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ABSTRACT
Data sharing opportunities are everywhere, but privacy concerns

and regulatory constraints often prevent organizations from fully

realizing their value. A private data federation tackles this challenge

by enabling secure querying across multiple privately held data

stores where only the final results are revealed to anyone. We

investigate optimizing relational queries evaluated under secure

multiparty computation, which provides strong privacy guarantees

but at a significant performance cost.

We present Alchemy, a query optimization framework that gen-

eralizes conventional optimization techniques to secure query pro-

cessing over circuits, the most popular paradigm for cryptographic

computation protocols. We build atop VaultDB, our open-source

framework for oblivious query processing. Alchemy leverages schema

information and the query’s structure to minimize circuit complex-

ity while maintaining strong security guarantees. Our optimization

framework builds incrementally through four synergistic phases:

(1) rewrite rules to minimize circuits; (2) cardinality bounding with

schema metadata; (3) bushy plan generation; and (4) physical plan-

ning with our fine-grained cost model for operator selection and

sort reuse. While our work focuses on MPC, our optimization tech-

niques generalize naturally to other secure computation settings.

We validated our approach on TPC-H, demonstrating speedups of

up to 2 OOM.
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1 INTRODUCTION
Over the past decade, a cornucopia of privacy-enhancing technolo-

gies (PETs) has matured in the cryptography research community,

offering ways to query data across private sources while protecting

sensitive inputs securely. Many offer ways to securely query data

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.

doi:10.14778/3746405.3746425

from one or more private sources such that the input records are

not divulged to anyone. These techniques “blindly” compute over

their input records, usually only revealing their query answer.

The private data federation (PDF) has emerged as a promising

model for enabling organizations to query the union of their private

datasets collaboratively while revealing only the query answers.

These platforms perform secure query evaluation either over cryp-

tographic protocols [8, 37, 52] or in trusted hardware [15, 57]. This

work focuses on SQL over cryptographic protocols.

Many PDFs use secure multiparty computation (MPC) for query

evaluation. Members compute queries by passing encrypted mes-

sages among themselves to simulate a completely hypothetical

trustworthy third party evaluating the query over their combined

data. These cryptographic protocols take a two-pronged approach

to protecting the privacy of their inputs. First, they protect the data

during computation by compiling the query’s logic into circuits,

the dominant paradigm for cryptographic computing protocols.

These circuits encode their wire labels as secret shares to prevent

eavesdropping on the query’s inputs or intermediate results. Sec-

ond, the transcripts of MPC circuits are oblivious. Their program

traces, network communication, and memory access patterns are

independent of their private inputs.

These strong security guarantees exact an extremely steep per-

formance penalty, resulting in query runtimes several orders of mag-
nitude slower than computing them insecurely. Worse yet, their

impact is cumulative for complex oblivious queries with tall opera-

tor trees because they cannot leak the selectivity of intermediate

results. They pad individual operator outputs with dummy tuples.

For example, a query with two joins where all three input tables

have 100 tuples each would have an output cardinality of 1M rows!

Recently, there has been substantial practical interest in bringing

MPC into real-world deployments. For example, MPC has been used

to identify repeat perpetrators of sexual assault [45], for SQL-style

querying of electronic health records for clinical research [46], for

quantifying the gender wage gap [33], and for privacy-preserving

COVID-19 exposure notification [3]. In addition, industry has in-

vested substantial work in making MPC easy to deploy on the

public cloud [17, 23, 29, 49], and this technology is being evaluated

in numerous fields [5, 10–12, 27].

There is an impedance mismatch between how cryptographers

develop efficient MPC protocols, working in a circuit paradigm,

and how relational databases express and optimize their queries as

random access machines. Oblivious security guarantees are antag-

onistic to conventional query optimization goals. For example, we

cannot leak row-level information to the computing parties, such

as the offsets of tuples from a filter or the result of a comparison.
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To bridge this gap, we exploit the federation’s shared schema and

characteristics of oblivious database operator protocols to make

oblivious querying more efficient. Since these queries reveal no in-

formation in their transcript, it might seem they have very limited

optimization opportunities at first glance. However, we observe

that the federation’s shared schema–its keys, constraints, and col-

umn domains–offers public information we may use to reduce the

complexity of our oblivious circuits. For example, we can bound the

cardinality of a PK-FK join to the length of the FK relation without

divulging new information.

We introduce Alchemy, a query optimization framework for

oblivious SQL statements in the circuit paradigm. Alchemy lever-

ages schema metadata to craft efficient oblivious query execution

plans using two strategies. First, we push as much work as possible

out of circuits (and into local evaluation) while upholding our secu-

rity guarantees. Second, we reduce the complexity of our circuits

for subtrees that call for secure evaluation.

Alchemy builds atop VaultDB [46], our open-source oblivious

query execution engine. This distributed analytics system provides

a suite of oblivious database operators from the literature. It is

circuit-agnostic, and its generic oblivious database operators work

modularly with one or more cryptographic backends. VaultDB

supports semi-honest 2PC [46], maliciously secure MPC [35], and

zero-knowledge proofs [36]. We use the terms MPC and 2PC inter-

changeably in this text.

Alchemy extends several well-known query optimization prin-

ciples to circuit-based query optimization. Its rewrite rules mi-

grate predicates to reduce our intermediate cardinality and to push

sorts outside circuits. Alchemy maintains oblivious statistics from

schema constraints and public metadata to tightly bound sizes of its

intermediate result (IR). Its bushy plan generator tames the cumu-

lative pile-up of dummy tuples in oblivious operator trees. Lastly,

it uses a circuit-based analytical cost model to guide operator selec-

tion and sort reuse across secure protocols. Whereas prior work in

oblivious query processing uses heuristics [8, 15, 52] or parallelizes

one operator at a time [42], we take a more holistic approach by

modeling attributes as they flow through the query tree to incor-

porate optimizations such as sort reuse, predicate migration, and

cardinality bounds input our plans. Our main contributions are:

• An optimization framework that minimizes circuit com-

plexity for oblivious SQL.

• Deriving and validating an analytical cost model for esti-

mating the runtime of oblivious database operators.

• Verifying the concrete efficiency of Alchemy’s optimized

plans with a robust experimental evaluation.

The rest of this paper is structured as follows. Section 2 reviews

the building blocks of Alchemy. Section 3 introduces our system

architecture and security model. We detail our optimization frame-

work in Section 4. In Section 5, we present experiments from our

prototype on TPC-H, highlighting improvements in performance,

scalability, and robustness across various cryptographic protocols.

We then survey relevant literature in Section 6 and conclude.

2 BACKGROUND
We now describe key features of secure computation in the context

of Alchemy and the building blocks of oblivious query optimization.

2.1 Secure Circuits
Alchemy processes queries in the circuit model, expressing them as

a series of gates it evaluates in topological order. Computing parties

exchange encrypted messages to process each gate. This gate-by-

gate structure, common across secure computation systems such

as MPC, simplifies algorithm design by implementing one protocol

per gate type (e.g., AND, NOT). This approach is Turing complete

and thus suitable for ad-hoc computing like query evaluation.

By default, VaultDB operates under semi-honest security, where

parties execute protocols faithfully but may attempt to learn unau-

thorized information from observing a program execution and

IR sizes. While we primarily discuss two-party computation be-

tween Alice and Bob, our experimental results demonstrate how

Alchemy’s optimization techniques extend to settings with addi-

tional parties and varied security guarantees. Data providers pre-

pare for secure computation using oblivious transfer, a process that
generates secret shares of the query’s private input data. This is

analogous to distributing encrypted copies of the private input data

where no party holds the key to decrypt it. This sharing process

incurs minimal computational overhead, with communication costs

proportional to data size.

2.2 Oblivious Query Evaluation
VaultDB prevents information leakage by adapting its operator

processing in several ways. It adapts the cardinality of its IRs not

to leak side channel information and obliviously pads them with

dummy rows as needed. It uses a common data model (CDM) to

make all rows in secret-shared tables indistinguishable, padding

string fields to maximum length. To prevent leaking statistics like

join selectivity or aggregate group counts, it pads IRs with dummy

tuples, indicated by a secret-shared dummy tag bit. Operators ma-

nipulate these tags during evaluation. For example, setting the tag

to true on tuples that do not satisfy a filter predicate. Our operators

output their worst-case cardinality by default, although Alchemy

exploits schema properties to derive tighter bounds and thus lower

the cost of parent operators.

VaultDB abstracts away its expression evaluation over circuits

in a Field object. We parse expressions into an AST that runs

over Field instances. VaultDB builds atop EMP Toolkit [53], which

provides boolean circuits for comparison (̸=, =), logic operators

(⊕,∧,∨,¬), and mux. It also offers circuits for some math operations.

Field offers a wrapper for circuits that is protocol-agnostic, so any
library that offers similar logic gates can be adapted to it. Field
provides comparators (=, ̸=, <, ≤, >≥) for integers, floats, strings,
and bools. For integers and floats, Field overloadsmath expressions

(+,−, ∗, /). For each of these operations, it takes secret shares as

inputs and returns them as results.

To translate our operators into circuits, we create parameterized

versions of their logic, similar to conventional DBMS ones. There

are two levels of circuit conversion. First, to prevent branching

on private values that reveal the selected path, we translate condi-

tionals into oblivious compare-and-swap operations. We express

this as an oblivious multiplexer gate, mux. We demonstrate this

functionality below. Second, operators do not read from or write to

private offsets. We sidestep this need by sorting so that the objects

we compute together are adjacent to the table. This is an important

primitive for efficient equi-joins and group-by aggregates.
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Algorithm 1 Sketch of circuit logic for sort-merge aggregate.

1: procedure SortMergeAggregate(𝑅,𝑔𝑏, 𝑎𝑔𝑔)

2: 𝑅 is obliviously sorted by 𝑔𝑏 columns

3: Init output table 𝑆 with |𝑅 | rows. Copy 𝑅’s dummy tags to 𝑆

4: 𝑟𝑖 is the 𝑖th row ∈ 𝑅, 𝑠𝑖,𝑑𝑢𝑚𝑚𝑦 is 𝑠𝑖 ’s dummy tag

5: for i do := 1 . . . |𝑅 |
6: 𝑠𝑒𝑙𝑒𝑐𝑡 := 𝑔𝑏_𝑚𝑎𝑡𝑐ℎ(𝑟𝑖−1, 𝑟𝑖 )
7: 𝑠𝑖−1,𝑑𝑢𝑚𝑚𝑦 :=𝑚𝑢𝑥 (𝑠𝑒𝑙𝑒𝑐𝑡, 1, 𝑠𝑖−1,𝑑𝑢𝑚𝑚𝑦 )
8: 𝑎 :=𝑚𝑢𝑥 (𝑠𝑒𝑙𝑒𝑐𝑡, 𝑠𝑖−1,𝑎𝑔𝑔, 0)
9: update 𝑎 with 𝑟𝑖 ’s fields

10: 𝑠𝑖,𝑎𝑔𝑔 := 𝑎

11: end for
12: return 𝑆 ;
13: end procedure

We demonstrate this process with a sketch of an oblivious sort-

merge aggregate in Algorithm 1. We loop through the input table 𝑅

sorted on its group-by columns. When we visit row 𝑟𝑖 , if it belongs

to the same group as 𝑟𝑖−1, then we mark the 𝑖 − 1th output row as

a dummy and copy its partial aggregate to 𝑎. Otherwise, we reset

the value of 𝑎. We then update 𝑎 with the values in 𝑟𝑖 and write the

new aggregate to 𝑠𝑖 .

3 OVERVIEW
In this section, we formalize Alchemy’s security guarantees. We

then provide an overview of VaultDB’s query processing workflow

and a roadmap of howAlchemy’s optimization framework identifies

efficient query execution plans for it.

Notation Table 1 describes our notation. A query references 𝑅 and

𝑆 , tables from the CDM. 𝑟𝑖 is the 𝑖th row in 𝑅 and 𝑟𝑖, 𝑗 is the 𝑗 th field

in 𝑟𝑖 . We refer to the secret shares of 𝑅 as [𝑅], and all computing

parties hold partitions of these shares. When we run a circuit-based

database operator, both its inputs and outputs are secret shares.

For example, if we ran a filter over [𝑅] in circuits, we would have

[𝑆] := 𝜎([𝑅]). When we evaluate an expression 𝑒 in circuits, such

as a filter predicate, we convert it to gates, 𝑒 , where |𝑒 | represents
the length of the expression in gates, a proxy for circuit complexity.

Each table 𝑅 is bounded by maximum cardinality |𝑅max |, and for

any column 𝑥 , we denote the theoretical domain as dom(𝑅.𝑥) and

represent the number of distinct values in 𝑥 as |𝜋𝑥 (𝑅)|.

3.1 Security Model
Clients query the data federation with a CDM. This shared schema

defines the tables over which a client composes their queries and the

format in which data providers input their private records. Users ini-

tialize the CDM before running their first query. To ensure effective

collaboration among the parties, the CDM describes constraints,

including PK-FK, relationships, CHECK constraints, and functional

dependencies. Alchemy uses this system catalog to derive cardinal-

ity bounds for its query plans.

Alchemy’s CDM has a security policy that defines what data

is visible to the parties participating in the evaluation of 𝑄 . This

informs what steps it must run obliviously. Stakeholders collaborate

to create this policy using the best practices of their domain and

regulations. A column is either public–visible to all and able to alter
a query’s control flow –or private–accessible at its site of origin
alone and computed upon obliviously.

Table 1: Alchemy Notation.

Symbol Description

𝑅, 𝑆 Tables we query

𝑟𝑖 , 𝑟𝑖, 𝑗 𝑖th row in 𝑅, 𝑗th field in 𝑟𝑖
[𝑅] Secret shares of 𝑅

D Set of input tables {𝑅1, . . . , 𝑅𝑛}
S Shared schema across tables in D
𝑄 Query to be run obliviously

𝑄̂ 𝑄 ’s oblivious query plan (in circuits)

|𝑒 | Length of expression 𝑒 in gates

{𝑅} Length of a row in 𝑅 in bits

|𝑅 | Cardinality of 𝑅

dom(𝑅.𝑥 ) Domain of attribute 𝑥 ∈ 𝑅

All parties know 𝑄 and observe the number of rows each party

inputs to it at each leaf.𝑄 is a read-only query, and admitting writes

would fundamentally alter the security guarantees of Alchemy. We

trust the system to faithfully translate SQL statements into their

corresponding secure query execution plan. The cardinality of all

tables on each party is public. This informs the size of our circuits

and is consistent with the guarantees of other PDFs [8, 42, 52]. We

expect data providers to provide correct and complete inputs. By

default, the client sees their exact query results. If the data providers

desire stronger data privacy guarantees, they may use differential

privacy [19] to noise the results of their query in circuits before

they reveal them to the client as in [31, 39].

When a query computes on multiple attributes, Alchemy op-

erates at the security level of the most sensitive one. Recall that

VaultDB uses semihonest protocols by default. Hence, we trust

each data provider to faithfully execute the protocol specified in

𝑄̂ , although they may try to learn about the input data of others

by observing the protocol’s execution in its program counters and

memory accesses. Naturally, we extend this guarantee to 𝑄̂’s ob-

servable query metadata, such as IR cardinalities, and to operator

algorithm selection.

3.1.1 Security Definition We now describe the security guarantees

of our oblivious query evaluation wherein the participating parties

do not learn anything about a query’s private input data except that

which can be deduced from its answer. Say that Alchemy is running

query 𝑄 over D := {𝑅1, . . . , 𝑅𝑛} with shared schema metadata S,
including the input cardinalities of each relation ∀𝑅𝑖 ∈ D. Let 𝑄̂

be 𝑄’s circuit-based oblivious query execution plan. At runtime,

VaultDB generates Trace(𝑄̂,S,D), a transcript recording network

traffic, I/O requests, and memory access patterns.

Consider a simulator, Sim, that takes in the same query execu-

tion plan and schema metadata but only the length of the private

input records, |D|. The simulator, without access to D, produces a

transcript indistinguishable from Trace.
Theorem 1. For private input database D evaluating query plan 𝑄̂

with schema metadata S, there exists a polynomial time simulator

Sim such that:

Trace(𝑄̂,S,D)
𝑐
= Sim(𝑄̂,S, |𝐷 |)

The output traces of VaultDB’s real-world query evaluation are

computationally indistinguishable from the observed behavior of

the ideal world execution in the simulator Sim.
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This security guarantee holds because Alchemy is designed to

expose only authorized metadata during query execution. All trans-

formations applied during optimization preserve the semantics of

𝑄 and ensure that any observable behavior is derivable from the

known metadata. Specifically, the only leakage permitted is the

shared schema S, the cardinalities D, and any domain constraints

explicitly marked as public. Since Alchemy’s compiled plan 𝑄̂ ex-

ecutes entirely within circuits that are oblivious to data values

and access patterns, all runtime behavior can be simulated from

(𝑄̂,S, |D|). This allows us to construct a simulator Sim that satisfies

Theorem 1 under the assumed adversary model.

Security Proof Although Alchemy does not modify the input

table definitions or constraints in the CDM, it does make this public

information visible to parties computing 𝑄 . Since all parties know

𝑄 , they learn about what aspects of the data the client is interested

in, and if we filter on public attributes (such as r_name in Q5),

then we divulge how many rows they learn about in their query

answer. Owing to the circuit model making 𝑄 ’s logic visible, this is

unavoidable. Once we are past the leaf nodes, the only additional

information we reveal is from the cardinality bounds and schema

constraints to guide operator selection. Because Alchemy only

takes in public data to make its optimization decisions, it cannot

reveal unauthorized information to the computing parties. Thus,

the guarantees of the simulation hold for all Alchemy queries.

3.1.2 Backend Independence Our simulation-based security defi-

nition remains consistent across all cryptographic protocols sup-

ported by Alchemy. The core guarantee–namely, that the view of

any adversary can be simulated from the query plan 𝑄̂ , schema

S, and input cardinalities |D|—holds regardless of circuit imple-

mentation. On the other hand, the strength of the adversary and

the attacks we defend against depend on the circuit protocol. For

instance, when using a zero-knowledge proof (ZKP) backend, we

offer malicious security in a two-party setting with a prover and ver-

ifier. In contrast, semihonest two-party computation (e.g., SH2PC)

assumes both parties follow the protocol faithfully. Our outsourced

MPC (OMPC) mode supports two or more computing parties and

tolerates a dishonest majority. Alchemy ensures that all plans are

generated and executed securely within the guarantees offered by

the selected backend.

3.2 System Architecture and Roadmap
Figure 1 shows the life cycle of an Alchemy query. Almost all steps

of our optimization workflow draw from the system catalog. It

offers public statistics about each table in the federation, and we

describe the features that we use in Section 3.1. For our input phase,

the user submits a SQL statement, 𝑄 , to the Alchemy optimizer.

We use Apache Calcite [2] to parse and transform the query into

a DAG of database operators. In Step 1 of the diagram, Calcite

verifies the query’s semantics against the CDM and produces a

JSON specification for each logical operator (e.g., filter, join).

Step 2 , we first use the smcql [8] security type system to

identify the minimal covering set of distributed database operators

to run in circuits for our query execution plans while producing

correct and complete results. This applies labels to each operator,

denoting the public and private attributes as they move up the

query tree. Next, we apply the query transformations described in

Section 4.1 to reduce our reliance on circuits further. These rewrite

(1)  Input

(4)  Cost-Based Optimization

(2)  Circuit Minimization

(3)  Annotation and Operator Ordering
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Q̂

12

3 4

Figure 1: Alchemy optimization workflow.

rules do so by 1) performing single-tuple operations locally, 2)

reusing work done in circuits, and 3) revising the in-circuit plan

nodes to minimize their circuit complexity.

In Step 3 , we prepare 𝑄 for operator selection. First, we use

the system catalog to annotate all PK-FK joins. Then, we use the

greedy algorithm in Section 4.2.1 to construct a bushy join tree

that further reduces our circuit sizes. After ordering our operators,

we use metadata about public attributes to derive an oblivious

cardinality bound for each one (Section 4.2.2).

Now, we are ready to select the algorithm for each operator in

the query plan using our analytical cost model in Section 4.3.2.

We traverse the tree bottom-up, assigning its implementation one

at a time. When proposing a physical plan for subtree 𝑞 ∈ 𝑄 ,

we first apply a suite of transformation rules (Section 4.3.1 that

identify opportunities to push sorts out of circuits and reuse them

when possible. Recall that an oblivious sort is a common primitive

for aligning tuples that we compute on together, such as for sort-

merge join (SMJ) or group-by aggregation. We then compare 𝑞 to

competing plans and retain the lowest cost one. After selecting the

physical operators in the tree, we obtain the optimized plan, 𝑄̂ .

3.2.1 Inputting Rows Alchemy ships the optimized secure query

plan, 𝑄̂ , to the data providers as a JSON file. 𝑄̂ specifies and param-

eterizes all circuit operators, and it generates a SQL statement for

each tree leaf that all data partners run in parallel. These plaintext

steps either: (1) compute on public data (and reveal the true car-

dinality of their output) or (2) do not require coordination among

the parties (such as a filter that dummies out rows that were not

selected). We now describe the two methods with which𝑄 receives

its secret-shared input tables.

Union If the leaf has unordered inputs, we construct [𝑅] by having

each party secret-share their records and concatenate the resulting

data. This operation requires no circuits and its communication

costs are linear in the input size with extended oblivious transfer [6,

24, 25]. This is the default input method for VaultDB’s PDF queries.

Merge If the table is vertically partitioned, we secret share the

columns from each party (all parties input the same number of

rows), and then copy together the secret shares into a single table

object. Because VaultDB is a column store, this process is very

efficient. We also AND the dummy tags of the input rows to only

retain the real ones on all sites. We use this approach to combine
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Figure 2: Running example query plans. |𝑆 |< |𝐶 |< |𝑂 |< |𝐿 |.
the locally computed parts of operators (such as aggregate and sort),

and we will describe these later in Section 4.1.1.

This system also supports outsourced settings (by secret-sharing

all of the input records at setup time) by accepting files of shares as

inputs, bypassing the oblivious transfer phase.

3.2.2 Revealing Query Answers The data providers execute 𝑄̂’s

operators bottom-up. Each operator produces a secret-shared table

as output that it passes to its parent. The root node of 𝑄̂ outputs

the secret-shared query answer, [𝐴], with each party holding a

share of it. All parties send their share of [𝐴] to the front-end via

an encrypted connection such as ssh. The client then assembles

the shares to reveal the results. From their perspective, this system

behaves like a conventional data federation where one submits a

query and receives results over the data of all of its member engines.

3.3 Running Example
We use TPC-H Q5 to illustrate Alchemy’s optimization process:

SELECT n_name, SUM(l_extendedprice * (1 - l_discount)) AS revenue
FROM customer C JOIN orders O ON c_custkey = o_custkey JOIN lineitem L
ON o_orderkey = l_orderkey JOIN supplier S ON s_suppkey = l_suppkey
AND c_nationkey = s_nationkey JOIN nation N ON s_nationkey = n_nationkey
JOIN region R on r_regionkey = n_regionkey WHERE r_name = ...
AND o_orderdate >= ... AND o_orderdate < ... GROUP BY n_name ORDER BY revenue DESC;

Throughout the paper, we demonstrate our optimization process

using this query with the TPC-H security policy in Section 5.1. To

highlight how Alchemy transforms queries, we visualize the query

tree before and after optimization in Figure 2.

4 OBLIVIOUS OPTIMIZATION FRAMEWORK
Circuit minimization is the first phase of Alchemy’s optimization

process. Starting with a DAG of operators derived from the SQL

statement, this phase applies various techniques to minimize circuit

complexity with logical rewrites and cardinality bounding.

4.1 Query Transformation Rules
Alchemy uses a series of query transformations in Step 2 of its

workflow to reduce the circuit cost of𝑄 , formalized in Table 2. Many

are analogous to rules used in conventional query optimization [16].

4.1.1 Local Querying We now describe the transformations we

use to push steps of 𝑄 out of circuits for local, plaintext evaluation.

Filter Pushdown We push down all single-table filters for local

evaluation, rewriting ones on private fields to dummy pad the input

[𝑅]. In our running example, Q5 has a filter on o_orderdate, a
private column. For this, our SQL generator adds a dummy tag

column to its input query, SELECT ..., !(o_orderdate >=...).
All other filters reveal their true cardinality from the size of their

secret shares. For example, Q5’s public join of supplier, nation, and

region (filtering on r_name) inputs 𝑂(|𝑆 |/|𝑅 |) rows.

Table 2: Oblivious query transformation rules.

Name Transformation ( ˆ𝑜𝑝 in circuits, 𝑘 : key col)
Union [𝑅] → ⋃

𝑖 𝑅𝑖

Sort Pushdown ˆmerge( ˆsort(

⋃
𝑖 (𝑅𝑖 ))) → ˆmerge(

⋃
𝑖 (sort(𝑅𝑖 )))

Concatenate Rows [𝑅] → ˆ| |𝑖 (𝑑𝑜𝑚(𝑘) Z𝐾 𝑅𝑖 )

Filter Pushdown 𝜎𝑒 (𝑅) → 𝜋𝑅,¬𝑒 (𝑅)
Eager Projection ˆ𝑜𝑝𝑒2 (

ˆ𝑜𝑝𝑒1 (𝑅)) → ˆ𝑜𝑝𝑒2 (𝜋𝑅\𝑒1 ( ˆ𝑜𝑝𝑒1 (𝑅)))

1:1 Merge Join [𝑅] ⊲̂⊳𝐾𝑆 → 𝜎̂𝑑𝑢𝑚𝑚𝑦 𝑡𝑎𝑔([𝑅]
ˆ| |(𝑑𝑜𝑚(𝑘) Z 𝑆))

Hybrid Agg. 𝛾𝐺,𝐴𝑔𝑔(𝑥 )(𝑅) → 𝛾𝐺,𝐴𝑔𝑔(
∑
𝑥 )(

ˆ| |𝑖𝛾𝐺,∑𝑥 (𝑅𝑖 ))
Functional 𝛾𝐺1,...,𝐺𝑛 ,𝐴𝑔𝑔(𝑥 )

(𝑅) → 𝛾𝐺𝑘 ,𝐴𝑔𝑔(𝑥 )(𝑅)

Dependencies where𝐺𝑘 → {𝐺1, ...,𝐺𝑛 }
Join Predicate 𝑅 ⊲̂⊳𝑅.𝑎=𝑆.𝑏𝑆 ⊲̂⊳𝑆.𝑘1=𝑇 .𝑘1∧𝑅.𝑘2=𝑇 .𝑘2𝑇 →
Pullup 𝜎̂𝑅.𝑎=𝑆.𝑏 (𝑆 ⊲̂⊳𝑆.𝑘1=𝑇 .𝑘1𝑇 ⊲̂⊳𝑅.𝑘2=𝑇 .𝑘2 𝑅)

Predicate Transfer 𝜎(𝑅) ⊲̂⊳𝑘 𝑆 → 𝐾 ′
:= 𝜋𝑘 (𝜎(𝑅));𝜎(𝑅)⊲̂⊳𝑘 𝜎𝑘∈𝐾 ′ (𝑆)

Merge Common e.g., (𝑅⊲̂⊳𝑘𝑆) . . . ⊲̂⊳ . . . (𝑅⊲̂⊳𝑘𝑆);→
Subexpressions 𝐶𝑇𝐸 := 𝑅⊲̂⊳𝑘𝑆 ;𝐶𝑇𝐸 . . . ⊲̂⊳ . . .𝐶𝑇𝐸

Hybrid Aggregate For group-by aggregates, if the domain of the

group-by columns is public, each site computes a partial aggregate

on its local inputs. We then use themerge input method to construct

a single table over all parties with one row per group-by bin. After

that, we project the partial aggregates of all sites to assemble their

output. Because our domain is known, Alchemy adds a left outer

join on the group-by domain column to the input query to pad

private inputs to the appropriate length. In the input query, we also

sort on this domain to ensure all parties’ input rows are aligned.

This naturally generalizes to aggregates without group-by clauses.

Sort Pushdown For leaf nodes with direct ancestors that are

collation-dependent, we partially evaluate their sorts locally before

secret sharing them. We obliviously arrange the secret shares into

a bitonic sequence by reading one party in ascending order and

the next in descending order, and then merging this sequence. The

merge performs 𝑙𝑜𝑔(|𝑅 |) rounds of comparisons with |𝑅 |/2 com-

parisons per round. This reduces our sort complexity by a 𝑙𝑜𝑔(|𝑅 |).
More importantly, it can make later operations, such as joins and

group-by aggregation, less costly.

Merge Join If a join has two children that are leaves in the secure

query plan and the domain of the join key is public, we partially

construct the join result locally. We cannot simply send all joining

rows to one node and compute the join in plaintext as in Con-

clave [52] because this would preclude the use of eager projection
and filter pushdown since they compute over private attributes. We

push down a left join in plaintext on the join key domain, similar to

hybrid aggregate, and merge this vertically partitioned join output.

This sidesteps the need for expensive tuple comparisons because

we align by join key before entering circuits.

4.1.2 Logical Circuit Reduction Our next group of rewrites reduces

the complexity of our circuits by applying logical transformations to

the operator tree. The next rewrites simplify our circuit complexity

via logical transformations on the operator tree.

Eager Projection Many of our operators use conditional writes

to update entire tuples, such as a compare-and-swap for oblivious

sorting. Hence, slimming down rows in our IR is critical for per-

formance. We aggressively project unneeded columns after each

operator in the oblivious query tree, and perform this projection in

the local DBMS before secret-sharing to minimize the data entering
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circuits. Lastly, we offload math and logic expressions from cir-

cuits for local evaluation when possible. In Q5, we project revenue,
l_extendedprice*(1 - l_discount) in plaintext with this rule.

Join Predicate Pullup If the query has an N:N join condition,

we attempt to rewrite it as a filter after our PK-FK joins. This rule

is targeted at join graphs that are fully connected, e.g., a triangle

or square. In 2b, we could pull this predicate up to the final join

(𝐿 ⊲⊳𝑜𝑘𝑒𝑦,𝑛𝑘𝑒𝑦 𝑂). If we did this, then our gates per tuple comparison

would double! By rewriting this as 𝜎𝑛𝑘𝑒𝑦 (𝐿 ⊲⊳𝑜𝑘𝑒𝑦 𝑂), we calculate

this check lazily over |𝐿 | rows.
Functional Dependencies When we perform tuple comparisons,

such as in sorting and group-by aggregation, we reduce our circuit

costs by leveraging functional dependencies among the referenced

columns. We identify the minimal set of determinant columns

for each tuple comparison. For example, TPC-H Q3 groups by

o_orderkey, o_orderdate, o_shippriority. Since o_orderdate
and o_shippriority are functionally dependent on the primary

key o_orderkey, we can determine if two rows are in the same

group-by bin by comparing only their o_orderkeys. The remaining

query logic (copying out the entirety of the group-by columns for

the parent operator) is unchanged by this rewrite.

4.1.3 Work Reuse Circuit-based execution introduces a perfor-

mance bottleneck not present in plaintext. To address this, our last

suite of rewrites eliminates redundant computation in our circuits.

Merge Common SubexpressionsWe further reduce our circuit

counts by identifying repeated logic in a secure query plan, inspired

by multi-query optimization [22, 26]. We identify leaf nodes that ap-

pear more than once in𝑄 by comparing their SQL input statements.

We then work bottom-up to find the largest common subtree. In

Table 2, we give an example of this with a join, 𝑅 ⊲̂⊳𝑘 𝑆 , that appears

more than once in a cascade of joins. We create a common table

expression (CTE) for this join and add this as a child to the tree

nodes that reference it, so we do not need to recompute this join.

Predicate Transfer If we join over a public key, we project tables

to their public columns, intersect their key domains across sites, and

filter unmatched rows prior to secret sharing—thereby reducing

the data entering circuits. Secure Yannakakis [54], Secrecy [37],

and smcql [8] also use this approach. In our running example, we

filter supplier publicly by joining it with the filtered nation table.
Recall that customer and supplier join on nationkey. We project

the filtered supplier down to its remaining s_nationkeys and use

this to reduce the rows we receive from customer to 𝑂(|𝐶 |/|𝑅 |) as
shown in Figure 2b.

4.2 Operator Ordering
We now move on to Step 3 of our query workflow: annotating

the query tree and ordering our operators. We first describe our

greedy plan generator for creating bushy join trees. Then, with the

logical operator order chosen, we dive into how we derive upper

bounds on the cardinalities of our IRs.

4.2.1 Bushy Plan Generator Bushy join trees introduce valuable op-
portunities for optimizing the execution of SMJ and other collation-

sensitive operators. The database community has been interested in

bushy plans for distributed DBMSs like MemSQL [13] to minimize

IR sizes; this single-dimensional optimization does not fully capture

Algorithm 2 Greedy algorithm for bushy join plans.

1: procedure GenerateJoinTree(𝐽 )
2: 𝐽 := 𝑗1, . . . , 𝑗𝑛 : List of (F, {P}) pairs in ascending order by |F | .
3: P := ∅: subtree(s) of bushy query plan.

4: for i do := 1 . . . n // for each (F, {P}) entry
5: for j do := 1 . . . |P𝑖 | // for each PK

6: F𝑖𝑛 = F𝑖 ; P𝑖𝑛 := P𝑖,𝑗
7: if 𝑝 ∈ P contains F𝑖𝑛 then
8: F𝑖𝑛 := 𝑝 ; P := P \ 𝑝
9: end if
10: if 𝑝 ∈ P contains P𝑖𝑛 then
11: P𝑖𝑛 := 𝑝 ; P := P \ 𝑝
12: end if
13: P := P⋃

(P𝑖𝑛 ⊲⊳ F𝑖𝑛 )
14: end for
15: end for
16: return P;

17: end procedure

the performance characteristics of our setting. With SMJs, main-

taining a collation as rows pass through multiple joins may provide

greater performance benefits than minimizing IR sizes alone, as it

sometimes eliminates costly re-sorting operations down the line. As

demonstrated in Figure 2b, joining smaller relations O and C before

incorporating the larger L provides independent sort order choices.

In this bushy structure, the subquery C ⊲⊳ O can be optimized with

either custkey ordering for their join, or orderkey ordering for the
subsequent join with LSNR, without being constrained by L’s sort
order. This independence in sort order selection becomes increas-

ingly valuable as query trees grow bushier, as each independent

subtree presents its own optimization opportunities.

Since finding optimal bushy trees remains NP-hard [13, 47],

Alchemy has a heuristics-driven tree builder. It operates under two

simplifying assumptions: uniform predicate length and delaying

operator selection until after the bushy plan generator. We compare

competing plans in this section using their costs over nested loop

joins (NLJ), i.e., |𝑅 |×|𝑆 |.
The fundamental property |𝑅𝑃𝐾 ⊲⊳ 𝑅𝐹𝐾 |= |𝑅𝐹𝐾 | drives our plan

builder because a tree of multiple PK-FK joins cannot have an output

cardinality that exceeds that of the length of the final FK relation.

We denote the FK and PK relations in a join as F and P, respectively.
At setup time, we rewrite the join graph in two ways. First, we

consider the covering set of keyed predicates and select the one

with the lowest cost. For example, if a TPC-H query joins S ⊲⊳𝑠𝑘𝑒𝑦
L ⊲⊳𝑠𝑘𝑒𝑦,𝑝𝑘𝑒𝑦 PS, we rewrite to (S ⊲⊳𝑠𝑘𝑒𝑦 PS) ⊲⊳𝑝𝑘𝑒𝑦,𝑠𝑘𝑒𝑦 L, re-
ducing costs from |𝐿 |×|𝑆 |+|𝐿 |×|𝑃𝑆 | to |𝑆 |×|𝑃𝑆 |+|𝑃𝑆 |×|𝐿 |. Although
both plans are 𝑂(𝑛2), the constant factors differ significantly - this

rewrite performs the join with smaller tables first rather than imme-

diately joining with the much larger table, substantially reducing

the concrete costs of a plan. Second, we set aside many-to-many

joins until after keyed ones. This delays Cartesian product IRs into

our plans as long as possible, avoiding unnecessary cost propaga-

tion to parent joins. Recall that if an N:N join is “connected” by a

PK-FK join, we sidestep the need for a 𝑛2 IR entirely!

Algorithm 2 describes our join tree planner.We start by analyzing

𝑄 , constructing a list of FK relations paired with the PK relations

with which they join: 𝑗𝑖 := (F𝑖 , {P𝑖,1, . . . P𝑖, 𝑗 }). For multiple PK

tables, the cost is order-agnostic since |F𝑖 ⊲⊳ P𝑖,1 |= . . . = |F𝑖 ⊲⊳
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Table 3: Rules for deriving cardinality bounds.

Operator Output Card Output Statistics
𝑅 ⊲⊳𝑅.𝐹𝐾=𝑆.𝑃𝐾 𝑆 |𝑅 | dom(𝑅.𝐹𝐾 ) ∩ dom(𝑆.𝑃𝐾 )

𝑅 ⊲⊳∧𝑛
𝑖=1
𝑅.𝑥𝑖=𝑆.𝑦𝑖 𝑆 |𝑅 |·|𝑆 | ∀𝑖 : dom(𝑅.𝑥𝑖 ) ∩ dom(𝑆.𝑦𝑖 )

𝜎𝑅.𝑥∈[𝑚𝑖𝑛,𝑚𝑎𝑥](𝑅) |𝑅 | 𝑚𝑖𝑛 ≤ 𝑑𝑜𝑚(𝑅.𝑥 ) ≤ 𝑚𝑎𝑥
𝜋𝑒𝑥𝑝𝑟 (𝑅.𝑥 )(𝑅) |𝑅 | 𝑥 ∈ dom(𝑅.𝑥) | 𝑒𝑥𝑝𝑟 (𝑥 )
𝛾𝐺1,...,𝐺𝑛,𝐴𝑔𝑔(𝑥 )(𝑅)

∏𝑛
𝑖=1

|𝜋 (𝑅.𝐺𝑖 )| N/A

𝛾𝐺1,...,𝐺𝑛,𝐴𝑔𝑔(𝑥 )(𝑅) |𝜋 (𝑅.𝐺𝑘 )| N/A

𝐺𝑘 → {𝐺1, ...,𝐺𝑛}

P𝑖, 𝑗 |= |F𝑖 |. Each of these F entries serves as a module of joins to

add to our query plan P, a DAG of joins. A given table may appear

in more than one entry.

The algorithm’s input, the list of (F, P) pairs, is sorted in ascend-

ing order by the cardinality of their FK relation. We add these FK

tables into P from smallest to largest. When we add a F𝑖 , we incre-
mentally join it with its related primary key relations from smallest

to largest, adding the resulting join to P. If F𝑖 is in an existing

subplan 𝑝 ∈ P, we use that subplan as F𝑖𝑛 and remove 𝑝 from P for

replacement later. Similarly, if P𝑖, 𝑗 is already in 𝑝 ∈ P, then we use

the existing subplan 𝑝 as P𝑖𝑛 and remove 𝑝 from P. We then join

P𝑖𝑛 with F𝑖𝑛 and add this new join to P in Line 13. This process

repeats for each primary key relation, incrementally building up

bushy plans in P while reusing existing subtrees when possible to

delay the inclusion of expensive FK relations. By generating bushy

plans, we create additional opportunities to optimize sort operators

described in Section 4.3.1.

4.2.2 Cardinality Bounds We derive a tight upper bound on the

cardinality for each node in 𝑄 without leaking information about

D to reduce the complexity of subsequent operators. This gener-

alizes the principles of cardinality estimation, reframing them for

oblivious IR sizes.

We start with the leaves in 𝑄’s tree and work bottom-up. If a

column, 𝑅.𝑥 has domain constraints or if it is public, we annotate

it with its domain, dom(𝑅.𝑥). As 𝑅.𝑥 passes through an operator,

op, we incrementally update dom(𝑅.𝑥) using its parameters. We

infer op’s cardinality bound with these updated domain statistics.

These are not meant to be exhaustive. For example, we could use

multiplicity (the number of times a given value may repeat in a

column) to refine these bounds as proposed in prior work [4, 14],

but we found that in practice the overhead of eliminating dummies

by obliviously sorting and truncating IRs for purely oblivious car-

dinality bounds was cost-prohibitive. Instead, we integrate these

bounds into our cost model in Section 4.3.2.

Our rules for propagating these statistics are in Table 3. This

framework deduces that PK-FK joins output |FK| rows, based on

cardinality inference techniques [15, 37]. Absent a key constraint,

we fall back to a quadratic cardinality bound. Our equi-join outputs

update the domain of their key columns to the intersection of the

domains of their source keys. Filters restrict their output domains

based on their predicates. We apply projection expressions with

scalars to all values in a column’s domain. Aggregates bound their

output cardinality by taking the product of the length of the domain

of each group-by column. If some of the group-by columns are

functionally dependent on another, 𝐺𝑘 → {𝐺1, . . . ,𝐺𝑛}, we drop
the dependent columns from our bound calculations.

Table 4: Circuit-based operator cost model.
Operator Gate Cost
Filter: 𝜎𝑝 (𝑅) |𝑅 | · |𝑝 |
Project: 𝜋𝑒 (𝑅) |𝑅 | · |𝑒 |
Sort: 𝑠𝑜𝑟𝑡 (𝑅, 𝑐), 𝑥 = 𝑙𝑜𝑔 |𝑅 | |𝑅 |/2 · (𝑥 (𝑥 + 1))/2 · (2{𝑐 } + {𝑅})
NLJ |𝑅 | · |𝑆 | · |𝑝 |
PK-FK NLJ |𝑅 | · |𝑆 | ·({𝑆 } + |𝑝 |)
Merge Join |𝑅 |
SMJ 𝑂(2 · 𝑠𝑜𝑟𝑡 ( |𝑅 |+ |𝑆 |))
SMA: 𝛾𝐺1,...,𝐺𝑛 ,𝐴𝑔𝑔(𝑥 )

(𝑅) 𝑠𝑜𝑟𝑡 (𝑅,𝐺1,...,𝐺𝑛 ) + |𝑅 | ·( |𝐴𝑔𝑔 |+{∑𝑛
𝑖=1
𝐺𝑖 })

NLA: 𝛾𝐺1,...,𝐺𝑛 ,𝐴𝑔𝑔(𝑥 )
(𝑅,𝑛) 𝑛 · |𝑅 | ·( |𝐴𝑔𝑔 |+{∑𝑛

𝑖=1
𝐺𝑖 })

4.3 Cost-Based Optimization
After ordering our operators into a logical plan, we are ready to

optimize our physical query execution plan. In Step 4 of Figure 1,

Alchemy performs cost-based optimization over the bushy query

tree generated in the previous step. This phase systematically ex-

plores the space of physical execution plans by leveraging our cost

model to select the most efficient combination of operator algo-

rithm and input sorting options for each subtree 𝑞. We describe the

operator implementation VaultDB offers starting from Section 4.3.3.

4.3.1 Sort Transformations Sorting is a key building block for our

circuit-based operators because it enables us to make rows on

which we compute together adjacent in a table, such as joining

rows or ones in the same group-by bin. Alchemy reduces the circuit

burden of sorting in two ways. First, we aggressively push sorts

out of circuits as much as possible. This idea was first proposed in

Conclave, but our work is the first to formalize it and integrate it

into a cost model. Second, we reduce the sorting overhead within

circuit operators by exploiting existing input orderings.

For each leaf node in𝑞, we first enumerate the collations that may

reduce our overall circuit costs using join keys and group-by expres-

sions. When we create a new proposed plan for a given collation,

𝑞′, if a non-leaf operator is sort-dependent—such as SMA—then

we insert any sorts needed for them. For sorts pushed down to the

leaves of 𝑞′, we rewrite them with the Sort Pushdown transforma-

tion in Section 4.1.1. Recall that when two parties union their sorted

inputs, we short-circuit the first phase of our bitonic sort because

the inputs already form a bitonic sequence.

Once we’ve pushed as many sorts as possible outside circuits, we

further reduce sorting cost in SMJ by reusing already sorted input. A

SMJ over𝑅 and 𝑆 first sorts over𝑅∪𝑆 , performing𝑂((|𝑅 |+|𝑆 |) log2(|𝑅 |
+|𝑆 |)) tuple comparisons, and it is the most expensive step of this

operator. If at least one input is already sorted, then we sort the

other and reduce this step’s complexity by 𝑙𝑜𝑔(|𝑅 |+|𝑆 |). For example,

in Q5 (Figure 2b), we reduce the complexity of a SMJ on C and O,
inputs are pre-sorted on o_custkey and c_custkey respectively,

eliminating the need for a full sort at the join’s start.

4.3.2 Circuit Cost Model VaultDB’s suite of oblivious database

operators creates a decision space for Alchemy’s cost optimization.

This section presents the principles underlying our circuit-based

query plan cost estimates, followed by our analytical cost model for

each operator. We then examine the trade-offs associated with our

library of SPJA operators. Although many of these algorithms are

from previous work, we are the first to formalize a cost model for

bringing them together for selecting among them. Moreover, we
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incorporate schema metadata to guide Alchemy to more efficient

query execution plans. Table 4 summarizes our cost model.

Like conventional query optimization, we use a cost model to

identify efficient oblivious query execution plans. Since our unit

of computation is the circuit, our cost model estimates the rounds
of communication it will take to evaluate a proposed plan. Our gate-
based cost model informs physical operator selection, specifically

modeling the number of AND gates needed to execute a DAG of

oblivious operators. This contrasts with NOT and XOR gates, we

evaluate without communication among the computing parties

using the techniques proposed by Kolesnikov and Schneider [30].

Evaluating each AND gate requires communication [43]. This

makes them the fundamental driver of our cost model because each

round trip of networking substantially outweighs its corresponding

CPU time. While it is straightforward to reason about the asymp-

totic gate cost of each operator as a function of its input size, our

analytical cost model is made more complicated by parameters such

as predicate evaluation and conditional writes.

VaultDB’s operators use a few recurring circuit designs. The

first is oblivious if-then statements, which are expensive in circuit-

based secure computation because the engine prevents leakage by

executing both branches. Second, conditional writes and compare-

and-swap operations extend this principle–they incur a gate cost

proportional to the length of their input in bits because they work

on a field one bit at a time. Similarly, our cost of evaluating a

comparison is proportional to the length of its inputs in bits. Since

compare-and-swap involves both a comparison and a conditional

move, this inflates the runtime of our sorting algorithm.

Our expression library offers in-circuit arithmetic operators, com-

parators, logical connectors, and CASE statements. We use this to

both create new field values in projections and to evaluate condi-

tionals. It translates the DAG into circuits during setup. Our cost

model estimates the gates associated with a given expression by

traversing its DAG and summing up the cost of each step.

Circuit-based cost modeling is a natural paradigm for oblivi-

ous query optimization. Measuring and modeling from empirical

runtimes would be exceptionally time-consuming owing to the

overwhelming cost of the circuit overhead, and in some cases, it

suffers from high variance due to the availability of network band-

width acting as a confounding variable. By contrast, estimating

gate counts is deterministic and lightweight to model. Owing to

Alchemy’s rich metadata from the common data model, the op-

timizer estimates gate cost offline before running anything for a

given query. This enables it to explore variations in sort order and

operator selection. Similarly, the cost of computing the plaintext in-

puts for oblivious operators is overshadowed by the runtime of the

circuits. In our experimental results, queries run for several minutes

to hours, and the parties compute their local subqueries in a few

seconds or less. In Section 5.3, we verify that circuit complexity is

a robust proxy for query runtime.

4.3.3 Core Operators We now describe the operators that execute

over secret-shared tables within circuits, which dominate the run-

time of any non-trivial SQL query. VaultDB supports a range of

operations, including select, project, inner joins, aggregates (such

as group-by), sort, union, top-k queries, and more.

Filter VaultDB’s filter, 𝜎𝑝 (𝑅), evaluates its predicate one tuple at a
time, updating the corresponding output dummy tag accordingly.

We lazily delete dummies when we reveal a query answer rather

than nulling them out to avoid costly conditional writes to the IRs.

Our cost for this operator is |𝑝 |×|𝑅 | gates.
Project The projection operator is trivially oblivious, as it applies

the same transformations on all rows without data-dependent ac-

cess patterns. Alchemy leverages projection to drop unneeded fields

and push complex expressions out of circuits, as described in Sec-

tion 4.1.2. This reduces the complexity of our circuits for conditional

write-heavy operators that access whole rows, such as sorts, joins,

and group-by aggregates. Reordering and deleting columns incur

no additional gates. Hence, many projections are free in practice.

The cost of a projection, 𝜋𝑒 (𝑅) is |𝑒 |×|𝑅 |.
Sort VaultDB computes its sorts using a bitonic sorter [7]. It first

reorders its input rows into a bitonic sequence wrt the sort key

using a series of compare-and-swap operations. A bitonic sequence

of rows 𝑟0, . . . , 𝑟𝑛−1 will have the form 𝑟0 ≤ . . . ≤ 𝑟𝑘 ≥ . . . ≥ 𝑟𝑛−1
for some 𝑘 over either the initial sequence or a circular shift thereof.

Given two sorted lists of length 𝑛/2, the algorithm merges them

in 𝑙𝑜𝑔 𝑛 rounds with a maximum of 𝑛/2 comparisons per round.

We considered using the AKS sorting network [1], an alternative

approach with a complexity of 𝑂(𝑛 log𝑛). But it has a high setup

cost, and is only profitable when 𝑛 > 10
52
. Each compare-and-swap

has a comparison over {𝑐} bits for the sort key 𝑐 and a conditional

move for {𝑅} bits, at a cost of 2{𝑐} + {𝑅}.

4.3.4 Joins We support two join algorithms from the literature.

Nested Loop Join (NLJ) The basic NLJ algorithm iterates through

all pairs of tuples in𝑅 and 𝑆 , producing |𝑅 |×|𝑆 | output rows. It copies
the input rows to their output positions unconditionally and marks

the rows that do not satisfy the join predicate as dummies. The cost

of this operator is |𝑅 |×|𝑆 |×|𝑝 |. If this is a PK-FK join, because each

FK row matches at most one tuple from the PK relation, we create

one output tuple in the outer join loop and conditionally overwrite

the second half of this join output once per tuple comparison with

mux. This tames the size of our IRs, but at a higher gate cost for the

conditional write. Our cost is |𝑅 |×|𝑆 |×(|𝑝 |+{𝑆}).
Sort-Merge Join (SMJ) VaultDB offers a variant of the oblivious

SMJ algorithm proposed by Krastnikov et al. [32] optimized for

PK-FK joins. It first materializes 𝑅 ∪ 𝑆 sorted on the join key in

𝑂((|𝑅 |+|𝑆 |) log2(|𝑅 |+|𝑆 |)) gates. The operator then does a linear-

time pass over this hybrid table to record a count of each row’s join

matches. Next, it sorts the array and splits it into its constituent

tables with an additional 𝑂((|𝑅 |+|𝑆 |) log2(|𝑅 |+|𝑆 |)) gates. After that,
it expands 𝑆 to |𝑅 |, padding it to the correct number of join matches

in |𝑅 | log2(|𝑅 |) time. For N:N joins, we repeat this step for 𝑅. We

then concatenate the rows one at a time.

VaultDB supports NLJ and SMJ because they are compatible with

circuit-based SQL execution across any number of parties. There are

other oblivious joins, but they either require specific MPC protocols

(such as 3PC) or vertical partitioning. We discuss this further in

Section 6. We first describe our version of each for PK-FK joins, and

then how we also support N:N relationships. Recall that VaultDB

also supports a merge join as described in Section 4.1.1 for 1:1

joins. We do not consider this here because we use this circuit-free

operator unconditionally when possible.

4.3.5 Aggregates We now describe VaultDB’s oblivious aggrega-

tion algorithms. For ones with no group-by clause, the engine does
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Table 5: Runtime (s) for incrementally-added query rewrites.

Base- Local Circuit Work E2E
line Eval Min Reuse Speedup

Q1 252 215 0.348 0.348 724.8×
Q3 734 595 433 374 2×
Q5 2,447 1,969 1,786 1,017 2.4×
Q8 3,604 746 570 436 8.3×
Q9 2,291 1,623 1,356 1,054 2.2×
Q18 1,084 140 140 119 9.1×

a linear pass over all rows, incrementally aggregating its single out-

put row as it goes along. If our aggregates are specified in the gates

𝐴𝑔𝑔, then this operator runs in |𝑅 |×|𝐴𝑔𝑔| time. We now describe

two group-by aggregate algorithms over 𝑆 := 𝛾𝐺1,...,𝐺𝑛,𝐴𝑔𝑔(𝑥 )(𝑅).

Nested Loop Aggregate (NLA) For group-by aggregates with a

small output cardinality, we follow a logic similar to that of NLJ. The

operator initializes an output table with |𝑆 | rows. For each input row,
it visits all |𝑆 | output rows and either updates the corresponding

group-by bin or–if it finds no match–it obliviously initializes the

first empty slot. We estimate NLA’s cost as |𝑅 |×|𝑆 |×|𝐴𝑔𝑔|.
Sort-Merge Aggregate (SMA) A second strategy is to first sort the

input relation on its group-by clause, then do a linear pass over the

data to emit a single output tuple per input row. This circumvents

the need to visit each possible output group-by bin. We estimate

the cost of this algorithm as |𝑅 |×|𝐴𝑔𝑔|+𝑠𝑜𝑟𝑡 (𝑅,𝐺1, . . . ,𝐺𝑛). SMA’s

complexity is asymptotically better than NLA when no suitable car-

dinality bound exists for 𝑆 . Here, the runtime of NLA degenerates

to 𝑂(|𝑅 |2). If the aggregate’s input arrives sorted on its group-by

columns, the runtime of this algorithm is linear time, identical to

the case of a scalar aggregate. The divergent performance charac-

teristics of the two aggregate algorithms present a rich decision

space for a sort-order aware optimizer.

5 EXPERIMENTAL RESULTS
In this section, we evaluate our oblivious query optimization frame-

work, incrementally introducing its techniques to assess their im-

pact on performance. Starting from the baseline, we apply rewrite

rules to reduce circuit complexity. We then present our operator

cost model, showing its correlation with runtime to justify its use

in plan optimization. Next, we measure the performance gains from

bushy plan generation and the application of physical plan opti-

mizations, including operator selection and sort transformations.

5.1 Setup
We conducted experiments on the TPC-H benchmark, implement-

ing and executing all 22 queries. From these, we selected six rep-

resentative queries—Q1, Q3, Q5, Q8, Q9, and Q18—for in-depth

evaluation, as they highlight a broad range of optimization oppor-

tunities [18]. Q5, Q8, and Q9’s performance is heavily influenced by

predicate positioning and join ordering. Q3 and Q18 showcase how

exploiting functional dependencies and sort transformations speed

up query evaluation. Q1 and Q18 have performance that is sensitive

to operator algorithm selection. Our security policy is motivated

by an international online shopping use case, as in SAQE [9]. All

columns in lineitem are private. nation, region, and part are

fully public. For other tables, only primary keys and columns refer-

encing public tables (e.g., s_nationkey, c_nationkey) are public.

To limit the duration of our experiments, we evaluate Alchemy

on a scaled-down version of TPC-H. We refer to each dataset by

its scale factor (SF). Most tables scale proportionally with the scale

factor as specified in the benchmark, except for nation and region,
which have fixed cardinalities. Unless otherwise stated, we test on

TPC-H SF 0.01, and we compare Alchemy against a baseline gener-

ated by a conventional query optimizer that does not have access

to private data distributions. This optimizer is aware of table cardi-

nalities, but it does not perform schema-aware transformations.

Alchemy’s query executor sits atop PostgreSQL running on

Ubuntu. Although we chose PostgreSQL for our experiments, Cal-

cite supports a myriad of other SQL dialects for generating the

input queries for 𝑄̂ . We evaluated our prototype on AWS EC2
r6i.4xlarge instances, each running Ubuntu Server 22.04 LTS,

equipped with 128 GiB memory, 16 vCPUs, and offering up to 12.5

Gbps connectivity between the parties. Our results show the end-to-

end runtime of a query, including its local evaluation and oblivious

steps. Unless otherwise noted, our results are computed over EMP

Toolkit’s sh2pc library for semi-honest 2-party computation [53].

5.2 Query Transformation Rules
We first evaluate the impact of the query transformations described

in Section 4.1.1. They reduce circuit complexity by leveraging local

computation and eliminating redundant operations. Table 5 shows

our runtimes in seconds as we add our three classes of transforma-

tions incrementally. To isolate the impact of these rewrites, we use

SMJ and SMA for all joins and aggregates, respectively. To limit the

duration of our experiments, we apply PK–FK cardinality bounds

to all plans to reduce our output cardinalities from 𝑂(𝑛2) to 𝑂(𝑛)

with no information leakage.

Although we are not yet deriving the formal cardinality bounds

from Section 4.2.2, this naturally arises in many of our oblivious

operators. In merge joins, these bounds ensure that both parties

provide input tables of equal size. In predicate transfer, they allow

for the pruning of join inputs by projecting public key domains

across related tables. These forms of cardinality reasoning are foun-

dational to oblivious transformations. This reduction in IR sizes is

crucial for reducing the circuit complexity of parent operators.

Although individual query transformations provide measurable

improvements, we observe that combining multiple transforma-

tions results in greater synergistic effects. For example, Q1 achieves

the largest speedup (724×), which is due to the combination of

hybrid aggregation and eager projection: it offloads both grouping

and complex arithmetic operations to local plaintext evaluation. In

Q18, a single transformation—merge join—yields substantial benefit

due to the domain knowledge from the schema. Eager projection

proves particularly effective for queries containing complex expres-

sions within circuits, while join predicate pullup and functional

dependency yield approximately 1.2× improvement in Q5 and Q3,

respectively. Finally, aside from Q1 (which has no joins), all queries

benefit from local sort reuse, avoiding redundant sorting inside

circuits and achieving an average of 1.3× additional speedup.

5.3 Operator Cost Modeling
We confirm the accuracy of our analytical cost models in Figure 3.

We test joins and aggregates to: 1) confirm that estimated circuit

counts are an accurate proxy for query runtime, and 2) identify the
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Figure 3: Alchemy cost model validation.
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Figure 4: Query runtimes with incremental optimization.

performance envelope for competing operator implementations.

We ran on TPC-H SF 0.1 and manually varied our input cardinalities.

For each experiment, we plot the operator runtime (solid lines) and

its cost estimate in gates (dotted line).

Joins In Figure 3a, we compare the performance of keyedNLJ versus

SMJ.We joined the lineitem and order tables, holding the cardinality

of the former (FK) constant at 10k rows. We incrementally scaled

up orders, starting with 100 rows and increasing by 10× each time.

We did this to examine how their performance changes with the

ratio between the two input table cardinalities. Our results show

join times proportional to their estimated gate counts with an

𝑅2 of 0.99. This demonstrates excellent agreement between the

estimated number of AND gates and wall clock time. In addition,

our results confirm that the cost model will enable Alchemy to

correctly identify the most efficient join strategy as the relative

sizes of the tables change. NLJ performs marginally better than SMJ

when the inner loop cardinality is low. However, as the input size

increased, the logarithmic scaling of SMJ’s performance makes it a

more efficient option. This result indicates that the input size must

be sufficiently large to amortize the cost of SMJ’s expensive sorts.

Aggregates We now experiment with a simplified version of Q1

that computes a count and sum to compare NLA to SMA. We record

the cost of each aggregation algorithm as the input cardinality in-

creases. The results of our experiments are in Figure 3b. We vary

the input cardinality from 10 to 100K. We fix the cardinality bound

of NLA at 4. While SMA is efficient for small inputs where the

cost of sorting is low (or, when possible, pushed down to partial

plaintext evaluation), the linearly increasing gate count of NLA

makes it a more efficient choice for larger input sizes with a suffi-

ciently tight output cardinality such as Q1’s 𝐾=6. Our results show

a strong correlation between gate count and runtime, with an 𝑅2 of

0.99 again. This indicates that gate counts and their corresponding

network communication are strong predictors of runtime.
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Figure 5: Individual operator performance on Q5.

5.4 Cost-Based Optimization
Our previous optimizations incrementally changed the query plan

by switching the order of individual operators or pushing work out

of circuits. We will now evaluate the impact of our tree-level opti-

mization techniques. We first plot the baseline and the performance

with query transformation rules (Rewrites), as shown in Table 2.

This gets our query trees into a form where we can focus on mini-

mizing the circuit cost of operators. We then add our bushy plan

generator to select 𝑄 ’s join order. After that, we evaluate Alchemy

with our cost-based operator selection both for left-deep and bushy

plans. Our results are in Figure 4.

5.4.1 Bushy Trees We theorized that distributing join operators

over a bushy tree would speed up our query runtimes for two

reasons. First, it would delay joins with large input relations, taming

the size of IRs as they cascade up the tree. Second, bushy trees

create more opportunities for sort transformations, which in turn

accelerate SMJs and SMAs. Our Bushy result in Figure 4 covers Step

3 in our workflow. Thus, it both uses Algorithm 2 to build the

join tree and applies the cardinality bounds in Section 4.2.2.

Unsurprisingly, our results indicate that this optimization is only

profitable for complex multi-way join queries, Q5, Q8, and Q9 in

our core workload. Although our design was partially motivated

by operators that benefit from local sorts, we will evaluate this

aspect of our pipeline shortly in the “OpSel” results. Thus, any

performance gains in Bushy must come from cardinality bounding

onto the wider tree. These queries showed only modest gains with

their new plans because they are "off-by-one" from their left-deep

trees. For example, Q5’s bushy tree in Figure 2b only differs in the

cost of 𝐶 ⊲⊳ 𝑂 , where 𝐶 joins with |𝑂 | tuples instead of |𝐿 | ones.
5.4.2 Operator Selection To test the impact of operator selection

and sort transformations in Step 4 of our query workflow, we

measure this workflow with two tree configurations: left-deep and

bushy. We do this to tease apart the synergistic effects of the bushy

tree and the cost-based operator selection.

Left-Deep OpSelWe start by testing our cost-based operator se-

lection on a left-deep tree. This isolates the performance effects of

operator selection from join reordering. Compared to the circuit-

minimized plan, this variation shows notable performance improve-

ments in several queries, particularly Q5 and Q8, due to smarter

choices such as replacing SMA with NLA. These choices reduce IR

sizes and circuit costs, as discussed in detail in Section 5.4.3.
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Figure 6: Runtime comparison for 22 TPC-H queries.

Bushy OpSel Our final result in this figure is a fully optimized con-

figuration combining the Bushy operator ordering with cost-based

operator selection. Now Alchemy uses both the operator choices

we saw with Left Deep and the reduced IR sizes with Bushy. By
putting these two together, we can finally realize the full potential of

our sort transformations. Compared to left-deep trees, bushy trees

provide greater flexibility in preserving and exploiting sort order,

as they permit multiple branches to be partially sorted in parallel

before merging. As shown in Figure 4, this configuration yields

an average 2× improvement over the Rewrites plans for queries
amenable to bushy planning (Q5, Q8, Q9).

5.4.3 Operator-at-a-Time Performance To better understand the

impact of our cost-based operator selection, we compared the per-

formance of Bushy and Bushy OpSel for Q5 in Figure 4, focusing on

individual operator runtimes as shown in Figure 5. In both plans,

the join, aggregation, and sort operations account for 98% of their

runtime, highlighting the importance of optimizing these steps.

Our cost-based optimization produces a 97% speedup for 𝐿 ⊲⊳

𝑆𝑁𝑅. As in Section 5.3, NLJ is more efficient than SMJ when the

inner relation has low cardinality. This decision, visualized in the

Bushy OpSel plan in Figure 2b, also preserves the sort order of 𝐿,

which is sorted on okey, making the parent SMJ faster, a 30% perfor-

mance gain. Additionally, by recognizing that the n_name attribute

has a cardinality bound of five, we select NLA, boosting our perfor-

mance on this step by 87%. This small IR size also reduces the last

sort time by 99%. This demonstrates that our cost-based optimiza-

tion effectively targets the primary bottleneck operators—join and

aggregate—resulting in improved overall runtime.

5.5 Full TPC-HWorkload
We evaluate how Alchemy’s optimization framework performs

across a broad range of analytical queries by extending our experi-

ments to all 22 queries from the TPC-H benchmark. Figure 6 shows

the runtime for each query. We introduced a new baseline that

uses the rewrite rules featured in prior work outlined in Table 6 to

highlight how Alchemy builds on the SOTA.

Alchemy achieved an average speedup of 21.8× over baseline,

with the largest improvement reaching 188×. Only four queries

showed comparable performance across the two systems, while the

remaining 18 benefited significantly from Alchemy’s cost-based

optimizations. Moreover, plan enumeration resulted in negligible

overhead across all 22 queries, remaining consistently below 0.01%

of runtime. These findings confirm that our techniques generalize

effectively across diverse query structures and complexities.
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Figure 8: TPC-H performance on data of increasing size.

5.6 Comparison with Conclave Execution Plan
We additionally evaluate Alchemy on the HealthLNK [41] workload

to compare with prior secure query systems, specifically Conclave.

HealthLNK is a real-world clinical dataset with six million patient

records collected from seven Chicago-area healthcare institutions.

For comparison, we adopt the Aspirin Count query from prior

work, which counts patients diagnosed with heart disease and

prescribed Aspirin on or after diagnosis.

Conclave operates under a semi-trusted party (STP)model, where

a coordinator may observe public attributes and intermediate meta-

data to accelerate computation. In contrast, Alchemy follows a

stricter two-party semi-honest model with no additional trusted

party. We could not run Conclave directly, so we manually reimple-

mented its logical plan without relying on the STP model.

In this setting, absent the STP, the Conclave plan requires a

bitonic sort before SMA. Alchemy avoids this cost by preserving

row order through dummy-tag filtering and applying sort-aware

transformations to eliminate unnecessary sort. As shown in Fig-

ure 7, Alchemy consistently outperforms this plan, with perfor-

mance improvements that grow with data scale, reaching up to an

11× speedup at one million rows. This outcome underscores the ef-

ficiency of Alchemy’s cost-based operator selection and sort-aware

transformations under stronger privacy constraints.

5.7 Scale Up
We next examine Alchemy’s scalability with increasing data vol-

umes to TPC-H SF 0.02 and TPC-H SF 0.04. Each experiment roughly

doubles the dataset size of its predecessor. Our results are presented

in Figure 8. Our findings strongly support Alchemy’s scalability. For

all queries except Q1, we observed near-linear scaling with runtime

increasing by approximately 2.3× when the data size doubled. Q1’s

circuit cost is constant because it uses hybrid aggregation. Notably,

bandwidth usage remained constant despite an increasing number

of gates for more data. This indicates we are not saturating the

bandwidth between the parties.
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Table 6: Comparison of MPC SQL engines. SH = semihonest, MAL = maliciously secure, 𝑛PC = 𝑛-party MPC.
Comp. Filter Hybrid Merge Simplify Cir- Join Merge Shared Bound IR Size Obliv Ops for

Name Method Pushdown Agg Join cuits w/FDs Pullup Subtrees w/Constraints 2+ Backends

Conclave [52] SH3PC ✓ ✓
Secrecy [37] SH3PC ✓
SecYan [54] SH2PC ✓ ✓ ✓ ✓
Senate [42] MAL-MPC ✓ ✓ ✓
SMCQL [8] SH2PC ✓ ✓ ✓
Alchemy SH | | MAL

(ours) 2+PC, ZKP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Figure 9: Performance with varying cryptographic protocols.

5.8 Broadening Oblivious Query Optimization
Alchemy’s optimization framework is grounded in circuit minimiza-

tion, making it naturally applicable across a range of secure compu-

tation protocols. To demonstrate its protocol-agnostic design, we

integrated it with two additional cryptographic protocols from EMP

Toolkit: zero-knowledge (ZK) proofs [36, 55, 56] and maliciously

secure MPC [35] (OMPC), alongside our original semi-honest 2PC

(SH2PC) protocols. For SH2PC and ZK experiments, we used TPC-H
SF 0.01, while for OMPC, due to its higher storage and computa-

tional costs, we used TPC-H SF 0.001 to reduce its runtime. Our

results in Figure 9 reveal substantial performance gains across all

cryptographic protocols. In SH2PC and ZK protocols, queries with

pushed-down aggregates (Q1 and Q18) showed dramatic improve-

ments of up to 2096× and 821× respectively, while other queries

showed improvements ranging from 8× to 35×. OMPC showed

more modest improvements, with Q1 achieving 401× improvement

but others ranging from 1.4× to 5.7×. While operator-level analysis

confirms that our optimized joins and aggregations benefit OMPC,

the reduced dataset size limits themagnitude of these improvements.

These results demonstrate that Alchemy’s optimization approach is

an effective, protocol-agnostic solution for secure query processing.

6 RELATED WORK
There has been substantial research interest in oblivious query pro-

cessing in the DB community. Table 6 compares Alchemy to other

systems that securely compute over federated data. Conclave [52]

provides efficient in-MPC evaluation for collaborative analytics, but

it does not exploit schema constraints for optimization. Although

Conclave considers sort and filter pushdown, it does not handle

intra-operator sorting or address multiple intermediate collations

like Alchemy. Senate [42] has a cost-based optimizer for its mali-

ciously secure queries, but it relies on user-provided cardinality

bounds, while Alchemy automatically generates these bounds using

the public system catalog. Secrecy [37] serves PDF queries with

outsourced computation using a mix of boolean and arithmetic cir-

cuits. Their plans minimize the cost of switching between these two

circuit types. Secure Yannakakis [54] offers oblivious join-aggregate

queries with a PSI-based protocol. It only supports vertically parti-

tioned tables where each join column is held by one party, whereas

VaultDB also offers joins on horizontally partitioned data.

Alchemy’s circuit-based framework is protocol-independent and

extensible for more than two parties. It uses boolean circuits alone

to make its plans easily portable to other cryptographic protocols

without specialized adapters to make them interoperable. Optimiz-

ing among multiple plug-and-play protocols was studied in [21, 28,

48, 51]. We speed up queries by reasoning about schema proper-

ties and transforming the logical plan by eliminating redundant

sub-expressions, exploiting schema constraints to craft tighter car-

dinality bounds, and by simplifying operator-level circuits.

A second approach to oblivious querying is to use trusted hard-

ware, especially for outsourcing to the cloud. Opaque [57] and

ObliDB [20] offer some dummy padding to protect the size of in-

termediate results, but do not protect memory access patterns or

instruction traces within the enclave, making them vulnerable to

side-channel attacks from a curious observer. We use full oblivious

padding by default and instead leverage hints from the system cat-

alog to reduce our IR sizes. OCQ [15] goes a step further by using

PK-FK relationships for reducing the size of join outputs. Alchemy

builds on this by targeting generic relational DBMSs, leveraging

richer metadata including public attribute domains, functional de-

pendencies, and CHECK constraints.

There are numerous oblivious join algorithms as described in

recent surveys [34, 50]. Oblivious hash joins [40] presently only

support SH3PC. Similarly, PSI-based joins leak the IR size of the

join result [42, 44, 54] (or require manual padding specifications),

require vertical partitioning [54], or a 3PC protocol [38]. This limits

their interoperability with multiple circuit backends or data lay-

outs, making them unsuitable for general-purpose, 𝑛-party settings.

Consequently, VaultDB adopts NLJ and SMJ for their generality,

ease of integration into cost-based optimization, and compatibility

with more computing parties.

7 CONCLUSION
In this paper, we introduce Alchemy, an optimization framework

for oblivious query processing. Our approach generalizes tradi-

tional optimization techniques, pairing them with circuit-aware

cost modeling to reduce the overhead of secure computing. Our

experimental results demonstrate up to 2 OOM performance gains

across various cryptographic protocols, validating both the effec-

tiveness and protocol-agnostic nature of these techniques.
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