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ABSTRACT
This paper presents PathCE, a path-centric cardinality estimation
framework for subgraph matching. PathCE improves estimation ac-
curacy by utilizing statistics from short graph queries. At its core is
a novel data structure called the path-centric summary graph (PSG),
which captures short path query statistics from a data graph𝐺 and
represents them in a new graph G. Given a graph query 𝑄 and a
PSG graph G for𝐺 , PathCE decomposes𝑄 into a simpler query Q,
where each edge in Q corresponds to a sub-path query in 𝑄 with
statistics included in G. PathCE estimates the cardinality using Q
and G, requiring significantly fewer estimation iterations while
ensuring that the estimate remains an upper bound on the true
cardinality of 𝑄 (𝐺). It also includes PSGBuilder, a parallelly scal-
able algorithm that constructs PSG’s for any given graph in linear
time, efficiently scaling with the number of processors. Empirical
results on real-world and synthetic datasets show that PathCE out-
performs state-of-the-art baselines in accuracy, estimation latency,
and summary construction efficiency.
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1 INTRODUCTION
Given a graph query𝑄 and a data graph𝐺 , subgraph matching is to
find all matches of𝑄 in𝐺 . It serves as a fundamental component for
modern graph query languages such as SPARQL [16], Cypher [13],
and the most recently released ISO/IEC standard GQL [11]. Cardi-
nality estimation for subgraph matching is to estimate the number
of matches of 𝑄 in 𝐺 , denoted as |𝑄 (𝐺) |, without explicitly com-
puting them. It plays a pivotal role in cost-based query optimizers,
which rely on it to estimate the cost of candidate query plans [24].

While cardinality estimation has been extensively studied in
relational databases, techniques specifically tailored for graph data
remain relatively underdeveloped [6, 9, 34]. Although graph queries
can be expressed as joins, directly applying relational methods to
graph data poses significant challenges. Relational DBMSs typi-
cally rely on table-level statistics, which correspond to edge-level
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Figure 1:Cardinality estimation using graph query𝑄 on LDBC. For
each estimator, (b) shows the q-error incurred during each iteration.

statistics in graphs. However, such statistics are often too coarse
to accurately capture the complex structural correlations inherent
in graph queries, leading to substantial estimation errors [6, 23].
In addition, collecting detailed statistics such as multi-way join
counts or maximal degrees across multiple tables is often imprac-
tical. In contrast, graph DBMSs efficiently support neighborhood
access, enabling the collection of statistics for small graph patterns
such as paths, which capture richer structural correlations beyond
edge-level statistics alone [34]. This opens up new opportunities
for developing graph-specific cardinality estimation techniques.

Summary-based cardinality estimators are often favored in prac-
tice because they rely solely on the data rather than on specific
queries [6, 15, 34]. In subgraph matching, these estimators typi-
cally precompute statistics from small queries of 𝐺 and employ
an iterative estimation approach to estimate |𝑄 (𝐺) |. Each itera-
tion generates estimates for a subquery of 𝑄 , referred to as an
estimation iteration. However, existing summary-based estimators
designed for graph or relational data, such as CEG [6], GLogS [23],
and FactorJoin [47], face significant accuracy challenges when han-
dling complex graph queries, which are common in real-life work-
loads [2, 30], as illustrated by the example below.

Example 1: Consider cardinality estimation using a graph query
𝑄 on the LDBC dataset [2], which is developed by the Linked
Data Benchmark Council to benchmark graph DBMSs. As shown in
Fig. 1(a),𝑄 has 9 vertices labeled person, and 8 edges labeled knows.

(1) The number of estimation iterations varies among estimators.
For example, FactorJoin generates estimates for the subquery 𝑄𝑖
in the 𝑖-th iteration, where 𝑄𝑖 is a subquery of 𝑄 consisting of
𝑖+2 vertices labeled person and 𝑖+1 edges labeled knows. Thus,
FactorJoin takes 7 iterations to produce the estimate of 𝑄 , while
PathCE, CEG and GLogS require 2, 6 and 6 iterations, respectively.

(2) For each estimator, we break down its estimation process and
analyze the subquery estimates across different iterations. We find
that the number of iterations strongly affects estimation accuracy.
We employ the classic accuracy metric q-error [31] to measure
deviations of estimated cardinality from true cardinality. Figure 1(b)
shows how q-error evolves across iterations for each estimator. □
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Observation and challenges. We observe that q-error increases
progressively in later iterations due to error accumulation, as later
subquery estimates rely on earlier (potentially inaccurate) results.
This effect is particularly evident in estimators requiring many
iterations. For example, in FactorJoin, the q-error grows from 1.69
to 4657.23 across its 7 iterations for the query in Fig. 1(a). In contrast,
PathCE needs 2 iterations, with q-error rising from 1.90 to 3.39.
These findings suggest that minimizing the number of estimation
iterations is crucial for reducing cumulative estimation error and
improving accuracy. However, this also raises several challenges.
◦ (C1) Is there an effective way to reduce the number of estimation

iterations and improve accuracy? Prior research indicates that
utilizing statistics from small graph queries, e.g., 2-path queries
and triangle queries, can improve accuracy [6, 23].

◦ (C2) Is there a scalable way to construct sufficient statistics
while substantially reducing estimation iterations? It is clear
that the estimation accuracy can be improved using statistics
of more generic queries, but concerns about the efficiency of
computing these statistics remain [23, 34, 39]. For example, al-
though GLogS [23] can maintain any query statistics theoret-
ically, the cost is prohibitive. Thus, GLogS still relies on small
queries, requiring extensive estimation iterations for processing
the aforementioned graph query.

◦ (C3) Another critical argument from previous studies [4, 10, 47]
highlights the value of upper bound estimates in query optimiza-
tion, which has also been demonstrated in our experiments (Sec.
8), where FactorJoin, despite having lower estimation accuracy,
often surpasses CEG and GLogS in generating more effective
execution plans. This leads us to consider: Can we ensure estima-
tors constantly provide an upper bound on the true cardinality?
In this paper, we propose PathCE, a path-centric summary-based

cardinality estimation framework, to answer these questions.

A path-centric approach. Given a graph query 𝑄 , PathCE first
decomposes 𝑄 into a collection of path queries, forming a new
query Q, where each edge of Q represents a sub-path in 𝑄 . Esti-
mation is conducted using Q and the path query statistics, which
addresses (C1) by significantly reducing the number of iterations
due to Q’s simpler structure, thereby enhancing estimation accu-
racy. To tackle (C2), PathCE introduces a scalable algorithm to
efficiently construct path query statistics. This naturally balances
accuracy and efficiency: offering higher accuracy compared to edge-
only statistics [47], while being more efficient than using statistics
of generic graph queries [23]. Finally, inspired by recent advance-
ments in upper bound estimation [1, 4], PathCE addresses (C3) by
integrating both count and maximal-degree information into the
path query statistics to ensure an upper bound estimate.

Below, we summarize our contributions and paper organization.

Contribution& organization. We develop a path-centric cardinal-
ity estimation framework PathCE to improve estimation accuracy,
while maintaining the efficiency of computing the statistics.

(1) A novel summary structure (Sec. 3). We introduce path-centric
summary graphs (PSG) as a novel data structure for maintaining
the statistics of path queries. A PSG for a graph 𝐺 is itself a graph
G, where (i) each vertex in G represents a subset of vertices in 𝐺

with an identical label, and (ii) each edge in G represents a path
query between the vertex subsets at its endpoints. The size of G
depends only on types of vertices/edges in 𝐺 rather than the size
of 𝐺 , making PSG a scalable summary structure for large graphs.

(2) A path-centric framework (Sec. 4). Given a query 𝑄 and a sum-
mary graph G, PathCE estimates |𝑄 (𝐺) | in two steps. PathCE first
generates an estimation scheme (Q,S) for 𝑄 , consisting of a new
queryQ and an estimation orderS. The queryQ has a simpler struc-
ture than𝑄 , and S is a vertex sequence of Q. PathCE next conducts
estimation using Q and G. This significantly reduces estimation
iterations since Q is much simpler. In addition, the estimation is
guided by S, avoiding the exhaustive search for better estimates.

(3) Cardinality estimation with PSG (Sec. 5 & Sec. 6). We develop
a systematic approach to generate an effective estimation scheme
(Q,S) for a given query𝑄 (Sec. 5). To achieve upper bound estima-
tion, we introduce a graph-based approach that guarantees every
estimation iteration produces an upper bound estimate (Sec. 6).

(4) Scalable PSG construction (Sec. 7). We develop a parallelly scal-
able [22] algorithm PSGBuilder to construct PSG’s. The algorithm
PSGBuilder runs in linear time w.r.t. the size of 𝐺 and guarantees
to reduce the running time when working with more processors.

(5) Experimental study (Sec. 8). We prototype PathCE and compare
it with state-of-the-art summary-based, sampling-based and ML-
based baselines. We find the following. (a) Among the summary-
based estimators, PathCE produces the most accurate estimates for
cyclic queries on both real-world and synthetic datasets. For acyclic
queries, PathCE achieves comparable accuracy toCEG, e.g.,PathCE
achieves an average q-error below 20 on IMDB. The performance of
PathCE is quite stable: it always produces upper bound estimates,
its q-error grows slowly with query size, and remains consistent
w.r.t. query topology (Exp-1). (b) PathCE is one of the fastest esti-
mators in terms of estimation latency. It completes all test queries
within 0.1 seconds, with low variance (Exp-2). (c) The PSGBuilder
algorithm of PathCE is highly efficient. It constructs a PSG graph
for the LDBC dataset in 734 seconds and scales well with both graph
size and number of thread (Exp-3 & Exp-4). (d) PathCE consistently
beats all baselines in end-to-end performance, with lower latencies
in both query planning and query execution (Exp-5).

Related work. We categorize the related work as follows.

Summary-based estimators. Summary-based estimators have been
widely adopted by both relational and graph databases.

(1) Summary-based estimators for relational databases utilize sum-
maries, also referred to as catalogs or sketches in some literatures,
such as histograms [20], HyperLogLog [12], and CountMin [8],
in combination with statistical assumptions on underlying data
to make estimates, following the paradigm pioneered by the Sys-
tem R optimizer [37]. Closer to this work are BoundSketch [4],
Simplicity [18], FactorJoin [47], and SafeBound [10], which utilize
maximal-degree statistics to produce upper bound estimates.

PathCE differs from prior work in the following. (a) Unlike
the System R style estimator that relies on statistics assumptions,
PathCE relies on no statistics assumption and is essentially derived
from the degree-constraint bound [1], which guarantees upper

3064



bound estimates. using maximal-degree statistics. (b) PathCE
collects statistics of short path queries, in contrast, most prior work
relies on single edge (or base table), e.g., [4, 10, 18, 47]. (c) PathCE
produces upper bound estimates by a graph-base approach, as
opposed to the bound formula generator of BoundSketch [4], or
probabilistic graphical models adopted by FactorJoin [47].

(2) Summary-based estimators have also been developed for
graph databases [6, 9, 23, 33, 39, 46]. C-SET [33] introduces the
characteristic set, which represents the distinct outgoing labels
for each vertex in an RDF graph. SumRDF [39] proposes a typed
summary graph that groups vertices with similar labels and
incident edge distributions.GLogS [23] presents a graph-structured
summary retaining small subgraph counts, while CEG [6] uses a
Markov table to store short path query cardinalities. A-LHD [46]
collects single-edge statistics and adopts a label probability
propagation model to improve accuracy. Color [9] is a recent
summary-based estimator that exploits graph coloring techniques
in cardinality estimation. Like System R style estimators, they face
similar challenges due to reliance on assumptions.

PathCE differs from prior work in several ways. (a) PathCE is
assumption-free and guarantees upper bound estimates by leverag-
ing maximal-degree statistics. (b) PathCE uses short path queries,
unlike C-SET, SumRDF and Color, which only consider single edge
queries. (c) While both CEG and GLogS collect statistics on 2-path
queries, they do not consider maximal-degree information. (d) CEG
and GLogS also utilize triangle counts to improve accuracy, but
collecting these counts is cost-prohibitive, requiring techniques like
graph sparsification [35, 41]. In contrast, PathCE constructs sum-
maries efficiently without sacrificing estimation accuracy. (e) While
PathCE employs the heuristic GBSA [47] for vertex partitioning,
Color utilizes graph coloring to achieve the same goal.

Sampling-based and ML-based estimators. Sampling-based estima-
tors are alternatives to summary-based estimators, and they have
played an important role in query optimization for decades [26, 43,
51]. Generally, they are able to handle queries with correlations and
non-uniformity better than summary-based estimators, but with
problems of high estimation latency and poor scalability in terms of
the query size [10]. Recently, ML-based query-driven [17, 21, 32, 50]
and data-driven [36, 44, 48, 52] estimators have been actively devel-
oped and they have achieved satisfactory accuracy in open bench-
marks [14, 40]. Latest work on ML-based estimators propose pre-
trained models and fine-tuning [7, 28, 49] to avoid costly model
retraining over changing data and workloads. As a summary-based
estimator, PathCE generally offers (a) better estimation latency
compared to sampling-based one, (b) scalable summary construc-
tion without extensive model training, and (c) interpretable results,
unlike the black-box nature of ML-based estimators [45].

2 PRELIMINARIES
We begin with basic notations. Let Γ be a countable set of labels.

Graphs and queries. We follow the typical setting of subgraph
matching [34] and focus on undirected labeled graphs. Our approach
can be easily extended to directed graphs.
◦ A graph 𝐺 = (𝑉 , 𝐸, 𝐿) is a triple, where 𝑉 is a finite vertex set,
𝐸 ⊆ 𝑉 ×𝑉 × Γ is a finite set of labeled edges, and 𝐿 is a labeling
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Figure 2: A data graph 𝐺 , example graph and path queries, along
with a path-centric summary graph G of 𝐺 .

function that maps each vertex 𝑣 ∈ 𝑉 (and each edge 𝑒 ∈ 𝐸) to a
label from Γ. For an edge 𝑒 = (𝑣1, 𝑣2, ℓ), we have ℓ = 𝐿(𝑒), with
𝑣1 and 𝑣2 referred to as the endpoints of 𝑒 . For a vertex 𝑣 , let
Nbr(𝑣) denote the neighbors of 𝑣 in 𝐺 .

◦ A graph query 𝑄 is often represented by its query graph 𝑄 =

(𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ), where 𝑉𝑄 , 𝐸𝑄 and 𝐿𝑄 are its vertex set, edge set
and labeling function. A query 𝑄 ′ is a subquery of 𝑄 if its query
graph is a subgraph of 𝑄’s query graph. 𝑄 is cyclic if its query
graph contains a cycle as a subgraph; otherwise 𝑄 is cyclic.

◦ A path query is a special graph query whose query graph forms a
labeled path. We use the symbol 𝑃 for path queries. A path query
with 𝑘 edges is called a 𝑘-path query and can be represented
as 𝑢0𝑒1𝑢1 . . . 𝑢𝑘−1𝑒𝑘𝑢𝑘 , where each edge 𝑒𝑖 connects endpoints
𝑢𝑖−1 and 𝑢𝑖 for 𝑖 = 1, . . . , 𝑘 . We refer to 𝑢0 and 𝑢𝑘 as the head
and tail of 𝑃 , denoted by ℎ𝑃 and 𝑡𝑃 , respectively.

Subgraph matching. Given a graph query 𝑄 = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ) and
a data graph 𝐺 = (𝑉 , 𝐸, 𝐿), a subgraph homomorphic match of 𝑄 in
𝐺 is a mapping 𝜌 : 𝑉𝑄 → 𝑉 such that (i) for every 𝑢 ∈ 𝑉𝑄 , 𝐿𝑄 (𝑢) =
𝐿(𝜌 (𝑢)); and (ii) for every edge (𝑢1, 𝑢2, ℓ) in 𝐸𝑄 , there exists an edge
(𝜌 (𝑢1), 𝜌 (𝑢2), ℓ′) in 𝐸 with ℓ = ℓ′. For simplicity, we will refer to 𝜌
as a match of𝑄 in𝐺 . Note that there may be multiple matches of𝑄
in𝐺 . We denote by𝑄 (𝐺) the set of all matches of𝑄 in𝐺 . Similarly,
𝑃 (𝐺) is defined for a path query 𝑃 . Given a query graph 𝑄 and a
data graph 𝐺 , the subgraph matching problem is to compute 𝑄 (𝐺).

Cardinality estimation problem. Given a query graph 𝑄 and a
data graph 𝐺 , the cardinality of 𝑄 (𝐺), denoted by |𝑄 (𝐺) |, refers to
the number of matches of 𝑄 in 𝐺 . The cardinality estimation prob-
lem for subgraph matching is to estimate |𝑄 (𝐺) | without explicitly
computing the set 𝑄 (𝐺). Such estimation is typically performed by
leveraging statistics from smaller subqueries [6, 23, 47]. As we will
see shortly, we collect statistics of short path queries only and utilize
them to support cardinality estimation for arbitrary graph queries.

Example 2: Consider a data graph 𝐺 as shown in Fig. 2(a), with
three vertex labels 𝐴, 𝐵, and𝐶 , represented by different colors. The
edge labels are assumed to be identical and thus are omitted.

(1) We have |𝑄 (𝐺) | = 1 for the graph query 𝑄 shown in Fig. 2(b),
as 𝑄 (𝐺) contains exactly one match 𝜌0, i.e., 𝑄 (𝐺) = {𝜌0}, where
𝜌0 = {(𝑢0, 𝑎1), (𝑢1, 𝑏1), (𝑢2, 𝑐3)}.
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Table 1: Notations
𝐺 = (𝑉 , 𝐸, 𝐿) , Π𝑉 , P graph, vertex partition, path query set
G = (V, E, L) , Q PSG and PSG query

𝑄 = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ) ,𝑄 (𝐺 ) graph query and its match set on𝐺
𝑄 [𝑢1,𝑢2 ],𝑄 [𝑢 ] graph query with designated endpoints

(2) For the path query 𝑃1 shown in Fig. 2(b), we have |𝑃1 (𝐺) | = 3,
with 𝜌1, 𝜌2, and 𝜌3 as its matches, where 𝜌1 = {(𝑢2, 𝑐0), (𝑢1, 𝑏0)},
𝜌2 = {(𝑢2, 𝑐0), (𝑢1, 𝑏1)}, and 𝜌3 = {(𝑢2, 𝑐3), (𝑢1, 𝑏1)}. Furthermore,
the head and tail vertices of 𝑃1 are 𝑢2 and 𝑢1, respectively. □

The notations of this paper are summarized in Table 1.

3 PATH-CENTRIC SUMMARY GRAPHS
In this section, we introduce path-centric summary graphs (PSG),
a data structure that maintains statistics of path queries as a graph.

We first introduce a general framework for defining the statistics
of a graph query𝑄 . Note that these statistics are always definedwith
respect to an underlying data graph. To simplify our presentation,
we assume a fixed data graph𝐺 = (𝑉 , 𝐸, 𝐿) throughout this section.
Definition 3.1: Let 𝑄 be a graph query, and let 𝑢1 and 𝑢2 be two
designated nodes in 𝑄 . Let 𝑉1 and 𝑉2 be two subsets of 𝑉 . The
summary of𝑄 [𝑢1, 𝑢2] with respect to the vertex subset pair (𝑉1,𝑉2)
is defined as a triple (𝑐, 𝑑1, 𝑑2), where:
◦ 𝑐 =

|︁|︁{𝜌 ∈ 𝑄 (𝐺) | 𝜌 (𝑢1) ∈ 𝑉1, 𝜌 (𝑢2) ∈ 𝑉2}|︁|︁;
◦ 𝑑1 = max𝑣1∈𝑉1

|︁|︁{𝜌 ∈ 𝑄 (𝐺) | 𝜌 (𝑢1) = 𝑣1, 𝜌 (𝑢2) ∈ 𝑉2}|︁|︁;
◦ 𝑑2 = max𝑣2∈𝑉2

|︁|︁{𝜌 ∈ 𝑄 (𝐺) | 𝜌 (𝑢1) ∈ 𝑉1, 𝜌 (𝑢2) = 𝑣2}|︁|︁. □

Intuitively, 𝑐 denotes the number of matches in 𝑄 (𝐺) where 𝑢1
and 𝑢2 are mapped to vertices in 𝑉1 and 𝑉2, respectively. In these
matches, 𝑑1 (resp. 𝑑2) represents the maximum number of occur-
rences of any vertex in 𝑉1 (resp. 𝑉2) as the match for 𝑢1 (resp. 𝑢2).
We refer to 𝑑1 and 𝑑2 as the maximal-degree statistics of 𝑄 [𝑢1, 𝑢2].

Similarly, we define the summary for a single designated node.
Definition 3.2: Let 𝑄 be a graph query, 𝑢1 be a designated node
in 𝑄 , and 𝑉1 ⊆ 𝑉 be a vertex subset. The summary of 𝑄 [𝑢1] with
respect to 𝑉1 is also a triple (𝑐, 𝑑1, 𝑑2), where:
◦ 𝑐 =

|︁|︁{𝜌 ∈ 𝑄 (𝐺) | 𝜌 (𝑢1) ∈ 𝑉1}|︁|︁;
◦ 𝑑1 = max𝑣1∈𝑉1

|︁|︁{𝜌 ∈ 𝑄 (𝐺) | 𝜌 (𝑢1) = 𝑣1}|︁|︁;
◦ 𝑑2 = ∞, i.e.,𝑑2 is undefined as𝑄 has only one designated node. □

Intuitively, we treat 𝑄 [𝑢1, 𝑢2] as an edge-like query by designat-
ing 𝑢1 and 𝑢2 as its two endpoints. Similarly, 𝑄 [𝑢1] can be viewed
as a vertex-like query, with 𝑢1 as its sole endpoint.

Example 3: Continue from Example 2 and consider the path query
𝑃1 depicted in Fig. 2(b). Let 𝐵0 = {𝑏0, 𝑏1} and 𝐶0 = {𝑐0, 𝑐1} be two
subsets of 𝑉 . We can observe the following.

(1) The summary of 𝑃1 [𝑢2, 𝑢1] w.r.t. (𝐶0, 𝐵0) is (𝑐, 𝑑1, 𝑑2) = (2, 2, 1).
Indeed, among the three matches in 𝑃1 (𝐺), only 𝜌1 and 𝜌2 satisfy
the additional constraint that 𝑢2 is matched to a vertex in 𝐶0 and
𝑢1 is matched to a vertex in 𝐵0 (see the definitions of 𝜌1 and 𝜌2
in Example 2); 𝑑1 = 2 since both 𝜌1 and 𝜌2 map 𝑢2 to the vertex 𝑐0,
which has the maximal number of occurrences; similarly, 𝑑2 = 1
since both 𝑏0 and 𝑏1 occur once as the match of𝑢1 in these matches.

(2) The summary of 𝑃1 [𝑢1] w.r.t. 𝐵0 is (3, 2,∞). This is because all
three matches of 𝑃1 (𝐺), i.e., 𝜌1, 𝜌2, and 𝜌3, map 𝑢1 to a vertex in

𝐵0, and the vertex 𝑏1 in 𝐵0 appears twice, which has the maximal
number of occurrences among these matches. □

To construct a PSG for a data graph 𝐺 , we utilize a summary
vertex partitionΠ𝑉 to partition𝑉 into a collection of disjoint subsets.
The vertices in each subset have an identical label and each subset
is referred to as a summary vertex. Specifically, let 𝑉 ℓ be the set of
vertices in𝑉 with label ℓ . Given a predefined number𝑀 , Π𝑉 divides
each 𝑉 ℓ into 𝑀 summary vertices 𝑉 ℓ1 , . . . ,𝑉

ℓ
𝑀
. Thus, Π𝑉 can be

represented as Π𝑉 = {𝑉 ℓ
𝑖
| ℓ is a vertex label in 𝐺, 𝑖 = 1, . . . , 𝑀}.

Collecting statistics for all possible graph queries, even just for
path queries, is computationally infeasible [6, 23]. Thus we focus
on a small set P of 𝑘-path queries (with small 𝑘), representing their
statistics with a graph-based data structure called the path-centric
summary graph (PSG). These path query statistics will then be
used to support cardinality estimation for arbitrary graph queries.

Definition 3.3: Given a summary vertex partition Π𝑉 of 𝐺 , and
a set P of path queries, a path-centric summary graph (PSG) of 𝐺
w.r.t. Π𝑉 and P is a graph G = (V, E,L) satisfying the followings.

(1) The vertex set V consists of all the summary vertices defined
by Π𝑉 . Observe that all vertices in a summary vertex 𝑉 ′ share an
identical label ℓ . Thus, we let L(𝑉 ′) = ℓ .
(2). The edge set E consists of all edges 𝑒 = (𝑉1,𝑉2, 𝑃) such that
(i) 𝑃 is a path query from the set P, which serves as the label of
𝑒 , and (ii) the labels L(𝑉1) and L(𝑉2) match the labels of ℎ𝑃 and
𝑡𝑃 , respectively. Each edge in E is referred to as a summary edge.

(3) Each summary edge 𝑒 = (𝑉1,𝑉2, 𝑃) carries a triple (𝑐, 𝑑1, 𝑑2)
as its property, which is precisely the summary of the path query
𝑃 [ℎ𝑃 , 𝑡𝑃 ] with respect to (𝑉1,𝑉2), where the head vertex ℎ𝑃 and
tail vertex 𝑡𝑃 are taken as the designated nodes of 𝑃 .

We refer to the property triple associated with a summary edge
as an SE-triple. The collection of all SE-triples associated with sum-
mary edges of the form (𝑉1,𝑉2, 𝑃) in G is called the statistics of 𝑃 . □

In a nutshell, a PSG adopts a path-centric approach, representing
the statistics of path queries within a graph structure. The size of a
PSG is independent of the size of the data graph𝐺 and is bounded
by 𝑂 (𝑁𝑀2), where 𝑁 is the number of path queries in P, and 𝑀
is the number of summary vertices per label. This property makes
PSG a scalable summary data structure for large graphs.

Example 4: Continue from Example 2 and Example 3, and let
Π𝑉 = {𝐴0, 𝐵0,𝐶0,𝐶1} be a vertex partition with 4 summary vertices,
where 𝐴0 = {𝑎0, 𝑎1}, 𝐵0 = {𝑏0, 𝑏1}, 𝐶0 = {𝑐0, 𝑐1}, and 𝐶1 = {𝑐2, 𝑐3}
(see Fig. 2(c)). Let P = {𝑃0, 𝑃1, 𝑃2, 𝑃3} denote the set of all path
queries shown in Fig. 2(b). The summary graph G with respect to
Π𝑉 and P is depicted in Fig. 2(c), and Fig 2(d) lists its 5 summary
edges, along with their labels and SE-triples. Observe the following.

(1) The SE-triple of the summary edge 𝑒4 is (2, 2, 1), as it corresponds
to the summary of 𝑃1 [𝑢2, 𝑢1] with respect to the summary vertex
pair (𝐶0, 𝐵0). Similarly, one can verify the other SE-triples.

(2) There are two path queries in P, namely 𝑃2 and 𝑃3, that connect
a vertex labeled 𝐴 to a vertex labeled 𝐵. Consequently, two sum-
mary edges, 𝑒2 and 𝑒3, exist in G between the summary vertices
𝐴0 and 𝐵0. The SE-triple associated with 𝑒2 represents the sum-
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Algorithm 1: PathCE: Path-centric estimation workflow
Input: A graph query𝑄 and a PSG graph G of data graph𝐺 .
Output: An upper bound estimaiton of |𝑄 (𝐺) |.

1 (Q,S) ← GenScheme(𝑄 , G); // S = [𝑢1, . . . , 𝑢𝑘 ]
2 for 𝑖 = 1, . . . , 𝑘 − 1 do
3 𝑄𝑖 [Nbr(𝑢𝑖 )] ← ExtraSubQ(𝑄,𝑢𝑖 ); //Extract a subquery
4 G ← G ∪ EstTriple(G, 𝑄𝑖 [Nbr(𝑢𝑖 )]); //Estimate SE-triple
5 Q ← ReduceQuery(Q, 𝑄𝑖 [Nbr(𝑢𝑖 )]); //Reduce PSG query
6 return AggCnt(G, 𝑄,𝑢𝑘 );

mary of 𝑃2 [𝑢0, 𝑢1] with respect to (𝐴0, 𝐵0), while the SE-triple of
𝑒3 represents the summary of 𝑃3 [𝑢0, 𝑢1] (see more in Fig. 2(d)). □

We often need to represent the statistics of longer path queries
beyond P, as well as general graph queries. Fortunately, our frame-
work allows all such queries to be represented in PSG.

(1) For𝑄 [𝑢1, 𝑢2] with 𝑢1 and 𝑢2 as its designated endpoints, we add
a new summary edge (𝑉1,𝑉2, 𝑄 [𝑢1, 𝑢2]) in G, for every summary
vertex pair (𝑉1,𝑉2) with L(𝑉1) = 𝐿(𝑢1) and L(𝑉2) = 𝐿(𝑢2). Its
SE-triple is defined as the summary of 𝑄 [𝑢1, 𝑢2] w.r.t. (𝑉1,𝑉2).
(2) For 𝑄 [𝑢1] with 𝑢1 as its sole designated endpoint, we first intro-
duce a dummy summary vertex 𝑈 to the summary vertex setV , if
it does not already exist. Then, for each summary vertex 𝑉1 with
L(𝑉1) = 𝐿(𝑢1), we add a new summary edge (𝑉1,𝑈 ,𝑄 [𝑢1]), whose
SE-triple is the summary of 𝑄 [𝑢1] with respect to 𝑉1.

Similarly, the set of SE-triples associated with these edges con-
stitutes the statistics of 𝑄 [𝑢1, 𝑢2] and 𝑄 [𝑢1], respectively.

Cardinality estimation with PSG’s. Given a query 𝑄 and a
path-centric summary graph G of𝐺 , our goal is to estimate |𝑄 (𝐺) |
by making use of the path query statistics included in G. Recall
we only include the statistics of a small set of 𝑘-path queries when
constructing G. If G already contains statistics for 𝑄 , e.g., if 𝑄 is a
small path query in P, we aggregate the statistics to estimate |𝑄 (𝐺) |.
For longer paths or generic graph queries like 𝑄 , we estimate their
statistics using the shorter path statistics contained in G. Once we
have the statistics for 𝑄 , we aggregate them to estimate |𝑄 (𝐺) |.
Remark. Our framework restricts the number of designated end-
points in a graph query 𝑄 to at most two (see Definitions 3.1, 3.2,
and 3.3). While this design can be extended to support more end-
points, we make this choice deliberately for the following reasons.

(1) Limiting to two endpoints allows all summaries to be represented
using a simple graph structure. Supporting more endpoints would
require hypergraphs, significantly increasing design complexity.

(2) This restriction also reduces both storage and computation costs.
A path query with two endpoints requires 𝑂 (𝑀2) space in PSG.
Allowing three endpoints would increase this to 𝑂 (𝑀3). Moreover,
more designated endpoints requires additional maximal-degree
statistics, further increasing construction overhead (see Sec. 7). □

4 PATH-CENTRIC ESTIMATION FRAMEWORK
We present PathCE in this section, a path-centric cardinality esti-
mation framework. We begin with an overview of PathCE (Sec.4.1),
followed by the key challenges in developing PathCE (Sec.4.2).
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Figure 3: A graph query 𝑄 and its estimation scheme (Q,S).

u1

u3

u1

u3 u9

u5 u7

P1 P2
P3

P4
u1

u3

P1

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

u1

u3 u9

u5 u7

P1 P2
P3

P4

Q1

Q2

(e) Subqueries processed in iterations; designated endpoints are marked in black.

[u5]

[u5]

Q 1
[u 5] Q 1

[u 5]

Q2
[u5]

Q 3
[u 1,

u 3] Q4[u1]

u5

u5

Q3[u1,u3] Q4[u1]

u1

u3

u5
u1

Figure 4: Iterative cardinality estimation. A dotted circle indicates
a dummy vertex, while a gray edge represents a subquery.

4.1 Cardinality Estimation Workflow
Taking a graph query 𝑄 and a summary graph G of 𝐺 as input,
PathCE outputs an estimate of |𝑄 (𝐺) |. Algorithm 1 outlines the
overall workflow of PathCE, which consists of an estimation scheme
generation step (line 1) and a cardinality estimation step (lines 2–6).

Estimation scheme generation. PathCE decomposes the input
query 𝑄 and generates an estimation scheme for it. This scheme is
represented as a pair (Q,S) (see Fig. 3(b) for an example), where (i)
Q is also a query such that every edge of Q represents a sub-path
query of 𝑄 whose statistics have been included in G, and (ii) S
specifies an estimation order [𝑢1, . . . , 𝑢𝑘 ] that will be used in the
estimation step (see below), where 𝑢1, . . . , 𝑢𝑘 are the vertices of Q.
We will refer to Q as a PSG query of 𝑄 , to highlight that PathCE
utilizes Q directly over the PSG graph G to estimate |𝑄 (𝐺) |.

Example 5: A graph query𝑄 and its estimation scheme (Q,S) are
shown in Figure 3. Every edge in Q represents a path of 𝑄 , e.g., the
edges labeled with 𝑃1 and 𝑃2 represent the two paths 𝑢1−𝑢2−𝑢3
and 𝑢3−𝑢4−𝑢5 of 𝑄 , respectively. The estimation order is S =

[𝑢9, 𝑢7, 𝑢5, 𝑢3, 𝑢1]. Note thatQ has a simpler structure than𝑄 , e.g.,Q
has 5 vertices and 6 edge, whereas𝑄 has 9 vertices and 10 edges. □

Iterative cardinality estimation. Guided by (Q,S), PathCE next
estimates |𝑄 (𝐺) | bymaking use of the path query statistics included
in G. PathCE performs the estimation in an iterative manner, as
also adopted in prior studies [18, 47]. One key difference is that,
PathCE uses Q to leverage path query statistics included in G and
reduce the number of estimation iterations, while prior approaches
usually estimate directly with 𝑄 and require more iterations.

Let S = [𝑢1, . . . , 𝑢𝑘 ] be the estimation order. As outlined in
Algorithm 1, in the 𝑖-th iteration PathCE estimates the statistics of
a subquery 𝑄𝑖 of Q (lines 2-5). The subquery 𝑄𝑖 takes Nbr(𝑢𝑖 ) as
its designated endpoints, where Nbr(𝑢𝑖 ) are 𝑢𝑖 ’s neighbors in 𝑄𝑖 .
In particular, each iteration involves the following three steps.
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(1) Extract a subquery. Let Nbr(𝑢𝑖 ) be the neighbors of 𝑢𝑖 in the
PSG query Q. PathCE extracts a subquery 𝑄𝑖 [Nbr(𝑢𝑖 )] from 𝑄 ,
consisting of the edges corresponding to 𝑢𝑖 ’s incident edges in Q
(line 3). For example, in Fig. 3(b), 𝑢9 has one neighbor 𝑢5 and one
incident edge labeled 𝑃5, so 𝑄1 [𝑢5] includes the two edges in 𝑄
covered by 𝑃5 (see Fig. 3(e); vertex labels omitted for simplicity).

(2) Estimate SE-triples. With Nbr(𝑢𝑖 ) as the designated endpoints,
PathCE next estimates the statistics of 𝑄𝑖 [Nbr(𝑢𝑖 )] and includes
them to G (line 4). Recall that we require Nbr(𝑢𝑖 ) ≤ 2 to ensure the
statistics remain representable in G. The statistics are computed by
combining the relevant SE-triples included in G (see Sec. 6).

(3) Reduce PSG query. PathCE then simplifies Q by replacing
the subquery 𝑄𝑖 [Nbr(𝑢𝑖 )] with a new edge (line 5). Specifically,
PathCE eliminates 𝑢𝑖 and its incident edges from Q and adds a
new edge labeled 𝑄𝑖 [Nbr(𝑢𝑖 )] to connect 𝑢𝑖 ’s neighbors. Here, 𝑢𝑖
is referred to as an eliminated node. When Nbr(𝑢𝑖 ) consists of a
single vertex 𝑢′, then a dangling edge labeled 𝑄𝑖 [𝑢′] is attached to
𝑢′. An edge is dangling if one of its endpoints links to an eliminated
node, e.g., 𝑢𝑖 . See Fig. 4(a) for an example, where an eliminated
node is depicted with a doted cycle. This step simplifies Q since
it decreases the vertex number by one. Also note that the statistics
for the new edge labeled 𝑄𝑖 [Nbr(𝑢𝑖 )] are represented as SE-triples
and have been computed in the previous step. Consequently, the
estimation iteration continues with the revised Q and updated G.

After 𝑘−1 iterations, Q consists of only the last vertex 𝑢𝑘 , with
𝑡 dangling edges attached to 𝑢𝑘 , where 𝑡 ≥ 1. PathCE applies a
function AggCnt to aggregate statistics of 𝑄 [𝑢𝑘 ]. Specifically, for
each summary vertex 𝑉𝑖 with L(𝑉𝑖 ) = 𝐿(𝑢𝑘 ), AggCnt computes a
count 𝑐𝑖 to estimate |{𝜌 ∈ 𝑄 (𝐺) | 𝜌 (𝑢𝑘 ) ∈ 𝑉𝑖 }|. The final estimate
|𝑄 (𝐺) | is obtained by summing over all such 𝑐𝑖 values (line 6). The
computation of 𝑐𝑖 is performed by exploring the statistics of the
dangling edges attached to 𝑢𝑘 in Q (see Sec. 6 for details).

Example 6: Figures 4(a)–4(d) illustrate how PathCE estimates
|𝑄 (𝐺) |, using the scheme (Q,S) from Fig. 3. The subqueries in-
volved in the estimation process are shown in Fig. 4(e).

(1) In the first iteration, PathCE processes 𝑄1 [𝑢5] with 𝑢5 as the
designated endpoint, as shown in Fig. 4(e). The resulting SE-triples
are of the form (𝑐, 𝑑,∞). After removing𝑄1 [𝑢5], a dangling edge la-
beled𝑄1 [𝑢5] is attached to𝑢5, and𝑢9 is eliminated fromQ (depicted
as a dotted circle in Fig. 4(a)). The second iteration then processes
𝑄2 [𝑢5], resulting in the updated PSG query shown in Fig. 4(b).

(2) In the third iteration, PathCE processes the subquery𝑄3 [𝑢1, 𝑢3],
with 𝑢1 and 𝑢3 as designated endpoints (see Fig. 4(e)). It combines
the initial statistics for 𝑃2, 𝑃3, and 𝑃4 from G with those of the
dangling edges𝑄1 [𝑢5] and𝑄2 [𝑢5] to compute new SE-triples. Then,
𝑢5 and its incident edges are removed from Q and replaced by a
new edge labeled 𝑄3 [𝑢1, 𝑢3] (see Fig. 4(c)).
(3) In the final iteration, PathCE eliminates 𝑢3 and computes the
SE-triples for the subquery 𝑄4 [𝑢1]. Figure 4(d) shows the revised
Q with a single vertex 𝑢1 and a dangling edge labeled 𝑄4 [𝑢1].

In the end, Q reduces to 𝑢1 with a single dangling edge. For each
summary vertex 𝑉𝑖 such that L(𝑉𝑖 ) = 𝐿(𝑢1), PathCE computes
an estimate 𝑐𝑖 for |{𝜌 ∈ 𝑄 (𝐺) | 𝜌 (𝑢1) ∈ 𝑉𝑖 }|. Since 𝑢1 has a single
dangling edge, we let 𝑐𝑖 = 𝑐 , where (𝑐, 𝑑,∞) is the SE-triple associ-

ated with the summary edge (𝑉𝑖 ,𝑈 ,𝑄4 [𝑢1]) in G, computed in the
fourth iteration. The sum of all 𝑐𝑖 is then returned as |𝑄 (𝐺) |. □

4.2 Challenges and Approaches
We highlight the challenges in developing the PathCE framework.

Challenge 1: Effective estimation scheme generation. Gener-
ating an effective estimation scheme requires solving two problems.
First, how to construct a PSG query Q from 𝑄 with as few vertices
as possible, since fewer vertices mean fewer estimation iterations
and lower error. Second, how to derive a valid estimation order S
for Q so that the overall estimation process can proceed as a se-
quence of SE-triple computation. To see the difficulty, consider the
case where Q is a 4-clique. Then any estimation order of Q starts
with a subquery in which the eliminated node has 3 neighbors. This
violates the requirements of the extracted subqueries.

To address this, we propose a divide-and-conquer algorithm
Dcmp that computes a PSG query Q with the minimal number of
vertices for a given query 𝑄 (Sec. 5.1), and a minimal neighbors
strategy to generate a feasible estimation order, if possible (Sec. 5.2).
If none exists, such as in the 4-clique case, we apply a pruning
strategy to remove from 𝑄 some edges that have minimal impact
on estimation accuracy, creating a new query 𝑄 ′ that allows a
feasible elimination order from the PSG query of 𝑄 ′ .

Challenge 2: Cardinality upper bound estimation. Prior stud-
ies show that upper bound estimates help generate high-quality
query plans [4, 10, 47]. Moreover, upper bound estimation usually
does not rely on statistical assumptions and offers theoretical guar-
antees [1, 3]. The challenge is how to provide upper bound estimates
within PathCE, ensuring that each estimate 𝐶 satisfies |𝑄 (𝐺) | ≤ 𝐶 .

Inspired by [1, 4], we have included maximal-degree statistics in
the SE-triples for path queries and PSG construction. These statis-
tics are then used for estimation within each extracted subquery
(Sec. 6). We employ a graph-based way to compute upper bound
estimates for each such subquery. By an inductive analysis, we can
show that |𝑄 (𝐺) | ≤ 𝐶 (Theorem 3, Sec. 6).

Challenge 3: Scalable PSG construction. Given a graph 𝐺 , a
vertex partition Π𝑉 and a path query set P, it is non-trivial to
construct a PSG of 𝐺 w.r.t. Π𝑉 and P since each SE-triple includes
both count and maximal-degree statistics of a path query 𝑃 . A naive
approach is to compute the match set 𝑃 (𝐺) first and then derive
the SE-triples from 𝑃 (𝐺). However, careful analysis indicates that
this would incur significant computational and space overheads.

To address this challenge, we develop a parallelly scalable al-
gorithm PSGBuilder to construct PSG’s in linear time w.r.t. the
input graph size |𝐺 |. PSGBuilder achieves this by utilizing a com-
pact intermediate representation of SE-triples and conducting the
computation in a bottom-up manner. Better still, the algorithm
PSGBuilder is parallelly scalable [22], i.e., it guarantees to reduce
the running time when working with more processors. This implies
that PSGBuilder is capable of constructing PSG’s for large graphs.

Remark. PathCE is a path-centric cardinality estimator that differs
from FactorJoin [47], CEG [6] and GLogS [23] in the followings.

(1) PathCE relies exclusively on statistics of path queries, organized
in a PSG graph. When path queries are restricted to single-edge
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Algorithm 2: GenScheme: Estimation scheme generation
Input: A graph query 𝑄 and a PSG G w.r.t. graph 𝐺 .
Output: An estimation scheme (Q,S) for 𝑄 .

1 Q ← Dcmp(𝑄,G); S ← GenEstOrder(Q);
2 while S = ∅ do
3 𝑄 ← Prune(𝑄,Q);
4 Q ← Dcmp(𝑄,G); S ← GenEstOrder(Q);
5 return (Q,S);

patterns, the statistics used by PSG reduce to those adopted by
FactorJoin. In contrast, CEG and GLogS consider statistics of gen-
eral graph queries beyond path queries, e.g., triangles.

(2) While PathCE and FactorJoin use maximal-degree statistics to
ensure cardinality upper bounds, PathCE adopts an graph-based
approach, whereas FactorJoin uses a probabilistic graphical model.
Both CEG and GLogS rely on statistical assumptions for estimation
and do not guarantee cardinality upper bounds.

(3) PathCE builds statistics in a parallelly scalable manner, making
it suitable for large graph datasets. In contrast, FactorJoin and CEG
do not include statistics construction algorithms. While GLogS
includes its own statistics construction mechanism, it relies on
graph sparsification to scale to large graphs.

5 ESTIMATION SCHEME GENERATION
In this section, we show how to generate an estimation scheme for
a given query 𝑄 . We outline the generation workflow as follows.

Workflow. As outlined in Algorithm 2, PathCE first utilizes a
procedure Dcmp to decompose 𝑄 into a PSG query Q. The opti-
mization goal of Dcmp is to minimize the number of vertices of Q.
Next, PathCE tries to compute an estimation order S from Q by
GenEstOrder (line 1). If that fails, PathCE then tries to prune some
edges from 𝑄 so that 𝑄 has a better chance to generate a feasible
estimation order (line 3). After pruning, PathCE retries Dcmp to
compute a new Q and GenEstOrder to find a new S (line 4). Once
a feasible estimation order S is identified, PathCE returns (Q,S)
as the estimation scheme for 𝑄 (line 5).

In the rest of this section, we discuss the ideas behind the proce-
dures Dcmp, GenEstOrder and Prune in more details.

5.1 PSG Query Computation
We first develop an algorithm Dcmp to decompose a given query
𝑄 into a PSG query Q such that Q’s vertex number is minimized.
The PSG query Q of 𝑄 satisfies the following requirements.
◦ (R0) The vertex set of Q is a subset of 𝑄 .
◦ (R1) Each edge 𝑒 in Q represents a subpath 𝑃 of𝑄 with statistics

included in G. In that case, we say that 𝑒 covers the edges of 𝑃 .
◦ (R2) Every edge of 𝑄 is covered by exactly one edge of Q.
◦ (R3) Q’s vertices can only occur as the endpoints of the subpaths

that Q covers, which is to ensure the estimation correctness.
Note that from (R0)(R1)(R2)(R3), if a vertex 𝑢 of𝑄 has a degree ≥ 3,
then 𝑢 must be kept in Q. We call each such vertex 𝑢 a pivot of 𝑄 .
With the pivots, Dcmp obtains a PSG query Q as outlined below.

Algorithm Dcmp. The algorithm Dcmp first identifies all the
pivots of 𝑄 . From these pivots, it conducts a series of DFS traversal
on 𝑄 to compute a set PSet of subpaths of 𝑄 . Specifically, starting
from a pivot 𝑢, a DFS traversal terminates when it either hits a
node with degree 1, i.e., the DFS cannot continue, or it hits a vertex
with degree ≥ 3, i.e., the starting pivot 𝑢 or another pivot. Each DFS
traversal is included as a path in PSet. It is possible that statistics
of a path query 𝑃 in PSet are not in G. By requirement (R1), Dcmp
next utilizes a sub-routine PathDP to decompose each such path
𝑃 in Pset into paths 𝑃1,. . . ,𝑃𝑘 to minimize 𝑘 so that the statistics
of every 𝑃𝑖 are included in G. Each 𝑃𝑖 and its endpoints are then
added as an edge to Q, i.e., these 𝑃𝑖 ’s are used by Q to cover 𝑄 .
PathDP adopts dynamic programming to obtain a decomposition
of 𝑃 as follows. Let 𝑃 = 𝑢0𝑒1𝑢1 . . . 𝑢𝑛−1𝑒𝑛𝑢𝑛 be an 𝑛-path in PSet
and P be the set of path queries that G is constructed from. Denote
by 𝑃𝑖 𝑗 = 𝑢𝑖𝑒𝑖+1𝑢𝑖+1 . . . 𝑢 𝑗−1𝑒 𝑗𝑢 𝑗 the subpath of 𝑃 between 𝑣𝑖 and
𝑣 𝑗 , where 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, and define 𝑓 (𝑃) as the minimum number
of paths in P to decompose 𝑃 . We give the recurrence as follows:

𝑓 (𝑃𝑖 𝑗 ) =
{︄
1 𝑃𝑖 𝑗 ∈ P
min{𝑓 (𝑃𝑖𝑘 ) + 𝑓 (𝑃𝑘 𝑗 ) | 𝑖 ≤ 𝑘 ≤ 𝑗} otherwise.

(1)

Clearly, this recurrence can be solved using dynamic programming.
The algorithm Dcmp produces an optimal PSG query Q for a

given graph query 𝑄 , as summarized in Proposition 1.

Proposition 1: Given a query 𝑄 and G, the algorithm Dcmp pro-
duces a PSG query Q of 𝑄 such that Q has the minimum number of
vertices and meets the requirements of (R0),(R1), (R2) and (R3). □

5.2 Estimation Order Generation and Pruning
We next discuss how to generate a feasible estimation order for
a PSG query Q. Let S = [𝑢1, . . . , 𝑢𝑘 ] be a vertex order of Q. We
say that S is a feasible estimation order for Q if, in every subquery
produced using the scheme (Q,S), we have Nbr(𝑢𝑖 ) ≤ 2.

Below, we first introduce the minimal neighbors strategy used by
GenEstOrder to produce a feasible estimation order S, if such an
order exists. Next, we propose a pruning strategy to handle cases
where no feasible S can be generated for Q.

Minimal neighbors strategy. Given Q, GenEstOrder simulates
the estimation process and uses a minimal neighbors strategy to
determine S. In the 𝑖-th iteration, GenEstOrder selects a vertex 𝑣
with the fewest neighbors in Q as the 𝑖-th vertex in S. If multiple
vertices have the minimal number of neighbors, it randomly picks
one. GenEstOrder then removes 𝑢 and its incident edges from Q.
If 𝑢 has exactly two neighbors in Q, GenEstOrder also adds a new
edge connecting them after removing 𝑢, to simulate the estimation
process. If 𝑢 has more than two neighbors, i.e., this would lead to
an invalid subquery during estimation, GenEstOrder terminates
and the estimation order generation fails. Otherwise, the process
continues with the updated Q. If no failure occurs, GenEstOrder
returns the vertex sequence S as the estimation order.

The lemma below shows that (i)GenEstOrder suffices for acyclic
queries, and (ii) additional efforts are needed for cyclic queries.

Lemma 2: (i) GenEstOrder always returns a feasible estimation
order S for an acyclic Q. (ii) If GenEstOrder fails for a cyclic Q, then
any permutation of Q’s vertices is not feasible for Q. □
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Figure 5: An example query that needs pruning

Clearly, GenEstOrder fails on the query Q depicted in Fig. 5(a)
and any vertex order of Q is not a feasible estimation order. In light
of Lemma 2, we propose a novel pruning strategy to handle cyclic
queries when no feasible estimation order can be found.

Pruning strategy. If GenEstOrder fails for a PSG query Q of 𝑄 ,
we prune edges from 𝑄 to obtain a subquery 𝑄 ′, such that its PSG
query Q′ has a feasible estimation order S′. Estimation is then
performed using (Q′,S′). To ensure the result is still an upper
bound on |𝑄 (𝐺) |, only edges within a cycle of 𝑄 are pruned.

To illustrate, consider the query 𝑄 in Fig. 5(a), where no feasible
estimation order is available for its PSG query Q. By pruning the
edge (𝑢1, 𝑢2) from 𝑄 , we obtain the subquery 𝑄 ′, as shown in
Fig. 5(b). Assuming G includes statistics for all path queries of
length up to 2, the new PSG query Q′ for 𝑄 ′ is shown in Fig. 5(b),
and S′ = [𝑢2, 𝑢3, 𝑢6, 𝑢5] is a feasible estimation order for Q′. Let
𝐶 be the estimated cardinality using (Q′,S′). As will be shown in
Sec. 6, |𝑄 ′ (𝐺) | ≤ 𝐶 , which means 𝐶 remains an upper bound on
|𝑄 (𝐺) | since |𝑄 (𝐺) | ≤ |𝑄 ′ (𝐺) | ≤ 𝐶 . The pruned edge (𝑢1, 𝑢2) lies
within a cycle of 𝑄 , so any match for 𝑄 is also a match for 𝑄 ′.

6 SUBQUERY ESTIMATION
In this section, we show how to estimate the statistics for a subquery
𝑄 extracted in an estimation iteration.

We consider the case where 𝑄 has two designated endpoints, 𝑢1
and 𝑢2, connected via an eliminated node 𝑢; the single-endpoint
case is treated as a special case. For each summary vertex pair
(𝑉𝑢1 ,𝑉𝑢2 ) matching (𝑢1, 𝑢2), we compute an SE-triple (𝑥,𝑦, 𝑧) to
estimate the summary of 𝑄 [𝑢1, 𝑢2] w.r.t. (𝑉𝑢1 ,𝑉𝑢2 ). We adopt a
graph-based approach to compute (𝑥,𝑦, 𝑧), based on the observation
that matches on the data graph are accurate, while those on the
PSG graph serve as approximations. Our approach consists of two
steps: PSG query matching and SE-triple estimation.

(1) PSG query match. This step is to extract SE-triples encoded
in G for the estimation in the second step. Let Q[𝑢1, 𝑢2] be the
corresponding PSG query of 𝑄 [𝑢1, 𝑢2]. Intuitively, each edge of
Q[𝑢1, 𝑢2] represents a sub-path of 𝑄 [𝑢1, 𝑢2] (see Fig. 6 for an
example). We first run the PSG query Q[𝑢1, 𝑢2] on PSG graph G
and require that 𝑢1 is matched to 𝑉𝑢1 and 𝑢2 is matched to 𝑉𝑢2 .
This is well-defined since G is also a graph by design. Note that
𝑄 [𝑢1, 𝑢2] may have dummy nodes, i.e., nodes eliminated during
estimation (see the dotted circles in Fig. 6(b)). We require dummy
nodes to match the dummy summary vertex𝑈 of G.

By the definition of PSG, there are exactly 𝑀 matches of
Q[𝑢1, 𝑢2] in G. Specifically, let 𝑉1, . . .𝑉𝑀 be the summary vertices
matching 𝑢. Each match can be represented as a subgraph G𝑖 of G,
where node 𝑢 is mapped to 𝑉𝑖 in G𝑖 . The vertex set of G𝑖 includes
𝑉𝑢1 , 𝑉𝑢2 and 𝑉𝑖 , and 𝑈 (if Q[𝑢1, 𝑢2] contains an eliminated node).
For the query Q[𝑢1, 𝑢2] as shown in Fig. 6(b), a match G𝑖 is shown
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Figure 6: Query 𝑄 [𝑢1, 𝑢2] and its PSG version Q[𝑢1, 𝑢2], along
with a subgraph G𝑖 of G that matches Q[𝑢1, 𝑢2].

in Fig. 6(c). The label of each summary edge in G𝑖 also matches
that in Q[𝑢1, 𝑢2]. For example, the summary edge 𝑒1 of G𝑖 has
label 𝑃1, matching the edge between 𝑢1 and 𝑢.

Fix a PSG subgraph G𝑖 and let G′ be a connected subgraph of G𝑖 .
Let 𝑄 ′ be the query formed by connecting the subqueries encoded
as edge labels in G′. Note that ,𝑄 ′ must be a subquery of𝑄 , and we
have 𝑄 ′ = 𝑄 when G′ = G𝑖 . Along the same lines as Definition 3.1,
we define the following for each subgraph G′ of G𝑖 :

𝑐 (G′) =
|︁|︁{𝜌 ∈ 𝑄 ′ (𝐺) | 𝜌 (𝑢1) ∈ 𝑉𝑢1 , 𝜌 (𝑢2) ∈ 𝑉𝑢2 , 𝜌 (𝑢) ∈ 𝑉𝑖 }|︁|︁,

𝑑1 (G′) = max
𝑣1∈𝑉𝑢1

|︁|︁{𝜌 ∈ 𝑄 ′ (𝐺) | 𝜌 (𝑢1) = 𝑣1, 𝜌 (𝑢2) ∈ 𝑉𝑢2 , 𝜌 (𝑢) ∈ 𝑉𝑖 }|︁|︁,
𝑑2 (G′) = max

𝑣2∈𝑉𝑢2

|︁|︁{𝜌 ∈ 𝑄 ′ (𝐺) | 𝜌 (𝑢1) ∈ 𝑉𝑢1 , 𝜌 (𝑢2) = 𝑣2, 𝜌 (𝑢) ∈ 𝑉𝑖 }|︁|︁.
𝑑 (G′) = max

𝑣∈𝑉𝑖

|︁|︁{𝜌 ∈ 𝑄 ′ (𝐺) | 𝜌 (𝑢1) ∈ 𝑉𝑢1 , 𝜌 (𝑢2) ∈ 𝑉𝑢2 , 𝜌 (𝑢) = 𝑣}|︁|︁.
Then, by Definition 3.1 and the observation that {𝑉1, . . . ,𝑉𝑀 } rep-
resents a partition of the vertices matching 𝑢, we must have

(𝑐, 𝑑1, 𝑑2) =
∑︂{︂

(𝑐 (G𝑖 ), 𝑑1 (G𝑖 ), 𝑑2 (G𝑖 ))
|︁|︁|︁ 𝑖 = 1, . . . , 𝑀

}︂
,

where (𝑐, 𝑑1, 𝑑2) is the summary of 𝑄 [𝑢1, 𝑢2] w.r.t. (𝑉𝑢1 ,𝑉𝑢2 ).

(2) SE-triple estimation. For each PSG subgraph G𝑖 , we first com-
pute a triple (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) such that 𝑐 (G𝑖 ) ≤ 𝑥𝑖 , 𝑑1 (G𝑖 ) ≤ 𝑦𝑖 , and
𝑑2 (G𝑖 ) ≤ 𝑧𝑖 . We then let (𝑥,𝑦, 𝑧) = ∑︁𝑀

𝑖=1 (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) be the estimate
for (𝑐, 𝑑1, 𝑑2). The following theorem is immediate.

Theorem 3: (1) (𝑐, 𝑑1, 𝑑2) ≤ (𝑥,𝑦, 𝑧). (2) The estimated cardinality
returned by Algorithm 1 is an upper bound on the true cardinality. □

Fix a PSG subgraph G𝑖 , we next compute a triple (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 )
that upper bounds (𝑐 (G𝑖 ), 𝑑1 (G𝑖 ), 𝑑2 (G𝑖 )), which can be done by
leveraging the maximal-degree statistics as prior studies [4, 47].
To simplify our discussion, let us consider the G𝑖 as shown in
Fig. 6(c). Let G𝑒1 , G𝑒2 , and G𝑒3 be the subgraphs of G𝑖 consisting
of the single edges 𝑒1, 𝑒2, and 𝑒3; and G′𝑒1 , G

′
𝑒2 , and G

′
𝑒3 the PSG

subgraphs obtained by pruning 𝑒1, 𝑒2, and 𝑒3 from G𝑖 , respectively.
(i) Bounds on maximal-degree statistics can be obtained in a bottom-
up manner. For example, for 𝑑1 (G𝑖 ), 𝑑2 (G𝑖 ), and 𝑑 (G𝑖 ), we have

𝑑1 (G𝑖 ) ≤ 𝑑1 (G𝑒1 )·𝑑 (G′𝑒1 ), 𝑑2 (G𝑖 ) ≤ 𝑑2 (G𝑒2 )·𝑑 (G′𝑒2 ),
𝑑 (G𝑖 ) ≤ min{𝑑 (G𝑒1 )·𝑑 (G′𝑒1 ), 𝑑 (G𝑒2 )·𝑑 (G

′
𝑒2 ), 𝑑 (G𝑒3 )·𝑑 (G

′
𝑒3 )}.

Observe that each graph on the RHS is a subgraph of the one on the
LHS. By replacing “≤” with “=”, we can compute upper bounds for
𝑑1 (G′), 𝑑2 (G′), and 𝑑 (G′) for each subgraph G′ of G𝑖 . We then set
𝑦𝑖 and 𝑧𝑖 to be the upper bounds on 𝑑1 (G𝑖 ) and 𝑑2 (G𝑖 ), respectively.
(ii) Observe that 𝑐 (G𝑖 ) ≤ 𝑐 (G𝑒1 )·𝑑 (G′𝑒1 ). Indeed, (a) there are at
most 𝑐 (G𝑒1 ) matches of 𝑃1 such that 𝑢1 is mapped a vertex in 𝑉𝑢1
and 𝑢 is mapped to a vertex in 𝑉𝑖 ; (b) and a match can be extended
to at most 𝑑 (G′𝑒1 ) matches of 𝑄 . Similarly, 𝑐 (G𝑖 ) ≤ 𝑐 (G′𝑒1 )𝑑 (G𝑒1 ).

3070



By considering all three edges 𝑒1, 𝑒2 and 𝑒3 of G𝑖 , we have

𝑐 (G𝑖 ) ≤ min{𝑐 (G𝑒1 )·𝑑 (G′𝑒1 ), 𝑐 (G𝑒2 )·𝑑 (G
′
𝑒2 ), 𝑐 (G𝑒3 )·𝑑 (G

′
𝑒3 )},

𝑐 (G𝑖 ) ≤ min{𝑐 (G′𝑒1 )·𝑑 (G𝑒1 ), 𝑐 (G
′
𝑒2 )·𝑑 (G𝑒2 ), 𝑐 (G

′
𝑒3 )·𝑑 (G𝑒3 )}.

By replacing “≤” with “=” and applying a bottom-up computation,
we can derive an upper bound for 𝑐 (G𝑖 ) and set it as 𝑥𝑖 .

7 SCALABLE PSG CONSTRUCTION
We develop a scalable algorithm PSGBuilder for PSG construction.

We first construct a path query set P for a given graph 𝐺 =

(𝑉 , 𝐸, 𝐿). PSGBuilder enumerates all possible 𝑘-path queries for
𝑘 ≤ 𝐾 , by utilizing a graph𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆 , 𝐿𝑆 ) that specifies the the
valid vertex types and edges types of 𝐺 [30]. More specifically, 𝐺𝑆
is also a labeled graph satisfying the following: (a) 𝐿𝑆 (𝑢1) ≠ 𝐿𝑆 (𝑢2)
for 𝑢1 ≠ 𝑢2, and (b) for each edge (𝑢1, 𝑢2, ℓ) in 𝐸, there is an edge
(𝑢′1, 𝑢

′
2, ℓ) in 𝐸𝑆 such that 𝐿(𝑢1) = 𝐿𝑆 (𝑢′1) and 𝐿(𝑢2) = 𝐿𝑆 (𝑢′2).

PSGBuilder conducts a series of 𝑘-walks on 𝐺𝑆 and includes them
as 𝑘-path queries in P, with duplicate 𝑘-path queries omitted.

Challenges. Given a graph 𝐺 , a graph summary vertex partition
Π𝑉 and a path query set P, PSGBuilder next constructs a PSG of𝐺
w.r.t. Π𝑉 and P. Let 𝑃 be a path query in P. The goal is to compute
all summary edges and their associated SE-triples for 𝑃 . Recall that
PSGBuilder must also compute maximal-degree statistics, which is
more challenging. A straightforward approach is to first compute
𝑃 (𝐺) and then derive the SE-triples. This requires 𝑂 (𝑘 |𝐸 |) space
and takes 𝑂 ( |𝐸 |𝑘 ) time, since obtaining the maximal-degree statis-
tics mandates scanning the entire 𝑃 (𝐺). To address these challenges,
PSGBuilder utilizes a compact intermediate representation of SE-
triples and computes them in linear time w.r.t. |𝐺 |. Furthermore, the
computation is parallelly scalable [22], i.e., PSGBuilder guarantees
to reduce the running time when working with more processors.

Compact representation. Consider a path query 𝑃 in P with ℎ𝑃
and 𝑡𝑃 as it head and tail vertices. Let𝑉 1

ℎ
, . . . ,𝑉𝑀

ℎ
and𝑉 1

𝑡 , . . . ,𝑉
𝑀
𝑡 be

the summary vertices inV with label 𝐿(ℎ𝑃 ) and 𝐿(𝑡𝑃 ), respectively.
For each vertex 𝑣 in

⋃︁𝑀
𝑖=1𝑉

𝑖
ℎ
, we associate with 𝑣 a head vectorH𝑃

𝑣

of size𝑀 , where the 𝑖-th componentH𝑃
𝑣 [𝑖] records the number of

matches 𝜌 of 𝑃 such that 𝜌 (ℎ𝑃 ) = 𝑣 and 𝜌 (𝑡𝑃 ) lies in the summary
vertex 𝑉 𝑖𝑡 . Similarly, we associate with each vertex 𝑢 in

⋃︁𝑀
𝑖=1𝑉

𝑖
𝑡 a

tail vector T 𝑃𝑢 , where the 𝑖-th component T 𝑃𝑢 [𝑖] tracks the number
of matches 𝜌 of 𝑃 such that 𝜌 (𝑡𝑃 ) = 𝑢 and 𝜌 (ℎ𝑃 ) belongs 𝑉 𝑖ℎ .

The benefits of using head and tail vectors are twofold.
(1) We can compute the SE-triples for path query 𝑃 by aggregating
these vectors. Indeed, the SE-triple (𝑐, 𝑑1, 𝑑2) associated with the
summary edge (𝑉 𝑖

ℎ
,𝑉

𝑗
𝑡 , 𝑃) can be computed by

𝑐 =
∑︂{︁
H𝑃
𝑣 [ 𝑗] | 𝑣 ∈ 𝑉 𝑖ℎ

}︁
=
∑︂{︁
T 𝑃𝑢 [𝑖] | 𝑢 ∈ 𝑉

𝑗
𝑡

}︁
, (2)

𝑑1 = max
{︁
H𝑃
𝑣 [ 𝑗] | 𝑣 ∈ 𝑉 𝑖ℎ

}︁
, 𝑑2 = max

{︁
T 𝑃𝑢 [𝑖] | 𝑢 ∈ 𝑉

𝑗
𝑡

}︁
. (3)

(2)We can compute the head and tail vectors in a bottom-upmanner,
without first computing and storing the path matches. Let 𝑒0 and
𝑒1 be the edges attached to ℎ𝑃 and 𝑡𝑃 , and 𝑃0 and 𝑃1 be the path
queries obtained by removing 𝑒0 and 𝑒1 from 𝑃 , respectively. Let 𝑣
be a vertex in

⋃︁𝑀
𝑖=1𝑉

𝑖
ℎ
and𝑢 be a vertex in

⋃︁𝑀
𝑖=1𝑉

𝑖
𝑡 . We can compute

H𝑃
𝑣 and T 𝑃𝑢 from the vectors related to 𝑃0 and 𝑃1 by

H𝑃
𝑣 =

∑︂{︁
H𝑃0
𝑤 | 𝑤 ∈ Nbr(𝑣) ∧Match(𝑣,𝑤, 𝑒0)

}︁
, (4)

T 𝑃𝑢 =
∑︂{︁
T 𝑃1
𝑤′ | 𝑤

′ ∈ Nbr(𝑢) ∧Match(𝑤 ′, 𝑢, 𝑒1)
}︁
. (5)

Here, Nbr(𝑣) records the neighbors of 𝑣 in 𝐺 , ∑︁ denotes pairwise
summation over vector components, and Match(𝑣,𝑤, 𝑒0) returns
true if there is an edge from 𝑣 to 𝑤 that matches 𝑒0, similarly for
Nbr(𝑢) and Match(𝑤 ′, 𝑢, 𝑒1). Both 𝑃0 and 𝑃1 are shorter than 𝑃 ,
allowing the head and tail vectors to be computed recursively.

Parallelly scalable processing. PSGBuilder computes the head
and tail vectors, as well as the SE-triples, recursively in a parallelly
scalable manner. Specifically, let P𝑖 be the set of path queries in P
of length 𝑖 . In the 𝑖-th iteration, PSGBuilder computes all head and
tail vectors for path queries in P𝑖 using Equations (4) and (5). From
these vectors, it applies Equations (2) and (3) to obtain all SE-triples
for P𝑖 . Observe that the computation of head and tail vectors can be
parallelized at the granularity of vertices of𝐺 , while SE-triple com-
putation can be parallelized on the basis of summary vertex pairs.

Analysis. The running time is dominated by the computation of
SE-triples, which is bounded by 𝑂

(︂
1
𝐶
𝑁𝑀 ( |𝐸 | + |𝑉 |)

)︂
. Here, 𝐶 is

the number of processors and 𝑁 is the number of 𝑘-path queries
in P, bounded by ( |𝑉𝑆 | + |𝐸𝑆 |)𝐾 . Indeed, PSGBuilder requires
𝑂 (𝑀 |𝐸 |) time to process the head and tail vectors for each path
query 𝑃 in P, and 𝑂 (𝑀 |𝑉 |) time to compute the SE-triples for 𝑃 .
Note that 𝑁 depends on the vertex types and edge patterns in 𝐺 ,
rather than the size of the data graph 𝐺 . The 1

𝐶
factor reflects the

effective parallelization of the computation. The overall space cost
of the algorithm is 𝑂 (𝑁𝑀 |𝑉 | + 𝑁𝑀2). This includes 𝑂 (𝑁𝑀 |𝑉 |)
space for head and tail vectors and 𝑂 (𝑁𝑀2) for the SE-triples.
By scheduling the processing of head and tail vectors in a DFS
fashion [5], the space cost can be reduced to 𝑂 (𝐾𝑀 |𝑉 | + 𝑁𝑀2).
Remark. Computing head and tail vectors is essential for PSG con-
struction, which heavily relies on neighborhood access (see Equa-
tions (4) & (5)). Graph systems inherently support efficient neighbor-
hood access, thus enable an efficient implementation of PSGBuilder.

8 EVALUATION

Experimental settings. We start with experimental settings.

Datasets and Queries. We use three well-established datasets and
workloads: LDBC [2], IMDB [25], and AIDS [38].

(1) LDBC refers to a set of generated datasets from the Linked
Data Benchmark Council’s Social Network Benchmark, designed
for evaluating GDBMSs. We denote LDBC datasets of scale factors
0.1, 0.3, 1, 3 and 10 by LDBC-0.1, LDBC-0.3, LDBC-1, LDBC-3, and
LDBC-10, respectively. Unless specified, LDBC refers to LDBC-1.
The queries on LDBC consist of 9 queries from the LSQB subgraph
query benchmark (Q1–Q9 in [30]) and 11 GLogS queries (marked
Q10–Q20, originally P1–P11 in [23]).We remove the properties from
the LDBC datasets. Similarly, for all LDBC queries, we remove pred-
icates and convert optional or negative edges into normal edges.

(2) IMDB is a real-world relational dataset containing 21 tables and
around 10 million rows. It has been widely used with the Join Order
Benchmark (JOB) [6, 25]. Following [42], we convert IMDB into a la-
beled graph with 12 vertex labels and 13 edge labels. We use the JOB
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Table 2: Dataset statistics: #(𝐿𝑣), #(𝐿𝑒 ), #(𝑄) and |P| indicate the
number of vertex labels, edge labels, queries evaluated, path queries
for PSG construction, respectively.

Datasets |𝑉 | |𝐸 | #(𝐿𝑣) #(𝐿𝑒 ) #(𝑄) |P|
LDBC 3.73M 21.4M 11 25 20 1243
IMDB 52.6M 119M 12 13 33 471
AIDS 254K 548K 50 4 484 297

queries (referred to as IMDB queries hereafter) [25], consisting of
33 SQL templates. These query templates are converted into graph
queries by retaining only the join query graph topology while omit-
ting predicates and aggregations [42]. All IMDB queries are acyclic.

(3) AIDS is a real-world dataset widely used for subgraph match-
ing [19, 34, 38], consisting of 43,905 chemical molecules. We use 484
queries provided by the subgraph cardinality estimation benchmark
tool G-CARE [34], which includes 3-, 6-, and 9-path queries, as well
as randomly generated star, tree, and generic graph queries.

The statistics of the datasets are summarized in Tab. 2. Note that
the size ( |𝑉 |, |𝐸 |) for LDBC varies with the scale factor, ranging
from (0.45𝑀, 2.18𝑀) for LDBC-0.1 to (33.9𝑀, 211𝑀) for LDBC-10.
Baselines. We prototype PathCE as a Rust library, built from
scratch, including the implementation of cardinality estimation
and parallel PSG construction. PathCE adopts the GBSA algorithm
developed in [47] to generate summary vertex partitions. GBSA is
a greedy partitioning heuristic that divides vertices with label ℓ by
minimizing the variance in their participation across path queries
in P that have endpoints labeled ℓ . We follow the same setting
as FactorJoin and sets 𝑀 = 200 for fair comparison. For each
dataset, PathCE sets 𝐾 = 3 to collect all possible 𝑘-path queries
for 𝑘 ≤ 𝐾 . The number of path queries used for PSG construction
for each dataset is summarized in Table 2. We compare PathCE
with seven state-of-the-art cardinality estimators, including five
summary-based methods: GLogS [23], CEG [6], FactorJoin [47],
SumRDF [39] and Color [9], a sampling-based estimator WJ [26],
and a ML-based estimator GNCE [36]. (1) GLogS [23] is an
estimator whose summary records the counts of small patterns, not
limited to paths. (2) CEG [6] is an estimation framework consisting
of nine estimators. We use the estimator that achieves the most
accurate estimation. We collect statistics for small patterns with at
most 3 vertices for both GLogS and CEG. (3) FactorJoin [47] is an
estimator based on the maximal-degree statistics of 1-path queries,
i.e., single edge queries. We set the number of bins to 200 for
FactorJoin to match the parameter𝑀 in PathCE. (4) SumRDF [39]
is a summary-based estimator designed for RDF graphs. (5)WJ [26]
is a sampling-based estimator. For both SumRDF andWJ, we use
the implementations and default configurations provided by G-
CARE, e.g., the sample ratio of WJ is set to 3%. (6) GNCE [36] is an
ML-based estimator for knowledge graphs that leverages graph em-
beddings and GNNs. For offline training of GNCE, we sample 5000
path queries and 5000 star queries from each dataset. (7) Color [9]
is a summary-based estimator utilizing graph coloring. We use its
AvgMix32 variant, the default with the best estimation accuracy.

Environment. We conduct all the experiments on a Linux server
with 32 physical cores and 256 GB RAM. For offline model training
and cardinality estimation for GNCE, we use an NVIDIA RTX

4070 GPU. We use 32 threads for all baselines during summary
construction and query execution, unless stated otherwise. Each
experiment is run five times, and the average is reported.
Exp-1: Estimation accuracy. We first evaluate the estimation
accuracy of PathCE across all datasets. We adopt the classical q-
errormetric [31], defined asmax{ 𝑒𝑐 ,

𝑐
𝑒 }, where 𝑒 is the estimated and

𝑐 the true cardinality for a given query 𝑄 . Lower q-error indicates
better accuracy. Following prior work [34, 47], (a) each estimator is
evaluated using its intended summary or ML model; (b) if a baseline
fails to return an estimate within 300 seconds, we set 𝑒 = 1.
(1) Varying query on LDBC. Figure 7(a) depicts the q-error of all
tested queries on LDBC, where results are grouped as acyclic and
cyclic queries. Note that Q7,Q12,Q18 are omitted in Fig. 7(a) since
they are identical to Q4, Q2 and Q3 with predicates removed. (a)
For acyclic LDBC queries, all summary-based estimators, except
FactorJoin and Color, perform consistently well, with an average q-
error below 5. (b) For cyclic LDBC queries, PathCE consistently out-
performs FactorJoin and SumRDF. Note that PathCE, FactorJoin
and SumRDF utilize path queries of lengths up to 3, 1 and 1, respec-
tively. PathCE also are more accurate than Color on most cyclic
queries. These confirm the effectiveness of using longer path queries
to reduce estimation iterations. PathCE also shows better accuracy
than GLogS and CEG, except for queries including triangles as sub-
queries, e.g., 𝑄3 and 𝑄8. As will be highlighted in Exp-3, collecting
triangle statistics is cost-prohibitive. (c) WJ produces accurate esti-
mates for acyclic queries and small cyclic queries such as Q2 and
Q3. However,WJ suffers from severe underestimation on Q15, Q16,
Q17, and Q20, which contain large cycles as subqueries. This is
primarily due to its sample-and-validate mechanism [19, 26], which
makes it prone to sampling failures on cyclic queries, especially
those involving large cycles like Q15. In contrast, for acyclic queries
and simple cyclic patterns, e.g., Q2 and Q3, WJ is more likely to
obtain valid samples, leading to relatively accurate estimates. Sim-
ilar behavior is also observed on other tested datasets. (d) GNCE
in general produces less accurate estimates than others because
GNCE is trained using sampled path and star queries, while the
evaluated LDBC queries are mostly generic graph queries.
(2) Varying query size. Varying the query sizes of IMDB queries
and AIDS path queries, Fig. 7(b) and Fig. 7(c) report the accuracy
results. Here, the query size is defined as the number of edges in the
query graph. Following an approach adopted by G-CARE [34], we
reorder the estimates from the least accurate underestimation to the
least accurate overestimation before generating the box plot. We
observe the following. (a) On both datasets, PathCE, CEG, and WJ
are the most accurate estimators. As the query size increases, the
q-error of PathCE also increases but at a slower rate compared to
FactorJoin and SumRDF. On AIDS, the average q-error of PathCE
grows from 1 to 313, varying from 3-path queries to 9-path queries.
(b) While PathCE consistently produces upper bound estimates,
Color tends to underestimate most queries on IMDB and AIDS.
Both CEG andGLogS shift from overestimation to underestimation
as the path query size increases on AIDS, primarily due to their
reliance on independence and uniformity assumptions. (c) GNCE
is less accurate on IMDB than other baselines, similar to the case of
LDBC. In contrast, GNCE has quite decent accuracy on AIDS. This
is because we only evaluate path queries on AIDS in this setting.
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Figure 7: Performance Evaluation

(3) Varying query topology. We divide all the AIDS queries into
four topology categories: path, star, tree, and graph, and evaluate
the q-error for all baselines. As shown in Fig. 7(d), PathCE, along
with GLogS and CEG, performs consistently well across different
query topologies. The key difference is that PathCE always
produces upper bound estimates, whereas GLogS and CEG tend
to underestimate. SumRDF shows good accuracy for path and star
queries but suffers from significant accuracy degradation for other
query types. WJ produces the most accurate estimates but tends to
underestimate due to sampling failures for complex graph queries.

Exp-2: Estimation latency. We compare the estimation latency
of all estimators on the LDBC, IMDB, and AIDS datasets. For each
query 𝑄 , we record the time taken by each estimator to produce an
estimate. As in Exp-1, the estimation timeout is set to 300 seconds.
The results are shown in Fig. 7(e), where GNCE is omitted since it
uses GPU for estimation, while others are CPU-based. In Fig. 7(e),
the upper whisker is set as 20 times the IQR from the upper quartile.

(1) PathCE has the lowest average latency among all summary-
based competitors, except for Color, which achieves the best

estimation latency across nearly all cases. This is primarily due to its
use of a topological estimation order, similar to PathCE, along with
inference optimizations such as partial aggregation [9]. PathCE
is also significantly more efficient than the sampling-based WJ, as
expected. On LDBC, PathCE achieves an average latency of 0.02 sec-
onds, significantly lower than GLogS, FactorJoin, CEG, SumRDF,
and WJ, which take 13.43, 6.24, 24.57, 35.75, and 0.09 seconds,
respectively. A similar trend is also observed on IMDB and AIDS.

(2) PathCE’s stability is further highlighted by its low variance,
even on cyclic LDBC queries. While GLogS achieves lower latency
for most queries compared to PathCE, it struggles with complex
queries, e.g., 227.02 seconds for LDBC Q20, which contains 3 dia-
mond subqueries. CEG faces similar challenges as GLogS, mainly
due to the exponential search space during estimation. PathCE
avoids this through an effective estimation scheme generation, as-
sisted by pruning techniques (Sec. 5.2). In contrast, CEG’s high
latency limits its practical use, despite its good estimation accuracy.
This becomes more evident in the end-to-end tests (see Exp-5).

(3) To explore further, we handcraft five additional clique queries
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(K3 to K7) using person nodes and knows edges from the LDBC
dataset. As shown in Fig. 7(f), PathCE remains stable with latencies
under the practical threshold 0.1 seconds, showing only slight in-
creases as clique size grows. Color also performs consistently well
as PathCE. Other estimators, however, exhibit significant latency
spikes. FactorJoin, CEG and SumRDF timeout from K5, and GLogS
fails for K6 and K7. Although WJ achieves similar performance
as PathCE, it encounters severe underestimation due to sampling
failure starting from K4. PathCE’s superior performance verifies
the effectiveness of Dcmp algorithm and pruning techniques.

Exp-3: Summary construction efficiency. The efficiency of sum-
mary construction is critical for real-world deployment, as discussed
in [4, 10, 34, 47]. We measure (a) construction latency, (b) peak
memory usage, and (c) on-disk storage requirements for all summary-
based estimators exceptCEG. We excludeCEG as it constructs sum-
maries tailored only for each tested query. We find the following.

(1) Construction latency. As shown in Fig.7(g), PathCE constructs
its summary on LDBC in 734 seconds, significantly faster than
GLogS (2758 seconds). The performance gap is even more
pronounced on IMDB, where PathCE completes the construction
in 2831 seconds, while GLogS fails to finish within 1.5 hours
since it enumerates a large number of matches during summary
construction. In contrast, PathCE uses a compact representation
of intermediate matches, which is much more computationally
efficient. FactorJoin and SumRDF have the shortest construction
time by using solely single-edge statistics. While PathCE and
Color show comparable performance on LDBC, Color suffers from
significant slowdown on IMDB, taking over 1.5 hours despite col-
lecting only single-edge statistics. Given that IMDB is 6.8× larger
than LDBC, this inefficiency is likely due to the single-threaded im-
plementation of Color, which limits its scalability on large datasets.
Since AIDS is much smaller than LDBC and IMDB, all baselines
are able to complete summary construction within 60 seconds.

(2) Peak memory usage. Figure 7(h) reports the peak memory usage
of all baselines. All values are normalized with FactorJoin treated as
the baseline, i.e., set to 1. PathCE incurs higher memory overhead
than other summary-based estimators due to two main factors: (a)
it maintains more intermediate results to compute both path counts
and maximal-degree statistics, and (b) it stores both head and tail
vertices in memory during summary construction (see Sec. 7).

(3) On-disk storage size. PathCE requires more disk space compared
to FactorJoin and GLogS, i.e., 1145.0 MB, 428.5 MB and 163.3 MB
for LDBC, IMDB and AIDS, respectively. This storage requirement
is still practically feasible since the PSG storage size of PathCE is
independent w.r.t. the data graph size (Sec. 3). Moreover, a detailed
analysis of the estimation logs reveals that on LDBC, only 68 out of
1243 collected path queries are used in cardinality estimation across
our entire evaluation. This indicates that the storage overhead can
be reduced by 94.5% through pruning unused path queries based
on workload coverage. Similarly, on IMDB, storage can be reduced
by 91.3%. In contrast, baselines like FactorJoin rely on single-edge
queries and thus use nearly all collected statistics.

Exp-4: Scalability of summary construction. We next evaluate
the scalability of PathCE, by varying thread counts and graph sizes.

The results are shown in Fig. 7(i) and Fig. 7(j). (1) As shown in
Fig. 7(i), PathCE achieves a 14.95× speedup when varying thread
counts from 1 to 32 on dataset LDBC. (2)With LDBC datasets from
LDBC-0.1 to LDBC-10, Fig. 7(j) reports PathCE’s summary con-
struction latency which grows almost linearly, consistent with its
time complexity (Sec. 7). The storage size remains stable, 1145.0 MB
(not shown), as it is determined by the vertex/edge types of the data
graph. These results confirm PathCE’s effective scaling with both
graph size and number of threads during summary construction.

Exp-5: End-to-end performance. Following prior work [4, 10, 47],
we evaluate the end-to-end query latency to assess the impact of
PathCE’s estimation accuracy on query optimization. We integrate
all evaluated estimators into the bottom-up optimizer of the GLogS
system [23], under a simplified abstraction: during plan enumer-
ation, the optimizer issues cardinality requests for subqueries, and
the estimator returns cardinality estimates. This abstraction allows
decoupling estimation from plan enumeration, and has also been
adopted by optimizers as in GOpt [29] and RelGo [27]. The results
for LDBC and IMDB, including planning time, execution time and
end-to-end time are shown in Fig. 7(k) and Fig. 7(l), respectively.

(1) PathCE beats all other baselines by 2.46× ∼ 336.71× on LDBC
in end-to-end time. PathCE is able to generate the best query plans
especially for complex queries like Q19 and Q20 thanks to its ac-
curate upper bound estimates. Thus, PathCE beats all baselines by
1.44× ∼ 48.11× in execution time. PathCE also requires less plan-
ning time than all baselines except Color, which, while fastest in
planning, suffers from suboptimal plans. Compared to FactorJoin,
PathCE achieves a 3.73× speedup in E2E time, with 50.85× and
1.44× improvements in planning and query execution, respectively.

(2) On IMDB, all baselines show similar execution performance,
as the queries are acyclic and simple. However, PathCE achieves
2.14× ∼ 911.63× lower planning latency than FactorJoin, CEG,
SumRDF, and WJ, and remains comparable to GLogS and Color
(gap < 1.5s, negligible relative to end-to-end time).

(3) We also conduct a case study on Q19. Regarding planning,
PathCE performs only slightly slower than GLogS, but much faster
than other baselines. For query execution, PathCE, CEG and WJ
share the best plan. FactorJoin’s plan differs slightly but does
not scale as well as PathCE. Unlike other estimators, GLogS and
Color produce underestimations for Q19, resulting in suboptimal
expansion-only plans with large intermediate results. The upper
bound estimation of PathCE and FactorJoin helps prevent this issue.
CEG andWJ do not face the issue due to more accurate estimation.

9 CONCLUSION
We propose PathCE, a path-centric cardinality estimation frame-
work for subgraph matching. An interesting future direction is to
apply PathCE to relational DBMSs. Another direction is to explore
how to effectively maintain a PSG in response to graph updates.
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