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ABSTRACT

Analyzing unstructured data has been a persistent challenge in data
processing. Recent proposals offer declarative frameworks for LLM-
powered processing of unstructured data, but they typically execute
user-specified operations as-is in a single LLM call—focusing on
cost rather than accuracy. This is problematic for complex tasks,
where even well-prompted LLMs can miss relevant information.
For instance, reliably extracting all instances of a specific clause
from legal documents often requires decomposing the task, the
data, or both.

We present DocETL, a system that optimizes complex document
processing pipelines, while accounting for LLM shortcomings. Do-
CETL offers a declarative interface for users to define such pipelines
and uses an agent-based approach to automatically optimize them,
leveraging novel agent-based rewrites (that we call rewrite direc-
tives), as well as an optimization and evaluation framework. We
introduce (i) logical rewriting of pipelines, tailored for LLM-based
tasks, (ii) an agent-guided plan evaluation mechanism, and (iii)
an optimization algorithm that efficiently finds promising plans,
considering the latencies of LLM execution. Across four real-world
document processing tasks, DocETL improves accuracy by 21-80%
over strong baselines. DocETL is open-source at docetl.org and,
as of March 2025, has over 1.7k GitHub stars across diverse domains.
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1 INTRODUCTION

Large Language Models (LLMs) have taken the world of data man-
agement by storm, with applications ranging from data integration,
to tuning, to query optimization, to data cleaning [12]. There has
also been an interest, all in the last few months, in declarative ap-
proaches to process unstructured data using LLMs [1, 29, 30, 38].
These systems, instrumented as extensions to the relational model
for processing textual columns, typically assume the text snippets
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per row are small and easy to process. They therefore focus on re-
ducing cost, while keeping accuracy almost the same. However,
for many real-world tasks, that we refer to as complex document
processing tasks, accuracy can be a significant bottleneck, limiting
practical utility. Here, complexity can stem from the documents or
the nature of the processing task, or both. Consider this scenario
from our collaborators on the Police Records Access Project!:

Example 1.1 (Police Misconduct Identification). Journalists at Berke-
ley’s Investigative Reporting Program want to analyze a large cor-
pus of heterogeneous police records, obtained through records
requests, to uncover patterns of misconduct and procedural vio-
lations. Records include police reports, court transcripts, internal
affairs and medical examiner reports, and other case files, often
spanning hundreds of pages each. Analysis involves extracting
key information from long documents, aggregating information
across documents to identify behavioral patterns for each officer,
and generating summaries highlighting concerning trends.

Example 1.1 is representative of complex document processing
tasks across domains including law, medicine, and social science.
Consider a simpler version of this task, where we just want a sum-
mary of the role of each officer mentioned in each complex police
record document, each with hundreds of pages. This task can be
expressed as a single-step map operation applied to the OCR out-
put per document, in one LLM call, with a user-provided prompt
defining terms like “misconduct.” All existing systems [1, 29, 30, 38]
would simply execute the map operation, as is, with one LLM call
per document. That is, they assume user-defined operations will
yield sufficiently accurate results when executed by the LLM,
and focus primarily on reducing cost. However, this map operation
may provide poor accuracy for multiple reasons. First, the docu-
ment in question may exceed the LLM’s context limit. Even if it fits,
outputs may omit certain instances of misconduct, or include spu-
rious information. Recent work has shown that LLM performance
degrades considerably as length increases [27], because they can be
distracted [47] or selectively pay attention to certain portions [31],
failing to gain a holistic understanding [4, 22, 49, 56]. Simultaneous
theoretical work has shown that this degradation is due to limits
in the transformer architecture [23, 39, 48]. While one could apply
prompt compilation [26, 54] to identify a better prompt, this relies
on examples, which are either not present or are too long to include
(e.g., an example document with hundreds of pages)—but irrespec-
tive do not fix the underlying challenges with LLMs performing a
complex task on complex documents.

Our key insight is that the quality of LLM outputs is often not
adequate for complex data processing—we cannot simply treat the
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Figure 1: Optimization for a pipeline designed to accomplish the task in Example 1.1. The diagram illustrates the system mid-optimization of
the initial map operation. DocETL employs LLMs to synthesize new plans using novel rewrite directives. The process begins with an LLM
verifier determining if an operation is sufficiently optimized. If not, rewriting continues. Notably, when a new operation is synthesized as part
of a rewrite, it undergoes immediate opportunistic optimization, as shown by the nested “Apply Rewrites (Agent)” rectangles.

existing user-provided operators as fixed. Instead, we need to con-
sider novel rewrites that decompose complex but error-prone
operation(s) into a sequence of simpler and more accurate op-
erations. For our map example, a different sequence of operations
may increase accuracy. One such example is map — map, where
the first map is tasked with removing all portions of each input
document that do not pertain to misconduct (e.g., medical reports),
while the second map is the single-step map above. Or we could
replace the first map with one that summarizes each sequence of
k paragraphs into one, keeping the second map as is. Yet another
option is to replace the single-step map with what we call split —
gather — map — reduce—a pattern that first splits the document
into contiguous chunks; then, for each chunk, gathers k neighbor-
ing chunks before/after as context or background to be included
into a prompt, generates per-officer summaries using its 2k neigh-
bors as background context (map); and finally, performs a global
summarization across all chunks (reduce).

However, we cannot expect a user to rewrite their pipeline
into multiple alternatives and determine the one with the best
performance. The previous paragraph introduced three out of
a multitude of potential rewrites, each of which could be recur-
sively applied to operators in a pipeline, presenting a seemingly
infinite set of options. For example, for the map — map pipeline,
there are many alternatives for what the first map could do, and
many different associated prompts. Even if we decide to use the
first map to summarize k chunks at a time, determining the right
value for k is challenging. Likewise for split — gather — map —
reduce. Moreover, we're just focusing on the first step of the overall
goal in Example 1.1, which is to summarize misconduct across all
documents. So, we may need to apply a reduce operation across
documents to group and summarize misconduct extractions by offi-
cer. However, the same officer may be extracted as “Officer Smith”
in one document and “J. Smith” in another, resulting in separate, in-
complete summaries for what should be a single officer [37]. It’s not
entirely clear how one would implement this form of entity resolu-
tion, and no current systems support it. In fact, additional context
from the original document(s) may be necessary to determine if the
two officers with the same name are identical. Finally, LLMs might
struggle to recognize that multiple documents are from the same
case, leading to overrepresentation of incidents in the misconduct
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summaries [52]. Overall, even an LLM expert would need exten-
sive experimentation to design an accurate pipeline, given the
dependency on the data, task, and LLM capabilities. This com-
plexity underscores the need for a system that can automatically
explore and evaluate different task decomposition strategies to find
the most effective pipeline for a given task and dataset.

We present DocETL, our first attempt at developing a declara-
tive system optimized for accurate complex document process-
ing. DocETL provides a declarative YAML-based interface for users
to author pipelines with LLM-specific operators, including two new
ones: resolve for entity resolution, and gather to maintain context
when processing document chunks. Users can specify their pipeline
at a high level with DocETL decomposing, rewriting, and optimiz-
ing the pipeline. DocETL introduces an agent-based framework to
rewrite user-specified pipelines into alternative ones, as shown in
Figure 1. Rather than simply relying on agents as-is, which can
be error-prone, we guide them to rewrite query plans using novel
rewrite directives that we identify. We call these directives instead
of rules because they are abstract guidelines interpreted by LLMs
based on task and data characteristics, with infinitely many concrete
instantiations. We further leverage an agentic framework to evalu-
ate the resulting pipelines. Since evaluation can be expensive, we
develop an optimization approach inspired by Cascades [16], where
we use a top-down rule-based strategy to generate and evaluate a
space of equivalent plans, opting to opportunistically decompose
(or rewrite) complex or error-prone operations into simpler ones.

DocETL is open-source and available on GitHub?. As of March
2025, it has already amassed 1.7k+ GitHub stars, and has been
used for pipelines ranging from domain-specific analysis (e.g., le-
gal, climate science) to enterprise and personal productivity (e.g.,
analyzing customer support tickets, emails); over 400 users have
joined the corresponding Discord server.

Overall, finding optimal complex data processing pipelines is
impossible given the infinite search space, non-determinism of
LLMs, fuzziness of text, and ambiguity in task-specific success
criteria. However, even in these difficult settings, DocETL is able to
produce pipelines that are sufficiently accurate for practical needs,
as is evidenced by our adoption across domains. DocETL is able to
do so by leveraging the power of LLM agents in constrained ways, in
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conjunction with a powerful, but compact set of rewrite directives,
decomposition into processing units that can be validated, as well
as an opportunistic top-down exploration of the search space.

We make the following contributions in this paper:
(1) Novel Rewrite Directives and Agent-Driven Rewriting:
We identify 13 new rewrite directives designed for LLM-based
operators, addressing challenges unique to complex document pro-
cessing. Unlike traditional rewrite rules, LLM agents are used to
implement these directives. When a rule applies to a portion of a
pipeline, agents synthesize appropriate prompts and parameters
for new operations. For example, when decomposing a “summarize
instances of misconduct” operation into multiple ones, an agent
might create two steps: first, “list instances of misconduct given
specific types (e.g., excessive force),” followed by “summarize each
listed instance,” crafting suitable prompts for each new operation.
(2) Agent-Driven Plan Assessment: We also use LLM agents
to synthesize task-specific validation prompts for each operation,
which are used to assess output quality. For instance, to verify a
misconduct summary, an agent might create a prompt, “Does this
summary include all instances of misconduct from the document?”
Or, “Do all mentioned instances actually exist in the document?”
The agents then execute plans on sample data and evaluate outputs
using these custom prompts. This entire process happens without
the user having to provide or manually validate examples.
(3) Opportunistic Sub-plan Optimization: Unlike traditional
query optimizers that generate and evaluate a broad range of possi-
ble plans [6], we leverage an opportunistic top-down search strategy
as shown in Figure 1: when we use a rewrite directive to decom-
pose operators into new ones, we immediately optimize each new
operator. We first check if each such operator is sufficiently accu-
rate, based on the validation as described previously. If sufficiently
accurate, we no longer optimize that operator, focusing instead
on rewriting others. Thus, we opportunistically decompose (or
apply rewrite directives to) operators that are not sufficiently ac-
curate, Such an approach is necessary because enumerating and
evaluating all theoretically-possible plans would be prohibitively
time-consuming due to the inherent latencies in LLM operations.

We describe DocETL’s programming model and operators in
Section 2; our new LLM-centric rewrite directives in Section 3,
the agentic optimizer that applies them, and evaluates the result-
ing plans, as well as the overall framework for optimization in
Section 4. We present our initial evaluation in Section 5, where
we demonstrate that across four unstructured document analysis
tasks, DocETL finds plans that are 21 to 80% more accurate than
baselines. We discuss related work in Section 6.

2 DOCETL DSL AND OPERATORS

This section presents DocETL’s programming model and operators.

2.1 Programming Model

DocETL processes collections of documents. A document comprises
a set (or dictionary) of key (or equivalently, attribute)-value pairs,
represented as a JSON object. For example, a police record could
be a set of key-value pairs, where one key corresponds to the OCR
output of the PDF, while other keys could capture metadata such
as agency, file name, or creation date. A collection of documents
or dataset, is a JSON array. This data representation lets us handle
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various data types and degrees of structure and easily reference
data within operation prompts. Documents can be nested, e.g., a
police record may contain an array of related_documents that each
contain witness statements or evidence logs that are further nested.
DocETL DSL. DocETL employs YAML as its domain-specific lan-
guage (DSL) to define data processing pipelines, for several rea-
sons. First, YAML is flexible in accommodating complex multi-
line prompts and examples, as well as output schemas and valida-
tion mechanisms, while intermixing formatting with arguments in
Jinja [35]. Second, YAML is human-readable and doesn’t require
extensive coding expertise. Third, it is commonly used in industry
for describing data pipelines (Apache Airflow, dbt, Prefect) and
services (Kubernetes, Docker, Circle/Gitlab CI/CD). Finally, YAML
serves as a simple intermediate format for representing the Do-
CETL-optimized pipelines for human inspection, as well as for our
no-code interface. That said, our optimization techniques are not
dependent on YAML and are also applicable to other frameworks.
DocETL Pipelines. A DocETL pipeline, expressed in YAML, de-
scribes a sequence of operations. Each operation specifies its opera-
tor type, input source, prompt template, and output schema. The
input source can be either the original dataset or the output of a
previous operator. We refer to this input using pre-defined variables
input or inputs depending on whether the input cardinality is one
or many. The pipeline begins with dataset definitions, which serves
as the initial input. As operators process data, they generate output
obeying their schemas, which subsequent operators can then use.
This structure allows for flexible and modular pipeline composition.
DocETL supports a default model for the entire pipeline, with the
option for per-operation model specifications.

Fault Tolerance. When executing an LLM-powered operator for
many input documents in a pipeline, some operations may occasion-
ally fail to adhere to the given prompt. While prior work assumes
reliability in LLM outputs [1, 30, 38], DocETL explicitly addresses
this variability: for each operator, users can specify validations as
Python statements that evaluate to true or false, referencing doc-
ument and output attributes. If any validation fails, the operation
retries, using context from the failure to improve the likelihood of
success in subsequent attempts.

2.2 LLM-Powered Operators

Here, we describe the LLM-powered operators in DocETL. Table 1
summarizes our operators; detailed syntax can be found in our
documentation?, and more thorough descriptions can be found in
our tech report [43]. Most operators are LLM-versions of classic
data processing operators, however, we introduce a new resolve
operator, used to canonicalize variations in specific attribute values.
In the following, for succinctness of description, we often conflate a
document—a JSON object comprising key-value pairs and the basic
unit of processing in a dataset with its textual content, typically a
value for a specific key within the JSON object.

2.2.1 Map The map operator applies an LLM-powered projection,
also known as a semantic projection, to each document in the dataset.
Let’s consider an example of a map operation:

1 - name: extract_officer_misconduct
type: map

Shttps://www.docetl.org/
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Table 1: DocETL’s operator suite, divided into operators that leverage LLMs for semantic processing and auxiliary operators (*) that handle
data manipulation. For each operator, we show the required user configuration and a high-level description of its functionality.

Operator User Configuration Description
Map Prompt, output schema Uses an LLM to execute a transformation per document, adding resulting new keys to the schema (and optionally omitting existing ones).
Parallel Map ~ Multiple prompts, output schemas Uses an LLM to execute multiple independent transformations on each document in parallel, adding the new keys to the schema.
Reduce Group-by keys, prompt, output schema ~ Uses an LLM to aggregate groups of documents sharing the same key values into one new document per distinct value.
Filter Prompt returning boolean Uses an LLM to evaluate a condition per document, retaining only those where the condition is true.
Resolve Comparison prompt, resolution prompt ~ Uses an LLM to identify values for a given key(s) that fuzzily match across documents and generate canonical versions per group of values, replacing
them in-place in the documents.
Equijoin Comparison prompt Uses an LLM to determine if pairs of documents from two datasets should be joined based on fuzzy/semantic matching of the corresponding keys.
Unnest* Array/dict field to unnest Flattens nested data structures by either creating separate documents from array elements or merging nested dictionary fields into parent documents.
Split* Split key, chunk size Divides documents into smaller chunks based on token count or other criteria, creating as many new docs as there are chunks.
Gather” Context window configuration Augments each chunk with context from surrounding chunks based on specified configuration (e.g., previous and next chunk counts), keeping the
set of documents the same.
5 output: Figure 2: Reduce’s iterative folding. Each batch takes several docu-
schema: ments and the current scratchpad as input (left), and updates the
5 misconduct: "list[{officer_name: str, misconduct_instance: str}]" . . .
(’ T { 3 mention counts in the scratchpad and accumulated output (right).
. . . . “Find all the names that
Ana%yze the following police record: appear more than once”
8 {{ input.document }}

9 Extract any instances of officer misconduct or procedural violations. For
each instance, provide the name of the officer involved and a brief
description of the misconduct or violation.

This operation processes each document independently, using the
specified prompt. The output schema is a list of key-value pairs
(of officer names and misconduct instances). This flexible, semi-
structured output format allows for varying numbers of misconduct
instances per document. DocETL supports prompts using Jinja2
templates, where “{{ input.document }}” allows for insertion of the
current document’s content. This functionality permits complex
prompts with conditional logic (as we will see later). When applied,
the map operation adds the new attributes specified in the output
schema to the existing document. Users can override this behavior
and return a subset of attributes by specifying a drop_keys list.
DocETL also supports parallel maps, where multiple indepen-
dent transformations can be applied in parallel to each document.
For example, one may extract misconduct while another summa-
rizes relevant policies. Each operation enriches input documents
with new attributes and can run in parallel rather than serially.

2.2.2  Reduce The reduce operator aggregates information across
multiple documents based on a set of user-specified keys, ultimately
producing one output document per unique combination of attribute
values. For instance, for reducing police reports, the key set might
include of ficer_name and incident_date, allowing for the grouping
of all reports involving a specific officer on a particular date. Users
can define prompt templates that access the grouped documents
via {{ inputs }} (a list of documents sharing the same key values)
and the specific key values for the current group via {{ reduce_key
}}. By default, reduce operations are assumed to be associative,
meaning that the order in which documents are processed does
not affect the result. However, if the order is significant, users can
specify associative: False in the operation definition.

A challenge arises when any given group of documents is too
large for the LLM to correctly process. One could use folding or hier-
archical merging to process the data in manageable batches [7, 17].
In folding, each input is serially processed, with an update to an
accumulator (or aggregate), while hierarchical merging recursively
aggregates inputs in a tree-like structure. DocETL currently imple-
ments a batched folding approach that starts with an empty accumu-
lator and sequentially folds in batches of more than one document at
a time. We chose folding because it permits non-associative reduce
operations and maintains the original order of inputs. For example,
when summarizing a textbook chapter, DocETL may chunk the

accum. output: “"
scratchpad: “Alice 1, Bob 1"

docs: [“Alice”, “Bob”]
scratchpad: “"

docs: [“Bob”, “Cathy”]
scratchpad: “Alice 1, Bob 1"

docs: [“Alice”, “David"] accum. output: “Bob, Alice”
scratchpad: “Cathy 1, Charlie 1" scratchpad: “Cathy 1, David 1"

accum. output: “Bob”
scratchpad: “Alice 1, Cathy 1"

£USIEqPIod ZYSNEqPIod L YDIeq PIod

text into sections, summarize each one, and then employ reduce to
summarize the section summaries—a process that requires preserv-
ing the original reading order. DocETL automatically determines
an optimal fold batch size when building the pipeline.

To implement folding, users can provide (or DocETL can gen-
erate) a separate fold_prompt, which references the accumulated
output and a batch of new inputs to fold into that output. We en-
hance the system prompt to allow the LLM to write extra notes
to a scratchpad [34]—a technique that has been shown to improve
accuracy by allowing it to maintain state. During each LLM call, we
provide the current scratchpad along with the accumulated output
and new inputs. The LLM returns both the updated accumulated
output and scratchpad, which are passed to the next fold operation.
Figure 2 depicts folding for a task to identify names of people men-
tioned more than once across documents. The scratchpad tracks all
mentions of names. As each batch is processed, the LLM updates
the scratchpad with new mentions and adds to the accumulated
output any person now mentioned more than once.

2.2.3 Resolve This operator canonicalizes one or more keys across
documents that represent slight variations of the same entity. Here,
resolve reconciles small variations in officer names extracted as
part of the map described in Section 2.2.1:

1 - name: resolve_officer_names

2 type: resolve

3 comparison_prompt: |

4 Compare the following two officers from police records. Officer {{
inputl.officer_name }} mentioned in: {{ inputl.record_txt }} and
Officer {{ input2.officer_name }} mentioned in: {{ input2.record_txt
}} Are these names referring to the same officer?

5 resolution_prompt: |

6 The following names correspond to the same officer:

{% for input in inputs %}

8 Name: {{ entry.officer_name }}

9 {% endfor %}

10 Provide an officer name (first and last) that best represents the matches.

11 output:

12 schema:

13 officer_name: string

The user simply specifies how to detect variations, and how
to canonicalize them. For instance, “comparison_prompt” checks
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whether two officer names are the same, while “resolution_prompt”
chooses a canonical officer name from a list. DocETL then uses these
prompts to compare and resolve the officer names. After this opera-
tion, the number of documents stays the same. The output schema
specifies attributes to replace or add (if new) to each document.
Resolve often follows unnest (Section 2.3.1), which flattens nested
data structures. For example, in our police misconduct pipeline,
after unnesting, each document would have distinct of ficer_name
and misconduct_instance keys, allowing for name resolution across
all mentions in the dataset. Note that users don’t need to explicitly
define the resolve operation in their pipeline; DocETL will auto-
matically synthesize them if needed to ensure consistent entity
references across the dataset. We will discuss how DocETL assesses
the benefit of such rewrites in Section 4.1.

2.2.4  Other Operators While expressible using map and reduce,
the following operators are added for convenience. We plan to
add other operators (e.g., sort) in the future. Filter retains docu-
ments based on a condition specified in an LLM prompt, which uses
a Jinja2 template referencing one or more document keys. Equi-
join joins two datasets by comparing documents in pairs, using
a comparison_prompt designed to elicit a binary answer from the
LLM, referencing the documents as left and right. The equijoin
operation doesn’t require an output schema, as the left and right
documents are merged to produce the results.

2.3 Auxiliary Operators

We present three essential operators that are not powered by LLMs,
used as auxiliary steps to express complex tasks.

2.3.1 Unnest The unnest operator expands an array or dictionary
into individual elements. For example, if a map extracts multiple
officer names from police interrogation transcripts, each document
may contain an array of names. To analyze officers individually
across multiple interrogations, unnest creates a separate document
for each officer name, effectively flattening the data. This operation
can also elevate attributes from nested dictionaries, making them
directly accessible for downstream processing.

2.3.2  Split The split operator divides long text into smaller chunks.
It requires a split key (the text attribute), a split method (token or
delimiter), and method-specific parameters (e.g., delimiter or chunk
size). It generates unique identifiers and sequential numbers for
each chunk to enable reassembly later in the pipeline. Resulting
documents inherit the other attributes from the original documents.

2.3.3 Gather The gather operation complements the split opera-
tion by augmenting individual chunks with peripheral information
necessary for understanding the chunk’s content. Conceptually,
gather is similar to windowing in SQL, as both allow ordered access
to data beyond the current row or chunk, but gather is specifically
designed for LLM-based processing. For example, in a transcript
split into chunks, a chunk containing pronouns (e.g., “he” or “she”)
may lack speaker names, making it hard to understand. . Figure 3
demonstrates different ways to render chunks. The gather operation
is highly flexible in rendering contextual information, allowing for
the inclusion of full chunks (as in (ii)), portions of chunks (as in (i)),
or transformations (e.g., summaries) of chunks (as in (iii)). Impor-
tantly, there may be map operations between the split and gather
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steps—allowing for the generation of additional context (such as
summaries) that can be used to augment each chunk, before down-
stream processing. The output adds a new attribute to each input
document, containing the rendered chunk with its peripheral con-
text, with with special tags that demarcate what is the chunk and
what is peripheral context.

Overall, in designing the DocETL DSL, we unified various single-
document transformations (e.g., extraction, summarization) un-
der map and filter operators, letting users express intent through
prompts rather than learning multiple specialized operators. But for
cross-document operations, we created distinct operators that cap-
ture specific processing patterns. For example, while resolve could
theoretically be implemented using equijoin, reduce, and another
equijoin, having a dedicated operator allows us to know that the
user’s intent is actually entity resolution, so we can better optimize
the pipeline. Additionally, we distinguish gather from reduce be-
cause they serve different purposes: reduce performs many-to-one
aggregation, whereas gather preserves cardinality while enriching
documents with context—similar to SQL windowing functions.

3 REWRITE DIRECTIVES

We now introduce the rewrite directives that DocETL currently
supports. We call these directives to indicate that they are abstract
frameworks, with somewhat ambiguous semantics, that can be
concretely instantiated by LLM agents in a multitude of ways, as
opposed to rules, which are more concrete, complete, and robust.
These directives are primarily designed to optimize the quality
of outputs from DocETL pipelines through logical decomposition
of individual operations. We focus on rewrite directives for map,
reduce, and equijoin operators, with filter operators also supported
through the application of map rewrite directives. We organize our
rewrite directives into three main categories: data decomposition,
projection synthesis, and LLM-centric improvements.

Throughout this section, we adopt the following notation: given
operators A and B, we denote their composition as A — B, where
(A — B)(D) = B(A(D)). For independent execution of operators,
we use A || B to indicate that A and B are executed on the same
input, independently. For readability, we may drop arguments—
e.g., Map, (D) becomes Map,.. Similarly, we omit subscripts except
when the same operator appears in multiple places. We further
refer to the text content of the document, usually stored as one of
the attributes, interchangeably with the document itself, for sim-
plicity. The arrow = denotes a (semantic) rewrite of the operator
(or operator sequence) on the left into the form on the right.

3.1 Data Decomposition

Data decomposition is crucial when dealing with large documents,
or when there are too many documents to fit in a prompt and get an
accurate result for. We present two categories of rewrite directive
here: document chunking and multi-level aggregation.

3.1.1  Document Chunking (Map) Large documents often exceed
LLM context windows or effective reasoning capabilities, leading
to incomplete or inconsistent results. Our primary rewrite directive
for this case, which we call the split directive, is:

(©) (4) (5)
—> Gather — Map, — Reduce

Map, = @) Split (1)
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Figure 3: Split-Gather Pipeline: Illustration of processing a single long document. The split operation divides a long document into manageable
chunks. The gather operation then augments each chunk with relevant context from peripheral chunks. The image demonstrates three
different ways of rendering chunk 3 (i.e., three different gather configurations): (i) including fractional parts of surrounding chunks, (ii)
including the full content of the first chunk, and (iii) including summaries of all previous chunks.

Ignoring the purple annotations, this directive rewrites map to:
split the document into multiple chunks, gather peripheral context
for each chunk, apply a modified map operation per chunk, and
reduce the results. The prompt for Map, may explicitly state that
only a portion of the original document is being processed. To pro-
vide more flexibility and optimization opportunities, we introduce
smaller decomposition directives, for steps (2)—(5) above:

Split = Map — Split 2)

Split — Gather = Split — (Map, || Map;,) — Gather  (3)
Gather = Gather — Filter (4)

Gather — Map = Gather — Map — Unnest (5)

When splitting a document, three types of context prove partic-
ularly useful: document-level metadata, hierarchical information,
and summaries of neighboring chunks. The smaller decomposition
directives address these and other aspects of document processing:
Document-Level Metadata Extraction (2): This directive in-
troduces a map immediately prior to splitting, enabling the ex-
traction of metadata relevant to all chunks. For example, when
analyzing a legal contract, we might extract the contract date
and parties involved from the first page, passing this information
to every chunk to be rendered as part of a subsequent gather.
Header Lineage Context and Summarization (3): This di-
rective introduces two independent map operations: Map,, for
extracting hierarchical information (e.g., headers), and Map, for
generating summaries of chunks. This allows us to provide each
chunk with its relevant hierarchical context (e.g., parent headers
for headers in a chunk) and/or a summary of preceding content.
Chunk Filtering (4): Not all parts of a document may be rele-
vant for processing. This directive introduces a filter step after
gathering context, allowing us to exclude irrelevant chunks. This
filter can be inferred; for instance, when processing a scientific
paper, we might filter out acknowledgments or references sec-
tions if they’re not pertinent to the analysis task; but they could
still be used as context for other chunks if needed.

Flattening Nested Results (5): When processing chunks with
gathered context, map might produce nested results. This di-
rective introduces an unnest operation to flatten these results,
simplifying downstream processing. For example, if each chunk
produces a list of extracted entities, unnesting would flatten these
lists into a single collection of entities across all chunks.

3.1.2 Multi-Level Aggregation (Reduce) Large-scale aggregations
can benefit from a hierarchical approach, aggregating data at a finer
granularity before rolling up to the desired level. This decomposi-
tion is based on a semantic hierarchy in the data:

(6)

Reduceg,» = Reducegyk’,y — Reduceg .
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Here K is the reduce key, e.g., K = {state}, and K’ represents ad-
ditional keys for finer granularity, e.g., K’ = {city}. y and z are
LLM-powered aggregations for the sub-reduce and final reduce
operations. For example, when summarizing voting patterns by
state from social media posts, we might first aggregate data by
state and city (Reduce(state,city},y)> then combine these city-level
summaries to the state level (Reducestate), ). This approach can
capture nuances that might be lost in a single, large-scale aggrega-
tion, and allows for intermediate validation.

3.2 LLM-Centric Improvements

This category addresses unique behaviors of LLMs that can be
leveraged for optimization. We present two categories of rewrite
directive: gleaning and duplicate resolution.

3.2.1 Gleaning (Map and Reduce) For this directive, we rely on the
insight that when prompted with the previous inputs and outputs,
and asked to improve the outputs, an LLM can iteratively refine
the output. While iterative refinement has been implemented for
knowledge graph entity extraction [10], we generalize this concept
into a rewrite directive applicable to any map or reduce task. Our
approach, which we call gleaning, employs separate data processing
and validator LLM steps to iteratively improve output quality. We
formalize the gleaning process for map operations as:

Map = Map — (Map, — Mapi)gk 7)

Here, k represents the maximum number of refinement iterations,
Map,, is a validation operation, and Map; is a refinement operation.
The process works as follows:

(1) Init: run the original map on the input document.

(2) Eval: separate validator (Map,,) checks output based on original
prompt, init’s output, and a task-specific validation prompt. The
validator determines if refinement is needed and describes how
to improve the output, if so.

Refine: we use a refinement map (Map;) to improve the previous
iteration’s output based on validator feedback. Importantly, this
step retains the chat history, including the original prompt,
its previous response, and the validator’s feedback, so it can
iteratively refine.

(4) Iterate: repeat up to k times, or no further refinement is needed.

®)

A similar approach can be applied to reduce operations:

Reduce = Reduce — (Map, — Reduce;) <k

®)

For reduce operations, the refinement is applied at the level of a
group, not to individual documents.

3.2.2 Duplicate Key Resolution (Reduce) A big challenge in LLM-
powered data processing is that grouping, aggregation, and sum-
marization is difficult due to the fact that LLM outputs are not
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missing from the output. A validation agent (LLM-powered) identifies this omission and provides feedback. The original LLM incorporates this
feedback in a second pass (shown with purple arrows), resulting in a more complete final output that includes both Officer X and Officer Y.

canonicalized, and may contain many semantic duplicates. To ad-
dress semantic duplicates in reduce keys, especially those derived
from LLM-powered operations, we introduce resolve operations:

Reduceg x = (Resolvey, || ... || Resolver, ) — Reduceg  (9)

Where {ki,...,km} C K are each a disjoint subset of keys to be
resolved. Each Resolvey, operation consolidates semantically equiv-
alent values for the key k;. We introduce this rewrite directive to
address the inherent variability in LLM outputs: when LLMs are
used to generate keys for reduce operations, they may produce
semantically equivalent but syntactically different values. For ex-
ample, “New York City,” “NYC,” and “The Big Apple” might all refer
to the same entity. Without resolution, these would be treated as
separate keys, leading to inaccurate aggregations.

3.3 Projection Synthesis

Projection synthesis strategies are inspired by projection pushdown
optimizations in database systems. While selections (and selection
pushdown) can also be synthesized, we did not implement this, as
we found that agents are not very effective at determining whether
certain data could be relevant to the query (they are overly biased
by prompt wording and tend to be overly inclusive). Moreover, since
an LLM-based selection is just as costly as a map, as both require
an LLM call for every document, we focused on map operations
that shrink the size of documents through a form of projection. We
present several instances of projection synthesis directives:

Map, = Mapx1 — Mapx2 " Mapxn (10)
Map, = (Mapy1 I Map,, [| <<l Mapym) — Reduce (11)
Reduceg , = Mapy — Reduceg , (12)
Equijoin, = (Mapy’L | Map, g) — Equijoin,, (13)

Chaining (10): This directive chains simpler projections for
complex map operations, useful when a map prompt contains
multiple instructions. Each Map,, builds on the previous result.
For example, a legal document analysis could involve chained
steps: extract clauses, summarize, and generate recommenda-
tions.

Isolating (11): For map operations with independent subtasks,
this directive splits them into separate projections to run in par-
allel, followed by a reduce step. For instance, customer feedback
analysis could involve isolated projections to classify sentiment,
identify features, and flag urgent issues.

Pre-Aggregation (12): This directive filters and projects relevant
data from each document before a reduce operation, improving
both efficiency and the quality of the aggregation. For example,
when summarizing shipping-related feedback by product cate-
gory, each detailed review could first be projected into a concise
summary of shipping comments, before aggregation.
Pre-Joining (13): For complex equijoin operations, this direc-
tive preprocesses documents before joining. It is useful when
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direct comparison is computationally expensive—for example,

matching research papers to funding opportunities could involve

projecting papers to a short list of key themes and funding de-
scriptions to criteria before joining.

One may wonder why each operator has its own directive (e.g.,
map before reduce, map before equijoin). This is because the criteria
for applying the directive differ by operator. For example, in pre-
joining, the LLM agent evaluates factors like the sufficiency of
current keys and long/large attributes. If beneficial, it generates
a prompt to create a new key-value pair for a more relevant data
representation. Similarly, for other operators, the agent considers
operator-specific factors to determine the directive’s applicability.

4 OPTIMIZER

Here, we detail DocETL’s query planning and optimization pro-
cess. Users define their pipeline in a pipeline.yaml file, then run
docetl build pipeline.yaml to generate a new YAML file with an
optimized pipeline. DocETL’s optimization involves two types of
agents: Generation agents, which apply logical rewrite directives to
create candidate plans (see “Apply Rewrites (Agent)” boxes in Fig-
ure 1), and Validation agents, which generate custom prompts to
assess the quality of these plans. Per operation or sub-pipeline,
validation agents evaluate candidate sub-plans on a data sample to
select the optimal one, as shown by the green (selected) and gray
(evaluated but not selected) sub-plans in Figure 1; we will describe
both steps next. Our framework is reminiscent of top-down ap-
proaches like Cascades [16], but differs in its expansion criterion
(using directives) and sub-plan evaluation via LLM-based valida-
tion. Unlike traditional cost-based optimizers, we focus on accuracy,
with cost and latency constraints to be addressed in future work.

4.1 Optimization Approach

DocETL employs a top-down optimization approach that considers
both individual operations and sub-pipelines, as visualized in Fig-
ure 1. We move from left to right, opting (recursively) to decompose
any operations for which the accuracy is inadequate (as determined
by the LLM validators). We summarize the process:

(1) Pipeline Traversal and Sub-pipeline Identification: We
iterate through the pipeline from input to output (left to right).
For each operation, we consider whether it, along with a suffix of
the already-optimized operations to its left, forms a sub-pipeline
that matches any rewrite directive. If no matching sub-pipeline is
found, we treat the current operation as a single-operation sub-
pipeline to optimize. For each identified sub-pipeline: (i) we use the
validation agent to synthesize a custom validation prompt tailored to
the specific task described by the sub-pipeline, and (ii) the validation
agent examines a sample of outputs using this prompt to determine
if there’s room for improvement. If the agent concludes that the
current implementation is satisfactory, we move on to the next
operation without further optimization, as shown by the no-change



(“NC”) paths in Figure 1. Pseudocode can be found in our technical
report [43].
(2) Rewrite Directive Application and Recursive Optimiza-
tion: When optimization is needed, we apply matching rewrite
directives to the sub-pipeline or individual operation. As illustrated
in Figure 1, we explore rewrite directives from Section 3. For each
applicable directive, an LLM agent synthesizes new operations and
configurations (e.g., prompts, output schemas) to match the direc-
tive. On the creation of a new operation, we immediately optimize
it, recursively, before continuing with the current optimization, as
shown by the nested “Apply Rewrites” rectangles in the figure.
(3) Plan Evaluation and Selection: Multiple candidate plans
can arise from the rewrite directives, as depicted by the various
branches in Figure 1. We employ a two-stage evaluation process
to select the best plan: First, we execute each plan on a sample
of data and use the validation agent to rate the output for each
document, computing an average rating per plan. We then select
the top k rated plans (currently set to 6) for further comparison.
Next, the agent performs pairwise comparisons between these top
plans, evaluating their outputs against each other. The plan with
the most “wins” in these comparisons is selected as the optimal plan
for the current sub-pipeline or operation, represented by the green
boxes in Figure 1. This hybrid approach balances efficiency and
accuracy in plan evaluation, as pairwise comparisons are known
to be ideal for assessing relative quality [32, 37], but with poten-
tially 100+ candidate plans generated, comparing all pairs becomes
computationally infeasible.
(4) Pipeline Update: We integrate the selected optimized plan
into the pipeline, replacing the original operation or sub-pipeline.
To execute candidate plans (so we can compare their outputs),
we sample data based on document size (larger documents have
higher selection probability). As we optimize each sub-pipeline, we
track its selectivity ratio (output documents / input documents)
and use these ratios to adjust sample sizes for later operations.
For example, if the first two operations have selectivities of 0.5
and 0.3, we increase the initial sample size by (1/0.5/0.3) ~ 6.67
when optimizing the third operation. This ensures sufficient data
for optimization even after selective operations. However, sample
documents may not fully represent the complete dataset; e.g., if
the sampled documents fit within LLM context limits but some
documents in the full dataset exceed them, we may encounter
errors during full execution. We are developing methods to adapt
plans accordingly during pipeline execution time.

4.2 Agent and System Implementation

Our generation agents apply rewrite directives to create diverse
candidate plans, synthesizing appropriate configurations that en-
compass both logical choices (e.g., prompts, output schemas) and
physical parameters (e.g., chunk sizes, batch sizes), akin to how
traditional DBMSes maintain a logical-physical separation [15]. For
physical parameter selection, where directly asking an LLM for op-
timal values (e.g., “what’s the best chunk size for this document?”)
would be unreliable, our optimizer selects them empirically by gen-
erating candidate configurations, executing them on sampled data,
and ranking results based on task-specific criteria. For chunk size de-
termination in map operator decomposition, DocETL dynamically
generates eight candidate chunk sizes: five based on percentages
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(15% to 75%, uniformly sampled) of the LLM’s token limit, and six
based on percentages (15% to 100%, uniformly sampled) of the av-
erage document length. For possible gather operations, DocETL
evaluates multiple peripheral context strategies for each chunk size:
(1) no peripheral context, (2) one previous chunk, (3) 1 previous and
subsequent chunk, (4) number of previous chunks sized proportion-
ally to the square root of the ratio of document size to chunk size,
(5) 5 previous and 2 subsequent chunks for very small chunks (i.e.,
chunks <10% of document size), and (6) a summary of all previous
chunks for small chunks (<20% of document size). Similarly, to
determine fold batch size, DocETL empirically generates five candi-
date configurations at specific ratios of the model’s maximum token
limit (20%, 40%, 60%, 75%, and 90%). During optimization, our LLM
agent generates two types of blocking rules to reduce unnecessary
LLM comparisons when matching documents: embedding-based
filtering, which only compares documents with cosine similarity
above a threshold (tuned to recall 95% of true matches), and custom
Python filters to eliminate obvious non-matches. Detailed strategies
and empirical observations for each parameter selection approach
are available in our technical report [43].

Our validation agents assess sub-pipeline effectiveness by synthe-
sizing explicit validation criteria for each operator around accuracy,
precision, and recall, rather than simply checking adherence to
operation prompt instructions. Agents generate multiple criteria
that evaluate different aspects of the output (e.g., for officer miscon-
duct extraction, checking both supporting evidence and absence of
hallucinations). By decomposing validation into specific and differ-
ent testable properties, we enable more reliable evaluation [44, 46].
Moreover, agents evaluate outputs on a sample of data against these
criteria to determine if further optimization is needed and compare
plans. Our approach helps manage LLM validation uncertainties,
while remaining practical for applications where traditional accu-
racy metrics and ground-truth may be undefined.

DocETL uses GPT-4o for optimization by default (though GPT-
40-mini is supported), while pipeline execution supports any LLM
with tool calling capabilities. The system is implemented in Python
(16K lines) with performance-critical components for resolve and
equijoin execution, such as blocking rules, in Rust (2K lines).

5 EVALUATION

The primary goal in our evaluation is to show that DocETL’s rewrite
directives and optimization framework improves our ability to au-
tomatically analyze complex documents—all with no training labels
or developer intervention needed. While finding optimal plans is
impossible, we demonstrate that DocETL’s approach of systemati-
cally decomposing tasks and documents to explore a search space
of processing strategies yields plans that are sufficiently accurate.

Overall, we find that DocETL’s plans yield 21% to 80% im-
provements in task-specific accuracy metrics such as precision,
recall, and F1 score. We first consider three complex document
processing tasks: legal contract analysis, declassified article analy-
sis, and video game review analysis (Sections 5.1 to 5.3). These tasks
represent different challenges: extracting structured information
embedded within the semantic content of unstructured data, resolv-
ing entities and summarizing their information across documents,
and reasoning about temporal consistency across long documents.
For the legal contract analysis (Section 5.1), we compare against



both recent LLM-powered systems (LOTUS [38], Palimpzest [30],
and Aryn [1]) and traditional NLP baselines using spaCy [20] or
NLTK [5]. For the video game review (Section 5.2) and declassi-
fied article (Section 5.3) tasks, we compare only against non-LLM
baselines, as LOTUS, Palimpzest, and Aryn lack support for entity
resolution and documents exceeding LLM context windows. For
each task, our evaluation includes both task-specific metrics (cus-
tomized variations of precision and recall) as well as a hallucination
rate to measure factual consistency. Then, we evaluate DocETL on
the challenging Biodex text classification task from Patel et al. [38],
where our optimized pipeline achieves 33 to 80% improvements
in rank precision over baselines (Section 5.4). We conclude with
case studies examining DocETL’s application in real-world police
misconduct identification, the effectiveness of LLM agent rewrites,
and insights from user adoption (Section 5.5).

For all pipelines, we use the gpt-40-mini model from OpenAl,
and we run the experiments on a 2021 Macbook Pro with an M1
chip. The DocETL optimizer uses gpt-4o-mini, except in the Biodex
task in Section 5.4, where we use gpt-4o. Additional implementation
details can be found in our technical report [43]. All experiments
were conducted in September 2024; Aryn and non-LLM baseline
results were collected separately in February 2025. Note that all sys-
tems may have undergone significant changes since their respective
evaluation dates.

5.1 Legal Contract Analysis

The Contract Understanding Atticus Dataset (CUAD) [19], includes
510 legal contracts with expert-labeled annotations across 41 cate-
gories of clauses, ranging from basic information (e.g., Document
Name, Parties) to complex concepts (e.g., Most Favored Nation,
IP Ownership, Post-Termination Services). The task is to extract
text spans for each relevant clause type from each contract; not all
contracts contain all types of clauses.

We evaluate on the first 50 contracts, comparing extractions
against ground truth. An extraction is considered correct if (i) the
clause type matches, and (ii) the extracted text span’s Jaccard sim-
ilarity with the ground truth span > 0.15. This threshold accom-
modates variation in LLM outputs while ensuring the model has
correctly identified the clause’s location; it is set fairly low because
we provide no training examples, so the LLM does not know how
much to extract—but large enough to ensure some match. We set
other values for this and found the comparisons to be similar. We
measure precision, recall, F1, and hallucination rate (proportion of
extracted clauses not matching our 41 predefined categories).

5.1.1 Implementations We have five baselines:

(1) DOocETL Baseline: Our unoptimized pipeline consists of a
single map with a prompt to extract all relevant clauses, given one-
sentence descriptions of the 41 clause types. The output schema
specifies a list of objects with clause_type and text_span keys.
The pipeline code is given in our technical report [43].

(2) LOTUS Baseline: We implement a pipeline using LOTUS’s
sem_map operator with the same prompt as DocETL’s map operation,
plus additional output structuring instructions since LOTUS does
not support explicit output schema definitions.

(3) Palimpzest Baseline: We implement the extraction using
Palimpzest’s convert operator. In Palimpzest, rather than writing
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Table 2: Legal Contract Analysis Results.

System Avg Avg Avg F1 Avg # Avg
Preci- Recall Chars Hallucination
sion Rate
DocETL (Opt.) 0.401 0.719 0.477 162.60 0.000
DocETL (Unopt.) 0.341 0.430 0.379 49.35 0.072
LOTUS 0.402 0.471 0.393 46.301 0.073
Palimpzest 0.059 0.013 0.022 35.10 0.000
Aryn 0.450 0.370 0.352 49.56 0.069
Non-LLM 0.224 0.219 0.190 212.73 0.000

prompts directly, users provide schema descriptions from which
the system generates prompts. We provided our clause type descrip-
tions in the description of the schema.

(4) Non-LLM Baseline: We write a program, using the spaCy
library [20], to loop over all clause types and extract the most
semantically similar sentence (above a threshold of 0.9). We use
spaCy’s sentence splitter and embedding model, tok2vec.

(5) ArynBaseline: We implement extraction using Aryn’s 11m_query
operation with the same prompt as our LOTUS baseline, and the
same output normalization procedure used with LOTUS to handle
parsing errors and format inconsistencies.

(6) DocETL’s Optimized Plan: DocETL’s optimizer transforms
the single map operation into an isolated projection decomposition
with 21 independent map operations, each extracting 1-3 seman-
tically related spans (e.g., grouping agreement and effective date
extractions), followed by a reduce to combine all extracted clauses.
Notably, the optimizer chose isolated projection (directive 11) over
document chunking, suggesting that LLMs excel at focused extrac-
tion of small amounts of information even from lengthy documents.

5.1.2  Results The results are shown in Table 2. DocETL’s opti-
mized plan performs significantly better than all baselines, achiev-
ing a 21.4% improvement in F1 over LOTUS, the next best LLM-
based plan, and a 67% improvement in recall over the unopti-
mized DocETL pipeline—with no hallucinations. LOTUS, Aryn,
and the unoptimized DocETL pipelines achieve similar scores and
hallucination rates (6.9-7.3%). The non-LLM baseline achives much
lower scores than the LLM-based methods, as well as longer text
spans—because spans are forced to be at sentence-level granular-
ity, which could be longer than necessary for short clauses like
“document name” or “agreement date” Interestingly, Palimpzest’s
optimizer selected a code-based plan rather than an LLM-based one
for this task—perhaps explaining its lower score.

While the optimized pipeline’s cost and runtime are higher (Ta-
ble 3), we prioritize accuracy, which often requires increased compu-
tational costs. The higher runtime and cost stems from the increased
number of LLM calls in the new map operations, plus an additional
reduce operation to combine their results. Further parallelism could
help reduce the runtimes further, but this is not our focus. Costs
will decrease as LLM pricing continues to fall—they have fallen
by 1000X in 3 years, with a predicted drop of 10X per year [2]—
and they become negligible when using open-source models. The
optimization cost is only $1.58 (using gpt-40-mini) and does not
increase with dataset size, as it is done on a sample.

5.2 Game Review Analysis

We evaluate DocETL on temporal analysis of video game reviews
from Steam (found at https://www.kaggle.com/datasets/najzeko/
steam-reviews-2021). For each of 10 popular games, we create a
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Table 3: Runtime and Cost Analysis for Legal Task. Palimpzest run-
time is single-threaded and includes optimization time.

System Runtime (s) Cost ($) Optimizer Cost ($)
DocETL (Opt.) 180.30 1.46 1.58
DocETL (Unopt.) 2343 0.08 N/A
LOTUS 28.12 0.07 N/A
Palimpzest 84.07 Unknown* Unknown*
Aryn 52.53 Unknown* N/A
Non-LLM 217.99 0.00 N/A

*Costs are not reported by the system.

Table 4: Game Review Analysis Results

Metric DocETL DocETL Non-LLM
(Unopt.) (Opt.)

Hallucination Rate (lower is better) 0.465 0.312 N/A

Sentiment Accuracy (higher is better)  0.664 0.650 0.605

Kendall’s Tau (higher is better) 0.470 0.631 N/A

document with 300 customer reviews with timestamps (but omit
their ratings). Each document comprises concatenated reviews in
no particular order, with lengths exceeding standard LLM context
windows. The task is to identify 10 positive and 10 negative reviews
per game, with their review IDs, and present these in chronological
order. We evaluate the pipelines on: (i) hallucination rate, or the
fraction of extracted review IDs that do not appear in the source,
(ii) sentiment accuracy: whether the identified review sentiment
matches the user’s rating, computed only for non-hallucinated re-
views, and (iii) Kendall’s Tau correlation of the timestamp ordering,
which measures how well the reviews are chronologically ordered.

5.2.1 Implementations Since the documents exceed context limits,
we do not compare against existing LLM-based systems, which do
not support documents beyond context windows. Our baseline Do-
cETL pipeline consists of a single map to extract positive_reviews
and negative_reviews, with documents truncated from the mid-
dle to fit the context window—effectively randomly sampling re-
views. The exact pipeline can be found in our techical report [43].
The operation looks like the following:

DocETL’s optimizer transforms this pipeline into: (a) A split
operation that chunks input by token count (104,652 tokens per
chunk): no gather operation (b) Two map operations per chunk—
one each for positive/negative reviews—each incorporating one
round of gleaning (directive 7) to ensure that the reviews are valid
(c) A reduce operation to combine the positive and negative re-
views from the chunks and present them in chronological order. We
added a non-LLM baseline that extracts reviews via regex, classifies
sentiment with NLTK and VADER [5, 21], and selects the first 10
positive and negative reviews. Since this baseline only performs
classification (i.e., it is not a generative model), hallucination rate
and Kendall’s Tau metrics don’t apply.

5.2.2  Results As shown in Table 4, we observe a 32.9% reduc-
tion in hallucination rate, demonstrating more reliable review
extraction. Sentiment accuracy remained stable (66.4% vs 65.0%),
while Kendall’s Tau improved by 34.3%, indicating better temporal
ordering. Both LLM-based approaches outperform the non-LLM
baseline in sentiment accuracy, despite having to handle complex
additional tasks beyond simple sentiment classification.

The optimized pipeline costs $1.48 (173.63s runtime) versus the
baseline’s $0.12 (29.27s). However, the baseline achieves this by
truncating data to fit LLM context limits. With processing the full
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Table 5: Declassified Article Analysis Results. Location metrics for
baseline are N/A as its 233 distinct event types (mostly singleton
categories) make meaningful location aggregation impossible.

Metric DocETL DocETL (+Re- DocETL Non-LLM
(Unopt.) solve Only) (Opt.)

Location Precision N/A 0.994 1.000 0.6812

Location Recall N/A 298 435 435

Distinct Event Types 164 83 83 N/A

Hallucination Rate N/A 0.01 0.01 0.00

documents, the baseline would cost $0.28. This cost increase is
justified by the improved temporal reasoning accuracy, and is due
to steps like gleaning (which doubles operation cost); however,
the gleaning validator consistently flagged temporal issues; with
feedback like “The ... reviews are not sorted correctly by timestamp;
they should be organized chronologically” The optimization cost
was $6.60; however, this is a one-time cost. The non-LLM baseline
had a runtime of 15.89 seconds.

5.3 Declassified Article Analysis

We evaluate DocETL’s effectiveness on resolve and reduce tasks
using 733 paranormal case files from The Black Vault, a repository
of declassified international government documents, averaging 700
words each. Each article documents a reported paranormal event
with details such as location and witness accounts. We scraped
articles from their website and used Azure Document Intelligence
to convert all PDF attachments to text. Our task is to determine
the distinct locations for each type of paranormal event. The task
involves two challenges: (i) standardizing event types across articles,
and (ii) extracting and aggregating location mentions across articles
for each event type.

We evaluated precision of extracted locations by first programat-
ically verifying their presence in the source text and attempting to
geocode them using the Nominatim API, based on OpenStreetMap.
We also measured hallucination rate—a subset of precision—defined
as the proportion of locations that don’t exist in the source text.
For locations in the text that could not be geocoded (e.g., specific
rivers or mountain ranges), we performed manual verification.

5.3.1 Implementations We consider 4 pipelines. We only consider
one LLM-powered baseline, written in DocETL, as other systems
don’t support resolve. This pipeline consists of: (i) a map to extract
event type (e.g., “humanoid sighting”) per article, and (ii) a reduce
to collect distinct locations across all articles of each event type.
DocETL’s optimizer modified this pipeline in two ways. First, it
synthesized a resolve between map and reduce to standardize event
types (directive 9). Second, it optimized reduce by determining a
fold batch size (41) to process document batches. To isolate the
impact of the optimized reduce operation, we also evaluate the
a version of this pipeline (+resolve only), which uses the original
reduce operation without batched folding. Our 4th pipeline repre-
sents a non-LLM baseline that extracts location (LOC) entities from
article text using spaCy’s en_core_web_lg model [20]. This script
processes the resolved results from DocETL’s optimized pipeline
to establish a comparison point for location precision and recall.

5.3.2  Results As shown in Table 5, the baseline DocETL pipeline
extracts 233 distinct event types with many semantic duplicates
(e.g., “UFO Sighting”, “Category: UFO Sighting”, “Event Type: UFO
Sighting”), making location aggregation impractical as most event



types contain only one article. Adding resolve enables meaning-
ful aggregation by consolidating to 83 event types. The +resolve
only pipeline extracts 298 locations with 99.4% precision, and the
optimized pipeline further improves this to 100% precision while ex-
tracting 435 locations (46% higher recall). The non-LLM baseline
matches the optimized pipeline’s recall but with substantially lower
precision (68.12% vs. 100%), highlighting the LLM’s superior ability
to accurately identify relevant locations in context. All systems
exhibit low hallucination rates. This improved recall arises because
batched folding allows the LLM to incrementally process and track
distinct locations, rather than attempting to process all documents
at once, where important details may be lost due to LLM context
window overload [27, 31].

The resolve-only pipeline cost $1.16 (307.36s), while the opti-
mized version cost $1.84 ($1.34 + $0.50 for optimization; 625.64s).
The optimized pipeline’s longer runtime results from multiple LLM
calls per event type during folding, versus one call in the resolve-
only version. The non-LLM baseline ran in 158.85s.

5.4 Biomedical Classification

We evaluate DocETL on the challenging Biodex biomedical drug
reaction classification task from the LOTUS paper [38]. For each
of 250 biomedical papers, the task involves identifying which of
24,300 adverse drug reactions (from the MedDRA list) are discussed.
Performance is measured using rank-precision@k (RP@k), evalu-
ating both accuracy and ranking of identified reactions. A higher
score indicates that true positive reactions appear earlier in the list.
We also evaluate the hallucination rate, measuring the proportion
of identified reactions that are not present in the drug reaction list.

5.4.1 Implementations We compare against LOTUS using numbers
from the first version of their preprint and our reimplementation of
their pipeline (with gpt-4o0-mini for LLM calls, text-embedding-3-
small for embeddings). We implemented their best-performing join
algorithm from the first version of their preprint, map-search-filter.
See our technical report [43] for details.

In DocETL, we implement this task as an equijoin between ar-
ticles and MedDRA labels, using a comparison prompt that asks
“Can the following condition be found in the article?” We don’t
evaluate an unoptimized version due to the impractical number of
LLM calls required (over 6 million). DocETL optimized this into a
map-equijoin pipeline, where the map extracts medical conditions
per article, and the equijoin uses synthesized blocking rules includ-
ing an embedding similarity threshold of 0.5253 and a requirement
that all words in the reaction label appear in the article text. Finally,
we add a reduce operation that asks the LLM to rank the identi-
fied labels for each article from most to least confident, so we can
measure ranking performance. We did not apply DocETL’s reduce
optimizations to this ranking step.

We also include a non-LLM baseline that identifies candidate
labels by checking for exact substrings and ranks them by length.
Given the large number of required comparisons, our non-LLM
baseline uses keyword matching instead of more complex NLP
libraries. Additional details can be found in our technical report [43].

5.4.2 Results At RP@25, which effectively measures recall since
articles contain fewer than 25 labels in the ground truth, DocETL
finds a plan with 80% improvement over the baselines. For RP@5
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Table 6: Biomedical Classification Results. Since most articles have
fewer than 25 relevant labels, RP@25 effectively measures recall
rather than ranking quality.

System RP@5 RP@10 RP@25 Hallucination
DocETL 0.281 0.313 0.371 0.001
LOTUS (Our implementation of of ~ 0.213 0.207 0.206 0.000
map-search-filter)

LOTUS (Reported in Oct. 2024) 0.241 0.258 N/A 0.000
Non-LLM Baseline 0.106 0.158 0.262 0.000

and RP@10, DocETL shows 33% and 50% improvements, respec-
tively. The non-LLM baseline achieves lower RP@5 and RP@10
scores than the LLM-based methods, but a competitive RP@25. The
improvement in recall may come from DocETL’s synthesized block-
ing rules and the extra reduce step, which the DocETL pipeline
necessarily includes to compute RP@k. In terms of hallucination
rate, all systems perform well with essentially zero hallucinations.
The difference between LOTUS’ reported performance and our reim-
plementation may be attributed to model choices and prompting
strategies, as we standardized on gpt-40-mini without “few-shot”
examples in the prompts.

Cost and Dataset Analysis. The non-LLM baseline takes 290.65
seconds to run. Our reimplemented LOTUS pipeline costs $0.47
and takes 925 seconds to run. The DocETL pipeline costs $3.65 and
takes 463.28 seconds, with an additional optimization cost of $2.37.

5.5 Case Studies, User Adoption, and Impact

To further evaluate our agentic optimizer, we conducted two case
studies detailed in our technical report [43]: a real-world police
misconduct identification application (as described in Example 1.1)
and a stylized experiment on how effectively LLM agents instantiate
rewrite directives. We summarize key findings from both studies,
along with insights on user adoption and system limitations.

In our first case study, we built a pipeline to identify officer
misconduct in ultra-long police records (>128K tokens) from the
California Police Records Access Project (Example 1.1). DocETL’s
optimized pipeline improved misconduct detection recall by
90% compared to its unoptimized counterpart. For our second case
study, we analyzed how LLMs transform abstract rewrite directives
into concrete plans, examining 30 implementations across three
directive types on legal contract analysis. As shown in Figure 5,
despite significant variance in quality, many LLM-generated plans
outperformed our baseline, with 47% achieving better precision
and 67% better recall. 20% of LLM-generated plans had critical
errors, like omitting document placeholders in prompts, leaving
the LLM with no text to analyze. However, our optimizer was
effective in weeding out bad plans, with our LLM-based evaluation
mechanism correlating with F1-score (Kendall’s tau of 0.642).

Since releasing DocETL as open source in October 2024, we've
seen adoption across healthcare, legal, security, and scientific re-
search domains, with users reporting significantly improved results
“on the first try” for complex document tasks where other tools
struggled. Our technical report [43] details additional use cases,
post-release features, and discusses how DocETL differs from tradi-
tional database systems at every level of the system stack, ranging
from physical and logical operators, to rewriting and optimiza-
tion, to user specification and intent. We also discuss LLMs’ non-
deterministic effects on operator behavior and optimization—as
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Figure 5: Cost vs. metrics (precision, recall, and F1) for 30 different LLM-generated implementations of rewrite directives applied to the legal
contract analysis task. Each point represents a distinct plan implementation, colored by directive type; isolated projections (Equation (11),
chaining projections (Equation (10), or gleaning (Equation (7)). The DocETL unoptimized baseline and optimized plan from Section 5.1 are
shown with dashed lines for reference, though not generated in this experiment. Due to the optimizer’s nondeterministic nature, some plans
in this experiment achieved higher metrics than the original optimized plan.

well as our ongoing work to address current limitations through
human-in-the-loop approaches.

6 RELATED WORK

LLM-powered data processing frameworks have recently gained
significant attention in the database community. LOTUS [38] in-
troduces semantic operators, defining a model for LLM-powered
operations with accuracy guarantees with respect to high-quality
LLM-powered reference algorithms. Palimpzest [30] provides a
declarative framework focusing on map-like operations. Since our
evaluation, Palimpzest has introduced a new optimizer with new
results for the legal task [42], and LOTUS has a new join imple-
mentation based on model cascades, with improved results for
the biomedical classification task. Aryn [1] offers a Spark-like API
with PDF extraction capabilities and human-in-the-loop process-
ing. Unlike DocETL, these systems primarily make simplifying as-
sumptions about task complexity, typically focusing on extraction
tasks or queries that capable LLMs can handle without decompo-
sition. They employ various cost-based optimizations, including
classical techniques like predicate pushdown [18] and ML-specific
approaches like model cascades [24, 53]. However, when applied to
complex document processing tasks, even state-of-the-art models
fall short. DocETL addresses this limitation through agent-driven
optimization, exploring decomposition to improve accuracy. More-
over, DocETL is the only system to support documents with lengths
that exceed LLM context windows and introduces new operators
(e.g., gather, split) for this, as well as for entity resolution as a
first-class citizen.

Other LLM-powered data processing systems focus on different
settings—typically making strong assumptions about the struc-
ture of the documents and predictability of format. ZenDB [29]
optimizes SQL queries for templatized documents, while DocETL
handles arbitrary documents. EVAPORATE [3] specializes in ta-
ble extraction through code synthesis (only where applicable, in
semi-structured settings), which could complement DocETL. Re-
garding LLM agents: Caesura [51] uses LLMs to translate natural
language to SQL pipelines but leaves optimization for future work;
CleanAgent [41] uses agents to standardize and clean data (and also
does not consider optimization). Other systems propose specialized
pipelines for specific tasks: for instance, Edge et al. [10] use a fixed
map-reduce pipeline with predefined prompts for knowledge graph
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querying. A common limitation across these systems is inadequate
context management, particularly for documents exceeding con-
text windows or tasks requiring cross-document reasoning. While
prompt optimization [26, 54] could complement DocETL, it falls
short on complex document tasks, even with human guidance [55].
Moreover, LLMs have been leveraged for a variety of data tasks
beyond document processing, such as join discovery [9, 25], data-
base tuning [50], ML pipelines [45], natural language to SQL [40],
semantic table understanding [8, 11]. and others [13], but not for
complex document processing.

Finally, declarative frameworks for intelligent data processing
have a rich history in database research through crowdsourcing
systems like CrowdDB, Deco, CDB, and Qurk [14, 28, 33, 36]. While
these systems use human rather than machine intelligence, they
demonstrate declarative interfaces’ power for complex tasks. Do-
CcETL extends this tradition to address the unique challenges of
LLM-powered processing [37] through its flexible interface and
agent-driven optimization.

7 CONCLUSION

We introduced DocETL, a declarative system that optimizes com-
plex document processing tasks using LLMs. We introduced several
novel rewrite directives, an agent-based framework for plan rewrit-
ing and evaluation, and an opportunistic optimization strategy. Our
evaluation across four tasks demonstrated that DocETL can find
plans with outputs 21-80% more accurate than baselines. DocETL
is a first step toward an agentic optimizer for LLM-powered data
processing. While exploring the large space of possible plan decom-
positions is hard, our approach shows that automated optimization
is both feasible and beneficial. Future work will focus on reduc-
ing cost by considering cheaper models for simpler sub-tasks, and
incorporating human feedback to refine plans.
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