HAKES: Scalable Vector Database for Embedding Search Service

Shaofeng Cai
National University of
Singapore

Guoyu Hu
National University of
Singapore
guoyu.hu@u.nus.edu

Cong Yue
National University of
Singapore
yuecong@comp.nus.edu.sg

ABSTRACT

Modern deep learning models capture the semantics of complex
data by transforming them into high-dimensional embedding vec-
tors. Emerging applications, such as retrieval-augmented genera-
tion, use approximate nearest neighbor (ANN) search in the embed-
ding vector space to find similar data. Existing vector databases pro-
vide indexes for efficient ANN searches, with graph-based indexes
being the most popular due to their low latency and high recall in
real-world high-dimensional datasets. However, these indexes are
costly to build, suffer from significant contention under concurrent
read-write workloads, and scale poorly to multiple servers.

Our goal is to build a vector database that achieves high through-
put and high recall under concurrent read-write workloads. To this
end, we first propose an ANN index with an explicit two-stage
design combining a fast filter stage with highly compressed vec-
tors and a refine stage to ensure recall, and we devise a novel
lightweight machine learning technique to fine-tune the index pa-
rameters. We introduce an early termination check to dynamically
adapt the search process for each query. Next, we add support for
writes while maintaining search performance by decoupling the
management of the learned parameters. Finally, we design HAKES,
a distributed vector database that serves the new index in a disag-
gregated architecture. We evaluate our index and system against
12 state-of-the-art indexes and three distributed vector databases,
using high-dimensional embedding datasets generated by deep
learning models. The experimental results show that our index
outperforms index baselines in the high recall region and under
concurrent read-write workloads. Furthermore, HAKES is scalable
and achieves up to 16x higher throughputs than the baselines.

PVLDB Reference Format:

Guoyu Hu, Shaofeng Cai, Tien Tuan Anh Dinh, Zhongle Xie, Cong Yue,
Gang Chen, and Beng Chin Ooi. HAKES: Scalable Vector Database for
Embedding Search Service. PVLDB, 18(9): 3049 - 3062, 2025.
doi:10.14778/3746405.3746427

“Corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.
doi:10.14778/3746405.3746427

shaofeng@comp.nus.edu.sg

Gang Chen
Zhejiang University
cg@zju.edu.cn

3049

Tien Tuan Anh Dinh

Deakin University
anh.dinh@deakin.edu.au

Zhongle Xie
Zhejiang University
xiezl@zju.edu.cn

Beng Chin Ooi
Zhejiang University
National University of
Singapore
ooibc@comp.nus.edu.sg

Document

sl

& Embedding
w Model

Vector ‘
Search

Web page ‘ :
Contextual
Data

Quer Vector |Historical | ;
User & m—,j/y_J Database| Context Conversatlon
T Response
-»Knowledge Ingestion Path —RAG Query Path

Figure 1: Vector database in retrieval augmented generation.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/nusdbsystem/HAKES-Search.

1 INTRODUCTION

High-dimensional embedding vectors generated by deep learning
models are becoming an important form of data representation
for complex, unstructured data such as images [40, 46], audios [7],
and texts [32, 52]. The models convert input data to vectors in an
embedding space and capture the data semantics relevance by their
relative positions in the high-dimensional space. Typical embedding
vectors nowadays have hundreds to thousands of dimensions.
Vector databases are designed to support efficient nearest neigh-
bor search in the vector space. They underlie many modern ap-
plications, ranging from search engines [9, 40] , recommendation
systems [43] to retrieval-augmented generation (RAG) [35]. These
applications require efficient, high quality search as well as support
for database updates. Figure 1 shows an example of using a vector
database in RAG applications. RAG turns a user-submitted query
into a vector, performs nearest neighbor search to find similar data
stored in the vector database, augments the query with the data
found, and then sends the augmented query to a large language
model (LLM). RAG frequently updates the vector database with new
knowledge, such as new documents, web pages, and past user inter-
actions, enabling timely integration of relevant context, compared
to offline training or fine-tuning LLMs with new information [39].
The design of vector databases centers on indexes optimized for
efficient nearest neighbor search, distinct them from other general-
purpose databases for deep learning [44]. Since searching for exact
nearest neighbors is too costly due to the curse of dimensional-
ity [27], existing works on vector indexes focus on approximate
nearest neighbor (ANN) search. The ANN indexes can be classified

https://doi.org/10.14778/3746405.3746427
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746427
https://github.com/nusdbsystem/HAKES-Search
https://www.acm.org/publications/policies/artifact-review-and-badging-current

as graph-based or partitioning-based indexes [1, 10, 17, 22, 38, 42].
They are mostly evaluated using read-only workloads. Many of
the datasets used for evaluation, such as Deep, Sift, and Glove,
have lower dimensions than the deep embedding vectors used in
emerging applications [3, 22, 34, 42]. We identify three limitations
of vector databases built around the existing ANN indexes to sup-
port modern applications, for which graph-based indexes are the
recommended choice.

The first limitation is the computation overhead under high-
dimensional spaces. In particular, comparing a vector against its
neighbors becomes more expensive with higher dimensions. Graph-
based indexes [15, 29, 38, 42] are very costly to build because they re-
quire connecting each data point to its near neighbors and optimiz-
ing the graph structure to enable efficient traversal. The second limi-
tation is the search performance under concurrent read-write work-
loads. Updating an existing index can be done in-place [42, 57, 64],
or out-of-place using a separate data structure and performing pe-
riodic consolidation [13, 51, 55]. Graph indexes perform in-place
updates, and require fine-grained locking over the neighborhood
of the nodes on its traversal path [42, 51]. This results in significant
read-write contention. Out-of-place updates, on the other hand,
require a separate search on the newly inserted data, while only
postponing the update cost to a later time. The third limitation is
scalability. Existing vector databases treat their indexes as black
boxes [9, 21, 55]. They shard the data and build an independent
graph index for each shard. However, to achieve high recall in high-
dimensional spaces, nearly all data shards are searched. The large
number of searches per query leads to low throughput.

We present HAKES, a scalable vector database that achieves high
recall and throughput under concurrent read-write workloads. The
database adopts a filter-and-refine design that consists of two stages.
The filter stage narrows down the search candidates using com-
pressed vectors for efficiency. The refine stage ranks the candidates
based on the full-precision vectors. The system addresses the first
limitation by employing dimensionality reduction, coarse-grained
partitioning, and quantization techniques. Furthermore, it proposes
a novel light-weight machine learning technique to optimize the
index parameters such that the filter stage is efficient and returns a
set of high-quality candidates. HAKES also includes an early ter-
mination check at the filter stage to avoid unnecessary processing.
The compressed vectors are grouped by IVF index in contiguous
buffers, and decoupling the index parameters used for compressing
the vectors and those used during search enables seamless integra-
tion of new vectors at minimal overhead and contention, addressing
the second limitation. HAKES addresses the scalability limitation
by exploiting the decoupling of the filter and refine stage to deploy
them in a disaggregated architecture. It distributes the memory
and computation cost over multiple nodes, thereby achieving high
throughput at scale.

HAKES combines and adapts known techniques in a novel way
to achieve its goal. In particular, existing works on quantization
aim to improve the quality of similarity score approximation over
the compressed vectors, minimizing the need for reranking the full-
precision vectors [1, 18, 20, 22, 48]. HAKES aims to achieve good
throughput-recall tradeoffs overall. By having a separate refine
stage that reranks the original vectors, the dimensionality reduc-
tion and quantization aim to compress the vectors aggressively to

3050

reduce the computation cost at the filter stage. The compression
parameters are learned in an end-to-end manner, in which the ob-
jective is to minimize the similarity score distribution distortion
locally for vectors close to each other. The learning approach in
HAKES does not assume access to external information, such as the
embedding generation models, ground truth neighbors, or semantic
labels, which is a different problem setting compared to other works
that employ learning to improve the retrieval quality [56, 58]. More-
over, our system allows for applying the newly learned parameters
during search directly without re-indexing vectors in the database.
In other words, learning can be done asynchronously while the
vector database serves queries. Finally, the early termination check
in HAKES-Index is more lightweight than that in [36, 60], and more
effective in our context than those in [28, 61, 63], since it does not
rely on accurate similarity scores under compression.

In summary, we make the following contributions:

We propose a novel index, HAKES-Index, that combines a com-
pressed partitioning-based index with dimensionality reduction
and quantization. The index leverages a lightweight machine
learning technique to generate high-quality candidate vectors,
which are then refined by exact similarity computation. It allows
terminating the search early based on the intermediate results.

We propose a technique that decouples index parameters for com-
pressing vectors during updates from those used for similarity
computation. This ensures high performance under concurrent
read-write workloads.

We design a distributed vector database, called HAKES, employ-
ing the new index in a disaggregated architecture. The system
achieves scalability by spreading out the memory and computa-
tion overhead over multiple nodes.

We compare HAKES-Index and HAKES against 12 state-of-the-
art indexes and three popular commercial distributed vector
databases. We evaluate the indexes and systems using high-
dimensional embedding vector datasets generated by deep learn-
ing models. The results demonstrate that HAKES-Index outper-
forms both partitioning-based and graph-based index baselines.
Furthermore, HAKES is scalable, and achieves up to 16x higher
throughputs at high recall than the three other baselines do.

2 PRELIMINARIES

Approximate nearest neighbor Search. Let D denote a dataset
containing N vectors in a d-dimensional vector space R. For a
query vector X, the similarity between x and a vector v. € D
is defined by a metric d(x,v). Common metrics include the Eu-
clidean distance, inner product, and cosine similarity. A vector
vj is considered closer to x than vj if d(x,vi) < d(x,vj). The k
nearest neighbors of x are vectors in R C D, where |R| = k and
Vv € R,Vu € D\R,d(x,v) < d(x,u). Finding the exact set R in
a high-dimensional space is expensive due to the curse of dimen-
sionality [27]. Instead, existing works on vector databases focus
on approximate nearest neighbor (ANN) search, which use ANN
indexes to quickly find a set R” of vectors that are close to, but not

necessarily nearest to x. The quality of R” is measured by its recall
[ROR'] e
IR] -

relative to the exact nearest neighbor set, computed as
discuss two major classes of ANN indexes below.

Legend

Q© Entry Point

© Visited Vectors
@ Unvisited Vectors

A Query Vector
» Search Path

(a) Graph index (b) HNSW

Figure 2: Graph-based ANN index.

Legend
O Candidate Vectors

@ Filtered Vectors
A Query Vector

O Vector to Compare

456
(b) PQ
Figure 3: Partitioning-based ANN index.

001 2 3

= LUT Entry to Use

(a) Index partitioning

Graph-based indexes. They build a proximity graph in which the
vertices are the vectors, and an edge between two vertices means
the two corresponding vectors are similar [15, 38, 42]. An ANN
query involves a greedy beam search that starts from an entry point
to locate close neighbors. The query maintains a fixed-size set of
candidates and visited nodes during the traversal. At each step,
the nearest unvisited vector from the candidate set is selected, and
its unvisited neighbors are new potential candidates. These new
candidate vectors are evaluated for their similarity scores against
the query vector and added to the candidate set accordingly. The
process repeats until the candidate set contains only visited nodes,
as illustrated in Figure 2a. When building or adding new vectors
to the graph, a similar search is conducted to find the nodes to be
connected based on a condition that allows future queries to reach
their nearest neighbors and in a small number of steps [14, 29, 42].
Since the search efficiency and recall depend on the graph, most
existing works on graph indexes focus on building and maintaining
a high-quality graph [14, 15, 42, 64].

The Hierarchical Navigable Small World graph (HNSW) is the
most popular graph index. It supports incremental updates and
efficient search by introducing a hierarchical structure with an
exponentially decreasing number of vertices from the bottom to the
top level, as shown in Figure 2b. A search starts from an entry point
at the top level. At each level, it finds the nearest neighbor and starts
the search in the next level with that vertex. Finally, at the bottom
level, it performs beam search to find nearest neighbors. During
an update (i.e. adding a new vector), the new vertex’s neighbors
are first located at each level, and then the edges are updated. The
update condition restricts the number of neighbors and only adds
an edge if the similarity between the searched candidate and the
new vector is larger than that of the new vector and its existing
neighbors. This update process is costly, and it creates significant
contention under concurrent read-write workloads.

3051

Partitioning-based indexes. They divide vectors into multiple
partitions using one or multiple hashing schemes, such that similar
vectors are in the same partition. The similarity of a query vector to
all the vectors in a partition can be approximated by its proximity
to the partition itself. The partition assignments can be encoded
for efficient search. Examples of hashing schemes include locality
sensitive hashing (LSH) [16, 34, 45], clustering [10, 28], quantiza-
tion [19, 30, 31], or neural networks [8, 23, 37]. New vectors are
added to the corresponding partition by computing its partition as-
signment. A search for vector x starts by identifying close partitions,
then retrieving the vectors belonging to the selected partitions, as
shown in Figure 3a. Finally, the k closest vectors are selected by
evaluating the similarity scores.

Inverted-file (IVF) and product quantization are the most popular
partitioning-based indexes. IVF [10, 30] uses k-means and a sample
set of vectors to determine the cluster centroids, and then vectors
having the same closest centroids are stored together in respective
buckets. During a search, all partitions are ranked based on the
similarity between their centroids and the query vector x. The top
nprobe partitions are scanned to produce k nearest neighbors. The
number of centroids N, for k-means and the nprobe determine the
cost of ranking partitions and the number of candidate vectors.
These parameters also affect recalls. For example, million-scale
datasets typically require N, in 1000s and nprobe in 10s to 100s to
achieve high recall.

Product quantization (PQ) splits the original d-dimensional space
into m orthogonal subspaces of the same dimension d’ = d/m.
Each subspace is further partitioned, e.g., using k-means with N;
centroids, resulting in (N¢)™ partitions. A codebook CPR € RNexd
is the concatenation of subspace centroids CPQJ- € RNCXd,, ie.,
CcPQ = [CPQ,,CPQ,, ..., CPQ,,]. A vector can be quantized into
a concatenation of indexes of the centroids in the codebook at
each subspace, p(v) = [p1(V),p2(V), ... pm(Vv)], where p;(v) =
arg min; ||CPQj [i] = vj|| denotes the index of the closest centroid
in the jt* subspace centroids CJ?Q. Let gj(v) = CPQj[pj (v)] be
the closest centroid of v. The concatenation of centroids closest
to v in respective subspaces forms its approximation: v = q(v) =
[q1(v),q2(V), ..., qm(V)]. Then, the similarity between a vector x
and a vector v can be approximated as d(x, q(v)). For the commonly
used Euclidean distance (normally without taking the square root)
and inner product, we have:

d(x,v) ~d(xq(v) = > d(xj,q;(v)).

j=1l.m

1)

PQ enables efficient comparison of x against the candidate vec-
tors. A query vector x is split into m subvectors, each of which is
compared against all the centroids in its corresponding subspace,
cre j- The resulting similarity scores are stored in a lookup table,
LUT € RNeX™_Given Equation 1, the similarity between x and any
vector v can be approximated using the quantized vector q(v) via
m lookups into the LUT, followed by a summation, as shown in
Figure 3b. In practice, PQ generates compact vector representations.
Typically, N¢ is 16 and 256, such that only 4 or 8 bits can encode the
vector in each subspace. Recent indexes using 4-bit PQ, which yields
a LUT small enough to fit in CPU caches, achieved significantly
higher throughputs with SIMD [2, 10, 22]. In practice, quantization

is used together with other indexes to avoid evaluating all vectors
for a query, for example, IVF [30] and graph [1, 29].

Quantization enables efficient but lossy approximation of the
similarity scores between vectors. Reranking the candidates can be
performed to improve recall, using additional information [1, 31]
or the original vectors [10, 18, 22]. Some existing works on quan-
tization, namely [1, 18, 20, 22], focus on reducing approximation
errors to minimize reranking. Others aim to transform the vectors
to be more suitable for quantization [19, 48], or leverage informa-
tion about the downstream task and upstream embedding model to
improve end-to-end retrieval quality [56, 58].

3 HAKES-INDEX

In this section, we present a novel index, called HAKES-Index, that
supports efficient search and index update.

3.1 Overview

Figure 4a shows the components in HAKES-Index. It consists of
three parts, the two respective sets of index parameters to process
the vectors for search and insert, the partitions that contain com-
pressed vectors, and the full vectors. Each set of index parameters is
composed of a dimensionality reduction module, IVF centroids, and
a PQ codebook. The compressed vectors are partitioned by the IVF
centroids and the compression involves dimensionality reduction
followed by quantization guided by the codebook. The dimension-
ality reduction module uses a transformation matrix A € Réxdr
and a bias vector b € R% to compress vectors from the original
d-dimensional space to that of d,--dimensional spaces, where d, < d.
The IVF centroids, CIVF, determine the partition a new vector is
attached to during the insert and rank the partitions for a query
vector during the search. The quantization codebooks, CPQ, are
used to generate the quantized vector stored in the partitions and
compute the Lookup table for search. Note that dimensionality
reduction is placed at the front, which speeds up all subsequent
computations. We use A, b, CIVF , CPQ to refer to the insert index
parameters and A’, b/, CIVF,, CPQ’ to the search index parameters.

Search query involves four steps, shown in Figure 4b. Step 1
reduces the dimensionality of the query vector from d to d, with
A’,b’. Next, the output of the dimensionality reduction is used to
compute the lookup table (LUT) with the quantization codebook
cPQ in step 2. Step 3 evaluates the d,-dimension query vector with
CIVF" {6 select the closest partitions for scanning using the LUT.
k’ > k candidates are selected, and step 4 obtains the top k of them
by comparing the query vector to their full vectors. The four steps
in the search workflow can be mapped into two stages. The filter
stage spans steps 1-3, where the majority of vectors are filtered out,
leaving k’ candidate vectors. The last step is the refine stage, when
k’ candidates are refined to the top k nearest vectors.

To add vectors to HAKES-Index, the insert index parameters are
utilized, as shown in Figure 4c. Each new vector is transformed us-
ing the dimensionality reduction parameters (step 1) and quantized
using the codebook (step 2). It is then appended to both the corre-
sponding partition determined by the IVF centroids and the buffer
holding full vectors. For deletion, HAKES-Index uses tombstones to
mark the deleted vectors. During the filter stage, the tombstones
are checked before adding the vectors to the candidate set. The

3052

deleted vectors and their corresponding compressed vectors are
removed by a compaction step that rewrites the partitions. This
step happens when the index is being checkpointed or rebuilt. The
latter is triggered by an update in the embedding model, or when
the data size grows beyond certain sizes. This approach reduces
the interference of deletion on the search and insert operations.

3.2 Index Construction

We construct HAKES-Index following the procedure illustrated in
Figure 5. Figure 5a shows the first step of building the base index.
The insert index parameters are initialized with existing processes
and then the dataset is inserted into the index. Particularly, Optimal
Product Quantization (OPQ) is employed to initialize A and CPQ,
which iteratively finds a transformation matrix that minimizes the
reconstruction error of a PQ codebook, and K-means is employed to
initialize the IVF centroids, CIVF. The bias vector b is zero. Next, the
training set is prepared by sampling a set of vectors and obtaining
their neighbors with the base index, as in Figure 5b. Note that
another set of sampled pairs is used for validation. Then, we use a
self-supervised training method to learn the search parameters, A’,
b’ and CPQ/, illustrated in Figure 5c, which is the key to HAKES-
Index’s high performance at high recall, and the technical details
will be revealed in the Section 3.3. After training, the IVF centroids
CIVF are computed by partitioning the sample data with A, CIVF,
then recomputing the centroid for each partition after applying the
learned A’ and b’ to vectors in it (Figure 5d). Finally, the newly
learned A”, b’, CP’, and C!IVF, are installed in the index, as shown
completed in Figure 5e, serving subsequent search queries.

The training process can run independently from the serving
system. In practice, the index is first built and uses A, b, CIVF, cPQ
for both insert and search. As it serves requests, the system records
samples, and the training process runs in the background. Once
the training is finished, the new parameters A’,b’, CIVF' cPQ can
be used immediately to serve queries. In other words, HAKES-
Index can be updated incrementally. Moreover, the construction
of HAKES-Index is efficient. That reduces the time to rebuild the
index for serving at an updated throughput-recall frontier, when
the database sizes and distributions are significantly changed by
insertion and deletion.

3.3 Learning Compression Parameters

Since the search recall depends on the quality of the candidate
vectors returned by the filter stage, HAKES-Index achieves high
recall by ensuring that the set of k’ candidate vectors includes many
true nearest neighbors. The compression parameters in HAKES-
Index, which include A’ and b’ for dimensionality reduction, and
CPQ’ for the PQ codebooks, are fine-tuned to capture the similarity
relationship between the query vector and indexed vectors.

At the beginning of training process, A’ and CPQ are initialized
with A and CPQ produced by OPQ. The bias vector b’ is initialized
with zero. We then jointly optimize A’, b, and C?Q" to minimize the
mismatch between the similarity score distribution after quantiza-
tion and that of the original d-dimensional space. We only focus on
the mismatch in a local region that the training objective is defined
based on the similarity score distributions of a sampled query vector
x and its close neighbors AN Ny, because distant vectors are filtered

1. Reduce Dimension

Search Index

Parameters .
3. Scan Selected Partitions

Partitions of
Compressed
Vectors

Full
Vectors

Insert Index
Parameters

(a) HAKES-Index (b) Search

2. Compute LUT

m > RS = P= =l

4. Refine to TopK

=g

Legend

D Dimension Reduction
% IVF Centroids
EEEE PQ Codebooks

Initialized Parameters

1. Reduce Dimension 2. Quantize Vector

3. Append to Selected Partition and Full Vectors

:

Learned Parameters

Data Vectors

Query Vector

Query LUT

(c) Insert

Figure 4: HAKES-Index overview.

away by coarse grained IVF partition selection during search in
HAKES-Index. Specifically, the similarity score distributions before
and after the dimensionality reduction are:

Sox = softmax([d(x,v1),...,d(x,vg)]) 2)

Srx = softmax([d(R' (x),R(v1)),...,d(R'(x),R(vk))]) (3)

where K = |[ANNx| is the number of retrieved close neighbors, and
the softmax function converts the similarity scores to a distribution.
R'(x) = A’x+ b’ and R(v) = Av + b represent dimensionality
reduction. The similarity scores distribution after quantization is:

Sqx = softmax([d(R' (), (R(v), .. d(R (), ¢' (ROvk)]) ()
where the vector approximation ¢’ (v) = [q7(V), g5(V), ..., ¢, (V)]
from PQ is modified to use both CF and CPQ". Specifically, g;(v) =
CPQ,j [arg min; ||CPQj [i] — vj|[]. It means that the indexes of the
centroids of the codebook are produced by CP? and the fine-tuned
centroids of CPQ" at the corresponding position are used to approx-
imate the vector.

With the distributions of similarity scores, we can then reduce
the mismatch by minimizing the Kullback-Leibler (KL) divergence
defined over two pairs of distributions. One pair is defined between
the distribution in the original vector space (Equation 2) and that in
the vector space after dimensionality reduction (Equation 3). The
other pair is between (Equation 2) and the distribution of similarity
scores calculated between a query vector after dimensionality re-
duction and its quantized close neighbors (Equation 4). The overall
training objective is as follows:

L=- 3 S,log

XEDsample

Srx

2

XEDsample

Sq.x
Sox Sox log % ©)
where Dggppie is the sampled query vectors for training, and 4 is a
hyperparameter to control the strength of the regularization.

The training process iteratively updates A’, b’, CPQ’ to minimize
the loss defined in Equation 5 that is to minimize the mismatch
among three similarity distributions for close vectors as illustrated
in Figure 5c. It stops when the loss reduction computed on the
validation set is smaller than a threshold (e.g., 0.1).

3053

3.4 Search Optimizations

HAKES-Index contains two additional optimizations that improve
search efficiency. The first is INT8 scalar quantization at each di-
mension of the IVF centroids. This allows using SIMD to evaluate
4x more dimensions in a single instruction. Although quantization
can be lossy, such representation errors are tolerable in practice
since the centroids are only used for partition assignment and a
large number of partitions are selected for high recall. The sec-
ond optimization is to adapt the cost of the filter stage based on
the query. Fixing the value of nprobe means that the computation
cost is roughly the same for every query. We note that in extreme
cases, all the true nearest neighbors are in the same partition, where
only that partition needs to be scanned. In other extreme cases, the
true nearest neighbors are evenly distributed among the partitions,
where all the partitions need to be scanned to achieve high recall. In
high-dimensional space, it is challenging to determine the nprobe
based solely on the centroids. HAKES-Index introduces a heuristic
condition for early stopping the scanning of subsequent partitions
based on the intermediate search results. The search process ranks
the partitions by the similarity score of their centroids to the query,
and scans the partitions in order. The key idea is that, as the search
process moves away from the query vector, new partitions will
contribute fewer vectors to the candidate set. We track the count
of consecutively scanned partitions that each partition adds fewer
than ¢ vectors to the candidate set, where ¢ is a search configuration
parameter. When that count exceeds a specified threshold n;, it
indicates that the search has likely covered all partitions containing
nearest neighbors, and we terminate the filter stage. HAKES-Index
terminates the filter stage either when the heuristic condition above
is met, or when nprobes partitions have been scanned.

3.5 Discussion

HAKES-Index’s two-stage design allows the filter stage to trade accu-
racy of similarity score evaluation for lower computation overhead.
This stage performs aggressive compression, combining dimension-
ality reduction at the beginning and then 4-bit product quantization.
The index parameters are optimized to achieve high compression ra-
tios while preserving only the distribution and not the exact values
of similarity scores. The optimization focuses on the local regions
instead of globally, since distant vectors in IVF are already filtered
out and never evaluated. Our experimental results demonstrate that

Legend D Dimension Reduction E IVF Centroids EE@ PQ Codebooks

1. Initialize Index Parameters 3. Sample Data and Retrieve ANNs

4. Train Dimension Reduction and Quantization Codebook
to Minimize Similarity Score Distribution Mismatch

Initialized Parameters Learned Parameters Data Vectors

5. Use Training Data Original Assignment and
Vectors after Learned Dimension Reduction

D Bm
orPQ =3 sampled vectors == mR e = = = % %
- =L -
| , i R B
-means (I oo
[e v .
[d) Recalculate IVF centroids
2. Index the Dataset D‘E {Im % @
. "B o \ = 6l
M : I . Install Learned Parameters
[
| Base Index U U AN |:> DE | —
i i o
jannnan| S, S, S, :
: == B mmm
Sampled vectors and their ANNs L L | ﬂmm%[]
*No index rebuild HAKES-Index
(a) Build base index (b) Prepare training data (c) Learn compression parameters (e) Update index

Figure 5: End-to-end index construction.

deep embedding vectors can be aggressively compressed to achieve
superior throughput-recall tradeoff overall for HAKES-Index, with
dr as small as 1/4 or 1/8 of the original dimension d, and with
4-bit PQ with m = 2. The early termination checking is designed
to operate in the filter stage with aggressive compression. It does
not rely on accurate similarity score calculation, unlike existing
works [28, 61, 63]. The statistics tracking and check incurs minimal
overhead, compared to other works on early termination [36, 60].

The compression techniques in HAKES-Index differs from those
of existing works on quantization, which either focuses on min-
imizing the reconstruction error [1, 5, 30], i.e., d(v, g(v)), or the
error of similarity score approximation [20, 22, 49], i.e., d(x, g(Vv)).
HAKES-Index learns both dimensionality reduction and quantiza-
tion together to reduce the distortion of the similarity distribu-
tion. Some learned data transformations for quantization [19, 41]
aim to transform the original vector to reduce the quantization
error. [48] introduces complex data transformation, increases serv-
ing complexity, and some other works tune even the embedding
models [56, 58], which differ from our ultimate goal of achieving
superior throughput-recall trade-off for the ANN search with given
embedding vectors. Moreover, we only use the approximate nearest
neighbor for training, which can be efficiently obtained compared
to ground truth neighbors required by other works [48, 58].

A key design in HAKES-Index is that it decouples the manage-
ment of parameters used for search and insert, enabling its high-
recall search while supporting the incorporation of new data. Specif-
ically, it maintains two sets of compression parameters: the learned
parameters obtained through training as the search index param-
eters, and the original parameters established upon initialization
as the insert index parameters, as shown in Figure 4a. It is closely
related to the lightweight self-supervised training process. As dis-
cussed in Section 3.3, we use the prebuilt base index and fix PQ code
assignment for training, where all the data vectors are processed
only once using the original set of parameters. Consequently, new
vectors can follow the same process of being indexed by the initial-
ized parameters and searched by the learned parameters. Empirical
observations also confirm that using the learned parameters for
inserting new vectors leads to recall degradation in Section 5. Fur-
thermore, as a consequence of the decoupling, the learned search
index parameters can be directly applied without re-indexing the

3054

vectors. Existing works on learned compression use the updated
codebook for assignment during every training iteration [56, 58].
They would require expensive re-indexing of the vectors when ap-
plying the trained parameters in vector databases to serve queries.

The aggressive compression employed by HAKES-Index not only
significantly speeds up the filter stage, but also reduces the memory
consumption in this stage. We now analyze the memory cost of
HAKES-Index for a vector dataset of (N -4-d) bytes. The dimension-
ality reduction matrices and the bias vector take (2-4-d-dy+4-d;)
bytes. IVF centroids and the 4-bit quantization codebooks consume
(N - 4-dr + N - dy) bytes and (2 - 2* - 4 - d,) bytes respectively.
The compressed vectors take (N - (1/2) - (d/m)) bytes. The filter
stage index is significantly smaller than the vector dataset.

As the dataset grows considerably, the index should be rebuilt
with a larger number of IVF partitions. In practice, even the embed-
ding models that generate the vectors are frequently retrained, for
example, on a daily basis in recommendation systems [62]). After
model training, rebuilding the index is necessary.

4 THE HAKES DISTRIBUTED VECTORDB

4.1 Overview

HAKES-Index processes a search query in two stages, namely the
filter and refine stage. These stages do not share data, and they
have distinct resource requirements due to the types and amount of
vectors being evaluated. Specifically, the memory consumption of
the filter stage, accessing compressed vectors, is significantly lower
than that of the refine stage, which accesses the original vectors.
In addition, the filter stage has a much higher computation cost
because it performs computation over a large number of vectors.
We design an architecture that exploits the filter-and-refine de-
sign to disaggregate the two stages. In particular, we separate the
management of the filter-stage index from the full-precision, orig-
inal vectors used only in the refine stage, and employ different
scaling policies for them in a server cluster. There are two sets of
workers, the IndexWorkers and the RefineWorkers, each performs
one stage of the index using the local data. The former are responsi-
ble for the filter stage, managing the replicated compressed vectors.
The latter performs the refine stage, storing shards of the original
vectors. Figure 6 shows an example in which a physical server runs
both an IndexWorker and a RefineWorker. However, we stress that

HAKES Client

Request load ~ 1/3 Request load ~ 1/3 Request load ~ 1/3
{nder g =22 e e e ey T :
|
e r r 1
p D:’BEEE | D(EEEE | DEEEE | H

i . i : ! ; |
H E=H"] R=H" = mm '
|
[- | I - | mmm - | mmm H
i Dgggg il DEEEE s Dm I E
E IndexWorker IndexWorker IndexWorker !
] |
L - - — i
{ Data layer |--------- - - L -~ EaEEE L l
! 1
i !
|
|
| (LTI (T (T (TTTTIITI] (D (I (T (I [|
! RefineWorker RefineWorker RefineWorker i
|
1 [_ \
Server A Server B Server C

Storage load ~ 1/3 Storage load ~ 1/3 Storage load ~ 1/3

Figure 6: HAKES architecture.

these components can be disaggregated and scaled independently.
For example, more memory nodes running RefineWorkers can be
added to handle a large volume of data, and more compute nodes
running IndexWorker can be added to speed up the filter stage.

Discussion. HAKES’s architecture is different from that of existing
distributed vector databases. Figure 7 compares four architectures
with distinct shard layouts and communication for read and write.
In the first architecture (Figure 7a), adopted by [9, 54], each server
hosts a single read-write shard and maintains its index. A read
request merges search results from every node, while a write request
is routed to a single server based on a sharding policy. In the second
architecture (Figure 7b), used by [13], each node maintains one read-
write shard and multiple read-only shards to reduce the read-write
contention. The third architecture in Figure 7c extends the first two
by employing multiple read-write shards and multiple read-only
shards. It is adopted by [21, 51], and supports scaling out of read
or of write by adding servers for the required type of shards. We
note that in these three architectures, an index is local to the shard
data, i.e., the index of each shard is not constructed over the global
set of vectors. However, building many small indexes over multiple
shards incurs significant overhead, as we show in our evaluation
later. HAKES’s architecture in Figure 7d, in contrast, maintains the
global index at each server, since the filter stage index is small due
to compression and supports efficient update.

The index in the filter stage scales with dataset size. However,
HAKES’s high compression ratio enables a single cloud server to
host TB-scale indexes. For deployments where the index exceeds
individual server capacity, the index is dynamically sharded across
IndexWorker groups. Searches query one replica per shard group
while updates propagate atomically to all replicas in the affected
group. Full-precision vectors remain managed separately by Re-
fineWorker nodes deployed on distinct servers, ensuring physical
isolation between filter and refine stages.

4.2 HAKES Design

The IndexWorker maintains a replica of the filter-stage index and
the compressed vectors organized in IVF partitions. It takes a query
vector as input and returns a set of candidate vectors. IndexWorker
is compute-heavy. It implements dynamic batching with internal,
lock-free task queues. In particular, vectors from different requests
are batched into a matrix such that the dimensionality reduction

3055

w R w R Legend
Yo .. TTTTTT
PR EEEEE re = et FE ')
H index HH index | i [index |1 index I Il index ' index_Jij 4 {
i | vectors | i | vectors ‘ i | vectors ‘1 1| vectors |[|ii| vectors |[I} | vectors E | 1
e Ne—— N) = = | - T ’
1 rw-shard per node 1 rw + multiple ro-shards per node Aerver
index
(a) Design I (b) Design II vectors
w R W__ Globalindex X Read-Write Shard
P =g e i} (rw-shard)
index

i il
' index i index_ [!f
1| vectors || 1i | vectors
! " "
.

vectors

_"‘
Read-Only Shard
(ro-shard)

rw/ro-shards distributed

(c) Design III

(d) HAKES

Figure 7: Distributed vector database architectures.

and IVF assignment can be computed efficiently via matrix-matrix
multiplication. Requests are batched only under high load, other-
wise, they are processed immediately on separate CPU cores.

The RefineWorker maintains a shard of the original vectors. It
handles the refine stage, which evaluates similarity scores between
the query and the candidate vectors belonging to the shard. HAKES
supports two types of sharding policies for the full vectors. One
policy is sharding by vector ID, in which vectors are distributed
(evenly) among the nodes by their IDs. The other is sharding by IVF
assignment, in which vectors belonging to the same IVF partition
are on the same RefineWorker. This policy helps reduce network
communication because the refine stages only happen on a small
number of nodes.

Operation workflow. Before serving queries, HAKES builds an
index over a given dataset. It first takes a representative sample of
the dataset to initialize the base index parameters. It then launches
IndexWorkers that use the base index. Next, it inserts the vec-
tors, and after that starts serving search requests. It builds training
datasets for learning index parameters by collecting the results of
ANN queries. Once the training process finishes, it installs the new
parameters to all IndexWorkers with minimal disruption. Specifi-
cally, at every IndexWorker node, the new parameters are loaded to
memory and the pointers in HAKES-Index are redirected to them.

During search, the client sends the query to an IndexWorker

and gets back the candidate vectors. Based on the sharding con-
figuration, the client sends these vectors to the corresponding Re-
fineWorkers in parallel. The client reranks the vectors returned by
the RefineWorkers and outputs the top k vectors. During insert,
the client sends the new vector to the RefineWorker that manages
the shard where the vector is to be inserted. The client then picks
an IndexWorker to compute the new quantized vector and update
the IVF structure. This update is broadcast to all the IndexWorkers.
For deletion, the client broadcasts the vector IDs to be deleted to
all the IndexWorkers, which then mark them as deleted in their
filter-stage index.
Consistency and failure recovery HAKES does not guarantee
strong consistency, which is acceptable because applications relying
on vector search can tolerate that [51, 55]. It can support session
consistency by synchronously replicating the write requests or
having the client stick to an IndexWorker. HAKES periodically cre-
ates checkpoints of the index. During crash recovery, new vectors
after the checkpoints are re-inserted into the RefineWorkers and
IndexWorkers.

5 EVALUATION

In this section, we benchmark HAKES-Index against state-of-the-art
ANN indexes and HAKES against state-of-the-art distributed vector
databases to study the effectiveness of our design.

5.1 Implementation

We implement HAKES-Index by extending the FAISS library [10].
IndexWorker and RefineWorker are implemented on top of the
index HAKES-Index, and they are accessible via an HTTP server im-
plemented using libuv and llhttp. The index extension and serving
system take ~ 7000 LoC in C++. The index training is implemented
in ~ 1000 LoC in Python, using Pytorch@1.12.1. The HAKES client
is implemented in Python in ~ 500 LoC.

5.2 Experiment Setup

Datasets and workloads. As listed in Table 1, we use six deep
embedding datasets and the GIST dataset. Five of the datasets are
at the 1-million scale, and we use them for index benchmarking.

DPR-768 is generated by the Dense Passage Retrieval (DPR) con-
text encoder model [32] on text records sampled from the Sphere
web corpus dataset!.

OPENAI-1536 [12] is generated by OpenAI’s embedding service
on DBpedia text data [50].

MBNET-1024 is generated by pretrained MobileNet [25] on one
million ImageNet data [47].

RSNET-2048 is generated by pretrained ResNet [24] on 1 million
ImageNet data.

GIST-960 is a widely in the literature for benchmarking ANN
indexes [3, 17, 38]. We selected GIST for its high dimensionality.
We also use two other large datasets for in-depth analysis of our
index and system.

DPR-768-10m: use the same embedding model as DPR-768 but
on 10 million Sphere text records.

E5-1024-10m: is generated with the E5-large text model [52] on
10 million Sphere text records.

We normalize the vectors and use the inner product as the simi-
larity metric due to its popularity in existing embedding services?
3. This metric is also the default choice in all of the baseline sys-
tems [33, 51, 54]. We note that for normalized vectors, Euclidean
distance, cosine similarity, and inner product are equivalent with
respect to neighbor relationships. The search quality is measured by
Recall10@10. The ground-truth nearest neighbors for the queries
are generated by a brute-force search over the entire dataset.

Training setup. Index training is conducted on an Ubuntu 18.04
server that has an Intel Xeon W-2133@3.60GHz CPU with 6 cores
and an NVIDIA GeForce RTX 2080 Ti GPU. The A parameter is
searched in the set {0.01, 0.03,...30}. The AdamW Optimizer is used
with a learning rate value in the set {107>,107%,1073}. The batch
size is set to 512. We use 100,000 samples and their 50 neighbors
returned by the base index at nprobe = 1/10 and k’ /k = 10.

Environment setup. We conduct all the index experiments on
a Ubuntu 20.04 server equipped with an Intel Xeon W-1290P @

!https://weaviate.io/blog/sphere-dataset-in-weaviate
Zhttps://platform.openai.com/docs/guides/embeddings
3https://docs.mistral.ai/capabilities/embeddings/

3056

Table 1: High-dimensional datasets.

Dataset [N [d [nq [Size (GiB) [Type [

DPR-768 1000000 | 768 10% 2.86 Text
OPENAI-1536 | 990000 1536 | 10% 5.72 Text
MBNET-1024 | 1103593 | 1024 | 103 4.21 Image
RSNET-1024 1103593 | 2048 | 103 8.42 Image

GIST-960 1000000 | 960 | 103 3.58 Image
DPR-768-10m | 9000000 | 768 108 26 Text
E5-1024-10m | 9000000 | 1024 | 10° 35 Text

3.70GHz CPU with 10 cores and 128 GiB memory, and distributed
experiments in a cluster of servers with the same specification.

Index baselines. We select 12 state-of-the-art in-memory ANN
index baselines.

o IVF is the classic IVF index with k-means clustering.

o IVFPQ RF applies PQ with IVF and uses FAISS 4-bit quantization

fast scan implementation [2, 10]. The RF denotes a refine stage

OPQIVFPQ_RF uses OPQ [19] to learn a rotation matrix that

minimizes the PQ reconstruction error. We use the OPQ imple-

mentation in FAISS that can generate a transformation matrix

€ R9%4r o reduce dimension before IVF and PQ.

e HNSW [42] is the index used in almost all vector databases.

o ELPIS [4] partitions the dataset and maintains an HNSW graph

index for each partition, representative for maintaining multiple

subgraph indexes.

LSH-APG [64] leverages LSH to identify close entry points on

its graph index to reduce the search path length.

ScaNN [22], SOAR [49], and RaBitQ [18] are recent proposed

quantization scheme used with partitioning-based index. They

use reranking to improve recall.

Falconn++ [45] and LCCS [34] are state-of-the-art LSH indexes.

e LVQ [1] is a state-of-the-art graph index with quantization. It
@)orts 4-bit scalar quantization, followed by 8-bit quantization
on residual for reranking.

We do not compare against recent indexes that are optimized
for secondary storage [6, 53, 57], which report lower performance
than in-memory indexes. The first three IVF baselines share the
codebase of our extended FAISS library. For the remaining baselines,
we use the implementations provided by the authors.

Distributed vector database baselines. We select three popular
distributed vector databases that employ in-memory ANN indexes.
They cover the three architectures described in Section 4.1. We
set up the systems according to the recommendations from their
respective official documentation.

e Weaviate [54] adopts an architecture in which each server main-
tains a single read-write shard and an HNSW graph. It imple-
ments HNSW natively in Golang with fine-grained node-level
locking for concurrency. We deploy Weaviate using the official
Docker image at version v1.21.2

Cassandra [33] adds support for vector search recently [13] on
its NoSQL database. It shards the data across nodes, and every
node maintains a read-write shard and multiple read-only shards
that are periodically merged. It uses jVector [11], a graph index
that only searches quantized vectors, similar to Disk ANN [29].

Milvus [21, 51] adopts an architecture in which there is one shard
that processes updates. Once reaching 1GiB, this shard becomes
a read-only shard with its own index and is distributed across
the servers for serving. We deploy Milvus version 2.4 using the
official milvus-operator v0.9.7 on a Kubernetes (v1.23.17) cluster.

Besides the three systems above, we add two more baselines,
called Sharded-HNSW and HAKES-Base. Sharded-HNSW adopts
Weaviate’s architecture, and uses our server implementation with
hnswlib. This baseline helps isolate the performance impact of
the index and system design, since the three vector databases are
implemented with different languages and have different sets of
features. HAKES-Base is the same as HAKES but employs the base
index, that is, without parameter training or optimizations.

5.3 Index Benchmarking and Analysis

For each index, we explore the range of configurations recom-
mended in the original paper and corresponding code repository,
and pick the best configuration for each dataset. We then run ex-
periments with varying search parameter values to examine the
index’s throughput-recall tradeoff. For the complete set of explored
and selected configurations of all indexes, please refer to [26].

Sequential read workload. Figure 8 compares the throughput-
recall tradeoff of the 13 indexes for the recall range above 80%.
Across the different datasets, HAKES-Index achieves state-of-the-
art throughput-recall tradeoff. At high recall, it even outperforms
the recent quantized graph index, LVQ, which is heavily optimized
for prefetching and SIMD acceleration. The performance difference
among OPQIVFPQ _RF, IVFPQ_REF, and IVF confirms that with a
refine stage, deep embeddings can be compressed significantly
with quantization and dimensionality reduction for efficiency while
maintaining high accuracy. Across the deep embedding datasets,
OPQIVFPQ_RF and HAKES-Index achieve the reported tradeoff
with dy/d =1/4 or 1/8, significantly reducing computation.

Recent quantization-based indexes, namely ScaNN, SOAR, and
RaBitQ, show mixed results compared to IVFPQ_RF, which uses
standard PQ and fast scan implementation. ScaNN improves the
quantization for inner product approximation; SOAR aims to reduce
the correlation of multiple IVF partitions assignment for one vector;
and RaBitQ uses LSH to generate binary code representation and
decide vectors to be reranked with its error bound. ScaNN and SOAR
outperform IVFPQ_RF on GIST-960, DPR-768, and MBNET-1024,
but have comparable performance on RSNET-2048 and OPENAI-
1536. RaBitQ only performs better than IVFPQ_RF on GIST-960.
These observations highlight the importance of evaluating indexes
on high-dimensional deep embedding.

The performance of Falconn++ and LCCS ranks below IVF,
confirming that LSH-based indexes are less effective in filtering
vectors than the data-dependent approaches in high-dimensional
space [3, 38]. Among graph-based indexes, LVQ performs best as its
scalar quantization avoids computation using full vectors for graph
traversal. The difference between HNSW and LSH-APG indicates
that the hierarchical structure of HNSW is more effective than the
LSH-based entry point selection in LSH-APG in high-dimensional
space. The gap between HNSW and ELPIS shows that sharding
a global graph index into smaller subgraphs degrades the overall

3057

Table 2: Ablation study where recall is in the 0.99 region.
Each cell shows the QPS (recall) value.

Base Learn Learn + SQ All
DPR-768 1233 (0.979) | 1238 (0.991) | 1280 (0.990) | 1280 (0.990)
OPENAI-1536 | 977 (0.990) | 974 (0.994) | 976 (0.994) | 1389 (0.991)
MBNET-1024 | 2393 (0.977) | 2413 (0.991) | 2579 (0.991) | 2791 (0.991)
RSNET-1024 | 2330 (0.982) | 2350 (0.992) | 2444 (0.992) | 2615 (0.992)
GIST-960 610 (0.944) 625 (0.989) 631 (0.989) 747 (0.988)

performance. We analyze that phenomenon in distributed vector
databases in Section 5.5.

Read-write workload. For indexes supporting inserts, we first
evaluate their performance with sequential read-write workloads.
We focus on high-recall regions of 0.99, and vary the write ratio
from 0.0 to 0.5. Figure 9 reveals that as the write ratio increases,
partitioning-based indexes have a clear advantage over graph in-
dexes. Both LVQ’s and HNSW’s performance decrease as the write
ratio increases, because inserting new data into a graph is slower
than serving an ANN search. The reverse is true for partitioning-
based indexes, since insert does not involve comparison with exist-
ing vectors. The exceptions are ScaNN in RSNET and SOAR, which
select quantized code with additional constraints. In particular,
SOAR assign a vector to multiple partitions based on their correla-
tion which is more costly than a single assignment used by other
partitioning-based indexes. HAKES-Index outperforms all baselines
across all datasets, because of its efficient search and insert.

We further evaluate the indexes supporting concurrent read-
write workloads. The HNSW implementation in hnswlib supports
concurrent read-write with fine-grained locking on the graph nodes,
and our FAISS extension supports partition locking for IVFPQ_RF,
and OPQIVFPQ_RF similar to HAKES-Index. We use 32 clients and
vary the ratio of write requests. Figure 10 shows that partitioning-
based indexes are better than HNSW, due to low contention and a
predictable memory access pattern. We note that even IVFPQ_RF
reaches a comparable or higher throughput than HNSW for con-
current read. The performance gaps increase with more writes.

Memory consumption. The cost of storing the original vectors
dominates the index’s memory consumption. We discuss the mem-
ory overhead for representative baselines on OPENAI-1536 as an
example. We measure memory usage before and after loading the in-
dexes. HNSW maintains the connection information for each node
at each level on top of the original data, increasing the memory from
5.72 to 6.01 GiB. For IVFPQ_RF, OPQIVFPQ_RF, and HAKES-Index,
the main overhead is storing the compressed vectors. IVFPQ_RF
consumes 5.92 GiB, whereas OPQIVFPQ_RF takes 5.86 GiB due to
dimensionality reduction. HAKES-Index consumes 5.86 GiB similar
to OPQIVFPQ_REF, as the additional index parameters are small.

5.4 HAKES-Index Analysis

Performance gain breakdown. Table 2 shows how the differ-
ent techniques contribute to the performance of HAKES-Index.
We report the results at the search configurations that achieve
recall ~ 0.99 with the learned parameters. The learned compres-
sion contributes the most as it improves the throughput-recall
tradeoff over the base settings. Scalar quantization of IVF centroids
and early termination provide further improvement to throughput
without significantly degrading recall. We used the same setting

-@- HAKES-Index -%- IVFPQ_RF <& ScaNN o-LVQ > IVF - LCCS %~ ELPIS
—A-HNSW - OPQIVFPQ_RF % SOAR -¥- RaBitQ < Falconn++ v~ LSH-APG
4000 2000
g
3 3000 g % 3000 “x 8\\5 g 4000 7
3000 1500
22000 : : S3000 3
% %2000 £:20°0 cgzooo £;1000
=1 =3 =3 =1 =3
g 1000 21000 £ 1000 £ 1000 2 s00
= [[x N [[
Ao o e % < A4 < — | PSRy == |
880 085 000 005 1.00 880 085 000 0.5 100 880 085 000 005 1.00 880 085 080 005 1.00 880 085 0080 0.95 1.00
Recall Recall Recall Recall Recall
(a) DPR-768 (b) OPENAI-1536 (c) MBNET-1024 (d) RSNET-2048 () GIST-960
Figure 8: Throughput vs. recall for sequential reads (recall > 0.8).
-@- HAKES-Index —A- HNSW % IVFPQ_RF - OPQIVFPQ_RF < ScaNN % SOAR o-LVQ
2000
3000
7 gzooo g 3000 .\././'/./' 2 ./4/*"/./. z
S 1500 S 1500 . oS o - 8l & . & 1000
ERNE E o F20001g, o ER MR 3
21000 g 0| £1000g —© a 2 o 9 2 5} 2 o &
=) 2 =) =) o\ o 0 Bl A S 500{2 o g g
3 o—8 —#| 3 31000 i’:g:y-dg‘: olOOOWﬁ 3 g8 2 °
£ 500 £ 50018 £ g & & - © £ i
= oo [© [° [= & 8 g [=
— o D —" 0 R a— o . 1 -
0.00 0.20 0.40 0.00 0.20 0.40 0.00 0.20 0.40 0.00 0.20 0.40 0.00 0.20 0.40
Write ratio Write ratio Write ratio Write ratio Write ratio
(a) DPR-768 (b) OPENAI-1536 (c) MBNET-1024 (d) RSNET-2048 (e) GIST-960
Figure 9: Performance under sequential read-write workloads. (Recall=0.99).
-@- HAKES-Index —A- HNSW -%- IVFPQ_RF @ OPQIVFPQ_RF
— —~ _ O e —o—°°° _ 10000 n
g 6000 .—_././,/’/' 26000 »\,/‘/'/./; % 10000 7 & 4000
& (<] o S &% | S 8000 2
=] = = o
34000 %’-4000 5 g @ ‘g- 7500 g 5@ ‘é_ P a3000
S S < £ 6000 S <
=) =) < 5000 S 5B 2000
= o > 3 3 > o
2 s g8 ¢ © 2000 o € 4000 2 o & "
£ 2000 g ‘\"\.\‘ﬂﬂ £ 2900 = é‘}*{: 1000 t:t,_/-gtu
0.00 0.20 0.40 0.00 0.20 0.40 0.00 0.20 0.40 0.00 0.20 0.40 0.00 0.20 0.40
Write ratio Write ratio Write ratio Write ratio Write ratio
(a) DPR-768 (b) OPENAI-1536 (c) MBNET-1024 (d) RSNET-2048 (e) GIST-960

Figure 10: Performance under concurrent read-write workloads. (Recall=0.99).

t = k’/200 and n; = 30 for early termination, which improves
the throughputs considerably on 4 of the 5 datasets. However, as
discussed in the previous subsection, the heuristic can terminate
the search prematurely and miss the true close neighbors, thereby
leading to lower recall. We note that careful tuning on a dataset
can achieve better performance for a specific recall target.

Recall improvement by learned compression. Table 3 reports
the recalls for different search configurations, for 10-million scale
datasets. We note that the training process does not affect the cost
of performing dimensionality reduction and of scanning quantized
vectors. In other words, given the same search parameters, the per-
formance is only affected by the IVF partition selection, which we
observe to be negligible. Table 3 shows consistent improvement
across all configurations on the 10-million scale datasets. The im-
provement is between 0.07 to 0.14 for k’/k = 10 and 0.01 to 0.07
for those settings with recall over 0.9. It is higher for smaller filter
candidate sets (i.e. smaller k" /k), which is expected because the im-
pact of high-quality candidate vectors is higher. This improvement
allows HAKES-Index to reach high recall with a smaller nprobe and
k’ [k, which translates to higher throughput. We attribute the high
recalls to the training process that results in the refine stage having

3058

more true nearest neighbors. We discuss the results on 1-million
scale datasets in our extended version [26].

Training cost. The cost of constructing HAKES-Index consists of
the cost of building the base index and of training the compression
parameters. Deploying the trained parameters incurs negligible
overhead, as it only loads a small dimensionality reduction matrix,
bias vector, quantization codebooks, and IVF centroids into memory.
For the 10-million scale datasets, building the base index takes
179.2s and 219.22s for initializing the OPQ and IVF parameters,
and 103.2s and 125.6s to insert the 10 million vectors for DPR-768-
10m and E5-1024-10m, respectively. It takes 52.9s and 60.9s for the
two datasets respectively to sample the training set with 1/100
ratio and compute the approximate nearest neighbors with nprobe
set to the 1/10 partitions and k’/k = 10. Training takes 34.9s and
45.6s, respectively. In a server cluster, the time to insert vectors and
prepare the training set can be reduced linearly with the number of
nodes. In comparison, constructing the HNSW graph takes 5736.4s
and 9713.21s on the two datasets, which are 15.5X and 21.5x higher
than the cost of building HAKES-Index. We note that in production,
HAKES-Index can use the initialized parameters to serve requests,
while training is conducted in the background using GPUs. The

Table 3: Recall improvement at different search configurations.

IVF nprobe (total 8192) 200 400 600 800
kK /k 10 50 200 10 50 200 10 50 200 10 50 200

DPR-768-10m Base 0.722 0904 0968 | 0.725 0909 0976 | 0.725 0910 0.979 | 0.725 0.911 0.980

Learned | 0.859 0.963 0.980 | 0.866 0.973 0.993 | 0.868 0.976 0.996 | 0.869 0.976 0.997

E5-1024-10m Base 0.765 0.896 0.942 | 0.773 0910 0.959 | 0.777 0914 0.966 | 0.778 0917 0.969

Learned | 0.843 0.932 0.953 | 0.856 0.950 0.974 | 0.860 0.955 0.979 | 0.862 0.958 0.983

®Base WTrain M Base+2batch M Train+2batch = Base+4batch ie Train+4batch -o-Decouple -&-Replace 8000 _ 000 -
1.00 1.0 geooo S ; 2 %6000 ; 2 2 2
$0.98 :gog gl § f Bl 2o §§ B
8 « Ezooo; | | | E_zooo; | | |
0.96 = 147 7F 47717
o - 0 G 08,5 05 %01 02 03 04 %02 0.4 06 08
No-drift Drift-0.4 Drift-0.8 #Insert / #Original #Insert / #Original Delete ratio %delete in update

(a) Recall (b) Throughput (a) MBNET-1024 (b) RSNET-2048 (@) R+D (®) 60%R

Figure 11: Tolerance against data drift (MBNET-1024). Figure 12: Decoupling index parameters.

learned parameters can be seamlessly integrated once available,
without rebuilding the index.

Drift tolerance. We prepare 1-million datasets derived from the
ImageNet dataset. We reserve 1/10 categories for generating drift.
We use a mixing ratio of vectors from the reserved categories and
those from the original categories (not in the 1 million for index
building) to create workloads with different drifts. The workloads
consist of 4 batches of 200k vectors for insertion and 1k query
vectors, such that both insertion and query exhibit drift. Figure 11
shows the recall and throughput as we insert data batches and then
run ANN queries with a mixing ratio from 0 to 0.8. The nprobe and
k’ [k are selected to be the best search configuration with recall >
0.99. The throughput descrease as more vectors are added resulting
in more vectors to scan in each partition. For search quality, we ob-
serve at this high recall, the recall improvement of training persists
across different drifts. As more data are added the recall degrades
slightly. The result showed the robustness of IVF and HAKES-Index
training process against moderate drifts for embeddings from the
same model. We also evaluate on RSNET-2048 and observe similar
results. For embeddings from different models or entirely distinct
sources, we recommend building different indexes.

Decoupling index parameters for read and write. We start with
an index on 1 million vectors and select the nprobe and k’ /k for
recall > 0.99. We insert batches of 200k vectors and measure the re-
call at the same configuration. We derive the true nearest neighbor
after each batch insert in prior. Figure 12 shows the importance of
separating the learned parameters for search from the parameters
for insert. If the learned parameters are used to compress new vec-
tors during insert, the recall drops. The reason is that only keeping
learned parameters is inconsistent with our training scheme and the
approximated similarity will not follow the expected distribution,
as discussed in Section 3.5. We observe in experiments that new
vectors that are not nearest neighbors can have a higher approxi-
mated similarity than true neighbors, and the true neighbors in the
added data can have significantly lower approximated similarity
than those neighbors in the original dataset.

3059

Figure 13: Performance under
delete (R: read, D: delete).

Deletion. We evaluate the index performance under deletion using
the DPR-768 dataset and 32 clients. We select search parameters that
achieve recall=0.99. Figure 13a shows that for workloads involving
both search and deletion, the throughput increases with the ratio of
deletions. The trend is similar to the results in Figure 10 when the
ratio of insert increases. The higher throughput is because insertion
and deletion are cheaper than search operations. Figure 13b shows
that under workloads of 60% search and 40% of insert and delete, the
throughput is only slightly higher when varying the ratio of delete,
since insert operations calculate IVF assignment and compress the
vectors. Since we do not modify the coarse-grained partitioning
when deleting the data, the recall can be maintained, as the close
neighbors are likely to be selected from nearby partitions.

For additional results on full-range throughput-recall tradeoff,
effects of Euclidean distance metric, deletion, ablation study for
training and early termination, please refer to [26].

5.5 System Comparison

We compare the performance of HAKES against the five distributed
vector database baselines at 0.98 recall for k = 10, using the two
10-million scale datasets. For Cassandra, we use the same configu-
ration for graph and beam search width during index construction.
However, since it uses quantized vectors instead of the original
vectors, we adjust k to be larger than 10, such that if the refine
stage is performed, a recall of 0.98 is reached. Specifically, the sys-
tem uses a quantized graph index to return a larger number of
candidate vectors, which are then processed by a refine stage to
achieve a recall of 0.98. For HAKES, Sharded-HNSW, Weaviate, and
Cassandra, we run one shard per node. For Milvus, we run a number
of virtual QueryNode according to the number of node used for
other systems. The QueryNodes are evenly distributed among the
physical nodes in a Kubernetes cluster. We use multiple distributed
clients to saturate the systems, then report the peak throughputs.

Scaling with the number of nodes. Figure 14 compares the sys-
tems’ throughputs with varying numbers of nodes. It can be seen
that HAKES and HAKES-Base scale linearly because the loads of

-@ HAKES -A- HAKES-Base -%- Sharded-HNSW -- Weaviate < Cassandra & Milvus

@ 3 4000
o
@10000 S
E 32000
% 5000 <
: s
E o £ o :
2.00 4.00 6.00 8.00 2.00 4.00 6.00 8.00
#node #node

(a) DPR-768-10m (b) E5-1024-10m

Figure 14: Scalability under read-only workload.

-@ HAKES -A- HAKES-Base -#%- Sharded-HNSW -0- Weaviate < Cassandra & Milvus

g iy
510000 / o 6000
-
5 > 4000
_8 5000 ‘—‘// g
E 2000
g 5 of Jo—e—u—t 0
= 0 ® e 0 L
0.00 025 0.50 0.75 0.00 0.25 050 0.75
Write ratio Write ratio

(a) DPR-768-10m (b) E5-1024-10m

Figure 15: Throughputs under concurrent workload.

both the filter and refine stages are distributed evenly across the
nodes. The filter stage of concurrent requests can be processed at
different nodes in parallel. In Weaviate, a request is sent to all the
shards. Although the graph index size and the number of vectors in
each shard decrease with more nodes, the search cost at each shard
does not decrease linearly. This is consistent with the results of
ELPIS in Section 5.4, confirming that graph indexes do not scale well
by partitioning. Sharded-HNSW achieves slightly better through-
put than Weaviate, but shows the same trend. Milvus’ throughput
increases with the number of read shards, due to the reduced read
load. However, the small read shard size of 1GiB leads to a large
number of subgraphs (e.g., over 30 for E5-1024-10m), all of which
are searched, limiting the throughput. In Cassandra, a single node
contains multiple shards, the number of which is affected by its
Log-structured merge (LSM) tree compaction process. We observe
that the number of shards per node decreases as the number of
nodes increases, which explains the increasing throughput. At 8
nodes, there is one shard per node and the performance is similar to
that of Weaviate and Sharded-HNSW. The improvement of HAKES
over HAKES-Base shows the benefit of HAKES-Index in reducing
the search cost with its learned compression and optimizations.

Performance under concurrent read-write workloads. We fix
4 nodes for all systems and vary the write ratio. Figure 15 shows
that all systems have higher throughput as the write ratio increases.
For Weaviate, Sharded-HNSW, and Cassandra, the write request is
only processed by one shard, as opposed to by all the shards for
read requests. Sharded-HNSW has the highest performance among
baselines that use graph-based indexes, due to its C++ implementa-
tion. HAKES and HAKES-Base outperform all the other baselines
by a considerable margin, and HAKES has higher throughputs than
HAKES-Base. Even though each write request needs to be processed
by all IndexWorkers, HAKES is more efficient than the others in
processing the write request, because it only computes the quan-
tized vector and updates the IVF structure. In the other baselines,
each node has to perform a read to identify neighbor vectors and
network edges to be updated.

3060

6 RELATED WORK

Managing ANN index update. Graph indexes, like HNSW [42]
and LVQ [1], rebuild the graph connections locally. SPFresh [57]
uses an in-memory graph to index a large number of partitions of
vectors on disk and proposes a scheme to keep the partition size
small for stable serving latency. At the system level, sharding is
employed to reduce the impact of inserting new vectors [9, 21].
HAKES-Index appends vectors to the partitioning-based index and
uses tombstone for deletion to minimize interference on search and
maintain the high recall without changing the search configurations.
The low read-write contention allows HAKES to maintain replicated
global indexes for better scaling performance.

Adaptive query search. Several works exploit characteristics of
the queries and the immediate search results to improve the vector
search. Auncel [63], iDistance [28], and VBASE [61] leverage pre-
cise similarity scores to determine if a search can terminate early,
making them unsuitable for the HAKES-Index’s filter stage that
operates on compressed vectors. ADSampling [17] progressively
uses more dimensions to compare vector pairs. Learning-based
methods like LEQAT [36, 60] employ predictive models that incur
costly training and inference overhead. In contrast, HAKES-Index’s
early termination check is lightweight as it is based on simple
computation over statistics available during search.

Vector quantization. ScaNN [22], SOAR [49], and QUIP [20] learn
quantization to reduce the approximation error of the inner prod-
uct. RabitQ [18] quantizes vectors into binary representations and
provides a theoretical error bound on the similarity score. OPQ [19]
and DOPQ [41] learn data transformation and quantization code-
books to reduce the error in reconstructing the original vectors. [48]
learns a transformation matrix to spread out vectors for quantiza-
tion assignment, yet keeping neighbors close. These works have a
different optimization objective from ours. In particular, we learn
the dimensionality reduction and quantization together to reduce
the local similarity score distribution mismatch. Other works from
the information retrieval community [56, 58, 59] propose to jointly
train embedding models and PQ codebooks, yet the objectives differ,
and they require access to the embedding model or semantic labels.

7 CONCLUSION

We presented a scalable, distributed vector database HAKES that
supports approximate nearest neighbor search with high recall and
high throughput for online services that are subject to concurrent
read-write workloads. HAKES employs a novel partitioning-based
index that adopts a two-stage process with learned compression
parameters. We proposed a lightweight training process and a sepa-
ration of index parameters to support vector insert. HAKES adopts
a disaggregated architecture specifically designed to exploit the
access pattern of the new index. We compared HAKES against exist-
ing distributed vector databases, showing that our system achieves
up to 16x throughputs over the baselines at high recall regions.

ACKNOWLEDGMENTS

We sincerely thank the reviewers for their valuable feedback. The
work of NUS researchers is partially supported by the Lee Foun-
dation in terms of Beng Chin Ooi’s Lee Kong Chian Centennial
Professorship fund.

REFERENCES

(1]

(2]

[11]

[12

[13]

[14

[16]

[17]

[18

[19]

[20

[21

[22]

[23]

[24]

Cecilia Aguerrebere, Ishwar Singh Bhati, Mark Hildebrand, Mariano Tepper, and
Theodore Willke. 2023. Similarity Search in the Blink of an Eye with Compressed
Indices. Proc. VLDB Endow. 16, 11 (2023), 3433-3446.

Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache Lo-
cality Is Not Enough: High-Performance Nearest Neighbor Search with Product
Quantization Fast Scan. Proc. VLDB Endow. 9, 4 (2015), 288-299.

Martin Aumiiller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algo-
rithms. Information Systems 87 (2020), 101374.

Tlias Azizi, Karima Echihabi, and Themis Palpanas. 2023. ELPIS: Graph-Based
Similarity Search for Scalable Data Science. Proc. VLDB Endow. 16, 6 (2023),
1548-1559.

Artem Babenko and Victor Lempitsky. 2014. Additive Quantization for Extreme
Vector Compression. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition. 931-938.

Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-Efficient Billion-Scale
Approximate Nearest Neighborhood Search. In Advances in Neural Information
Processing Systems. 5199-5212.

Soham Deshmukh, Benjamin Elizalde, Rita Singh, and Huaming Wang. 2023.
Pengi: An Audio Language Model for Audio Tasks. In Advances in Neural Infor-
mation Processing Systems. 18090-18108.

Yihe Dong, Piotr Indyk, Ilya P. Razenshteyn, and Tal Wagner. 2020. Learning
Space Partitions for Nearest Neighbor Search. In 8th International Conference on
Learning Representations.

Ishita Doshi, Dhritiman Das, Ashish Bhutani, Rajeev Kumar, Rushi Bhatt, and
Niranjan Balasubramanian. 2021. LANNS: A Web-Scale Approximate Nearest
Neighbor Lookup System. Proc. VLDB Endow. 15, 4 (2021), 850-858.

Matthijs Douze, Alexandr Guzhva, Chenggi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The Faiss Library. CoRR abs/2401.08281 (2024).

Jonathon Ellis. 2024. JVector. Retrieved April 12, 2024 from https://github.com/
jbellis/jvector

Hugging Face. 2024. KShivendu/dbpedia-entities-openai-1M. Retrieved April 12,
2024 from https://huggingface.co/datasets/KShivendu/dbpedia-entities- openai-
M

The Apache Software Foundation. 2024. Apache Cassandra® 5.0: Moving Toward
an Al-Driven Future. Retrieved April 12, 2024 from https://cassandra.apache.
org/_/Apache-Cassandra-5.0- Moving-Toward-an- Al- Driven-Future html
Cong Fu, Changxu Wang, and Deng Cai. 2022. High Dimensional Similarity
Search with Satellite System Graph: Efficiency, Scalability, and Unindexed Query
Compatibility. IEEE Transactions on Pattern Analysis and Machine Intelligence 44,
8 (2022), 4139-4150.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search with the Navigating Spreading-Out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461-474.

Jinyang Gao, HV. Jagadish, Beng Chin Ooi, and Sheng Wang. 2015. Selective
Hashing: Closing the Gap Between Radius Search and k-NN Search. In Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 349-358.

Jianyang Gao and Cheng Long. 2023. High-Dimensional Approximate Nearest
Neighbor Search: with Reliable and Efficient Distance Comparison Operations.
Proc. ACM Manag. Data 1, 2, Article 137 (2023), 27 pages.

Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional
Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor
Search. Proc. ACM Manag. Data 2, 3, Article 167 (2024), 27 pages.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product
Quantization. IEEE Transactions on Pattern Analysis and Machine Intelligence 36,
4(2014), 744-755.

Ruigi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. 2016. Quan-
tization Based Fast Inner Product Search. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics. 482-490.

Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,
Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, Zhenshan Cao, Yanliang Qiao,
Ting Wang, Bo Tang, and Charles Xie. 2022. Manu: A Cloud Native Vector
Database Management System. Proc. VLDB Endow. 15, 12 (2022), 3548-3561.
Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and
Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic Vector
Quantization. In Proceedings of the 37th International Conference on Machine
Learning. 3887-3896.

Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J. Smola.
2022. BLISS: A Billion Scale Index Using Iterative Re-Partitioning. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
486-495.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and

3061

[26]

&
=

[30

(31]

(32

[33

[35

[36

(38]

(39]

[41

[42]

[43

[44]

Pattern Recognition. 770-778.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017).

Guoyu Hu, Shaofeng Cai, Tien Tuan Anh Dinh, Zhongle Xie, Cong Yue, Gang
Chen, and Beng Chin Ooi. 2025. HAKES: Scalable Vector Database for Embedding
Search Service (Extended Version). https://github.com/nusdbsystem/HAKES-
Search/tree/main/extended-version

Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing. 604-613.

H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang. 2005.
iDistance: An Adaptive B*-Tree Based Indexing Method for Nearest Neighbor
Search. ACM Trans. Database Syst. 30, 2 (2005), 364-397.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. DiskANN: Fast Accurate Billion-Point
Nearest Neighbor Search on a Single Node. In Advances in Neural Information
Processing Systems. 13766-13776.

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33,1 (2011), 117-128.

Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.
Searching in One Billion Vectors: Re-Rank with Source Coding. In 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing. 861-864.
Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing. 6769-6781.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Struc-
tured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (2010), 35-40.

Yifan Lei, Qiang Huang, Mohan Kankanhalli, and Anthony K. H. Tung. 2020.
Locality-Sensitive Hashing Scheme Based on Longest Circular Co-substring. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 2589-2599.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim
Rocktischel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural Informa-
tion Processing Systems. 9459-9474.

Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. 2020. Improv-
ing Approximate Nearest Neighbor Search Through Learned Adaptive Early
Termination. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data. 2539-2554.

Wauchao Li, Chao Feng, Defu Lian, Yuxin Xie, Haifeng Liu, Yong Ge, and Enhong
Chen. 2023. Learning Balanced Tree Indexes for Large-Scale Vector Retrieval.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 1353-1362.

Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2020. Approximate Nearest Neighbor Search on High Dimensional
Data — Experiments, Analyses, and Improvement. IEEE Transactions on Knowl-
edge and Data Engineering 32, 8 (2020), 1475-1488.

Tianwei Lin, Wenqiao Zhang, Sijing Li, Yuqian Yuan, Binhe Yu, Haoyuan Li,
Wanggui He, Hao Jiang, Mengze Li, Song xiaohui, Siliang Tang, Jun Xiao, Hui Lin,
Yueting Zhuang, and Beng Chin Ooi. 2025. HealthGPT: A Medical Large Vision-
Language Model for Unifying Comprehension and Generation via Heterogeneous
Knowledge Adaptation. In Proceedings of the 42nd International Conference on
Machine Learning.

Zheyuan Liu, Cristian Rodriguez-Opazo, Damien Teney, and Stephen Gould.
2021. Image Retrieval on Real-Life Images with Pre-trained Vision-and-Language
Models. In 2021 IEEE/CVF International Conference on Computer Vision. 2105
2114.

Zepu Lu, Defu Lian, Jin Zhang, Zaixi Zhang, Chao Feng, Hao Wang, and Enhong
Chen. 2023. Differentiable Optimized Product Quantization and Beyond. In
Proceedings of the ACM Web Conference 2023. 3353-3363.

Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 4 (2020), 824-
836.

Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitian (Allen)
Ding, Ankit Shingavi, Choon Hui Teo, Hao Gu, and Bing Yin. 2019. Semantic
Product Search. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2876-2885.

Beng Chin Ooi, Shaofeng Cai, Gang Chen, Yanyan Shen, Kian-Lee Tan, Yuncheng
Wu, Xiaokui Xiao, Naili Xing, Cong Yue, Lingze Zeng, Meihui Zhang, and Zhan-
hao Zhao. 2024. NeurDB: an Al-powered autonomous data system. Sci. China
Inf. Sci. 67, 10, Article 200901 (2024), 10 pages.

https://github.com/jbellis/jvector
https://github.com/jbellis/jvector
https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M
https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M
https://cassandra.apache.org/_/Apache-Cassandra-5.0-Moving-Toward-an-AI-Driven-Future.html
https://cassandra.apache.org/_/Apache-Cassandra-5.0-Moving-Toward-an-AI-Driven-Future.html
https://github.com/nusdbsystem/HAKES-Search/tree/main/extended-version
https://github.com/nusdbsystem/HAKES-Search/tree/main/extended-version

[45]

[46

[47

[49]

[50

[51

[52

[53]

Ninh Pham and Tao Liu. 2024. Falconn++: A Locality-Sensitive Filtering Ap-
proach for Approximate Nearest Neighbor Search. In Advances in Neural Infor-
mation Processing Systems. 31186-31198.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. In Proceedings of the 38th International
Conference on Machine Learning. 8748-8763.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision 115, 3 (2015), 211-252.
Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou.
2019. Spreading Vectors for Similarity Search. In 7th International Conference on
Learning Representations.

Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, and Sanjiv Kumar. 2023.
SOAR: Improved Indexing for Approximate Nearest Neighbor Search. In Ad-
vances in Neural Information Processing Systems. 3189-3204.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2).

Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan,
Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua Mo,
Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-Built Vec-
tor Data Management System. In Proceedings of the 2021 International Conference
on Management of Data. 2614-2627.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang,
Rangan Majumder, and Furu Wei. 2022. Text Embeddings by Weakly-Supervised
Contrastive Pre-training. CoRR abs/2212.03533 (2022).

Mengzhao Wang, Weizhi Xu, Xiaomeng Yi, Songlin Wu, Zhangyang Peng, Xi-
angyu Ke, Yunjun Gao, Xiaoliang Xu, Rentong Guo, and Charles Xie. 2024.
Starling: An I/O-Efficient Disk-Resident Graph Index Framework for High-
Dimensional Vector Similarity Search on Data Segment. Proc. ACM Manag.
Data 2, 1, Article 14 (2024), 27 pages.

Weaviate. 2024. Weaviate. Retrieved April 12, 2024 from https://weaviate.io/
Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards

3062

[56]

[57]

o
&,

[59

[60]

[62

[63

[64]

Query Fusion for Structured and Unstructured Data. Proc. VLDB Endow. 13, 12
(2020), 3152-3165.

Shitao Xiao, Zheng Liu, Weihao Han, Jianjin Zhang, Defu Lian, Yeyun Gong, Qi
Chen, Fan Yang, Hao Sun, Yingxia Shao, and Xing Xie. 2022. Distill-VQ: Learning
Retrieval Oriented Vector Quantization by Distilling Knowledge from Dense
Embeddings. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 1513-1523.

Yuming Xu, Hengyu Liang, Jin Li, Shuotao Xu, Qi Chen, Qianxi Zhang, Cheng Li,
Ziyue Yang, Fan Yang, Yuqing Yang, Peng Cheng, and Mao Yang. 2023. SPFresh:
Incremental In-Place Update for Billion-Scale Vector Search. In Proceedings of
the 29th Symposium on Operating Systems Principles. 545-561.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.
2022. Learning Discrete Representations via Constrained Clustering for Effective
and Efficient Dense Retrieval. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining. 1328-1336.

Hailin Zhang, Yujing Wang, Qi Chen, Ruiheng Chang, Ting Zhang, Ziming Miao,
Yingyan Hou, Yang Ding, Xupeng Miao, Haonan Wang, Bochen Pang, Yuefeng
Zhan, Hao Sun, Weiwei Deng, Qi Zhang, Fan Yang, Xing Xie, Mao Yang, and
Bin Cui. 2024. Model-Enhanced Vector Index. In Advances in Neural Information
Processing Systems. 54903-54917.

Pengcheng Zhang, Bin Yao, Chao Gao, Bin Wu, Xiao He, Feifei Li, Yuanfei Lu,
Chaoqun Zhan, and Feilong Tang. 2022. Learning-Based Query Optimization
for Multi-probe Approximate Nearest Neighbor Search. The VLDB Journal 32, 3
(2022), 623-645.

Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai, Yaoqi
Chen, Yinxuan He, Yuqing Yang, Fan Yang, Mao Yang, and Lidong Zhou. 2023.
VBASE: Unifying Online Vector Similarity Search and Relational Queries via
Relaxed Monotonicity. In 17th USENIX Symposium on Operating Systems Design
and Implementation. 377-395.

Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan Li, and
Yongdong Zhang. 2020. How to Retrain Recommender System? A Sequential
Meta-Learning Method. In Proceedings of the 43rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. 1479-1488.

Zili Zhang, Chao Jin, Linpeng Tang, Xuanzhe Liu, and Xin Jin. 2023. Fast, Ap-
proximate Vector Queries on Very Large Unstructured Datasets. In 20th USENIX
Symposium on Networked Systems Design and Implementation. 995-1011.

Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. 2023. Towards
Efficient Index Construction and Approximate Nearest Neighbor Search in High-
Dimensional Spaces. Proc. VLDB Endow. 16, 8 (2023), 1979-1991.

https://weaviate.io/

	Abstract
	1 introduction
	2 Preliminaries
	3 HAKES-Index
	3.1 Overview
	3.2 Index Construction
	3.3 Learning Compression Parameters
	3.4 Search Optimizations
	3.5 Discussion

	4 The HAKES Distributed VectorDB
	4.1 Overview
	4.2 HAKES Design

	5 Evaluation
	5.1 Implementation
	5.2 Experiment Setup
	5.3 Index Benchmarking and Analysis
	5.4 HAKES-Index Analysis
	5.5 System Comparison

	6 Related Work
	7 conclusion
	Acknowledgments
	References

