unnecessarily, particularly when that
coalition’s utility U(S) is close to the overall utility achieved by the
grand coalition U (N), for example U(S) > 90%U (N). However, if
few coalitions meet such a condition, TC would pose trivial positive
impacts on SV computation efficiency. To intensify TC’s effects in
reducing cost, setting a looser condition, e.g., U(S) > 80%U (N),
is a potential solution, but this may enlarge the approximation
error. Therefore, a thorough tuning of the truncation condition is
necessitated when adopting TC.

By comparing Figure 4(a) and Figure 4(b) vertically, we can tell
that GA and TSS techniques, though they may contribute nega-
tively to reducing Ny, are very helpful in reducing the average
time cost of utility computation (T,¢). GA and TSS can reduce Ty,c
because they use fewer training batches and fewer test data samples
in marginal contribution estimation, respectively. However, these
operations may enlarge the variance of approximate SVs in different
iterations of utility computations, leading to an increasing number
of utility computations (Ny¢) for convergence. When using GA
or TSS together with TC, their negative impacts on computation
complexity can be mitigated.

Research Direction 1: Exploration on innovative hybrid SV
computing algorithms. Our evaluations show that the hybrid SV
computing algorithms integrating multiple efficiency optimization
techniques perform better than the algorithms using only one of
the integrated techniques in most cases. We highly recommend
combining TC with a base SV computing algorithm in all DA tasks
and activating GA and TSS when the utility computation (e.g., in FL)
needs costly model training or evaluation. For the base algorithm,
it is recommended to choose MLE (or MC). In summary, innovative
hybrid SV computing algorithms with extensive experiments are
anticipated for efficient SV computation in the literature.

5.2 Approximation Error

This section explores the relationship among the approximation
error, computation efficiency, and the effectiveness of SV in different
DA tasks. We compare the performance of approximating SV using
three widespread sampling techniques, random sampling, stratified
sampling, and antithetic sampling. The computation complexity is
still measured by Ny. The impact of approximation error on the
effectiveness of SV is quantified by the score 37, ( % - Z'?#)
i=19i =17
We also report A(}AS, the stability of approximate SVs defined in the
previous section, as a reference.

Figure 5(a) presents the relationship between the approxima-
tion error of three SV computing algorithms and the computation
efficiency and stability, while Figure 5(b) presents the impacts of
approximation error on the effectiveness of SV. The square-tagged
lines in Figure 5(a) show that, in most tasks, the larger the SV ap-
proximation error, the smaller the computation complexity. This
is due to far fewer utility values needing to be computed when a
larger tolerance is given to the approximation error, regardless of
the strategy for sampling coalitions, as discussed in §3.2.2. However,
as shown in the star-tagged lines in Figure 5(a), the approximate
SVs with a large error tend to be generated when the computation is
far from an ideal convergence status (where Ag?) goes below a trivial

3086

—— random stratified —— antithetic
RI-Adult DV-Bank DSV-Bank FL-Adult
= T D] 3 TfF= o = ]
% $ & B F 3 & e, <
- 2 A e e, o | - |,
~ /| | \
24 — - o "N o
gn & e & 3 @
o5 - NS LS
) —
e a/ e e |
0 34e3 68e3 0 T3el 26el O 29e1  5.8el
DV-Ttt DSV-Dota2 FL-Dota2
° o o o
g 2, S k8 g
o ~ - ‘\.i, A -
3 \\
2o o =} 4 o S
S0 v ] e 2 T <
8 ™ o N o ]
N 4 K e = 2
Sed  1.7e3 25e2 5.0e-2 7063  Lde-2 33e2  6.5e2
RI-2Dplanes DV-Wind DSV-2Dplanes FL-Wind
“ o o
g R BT <
=% I~ - - | —
3 k\ R |
20 n — - o o o g
3] [ e @ o o @
9 N s @ [ o (S3
=~ - Kl = M = oo
Vi | /N
S o e . e
7.9e-4  1.6e-3 1.6e-2 3.3e-2 5.6e-3 1.1e-2 1.6e-1 3.3e-l

(a) Left y-axis&square-tagged lines report Ny,.. Right y-axis&star-tagged lines report
A¢. The lower the two values, the more efficient and stable the SV approximation.

RI-Adult DV-Bank DSV-Bank FL-Adult
~ o
\ ; o )
28 3 S g
B - N
g
E
50 ol 3 o
ol $ @ ]
S| 4~ - < o
& Y,
43e-4  B8.6e-4 3.4e-3 6.8e-3 1.3e-1 2.6e-1 2.9e-1 5.8e-1
RI-Ttt DV-Ttt DSV-Dota2 FL-Dota2
o ~ I
88 3 & &
B S - redmry /
Q
E / ,
5 / o ™ s
35‘.{ / & QA & /
s5a| By =/ |/
B )
85e4 1.7e3 0 25e2 5.0e2 0 7.0e3 1de2 0 33e2 6.5e2
RI-2Dplanes DV-Wind DSV-2Dplanes FL-Wind
0% 9 9 9
gm 0 ) @ @
g ~ VI o
E 7
Co o / ~ ~
Ty $ Z g
50| - / N IS
79e-4  1.6e-3 T6e2 33e2 56e3 1.le2 T6el 33el

(b) The smaller the score, the better effectiveness the approximate SV has.

Figure 5: Impacts of approximation error (x-axis: the ¢ value).

threshold value). Those SVs may lead to a larger error in the scaled
SV results, as shown in Figure 5(b), indicating the potential ineffec-
tiveness of using approximate SV for pricing, selection, weighting,
and attribution in DA. All these results consolidate the necessity
to strike a balance among the approximation error, computation
complexity, and the effectiveness of SV. To achieve such a balance,
we highlight the following future directions.

Research Direction 2: Investigation on the runtime dy-
namic tuning of convergence criterion when using sampling-
based approximation techniques. Take the criterion AgAi <7
and the DV task in Figure 1 as an example. A small threshold
(e.g..T = 107%) can be set at the start of SV approximation. Then,
the task can periodically check whether image samples ranked in the
top 50% based on the latest approximate SV produce more accurate
classification models than those produced by images ranked in the



bottom. Once satisfied, the approximation can be terminated to
save computation cost.

Research Direction 3: Exploration on lightweight fitting-
based approximation techniques. The fitting-based methods
search for a mathematical relationship g?)i = G(E(pi)), where E(+)
encodes the player p; into a characteristic vector, e.g., encoding the
image in Figure 1 into a vector composed of the image’s pixel values
and label indexes, and G(-) generates the unbiased approximate SV,
e.g., the SV of the image. Once G(E(p;)) is determined in a DA task,
the approximate SV can be generated by O(1) complexity for new
players in that task, significantly mitigating the conflicts between
SV computation efficiency and approximation error. The major
obstacle against the feasibility of learning G(E(-)) at an affordable
cost is the collection of a sufficient amount of ground-truth SVs (or
high-quality surrogates of the ground-truth). This problem is highly
expected to be solved with the surge in real-world SV applications.

5.3 Privacy Protection

This section studies the effectiveness of three popular privacy pro-
tection techniques (DP, QT, DR) for preventing SV-driven attacks,
including FIA [77], which may occur in RI tasks, and MIA [139],
which may occur in DV tasks. We also study the impacts of the
three techniques on SV’s effectiveness.

The implementation of two attacks and three countermeasures
is based on previous papers [77, 139]. We tune the strength of
privacy protection from low to high by varying (1) the standard
deviation of noise generated by DP from 0.1, 0.5 to 0.9, (2) the
number of distinctive discrete Shapley values produced by QT from
0.9n, 0.5n to 0.1n, and (3) the number of g?)’s dimension reduced
by DR from 0.1n, 0.5n to 0.9n. We measure the performance in
preventing SV-driven FIA by the MAE metric used by Luo et al.
[77] and measure the effectiveness of preventing SV-driven MIA
by the AUROC score used by Wang et al. [139]. As both RI and DV
tasks rely on the ranking of final SVs to find the top important data
features and samples, the impact of privacy protection techniques
on SV effectiveness is measured by the variance in SV ranking
results before and after protection.

Figure 6 shows the results of preventing the two attacks. In most
cases, the stronger the strength of privacy protection techniques,
the more effective those techniques are. However, stronger pri-
vacy protection renders a larger impact on SV ranking, affecting
more on the effectiveness of SV for pricing, selection, weighting,
or attribution. All these results consolidate the necessity of a trade-
off between the prevention of SV-driven privacy leakage and the
effectiveness of SV for decision-making in DA.

For preventing FIA, DP is the most effective, while QT and DR
need tuning the privacy protection strength to a high level for an
apparent MAE enlargement. Despite this, DP renders a much larger
impact on SV ranking (thus affects more on SV’s effectiveness)
under the setting of low or median privacy protection strength.
These phenomena are mainly because DP adds noise to SVs of all
features no matter how the privacy protection strength is varied,
while QT and DR alter SVs of only 10% (or 50%) data features when
the strength is set to a low (or median) level.

For preventing MIA, QT and DR are effective in most cases,
while DP leads to AUROC larger than the results achieved without

(a) The larger the MAE or the smaller the
AUROC, the less privacy the SV exposes.
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Figure 6: Preventing SV-driven FIA and MIA (x-axis: privacy
protection strength).

privacy protection in some cases, e.g., DV-Bank, DV-Ttt. Moreover,
different from the results of preventing FIA, enhancing the privacy
protection strength may not result in better effectiveness (lower
AUROC) of the three techniques in preventing MIA. For example,
in DV-Wind, QT performs the worst when setting a high privacy
protection strength. These outcomes stem from the inability of QT,
DR, and DP to rigorously enforce indistinguishability between two
Shapley value distributions: the IN distribution, computed when the
target sample is included in the dataset, and the OUT distribution,
computed when the target sample is excluded [139]. Specifically,
due to randomness, DP may inject markedly dissimilar noise into
SVs used for generating IN and OUT distributions and thus enlarge
the difference between the two distributions, making the success of
MIA much easier. QT and DR map the original SVs into a new value
space, in which the difference between SVs used for generating IN
and OUT distributions might be more distinguishable, negatively
affecting the efficacy in preventing SV-driven MIA.

Research Direction 4: Exploration on innovative techniques
for tackling SV-driven privacy issues. For practical usage of
existing privacy protection measures, we suggest adjusting the
strength parameter of the chosen measure, such as the standard devi-
ation for noise generation in DP, to its median value to achieve the
privacy-effectiveness balance. Meanwhile, we strongly advocate
for innovative privacy protection measures that prevent SV-driven
attacks without compromising the computation efficiency and ef-
fectiveness of SV.

Research Direction 5: Exploration on new attack patterns.
Plenty of SV-driven privacy issues remain unexplored. Except for
FIA and MIA, malicious adversaries may utilize SV to launch other
types of attacks, such as the model extraction attack [106], recon-
structing a model learned in the DA workflow by creating a sub-
stitute model that behaves very similarly in SV-based evaluations
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(b) The variation of the overall utility in different DA tasks caused by adding players.

Figure 7: Removing or adding players (x-axis: SV of the re-
moved/added player after min-max normalization). Circle-
tagged lines are depicted based on exact SV, while triangle-
tagged lines are based on approximate SV.

to the model under attack. Another example is the data property
inference attack [106], extracting the properties implicitly encoded
as features of the dataset.

5.4 SV Interpretations

This section examines the correctness of the mainstream SV inter-
pretation paradigm, i.e., utility-based, in explaining SVs of different
types of players defined in the current DA domain. This paradigm
points out that the larger the SV of a player, the more the impacts
that the player could pose on the DA task’s overall utility. Therefore,
we observe the change in the overall utility of DA tasks caused by
removing or adding players.

Figure 7 presents our observed results. These results show that,
in all four types of DA tasks, the impacts of removing or adding
a player on the task overall utilities (i.e., UN \ {pi}) —U(N) or
U({pi}) —U(0)) fluctuate as the SV of the removed or added player,
no matter whether the SV is exact or approximate. The fluctuat-
ing results contradict the mainstream SV interpretations, probably
because the latter rely mainly on the average marginal contribu-
tion while neglecting the variance of the marginal contributions of
each player. Given a player in practical DA tasks, the variance of
its marginal contributions might be much larger than its average
contribution. For example, in DV-Wind, the variance of marginal
contributions of a player ranges approximately from 11.83 to 18.00,
which is much larger than the player’s average marginal contri-
bution, ranging from 0.06 to 1.43. Similarly, in DSV-2Dplanes, the
variance ranges from 13.37 to 13.50, also larger than the average
value in a range of [0.13,0.22]. In both cases, we do not observe
a strong correlation between SV and the player’s contribution to
a specific coalition (e.g., N in Figure 7(a) or 0 in Figure 7(b)). All
these results indicate the necessity to consider the variance of mar-
ginal contributions when using the mainstream utility-based SV
interpretations to make decisions on pricing, selection, weighting,
and attribution of data.
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a) The variation of the overall utility in different DA tasks caused by removing players.

Research Direction 6: In-depth investigation on key factors
affecting SV interpretations. SV may not be correctly interpreted
or fail to serve its desired application purposes due to two points.
One is the difference between the exact SV and the approximate SV.
The other one is the mismatch between the DA task and the implicit
assumption of SV. For example, DV-Wind or DSV-2Dplanes, as dis-
cussed above, mismatching with the assumption that the average
contribution is appropriate to fairly distribute the overall utility of
the task among players. Another example is the RI task in Figure 1,
where pixels in an image interact mutually to influence predictions
on the label of this image, mismatching with the assumption that
the contribution of any individual player to the cooperative game
is independent of its interactions with other players. Future works
mining the deep understanding of these factors under more types
of DA tasks to enhance SV’s effectiveness are anticipated.

Research Direction 7: Exploration on supports for compli-
cated DA tasks. The real-world DA tasks are complicated, con-
taining mutually dependent players [1, 2, 22, 39, 93] and real-time
dynamic updates on the player set [126, 155]. For example, the
RI task in Figure 1, where the influence of one pixel on the pre-
diction from the image classification model tends to interrelate
with nearby pixels. Besides, the dynamic real-time updates of the
player set [126, 155] are common in analytical tasks built upon the
databases [98, 155, 173]. However, most existing SV applications are
ill-suited for these tasks due to the assumptions that the players are
independent and the player set is static and immutable. Although
conditional SV [17] and dynamic SV [173] have been devised for
complicated tasks, these new types of SV do not treat the mutual de-
pendency among players and their real-time dynamic updates as a
single interrelated problem, thus are limited in practical applications.
It is expected that future work can devise more SV applications
under the complicated yet realistic DA task settings.

6 CONCLUSION

This paper comprehensively studied the Shapley value applied
throughout the data analytics workflow. We summarized the critical
variables (i.e., the player and the utility function) in designing SV
applications for DA and clarified the essential functionalities of
SV for data scientists. We condensed the technical challenges of
applying SV in DA and discussed the related arts, qualitatively and
quantitatively. The conclusions of experimental evaluations based
on our development framework, SVBench, support our findings in
a synthetic review. At last, we identified the limitations of current
efforts and offered insights into the directions of future work.
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