
Triparts: Scalable Streaming Graph Partitioning to Enhance
Community Structure

Ruchi Bhoot
Indian Institute of Science (IISc)

Bangalore, India
ruchibhoot@iisc.ac.in

Tuhin Khare∗

Georgia Institute of Technology
Atlanta, GA, USA

tkhare7@gatech.edu

Manoj Agarwal
GiKA.AI

Bangalore, India
agarwalm@gikagraph.ai

Siddharth Jaiswal∗

Indian Institute of Technology (IIT)
Kharagpur, India

siddsjaiswal@kgpian.iitkgp.ac.in

Yogesh Simmhan
Indian Institute of Science (IISc)

Bangalore, India
simmhan@iisc.ac.in

ABSTRACT

k-way edge based partitioning algorithms for processing large

streaming graphs, such as social networks and web crawls, as-

sign each arriving edge to one of the k partitions. This can result

in vertices being replicated on multiple partitions. Typically, such

partitioning algorithms aim to balance the edge counts across par-

titions while minimizing the vertex replication. However, such

objectives ignore the community structure inherently embedded

in the graph, which is an important quality metric for clustering

and graph mining applications that subsequently operate on the

partitions. To address this gap, we propose a novel optimization

goal to maximize the number of local triangles in the partitions as

an additional objective. Triangle count is an e�ective metric to mea-

sure the conservation of community structure. Further, we propose

TriParts a family of heuristics for online partitioning over an edge

stream. They use three complementary state data structures: Bloom

Filters, Triangle Map and High degree Map. Each state adds tangible

value to meet our objectives. We validate TriParts on six diverse real

world graphs with up to 1.6B edges and varying triangle densities.

Our best heuristic outperforms the state-of-the-art DBH and HDRF

streaming graph partitioners on the triangle-count metric by up to

4-8.3x while maintaining competitive vertex replication factor and

edge-balancing. We achieve an ingest rate of 500k edges/sec on a

16 node cluster. We also o�er detailed results on the con�guration

parameters, scalability and overheads of TriParts, and its practical

bene�ts for distributed graph analytics.

PVLDB Reference Format:

Ruchi Bhoot, Tuhin Khare, Manoj Agarwal, Siddharth Jaiswal, and Yogesh

Simmhan. Triparts: Scalable Streaming Graph Partitioning to Enhance

Community Structure. PVLDB, 18(9): 2992 - 3006, 2025.

doi:10.14778/3746405.3746423

PVLDB Artifact Availability:

∗Based on work done while at the Indian Institute of Science (IISc).
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.
doi:10.14778/3746405.3746423

The source code, data, and/or other artifacts have been made available at

https://github.com/dream-lab/triparts.

1 INTRODUCTION

Massive graphs such as web, social, and gene sequencing graphs, of-

ten contain billions of vertices and edges, exceeding single-machine

memory [31, 41, 60]. To enable distributed memory and parallel

computation, these graphs must be partitioned across multiple ma-

chines [4, 60]. E�cient partitioning [6, 22, 45, 46] is therefore crucial

for distributed processing .

Graph partitioning can be vertex-based or edge-based. A :-way

vertex-based partitioning places each vertex on one of : partitions

such that each has a similar number of vertices to achieve load

balancing, and the edge-cuts between vertices in di�erent partitions

are minimized [17, 44, 67, 77, 83]. A :-way edge-based partitioning

places each edge on one of the partitions to balance the edges per

partition, and minimize the vertex replicas across partitions [44].

Edge-based partitioning is more e�ective for power-law graphs

often seen in real-world graphs [31, 58], and the focus of this article.

Optimal graph partitioning is NP-Complete [6, 58] and many

heuristics have been proposed [31, 43, 44, 46, 63, 74, 79, 83], in partic-

ular for static graphs that are available a priori [17, 54, 67, 83]. How-

ever, graphs that model contemporary applications such as �nancial

transaction networks, Internet of Things sensors and social network

feeds are continuously updated with 1k-100k edges/sec [42, 55, 59].

Partitioning such dynamic or streaming graphs helps ensure that

the incremental graph received at any point in time is available for

distributed analysis to serve periodic insights or to identify emerg-

ing events in a timely manner [3]. This is in contrast to periodically

partitioning the entire accumulated graph every few hours – which

may itself take several hours for billion-scale graphs [17, 44] – or

waiting for the entire graph to be available, which may be infeasible

when graph updates never terminate, before analyzing the graph.

Streaming graph partitioners [1, 26, 79] receive the graph updates

at a central machine (leader), which decides the partition on which

to place the incoming graph element. Worker machines receive the

updates from the leader and add them to their respective local parti-

tion. In streaming edge-based partitioning (Fig. 1), edges represented

as vertex-pair form the update stream [31, 43, 63, 74, 87]. Each arriv-

ing edge is placed in one partition and a vertex whose incident edges

are on di�erent partitions is replicated on each of these partitions.

The objectives are to maintain edge-balancing, ≈
|ā |
ġ

per partition,

2992

https://orcid.org/0009-0008-3968-1049
https://orcid.org/0009-0002-2236-8044
https://orcid.org/0009-0002-9483-9239
https://orcid.org/0000-0002-7247-725X
https://orcid.org/0000-0003-4140-7774
https://doi.org/10.14778/3746405.3746423
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746423
https://github.com/dream-lab/triparts
https://www.acm.org/publications/policies/artifact-review-and-badging-current

% 1-2, 4-5, 1-3, 2-4, 2-3, 1-4, 3-4

3

4

5

1
2

3
4

Part. 1 Part. 2

Co
m

m
un

ity
Pr

es
er

vi
ng 6

2
8
7

2 4
5

1

2 4

Part. 1 Part. 2

3

7

Ed
ge

Ba

la
nc

ed

8
8

61 6

2
3

4
5

Input Graph

8

7

9 StateState
Leader

1

2

3

5

2

3

2

4

2

7

1

4

3

4
Input Edge Stream

4

6

7

8

2

8

8

9

Figure 1: Edge-based streaming partitioning. Partitioner on

bottom preserves communities while top does not. Both are

edge-balanced with the same vertex replication factor.

and to minimize the replicated vertices, with the vertex replication

factor given by d =
(
ÍĒ

1 Ĩ (Ĭ))

|Ē |
, where 1 f A (E) f : is the number

of replicas per vertex. Balancing the edges per partition helps load-

balance the compute and memory load on workers when executing

a distributed graph analysis over the partitioned graph [14, 47].

Reducing vertex replication mitigates duplicate elements across

partitions and reduces messaging between them during distributed

execution [31]. The leader may use local in-memory state to make

the decision on edge placement; but given the large graph sizes, it is

important that this state is bounded in size to$ (|+ |) andj $ (|� |).

E.g., in Fig. 1, the leader has processed the edge stream until edge

2 ´ 8 and decided on their placements among : = 2 partitions,

shown in the top-right, based on a default edge-balancing strategy

. Both parts have 5 edges each, making them well-balanced . The

orange vertices (2, 4, 8) have a replication factor of A (E) = 2, while

the others have 1. This gives us d =
11
8 .

Motivation. In this article, we go beyond these two standard

objectives of edge-balancing and minimizing vertex replication, and

argue that a good graph partitioning algorithm should preserve

the local community structure within each partition [13, 65, 81].

This can help solve a class of graph algorithms such as commu-

nity evolution [62], PageRank [32, 78], sampling GNN computation

graphs [92], etc. using local partition information rather than regu-

larly resort to costly distributed analytics.

Real-world graphs typically exhibit a power-law degree distribu-

tion and small-world properties, with a few highly connected hub

vertices forming dense communities and sparse inter-community

links [57, 72]. Community quality is measured using metrics like

transitivity, Local Clustering Coe�cient (LCC), modularity, density,

conductance, and cohesiveness. Transitivity [30] re�ects the likeli-

hood of adjacent nodes being interconnected, indicating tightly knit

communities. LCC measures how close a vertex’s neighbors are to

forming a clique and helps identify small-world networks [84].

This intuition can be extended to graph partitioning, where pre-

serving community structure within partitions serves as a quality

metric. Prior work emphasizes partition compactness [13, 81] and

high intra-partition connectivity, especially for community detec-

tion and resilience enhancement [10, 65]. Partitioning into highly

connected communities bene�ts information �ow in social net-

works [37], create sub-graphs resilient to vertex failures in power

grids [35], and biological clustering [13, 30].

Therefore, a streaming partitioner should aim to co-locate com-

munity vertices and edges within the same partition, while meeting

other objectives. Since intra-community interactions are more fre-

quent, this reduces inter-machine communication [32, 62], enables

faster local approximations [32, 37].

Gaps. Several edge-based streaming partitioners have been pro-

posed [43, 63, 74]with the objective of balancing edge loads andmin-

imizing vertex replicas. But few preserve the community structure

embedded in such graphs while partitioning [65]. Also, these default

objectives do not result in community preservation. E.g., in Fig. 1,

our proposed community-aware triangle-maximizing partitioner,

TriParts , results in partitions (bottom-right) that are edge-balanced

(5 edges each) and with the same vertex replication (d =
11
8), but is

able to preserve the two communities present in the input graph at

this point in time, (1, 2, 3, 4) and (2, 7, 8), within the local partitions.

State-of-the-art (SOTA) algorithms such as DBH [87] and HDRF

[74] cannot preserve communities §6.3.4. Community-aware edge

partitioners, CLUGP [52] and 2PS-L [66], do out-of-core partitioning

of a materialized stream, taking 3–4 passes over the stream. Even

with 1 pass over an online stream, BTH qualitatively out-performs

CLUGP’s o�ine approach (§6.2.2). This motivates the need for a

fast streaming partitioner that meets this additional objective.

Contributions. In this paper, we propose a novel problem of

:-way streaming edge-based graph partitioning, with the added

objective of preserving the community structure within local parti-

tions, while also balancing edges and minimizing vertex replication.

Speci�cally, we identify that preserving the number of local trian-

gles within each partition helps meet the community-preservation

goal, and leverage this along with compact data structures to make

fast placement decisions on edge streams, with minimal commu-

nication between the leader and workers, and achieving rates of

500: edges/s. To our knowledge, this is the �rst edge-based streaming

graph partitioner designed to preserve the community structure.

We make the following speci�c contributions:

(1) We formalize the problem of edge-based streaming partitioning

to enhance the local community structure, discuss the bene�ts

of using triangle preservation to retain community structure,

and de�ne a novel objective function for the same (§3).

(2) We develop a scalable multi-threaded distributed partitioning

framework TriParts that uses compact data structures main-

tained at the leader to make partitioning decisions (§4).

(3) We propose four heuristics that incrementally leverage these

states to partition the incoming edge stream to meet our quali-

tative objectives (§5).

(4) We compare TriParts with several SOTA baselines for six large

real-world graphs and �ve synthetic graphs, and report par-

titioning quality, scalability metrics, con�guration trade-o�s,

overheads and practical bene�ts for distributed analytics (§6).

2 RELATED WORK

2.1 Static Graph Partitioning

Static graph partitioning focuses on balancing the elements in each

partition and minimizing the edge cuts (vertex-based partitioning)

or vertex replication (edge-based). Identifying optimal balanced

:-way partitioning of input graph � = ï+ , �ð is NP-Complete.

Andreev and Räcke [6] give an approximation algorithm with an ap-

proximation ratio of$ (log1.5 |+ |). Kernighan and Lin [46] present a

2993

2-way partitioning algorithm which can be extended to : partitions

with a time complexity of $ (|+ |2 · log |+ |).

There are a number of works on vertex-based partitioning.METIS

[44] is a popular hierarchical vertex-based algorithm that o�ers

highly balanced partitions with low edge cuts. SCOTCH [17] is a

recursive multi-level bisection partitioner. Their parallel variants,

ParMETIS [45] and PT-Scotch [17], can be deployed on distributed

clusters. ParHip [67] uses distributed label propagation to achieve

high quality partitioning. We focus on edge-based partitioning,

which is e�ective for power-law graphs [31, 58] and common in

streaming scenarios.

Schlag et al. [77] proposed a distributed edge-partitioner that uses

a Split and Connect Method to partition a graph. Others [41] have

o�ered a distributed memory edge partitioner that uses parallel

neighbor expansion to perform the partitioning. However, it is non-

trivial to extend static partitioners to a streaming scenario, which

we address, as they rely on a priori knowledge of the whole graph.

2.2 Streaming Graph Partitioning

In a streaming scenario, the partitioning decision is taken at the

ingest point of a graph element as it arrives at a leader machine.

The partitioning algorithms can either be stateless, e.g., using a

hash function [79], or maintain and use an incremental state at the

leader based on the previous elements seen [74, 83]. The incoming

stream can be in a random order, or follow a traversal order like

Breadth/Depth First Search (BFS/DFS), such as observed in web

crawls. Abbas et al. [2] provide a comprehensive survey of some

of the common streaming partitioning algorithms. We address the

problem of streaming partitioning by maintaining state at the leader

and report competitive results for both random and BFS ordering.

Vertex-based Partitioning. These systems process a stream of

vertices with their adjacency lists. LDG assigns each vertex to the

partition with the most neighbors, penalizing larger partitions [79].

FENNEL[83] balances neighbor co-location with non-neighbor sep-

aration, o�ering insights into identifying dense communities, a con-

cept we extend to edge-based partitioning. Adil et al.[18] optimize

memory for vertex-based partitioning on trillion-edge graphs by

compressing leader structures. CUTTANA [34] reduces replication

by bu�ering the graph to retain global context before partitioning.

Though we use edge-based partitioning, we also maintain compact

leader state for fast, high-quality decisions.

Edge-based Partitioning. Edge-based partitioning was popu-

larized by PowerGraph [31], which proposes a greedy algorithm to

place an incoming edge on the partitions where its incident vertices

have been placed earlier. It o�ers a distributed implementation and

maintains $ (|+ |) size state for decision-making at the leader. Our

simplest heuristic approximates this behavior using Bloom �lters,

taking $ (2 · :) space complexity for a :-way partitioning, where 2

is a large constant representing the Bloom �lter bits and 2 < |+ |.

Grid [43] and PDS [2] are stateless hash-based heuristics with

an upper bound on vertex replicas but do not account for the graph

topology. Our heuristics consider the structure of the incoming

graph using state present at the leader, resulting in better quality

partitioning.ADWISE [63] proposes a window-based algorithm that

trades-o� quality with latency while CuSP [38] partitions graphs

maintained in distributed memory of large HPC systems. We focus

on partitioning on Cloud and commodity clusters.

Degree Based Hashing (DBH) [87] and High Degree Replicated

First (HDRF) [74] are SOTA edge-based streaming partitioners. DBH

maintains the degree of both vertices for each edge using a hash

table of size$ (|+ |), and assigns the edge to a partition based on the

lower-degree vertex’s ID. HDRF replicates high-degree vertices to

reduce replication and balances load using a scoring function, but

communicates with all partitions per edge, leading to high overhead.

Our proposed heuristics maintain a larger state at the leader than

HDRF but smaller than DBH. The leader communicates with the

partitions periodically to update its state. Thus, our time and space

complexities fall between these two techniques. Also, DBH does

not consider the graph structure at all while HDRF is optimized

only to reduce the replication factor, ignoring the graph’s topology.

We empirically compare our heuristics with these contemporaries.

Hybrid techniques have been proposed [16, 25, 91]. PowerLyra

[16] combines both edges and vertices to get hybrid cuts for parti-

tioning based on the vertex degree. Leopard [40] performs vertex

duplication with edge cuts and dynamic rebalancing of the parti-

tions when elements are deleted. We consider append-only graph

streams, seen in �ntech, IoT and even social networks, with a static

partition count. We leave dynamic repartitioning to future work.

2.3 Partitioning for Platforms and Analytics

Vertex-based platforms like Pregel [61], GraphX [33], Giraph Un-

chained [36], and TARIS [12] default to hash partitioning on vertex

IDs but support custom partitioners. Dist-DGL [92], built for GNNs,

uses METIS to localize training neighborhoods and reduce sampling

overhead. Edge-based platforms like PowerGraph [32] and Graph-

build [43] prioritize load balancing and minimizing vertex replica-

tion. These systems can bene�t from our community-preserving

edge streaming partitioners, as demonstrated later with GraphX.

Maximizing the internal connectivity within each community

can enhance information �ow and a clustering-based approach

is used to maximize connectivity and resiliency to vertex failures

when partitioning a power grid [35]. Highly-connected subgraph

clustering [37] partitions a graph while ensuring that the edge

connectivity of each part is greater than half the number of ver-

tices in that part. This has been successful in biological networks,

including clustering cDNA �ngerprints and grouping protein se-

quences [13]. These are vertex-based static graph partitioners, vali-

dated for speci�c applications. Instead we present an edge-based

streaming graph partitioner which creates community-preserved

partitions, validated on diverse graphs.

Clustering-based edge partitioners, like 2PS-L [66] and CLUGP

[52], have been recently proposed to preserve local community

structure, similar in spirit as us. However, these are not streaming

partitioners but rather out-of-core ones, streaming the graph from

disk and performing multiple passes over them (4 for 2PS-L, 3 for

CLUGP) to identify community structure. We perform a single pass

to achieve a truly streaming online partitioning. Our empirical

comparison with CLUGP also shows us better or comparable on

triangle counts but much better in reducing vertex replicas.

Machine learning (ML) has been applied to partitioning, treating

it as a classi�cation problem. These tend to be vertex centric and

2994

non-streaming [28, 56, 69], and only consider the usual objectives

of load balancing and minimizing cuts and not community preser-

vation. E.g., GAP de�nes a di�erentiable formulation of the cut

objective as a loss function for to learning of a neural network that

predicts the partition for a vertex [69]. GCNSplit [93] does online

unsupervised edge classi�cation to a partition using an inductive

Graph Convolutional Network (GCN). They use just < 1"� of

memory but create more vertex replicas than HDRF. They too do

not preserve communities.

3 PROBLEM FORMULATION

3.1 Preliminaries

Let � = ï+ , �ð be a graph, where + = {E1, E2, . . . , EĤ} is the set of

vertices, with |+ | = =, and � = {41, 42, . . . , 4ģ} ¢ + ×+ is the set of

undirected edges, with |� | =<. This graph arrives incrementally at

a leader machine as a stream of undirected edges, (= [41, 42, ..., 4ģ].

Each edge in the graph appears exactly once in the input stream

and the arrival order is arbitrary, e.g., creation time, traversal order.

The goal of an edge-based streaming graph partitioner is for

the leader to divide the edge stream (into : subgraphs, S =

{(1, (2, ..., (ġ }, each formed from a subset of the stream as the edges

arrive. An arriving edge is placed on exactly one of the Worker

machine,ğ that holds the partition (ğ , i.e., ∀8, (ğ ¢ �,
Ð
(ğ = (,

and ∀8, 9, (ğ ∩ (Ġ = ∅. : is static and given a priori.

The �rst goal of a high-quality partitioning is edge balancing, i.e.,

|(ğ | ≈
ģ
ġ
, to allow balanced load on the partitions [14, 47]. Each

worker can handle ≈ ģ
ġ
load even as the partition sizes grow, e.g.,

by scaling up VMs. When di�erent edges incident on the same

vertex E are sent to di�erent partitions, the vertex E is replicated on

each partition. If the number of replicas for a vertex E is A (E), with

1 f A (E) f : , the vertex replication factor is d =

Í
Ĭ∈Ē Ĩ (Ĭ)
|Ē |

, with

1 f d f : . The second goal is tominimize the replication factor. This

reduces data duplication in di�erent partitions and communication

across partitions during distributed computation [31].

This is illustrated in Fig. 1 for two di�erent partitioning strategies

over a stream of 10 edges placed into two parts.

3.2 Preserving Communities

Local triangles are 3-cycles of edges that are wholly present within

a partition. Let the count of local triangles in partition 8 be gğ . These

are a subset of the global triangle count g present in the unparti-

tioned graph, i.e., g f g . Partitioning the graph can eliminate trian-

gles. E.g., in Figure 1, there are three triangles in the input graph,

{1, 2, 4}, {2, 3, 4}, and {2, 7, 8}. However, after the edge-balanced

partitioning, only one of these is preserved, {1, 2, 4} in Partition 1.

The total number of local triangles in the partitioned graph is given

by g =
Í
ğ∈ġ gğ . The ratio of triangles preserved is bg =

ă
ă
.

Hypothesis 3.1. Preserving triangles helps preserve communities.

Discussion: By de�nition, vertices within a community are more

connected within the community than to vertices outside the com-

munity. Let the probability of an edge between two vertices in

the same community be ? and probability of an edge between

vertices of di�erent communities be @. By de�nition, ? k @. The

expected number of triangles in a community � with = vertices is

()ÿğĤ) = (Ĥ�3) ·?
3. The probability of a triangle existing across com-

munities is either ()ĥīĪ) = (Ĥ�3) · @
3, if the three edges are spread

across three communities, or ()ĥīĪ) = (Ĥ�3) · ?@
2, if two edges are

in one community and the third in a di�erent one. Since @ j ? ,

% ()ğĤ) k % ()ĥīĪ). So, there is a high chance that all three vertices

forming a triangle belong to the same community. So, preserving

triangles in a partition can preserve community structure. ■

Triangle counting is the “basic building block” [90] of many

community detection algorithms [29, 71] and is well-studied [49, 76,

90]. The existence of triangles is shown to be important for forming

complex networks with an underlying community structure [49],

e.g., the presence of cliques or near-cliques [17, 77]. Similarly, a

good community is de�ned as a set of vertices that is dense in

terms of triangles [71, 76]. As we show next, metrics to quantify the

goodness of clusters created by community detection algorithms,

LCC and transitivity, are proportional to triangles in the graph.

Hypothesis 3.2. If two partitioning methods have similar vertex

replication (d) and edge balancing, the one preserving more triangles

(g) will have a higher Local Clustering Coe�cient (LCC).

Discussion: Let g (D) be the number of triangles a vertex D is part

of in partition 8 f : and 3 (D) be its degree. The LCC of vertex D

in partition 8 is ;22ğ (D) =
2.ăğ (ī)

Ě (ī) (Ě (ī)−1)
and the average clustering

coe�cient of the partition 8 is ;22ğ =

Í
ī∈Ēğ

Ģęęğ (ī)

|Ēğ |
. Since both parti-

tioning methods are edge-balanced, each partition will have ≈
|ā |
ġ

edges, and since both have the same vertex replication factor, the

number of vertices in each partition will be similar, ≈
Ā · |Ē |
ġ

. There-

fore, the average edge degree of each partition will also be same.

Hence, if the triangles preserved in one partition, gğ , increases, then

;22ğ also increases, assuming a similar degree distribution 3 (·) for

vertices in the partitioned graph under both methods. ■

At the same time, there is also a trade-o�. If d decreases, this will

cause LCC to decrease since the average edge degree in a partition

will increase. We later empirically con�rm both of these in §6.3.4.

Hypothesis 3.3. Preserving triangles increases Transitivity.

Discussion: Transitivity of a graph is)A0=B =
3.ăğ

|ĪĨğĦĢěĪĩ |
where

|CA8?;4CB | is a set of three vertices connected by two or more edges.

Since a triangle contributes three triplets, the numerator is multi-

plied by 3. So, transitivity can also be de�ned as

)A0=B = 3.ă
3.ă+|ĥ_ĪĨğĦĢěĪĩ |

, where |>_CA8?;4CB | are the number of open

triplets having a path but not forming a triangle. Let a graph parti-

tioner" that preserves the number of triangles have transitivity

of)A0=Bğ =
3.ăğ

3.ăğ+|ĥ_ĪĨğĦĢěĪĩğ |
for partition 8 . Let an alternate parti-

tioner "′ for that same graph give the same number of vertices

and edges in a partition but not preserve as many triangles, with a

transitivity of)A0=B′ğ =
3.ă ′ğ

3.ă ′ğ +|ĥ_ĪĨğĦĢěĪĩ
′
ğ |
, for partition 8 , and with

gğ g g ′ğ .

We show that)A0=Bğ g)A0=B′ğ . Let) (D, E,F) be a triangle pre-

served in partition (ğ of " but not in partition (′ğ of "
′. There

are two possible cases for) . (1) Two of the edges of) (D, E,F) are

present in partition (′ğ . Here, the denominator in)A0=B′ğ increases

by 1 due to) and the numerator remains the same, thus reducing

)A0=B′ğ relative to)A0=Bğ . (2) Only one of the edges of) (D, E,F) is

2995

part of (′ğ . Here, the transitivity of the partition is not a�ected by) .

Therefore, for every missing triangle in (′ğ with respect to (ğ , the

transitivity of (′ğ reduces or remains the same. Further, in a fraction,

if the numerator and the denominator are increased by the same

quantity, the fraction increases. Since g > g ′ and (ğ and (′ğ have

same number of edges and vertices, we have)A0=Bğ g)A0=B′ğ . ■

3.3 Optimization Problem

Since preserving triangles is necessary to enhance the community

structure, we now fully de�ne our problem with this additional

objective.

Problem Statement. The objectives of a community-preserving

edge-based partitioner are to partition the stream of input edges (

into : partitions such that we:

(1) Balance the edges across partitions within a load-balancing

factor n : ∀8, |(ğ | ∈ [(1 − Y)ģ
ġ
, (1 + Y)ģ

ġ
] ;

(2) Minimize the vertex replication factor, d ; and

(3) Maximize the triangle count ratio, bg .
E.g., in Figure 1, the triangle-preserving partitioner (bottom-

right) achieves a triangle count ratio of 2
3 , preserving two of the

three global triangles, compared to just 1
3 for the edge-balanced

partitioner, while balancing edges and having the same d .

We now formally analyze our objective function. Say, we have

an input graph � ï+ , �ð, generated uniformly randomly, with the

probability of generating an edge being @. Let us assume that the

largest clique in the graph is of size =̄.

Theorem 3.1. In an edge-based partitioner, when vertices are repli-

cated (d > 1), some triangles will be missed (bg < 1).

Proof: When an edge that is part of a clique results in a vertex

replication, it can break one or more triangles in the clique. Say,

 ∈ � ï+ , �ð is a clique of size =̄ and +̄ is its set of vertices. has
Ĥ̄· (Ĥ̄−1)

2 edges. The number of unique triangles in the clique is Ĥ̄�3,

and each edge is part of (=̄ − 2) triangles in the clique. So, a missing

edge in the clique can result in missing up to (=̄ − 2) triangles.

Say, the replication of a vertex in results in a missing triangle

with probability f over the entire stream. So, for a replication factor

of d , d − 1 extra copies of a vertex exist, resulting into loss of up

to f · (d − 1) · (=̄ − 2) triangles from the clique. But, if an edge

4 (Eğ , E Ġ) ∉ , involving Eğ ∈ and E Ġ ∉ is assigned to partition

(ġ≠Ģ , this will not result in a missing triangle. ■

This highlights that for any replication factor, d > 1, a fraction of

triangles are bound to be missed in :-way partitioning of the graph,

irrespective of the partitioning strategy. In the rest of the discussion,

we ignore the factor f as it is not central to our argument.

Theorem 3.2. A higher vertex replication factor will cause a higher

number of triangles to be missed.

Proof: Since the clique has =̄ nodes and an edge is adjacent to

2 vertices, the loss in total triangles due to vertex replication is

bounded by ((d − 1) · (=̄ − 2) · Ĥ̄2) triangles, i.e., O((d − 1) · =̄2)

triangles are lost. Say,N(=̄) is the number of cliques of size =̄ in the

graph. Since, the probability of an edge being present in the graph

is @ and a clique must contain all the edges, all O(=̄2) edges must

be present. So, the probability of a clique of size =̄ is @Ĥ̄
2
. Hence,

the number of cliques of size =̄ is N(=̄) ≈ O(|+ |Ĥ̄ · @Ĥ̄
2
). Therefore,

a total of O((d − 1) · =̄2 · N (=̄)) triangles will be missed for all

the cliques of size =̄ in the graph due to a :-way partitioning with

replication factor d . The expected number of total triangles missed

in the graph,)ģğĩĩ , for cliques of all sizes B due to replication is:

)ģğĩĩ = O(ΣĤ̄ĩ=3 ((d − 1)B2N(B)) (1)

≈ O(ΣĤ̄ĩ=3 ((d − 1)B2 |+ |ĩ@ĩ
2
)) (2)

≈ O
� (d − 1) |+ |@

@4 (1 − @2)3

�
(3)

We omit the intermediate steps from Eqn. 2 to Eqn. 3 for brevity.

The total number of triangles expected in the graph are:

)ĪĥĪ = Σ
Ĥ̄
ĩ=3 (

ĩ�3N(B)) ≈ O(ΣĤ̄ĩ=3 (B
3N(B))

≈ Σ
Ĥ̄
ĩ=3 (

ĩ�3 |+ |ĩ@ĩ
2
) ≈ O

� |+ |@

@6 (1 − @2)4

�

Hence, the fraction of missing triangles is:

)ģğĩĩ

)ĪĥĪ
= O((d − 1)@2 (1 − @2))

≈ O((d − 1)@2), for @ j 1

Hence, the fraction of missing triangles is higher for a high

replication factor in edge-balanced partitioner. Further, for a given

replication factor, the fraction of missing triangles is more if the

graph is dense, which is also intuitive. ■

This theorem proves that we can improve the quality of graph

partitioning, i.e., the retained communities due to number of trian-

gles preserved, by improving the replication factor. So, our objec-

tives of minimizing the replication factor while simultane-

ously increasing the triangle count are not contradictory, and

hence there exists a solution. This is con�rmed in our experiments,

where for our algorithm, the replication factor is smaller in some

cases where the triangle count ratio is more, and vice versa.

The second insight revealed by the theorem is that it is non-

trivial to design such an algorithm. Although the two objectives

support each other, existing algorithms that optimize just the

vertex replication factor do not automatically result in in-

creased triangle counts. As shown by our experiments, the SOTA

algorithm HDRF consistently performs worse than our algorithm

by 3× to 5× in terms of triangles preserved for diverse graphs, even

though it matches or marginally does better on replication fac-

tor. While we can improve the community structure by improving

the replication factor, there is still a compelling need to design a

non-trivial partitioning algorithm to speci�cally enhance triangle

preservation. We propose a novel algorithm to address this gap.

4 SYSTEM ARCHITECTURE

TriParts is a distributed partitioner with one leader machine and :

workers for a :-way partitioning (Fig. 2). Each worker holds one

partition.While by default eachworker is on a separatemachine, we

can con�gure multiple workers per machine, e.g., allowing workers

to be migrated to new machines as their partition sizes grow.

The leader receives an input stream of edges from an external

source which is accessed through a FIFO Reader Queue by the leader.

The leader’s partitioning logic decides the partition to which each

edge should be assigned to, and then sends that edge to the worker

hosting that partition. The leader exploits concurrency using a

2996

2997

2998

Algorithm 1 Primary decision points for BTH heuristic

1: procedure ComputePartition(Ĭğ , ĬĠ)
2: if Đ (Ĭğ) ∩Đ (ĬĠ) ≠ č then
3: return GetPartFromTIntersect(Ĭğ , ĬĠ)

4: if Đ (Ĭğ) ≠ č &&Đ (ĬĠ) ≠ č &&Đ (Ĭğ) ∩Đ (ĬĠ) = č then
5: return GetPartFromTUnion(Ĭğ , ĬĠ)

6: if Đ (Ĭğ) ≠ č &&Đ (ĬĠ) = č then ▶ & vice versa
7: return GetPartTIndiv(Ĭğ , ĬĠ)

8: if Ą (Ĭğ) ∩Ą (ĬĠ) ≠ č &&Đ (Ĭğ) = č &&Đ (ĬĠ) = č then
9: return GetPartFromHIntersect(Ĭğ , ĬĠ)

10: if Ą (Ĭğ) ≠ č && Ą (ĬĠ) ≠ č && Ą (Ĭğ) ∩Ą (ĬĠ) = č then
11: return GetPartHUnion(Ĭğ , ĬĠ)

12: if Ą (Ĭğ) ≠ č && Ą (ĬĠ) = č then ▶ & vice versa
13: return GetPartHIndiv(Ĭğ , ĬĠ)

14: =⇒ Đ (Ĭğ) = č &&Đ (ĬĠ) = č && Ą (Ĭğ) = č && Ą (ĬĠ) = č
15: return GetPartFromBF(Ĭğ , ĬĠ)

edge 4 (E1, E2) arrives, each of its two incident vertices may have

an entry in the three maps, �� (E1), �� (E2),) (E1),) (E2), � (E1) and

� (E2). When �� (E1) ∩ �� (E2) ≠ q , the partitions that these two

vertices are already present on may overlap and we can avoid

creating new replicas by collocating them. If) (E1) ∩) (E2) ≠ q

and/or � (E1) ∩ � (E2) ≠ q , the vertices are also part of a triangle

and/or have a high-degree in the overlapping partitions. This can

improve their triangle conservation. We also test for intersection

across map types. This forms our intuitive approach.

The states used and the order for testing these partition-overlaps

forms the basis for each heuristic. We prioritize: (1) enhancing

the community structure, (2) avoiding replication of vertices and (3)

balancing of edges across partitions. We prefer partition overlaps in

T-Map, as local triangles have already formed, over H-Map, which

indicates future potential to form triangles.

Bloom Filter, Triangle Map and High-degree Map (BTH).

This is the core heuristic that uses all three maps to select a

partition for an edge. Alg. 1. gives the six primary decision points

taken by this heuristic, which narrows the choices based on par-

titions common to both vertices of an edge in the T-Map, H-Map

or BF, in that order. For an edge ïE1, E2ð, we �rst test if partitions

in their T-Map intersect (Alg. 1, line 2) and return the least loaded

among them — if it has capacity (Alg. 2). Else, if either vertex forms

triangles on partitions but they do not overlap (Alg. 1, line 4), we

use a variant of Alg. 2 (not shown) to check if the triangle partitions

of a vertex intersect with the high-degree partitions for the other. If

multiple triangle partitions match (Alg. 2), we prioritize those that

also have a high-degree vertex, giving preference to the partition

with a higher sum-of-degrees for the vertices. We break ties by

marking the �rst partition a vertex forms a triangle on as its “home”

partition and using it by default to improve co-location.

In the absence of any triangle partitions, we select from overlap-

ping high-degree partitions for the vertices (Alg. 1, line 6). Failing

this, we chose from common partitions in their BF to avoid repli-

cation (Alg. 1, line 11). If even the BF partitions do not intersect,

we pick the least loaded of the partitions having either of the ver-

tices, which may cause the other vertex to replicate. If all tests

fail, we send the edge to the least loaded partition. In all cases, if a

partition’s high and low thresholds are reached, as applicable, the

partition is removed from consideration.

Time complexity analysis: For a vertex Eğ , an entry in T-map or

H-map contains a subset of partition IDs. So,) (Eğ) and � (Eğ) can

Algorithm 2 Secondary decisions (△ vertices are in same part.)

1: procedure GetPartFromTIntersect(Ĭğ , ĬĠ)
2: Đğ Ġ = Đ (Ĭğ) ∩Đ (ĬĠ)
3: Ąğ Ġ = Ą (Ĭğ) ∩Ą (ĬĠ)
4: if Đğ Ġ ∩Ąğ Ġ ≠ č then
5: return GetMaxDegSumPartition(Đğ Ġ ∩Ąğ Ġ)

6: if Đğ Ġ ∩ (Ą (Ĭğ) ∪Ą (ĬĠ)) ≠ č then
7: return GetMaxDegPartition(Đğ Ġ ∩ (Ą (Ĭğ) ∪Ą (ĬĠ)))

8: if Ąğ Ġ ∩ (Đ (Ĭğ) ∪Đ (ĬĠ)) ≠ č then
9: return GetMaxDegSumPartition(Ąğ Ġ ∩ (Đ (Ĭğ) ∪Đ (ĬĠ)))

10: if Đğ Ġ ≠ č then
11: return GetLeastLoadedPartition(Đğ Ġ)

12: if Ąğ Ġ ≠ č then ▶ only if there is no space available above
13: return GetMaxDegSumPartition(Ąğ Ġ)

14: if þĂ (Ĭğ) ∩ þĂ (ĬĠ) ≠ č then
15: return GetLeastLoadedPartition(þĂ (Ĭğ) ∩ þĂ (ĬĠ))

16: if þĂ (Ĭğ) ∪ þĂ (ĬĠ) ≠ č then
17: return GetLeastLoadedPartition(þĂ (Ĭğ) ∪ þĂ (ĬĠ))

18: return GetLeastLoadedPartition(*)

contain at most : values. Partitioning heuristics calculate union and

intersections on these subsets to choose one partition. Therefore,

the time complexity per edge is O(:).

Bloom Filter with Triangle Map (BT). In this variant, we

include the T-Map to the leader’s state but not the H-Map. This

behaves as if the H-Map is empty, allowing us to scope the bene�ts

of T-Map alone.

Bloom Filter with High Degree Map (BH). In this heuristic,

we include the H-Map to the leader’s state but not the T-Map. This

behaves as if the Triangle Map is empty, and helps evaluate the

bene�t of maintaining the H-Map alone.

Only Bloom Filter (B). This variant only uses BF and o�ers

a simple baseline. It only avoids vertex replication by collocating

edges on partitions that may already have replicas of both vertices,

i.e., picks from �� (E1) ∩ �� (E2). The least loaded partition from

these is chosen. This does not aim to enhance community struc-

ture but o�ers fast decisions using a compact state that mimics

partitioners like PowerGraph.

6 EXPERIMENTS

In this section, we report detailed experimental results and analysis

of our TriParts streaming edge-based partitioning heuristics and

SOTA baselines. Our empirical claims are:

• Superior Quality. For diverse graphs and edge stream orderings,

our heuristics out-perform SOTA on local triangle count, are com-

parable or better on vertex replicas, and achieve edge-balancing.

• High Scalability. Varying the compute threads on the leader

improves the partitioning throughput linearly with has minimal

impact on the partitioning quality. We have modest memory

overheads on leader, low locking overheads on workers and low

sync overheads between leader and workers.

6.1 Setup

System Setup. The experiments are run on a commodity cluster

(sirius) with compute nodes having an Intel Xeon Gold 6226R CPU

with 16 cores@2.9��I, 128�� RAM and 10�1?B Ethernet. Leader

and workers each run on a compute node with CentOS v7, Java v8

and Apache Thrift 0.13.0.

2999

Table 1: Graph datasets used for experimental evaluation

Graph Ē ā ĚěĝėĬĝ Đ Đ
Ē

Đ
ā

NW Type

USRN [75] 23.9ĉ 28.9ĉ 2.4 438.8ć 0.02 0.02 Road/Planar
Orkut [89] 3.1ĉ 117.2ĉ 76.28 627.6ĉ 202.4 5.35 Social
DBPedia [7] 18.3ĉ 126.9ĉ 13.89 328.7ĉ 17.96 2.6 Knowledge
Brain [5] 693ć 133.7ĉ 385.86 17.1þ 24675 128 Brain
MAG [24] 67.4ĉ 1.03þ 17.75 1.61þ 13.79 1.55 Biblio.
Twitter [15] 52.6ĉ 1.61þ 30.70 55.4þ 499.1 34.3 Social

Datasets. We evaluate the partitioners on a diverse set of large

real-world graphs, summarized in Table 1. They are carefully cho-

sen to span knowledge graphs (DBPedia, MAG), social networks

(Twitter, Orkut), road network (USRN) and neuro-science (Brain)

domains, and have varying sizes, degrees, triangles counts, and

planar or power-law degree distributions. Later, we complement

these with synthetic graphs with diverse distributions. The graph

stream is generated from a random permutation of the edges, as is

common [2, 74, 79], and the same ordering used across partitioners.

We also generate a BFS ordering [74, 79] where a vertex is selected

randomly, and the edge order generated as a BFS traversal from it.

Baselines. Streaming edge partitioners can be classi�ed as heuris-

tic driven [32, 64, 74], hashing-based [32, 87], and clustering-based [52,

66]. We compare TriParts with one SOTA baseline from each.

• HDRF [73, 74].Highest Degree Replicated First (HDRF) partitioner

is tailored for power law graphs. It uses a heuristic which targets

workloads with highly skewed graphs. The key idea is that since

power-law graphs have a few high degree vertices and many

low degree vertices, it is bene�cial to prioritize replicating high

degree vertices to radically reduce the number of vertex cuts.

• DBH [73, 87]. Degree-based Hashing (DBH) also prioritizes repli-

cating vertices that have the highest degree. However, unlike

HDRF, DBH employs hashing for partitioning. For an input edge

4 , DBH computes the partial degree of its endpoint vertices E1
and E2, X1 and X2. After that, 4 is assigned to the partition ID

computed as the hash of the vertex with lower degree.

• CLUGP [52]. This is a clustering-based, 3-pass edge partitioning.

In pass 1, the input graph is processed to generate intermediate

vertex clusters. In pass 2, these clusters are re�ned using a game-

theoretic approach to map them to partitions. In pass 3, the

vertex partitions are converted into edge partitions. We run the

single-machine Java version that is available [51].

Configurations. The leader is con�gured by default to use 32

threads while all worker nodes use 16 threads. The number of

partitions : created is same as the number of workers. The sync

interval, fě , is con�gured by default to sync after reading every 10%

of edges or when the global average degree of the graph changes by

1.0 for BH and BTH. Since BT does not have high degreemaps it only

syncs after reading every 10% of edges. We run the experiments for

: ∈ {8,12,16} partitions. We use _Ģ = (1 ± 0.05)ģ
ġ
, _ℎ = (1 ± 0.1)ģ

ġ
and bĢ = 0.05ģ

ġ
, bℎ = 0.1ģ

ġ
. We run the SOTA baselines with similar

leader and worker con�gurations.

All partitioners achieve good edge load balancing across workers

within n = 0.001. We omit reporting these in the analysis.

6.2 Analysis of Partitioning Quality

Fig. 4 shows the performance of all four TriParts heuristics B, BH,

BT and BTH and the two SOTA baselines DBH and HDRF when run

on all 6 graphs on 3 di�erent numbers of partitions. We limit BFS

stream order to only BTH, DBH and HDRF. Figs. 4a and 4c show the

normalized percentage of triangles preserved locally relative to BTH

(bars on left Y axis) and the vertex replication factor (d , markers on

right Y axis), when edges are ingested in random and BFS order. The

bar-labels for BTH are the % of triangles it preserves (bg%). Figs. 4b
and 4d show the end-to-end time (E2E) to process the entire edge-

stream (bars on left Y axis, log scale) and the average throughput

(markers on right Y axis, millions) for the random and BFS order.

6.2.1 Comparison within TriParts heuristics. Figs. 4a and 4c show

that both BH and BT increase the triangle count by 10–50% and

20–70%, respectively, when compared to B by using the high-degree

map and triangle map. This supports our Hypotheses 4.1 and 4.2,

and shows the importance of using these two topological entities

in decision-making. For the USRN graph there is little di�erence

across the heuristics due to the planar nature of the network.

Also, BT is marginally better than BH on vertex replication as

it uses knowledge of vertices already forming triangles while BH

is anticipating future triangles around HD vertices. Hence, while

states are important, we prefer T-map over H-map for partitioning

decisions in BTH (§5). Using both the maps together further boosts

the triangle preserved by BTH by 200–250% compared to B.

All the four heuristics uses the Bloom �lter to ensure that we

do not replicate vertices unless explicitly triggered by the load

balancing constraint, or if triangles can be preserved. Hence, they

all show similar vertex replication factors in Figs. 4a and 4c. Also, B

does not have triangle preservation as an objective and only avoids

vertex replication. BH, BT and BTH focus on triangle preservation

but still achieve similar vertex replication as B. This supports our

claim that the two objectives are not contradictory (Theorem 3.2). At

the same time, as we see for Brain and DBPedia with BFS ordering,

triangle preservation does not automatically follow from reducing

vertex replication and these graphs show an inverse trend between

the two metrics, as we propositioned in §3.3.

Since B has no sync operations and only uses Bloom �lters, it

is the fastest, as seen in Figs. 4b and 4d, achieving rates of over

1" edges/s (Brain, 8 parts, BFS) and 650: edge/s (MAG, 8 parts,

random). In BT, the workers update their local triangle map as they

receive edges in a pipelined manner, and transfer these triangle

maps to the leader at 10% syncs. This causes BT to be 15–40%

slower than B. Both BH and BTH uses high degree map, that is

computed on-demand at the workers when the sync is triggered.

The number of sync calls are also higher for BH and BTH since

these are additionally performed when the high-degree threshold

is breached. Hence, they are 30–80% slower than B.

Overall, BTH preserves more triangles than the other heuristics

while maintaining the same replication factor, and o�ers a com-

petitive throughput, e.g., achieving 500: edges/s (ORKUT, 12 parts,

random) and 350: edges/s (DBPedia, 16 parts, random). Hence, it is

our recommended heuristic for TriParts and discussed further. As

expected, as the number of partitions increase the percentage of

conserved triangles decreases. This is accompanied by a consistent

increase in the replication factor as the partitions increase. There is

limited impact of the stream order, BFS or random, on the quality

or performance. We focus future results on random order.

3000

3001

We further compare these partitioners for diverse synthetic graphs

generated using networkx [53], with di�erent {|Ē |, |ā |}: Power-

law cluster graph (PL {2ĉ, 40ĉ}) with triangle probability 0.7 [39];

Barabasi Albert graph (BA {10ĉ, 300ĉ}) [9]; Random Regular

graph (RR {20ĉ, 400ĉ}) [48]; Erdos Reyni graph (ER {20ĉ, 150ĉ})

[8, 50]; and Watts Strogatz graph (WS {10ĉ, 500ĉ}) [85].

Fig. 4e shows the normalized local triangle count relative to BTH

(bars on left Y axis) and the vertex replication factor (Ā , markers on

right Y axis) for ġ = 8 partitions. For all �ve graphs, BTH preserves

2.9–6.8× more triangles than HDRF and 1.5–2× than DBH. BTH

also reduces replication factor by 15–50% and 30–75% compared

to HDRF and DBH, respectively. These satisfy Theorem 3.2. These

are comparable to or better than the results for real-world graphs,

con�rming the generalizable e�cacy of BTH. Despite having a

lower replication factor than DBH, HDRF has a lower triangle

count. This shows that just reducing replication factor alone will

not automatically increase the triangle counts.

Lastly, we compare BTH against the recent CLUGP [52] commu-

nity preserving partitioner (plots omitted for brevity). The triangle

count of BTH is higher at 109.8ĉ for Orkut/16p compared to 92.7ĉ

for CLUGP, and with a much lower replication factor of 5.3 against

8.4. For Brain/16p, both preserve a similar number of triangles

(2.12þ vs. 2.19þ) but with an even lower replication factor for BTH

(2.3 vs. 8.3). This con�rms that community preservation (CLUGP)

and triangle conservation (TriParts) are correlated, but we addition-

ally achieve lower vertex replications.

6.3 Performance of TriParts

6.3.1 Scalability. A key design of TriParts is its ability to scale well

with the number of threads and cores, leveraging the potentially

100+ cores available in modern servers. Fig. 5 shows the throughput

(bar, left Y axis) for our heuristics when the leader’s compute threads

are increased from 1 to 32, using ġ = 8 partitions. We also report

the speedup relative to 1 thread as a marker on the right y-axis.

The system shows good strong scaling when increasing the leader

threads, with speedup of 7–10× seen for 32 threads, and a through-

put growth from ≈ 100ġ to 750ġ edges/s, except for Brain which has

a very high density and many more triangles, causing bottlenecks.

This growth indicates further head-room as we run on a leader

machine with more cores than the 16 (32 hyperthreads) we have,

allowing more compute threads. Our careful data-parallel pipelined

design with minimal thread contention allows the compute threads

to execute the edge partitioning logic independently.

When we examine the e�ect of the number of partitions on the

performance in Figs. 4b and 4d, the total compute time for our

heuristics does not increase much from 8 to 16 parts, indicating

good scaling. As ġ increases, the e�ort involved at the leader and

the workers also increase, but so does the number of workers. By

overlapping the edge transfers to workers with the partitioning

logic at the leader through pipelining, we avoid a linear growth in

the time taken by the leader with the number of partitions.

6.3.2 Sensitivity to Configuration Parameters. We analyze the im-

pact of changing two con�gurations parameters of TriParts. Fig. 6a

shows the performance of BTH for ġ = 8 partitions of the six real

world graphs as we vary the sync frequencies to 1%, 5%, 10% and 20%

of total edges in the graph. This complements the default hybrid

sync at every 10% of the stream or when the average edge degree

seen changes by 1.0. Fig. 6b shows the performance of BTH when

the threshold for a high degree vertex is changed from 2× default to

1.5× and 4× of the graph’s average vertex degree. Both �gures show

the normalized triangle count (bars on left Y axis) and normalized

compute time (markers on right Y axis) relative to their defaults.

Including HD sync besides 10% syncs usually increases the tri-

angles preserved by 10–60% (Fig. 6a), but at the cost of runtime

overheads. The runtime is lower with 10%-only sync by 9–13%,

relative to default, for graphs with lower degree (USRN, DBPdia,

MAG), and 27–45% lower for the others with higher average degree.

As expected, increasing the sync frequency from every 10% to every

1% of edge arrivals causes the compute time to increases by 20–95%

since there are 10× more syncs. In return, the 1% sync preserves

10–30%more triangles. Increasing HD threshold from 1.5× to 2× to

4× decreases the preserved triangles by 1.5–8% and 3–10% as the

advantage of Hypothesis 4.2 diminishes. The runtime also reduces

when the HD threshold increases, dropping by 2–12% and 6–12%.

6.3.3 Overheads. We evaluate the locking overheads on the multi-

threaded worker to access the adjacency list for adding a new edge

and computing the new triangles count. Fig. 7a shows the average

E2E time and within this, the sum of the locking overheads for all

threads of a worker for the six real-world graphs for ġ = 8 partitions,

with 8 and 16 threads per worker. This lock overhead (red stack) is

an overestimate since only one thread is blocked in this duration

while the others are still productive. Only 5–8% (8 threads) and

8–10% (16 threads) of E2E time is spent on locking. As expected,

more threads introduces more contention. The actual overheads

are likely to be even lesser as this is a weak upper bound.

Fig. 7a also shows the cumulative time to update data structures

from the workers during sync operations (yellow bar) for these same

scenarios. Here, we are syncing only after reading every 10% of

edges. The sync overheads forms only 4–6.5% of the E2E time with

8 worker threads and 1.1–4% with 16 threads, except for USRN

where it is 27 and 15%, respectively. This is a small cost for the

bene�ts from these states in achieving the partitioner objectives.

Lastly, Fig. 7b shows the peak size of the triangle map and high

degree map as a % of total vertices, when running BTH with ġ = 8.

The peak High Degree map size is 2.3–4.2% of all vertices since

most are power law graphs with few highly connected vertices.

The peak Triangle map size is 4–98% of vertex-count. As expected,

dense graphs like Brain maintain a larger T-map compared to sparse

ones like USRN. Despite this, the peak memory usage on the leader

remains modest and comparable to the workers’ memory usage.

E.g., even for the largest graph Twitter, the leader’s peak memory

usage is just 15% of 128ăþ for ġ = 8, growing to 17% for ġ = 16.

This is comparable to the workers’ peak memory of 21% and 16%.

6.3.4 Community preservation. We measure common quality used

for community structure preservation on the partitions created by

BTH, HDRF andDBH. Fig. 8 shows the density, LCC, transitivity and

number of connected components (CC), averaged across partitions

and normalized with respect to BTH; higher is better for the �rst

three while lower is better for CC.

As seen before, BTH preserves 3–40× more triangles than HDRF

and DBH. This translates to its ability to better preserve the commu-

nity structure using these standard metrics. DBH and HDRF have

3002

3003

REFERENCES
[1] ZainabAbbas, Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov. 2018. Stream-

ing Graph Partitioning: An Experimental study. Proceedings of the VLDB Endow-
ment 11, 11 (2018), 1590–1603. https://doi.org/10.14778/3236187.3236208

[2] ZainabAbbas, Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov. 2018. Stream-
ing graph partitioning: an experimental study. Proceedings of the VLDB Endow-
ment 11, 11 (2018), 1590–1603.

[3] Manoj K. Agarwal, Krithi Ramamritham, and Manish Bhide. 2012. Real time
discovery of dense clusters in highly dynamic graphs: identifying real world
events in highly dynamic environments. Proc. VLDB Endow. 5, 10 (2012), 980–991.
https://doi.org/10.14778/2336664.2336671

[4] Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. 2020. High-Quality
Shared-Memory Graph Partitioning. IEEE Transactions on Parallel and Distributed
Systems 31, 11 (2020), 2710–2722. https://doi.org/10.1109/TPDS.2020.3001645

[5] Katrin Amunts, Claude Lepage, Louis Borgeat, Hartmut Mohlberg, Timo
Dickscheid, Marc-Étienne Rousseau, Sebastian Bludau, Pierre-Louis Bazin, Lind-
say B. Lewis, Ana-Maria Oros-Peusquens, Nadim J. Shah, Thomas Lippert, Karl
Zilles, and Alan C. Evans. 2013. BigBrain: An Ultrahigh-Resolution 3D Human
Brain Model. Science 340, 6139 (2013), 1472–1475.

[6] Konstantin Andreev andHarald Racke. 2006. Balanced graph partitioning. Theory
of Computing Systems 39, 6 (2006), 929–939.

[7] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. Lecture
Notes in Computer Science 4825 (2007), 722–735.

[8] Arindam Banerjee and D. Yogeshwaran. 2021. Edge ideals of Erdös-Rényi ran-
dom graphs: Linear resolution, unmixedness and regularity. Technical Report
2007.08869. https://arxiv.org/abs/2007.08869

[9] Albert-László Barabási and Réka Albert. 1999. Emergence of Scaling in Random
Networks. Science 286, 5439 (1999), 509–512. https://doi.org/10.1126/science.286.
5439.509

[10] Punam Bedi and Chhavi Sharma. 2016. Community detection in social networks.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 6 (2016).
https://doi.org/10.1002/widm.1178

[11] Joost Berkhout. 2016. Google’s PageRank algorithm for ranking nodes in general
networks. In 13th International Workshop on Discrete Event Systems (WODES).
153–158. https://doi.org/10.1109/WODES.2016.7497841

[12] Ruchi Bhoot, Suved Sanjay Ghanmode, and Yogesh Simmhan. 2024. TARIS:
Scalable Incremental Processing of Time-Respecting Algorithms on Streaming
Graphs. IEEE Transactions on Parallel & Distributed Systems 35, 12 (2024), 2527–
2544. https://doi.org/10.1109/TPDS.2024.3471574

[13] Ivan A. Bliznets and Nikolai Karpov. 2017. Parameterized Algorithms for Par-
titioning Graphs into Highly Connected Clusters. Technical Report 6. 6:1–6:14
pages.

[14] Florian Bourse, Marc Lelarge, and Milan Vojnovic. 2014. Balanced graph edge
partition. In 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 1456–1465. https://doi.org/10.1145/2623330.2623660

[15] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna Gummadi.
2010. Measuring User In�uence in Twitter: The Million Follower Fallacy. In
International AAAI Conference on Web and Social Media. 10–17. https://doi.org/
10.1609/icwsm.v4i1.14033

[16] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo
Chen. 2019. PowerLyra: Di�erentiated Graph Computation and Partitioning
on Skewed Graphs. ACM Trans. Parallel Comput. 5, 3 (2019), 39 pages. https:
//doi.org/10.1145/3298989

[17] Cédric Chevalier and François Pellegrini. 2008. PT-Scotch: A tool for e�cient
parallel graph ordering. Parallel computing 34, 6-8 (2008), 318–331.

[18] Adil Chhabra, Florian Kurpicz, Christian Schulz, Dominik Schweisgut, and Daniel
Seemaier. 2024. Partitioning Trillion Edge Graphs on Edge Devices. Technical
Report. https://arxiv.org/abs/2410.07732

[19] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One trillion edges: graph processing at Facebook-scale.
Proc. VLDB Endow. 8, 12 (2015), 1804–1815. https://doi.org/10.14778/2824032.
2824077

[20] Shumo Chu and James Cheng. 2012. Triangle listing in massive networks. ACM
Trans. Knowl. Discov. Data 6, 4 (2012), 32 pages. https://doi.org/10.1145/2382577.
2382581

[21] Atish Das Sarma, Danupon Nanongkai, Gopal Pandurangan, and Prasad Tetali.
2013. Distributed Random Walks. J. ACM 60, 1 (2013), 31 pages. https://doi.org/
10.1145/2432622.2432624

[22] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoretically E�cient
Parallel Graph Algorithms Can Be Fast and Scalable. ACM Trans. Parallel Comput.
8, 1 (2021), 70 pages. https://doi.org/10.1145/3434393

[23] David Ediger and David A. Bader. 2013. Investigating Graph Algorithms in
the BSP Model on the Cray XMT . In 2013 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW). 1638–1645.
https://doi.org/10.1109/IPDPSW.2013.107

[24] Suhendry E�endy and Roland H.C. Yap. 2016. Investigations on Rating Com-
puter Sciences Conferences: An Experiment with the Microsoft Academic Graph
Dataset. In 25th International Conference Companion onWorld WideWeb. 425–430.
https://doi.org/10.1145/2872518.2890525

[25] Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Xiaojian Luo, Ruiqi Xu, Qiang Yin,
Wenyuan Yu, and Jingren Zhou. 2020. Application Driven Graph Partitioning. In
2020 ACM SIGMOD International Conference on Management of Data. 1765–1779.
https://doi.org/10.1145/3318464.3389745

[26] Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou. 2020. Incre-
mentalization of graph partitioning algorithms. Proc. VLDB Endow. 13, 8 (2020),
1261–1274. https://doi.org/10.14778/3389133.3389142

[27] Sara E. Garza and Satu Elisa Schae�er. 2019. Community detection with the
Label Propagation Algorithm: A survey. Physica A: Statistical Mechanics and its
Applications 534 (2019), 122058. https://doi.org/10.1016/j.physa.2019.122058

[28] Alice Gatti, Zhixiong Hu, Tess Smidt, Esmond G. Ng, and Pieter Ghysels. 2022.
Graph partitioning and sparse matrix ordering using reinforcement learning and
graph neural networks. J. Mach. Learn. Res. 23, 1 (2022), 28 pages.

[29] Michelle Girvan and Mark EJ Newman. 2002. Community structure in social
and biological networks. Proceedings of the National Academy of Sciences 99, 12
(2002), 7821–7826.

[30] M. Girvan and M. E. J. Newman. 2002. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences 99, 12
(2002), 7821–7826. https://doi.org/10.1073/pnas.122653799

[31] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12). 17–30. https://www.usenix.org/conference/osdi12/technical-sessions/
presentation/gonzalez

[32] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: distributed graph-parallel computation on natural graphs.
In 10th USENIX Conference on Operating Systems Design and Implementation.
17–30.

[33] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: graph processing in a distributed data�ow
framework. In USENIX Conference on Operating Systems Design and Implementa-
tion. 599–613.

[34] Milad Rezaei Hajidehi, Sraavan Sridhar, and Margo Seltzer. 2024. CUTTANA:
Scalable Graph Partitioning for Faster Distributed Graph Databases and Analytics.
Technical Report. https://arxiv.org/abs/2312.08356

[35] IbrahimAbouHamad, Per Arne Rikvold, and Svetlana V. Poroseva. 2011. Floridian
high-voltage power-grid network partitioning and cluster optimization using
simulated annealing. Physics Procedia 15 (2011), 2–6. https://doi.org/10.1016/j.
phpro.2011.05.051

[36] Minyang Han and Khuzaima Daudjee. 2015. Giraph unchained: barrierless
asynchronous parallel execution in pregel-like graph processing systems. Proc.
VLDB Endow. 8, 9 (2015), 950–961. https://doi.org/10.14778/2777598.2777604

[37] Erez Hartuv and Ron Shamir. 2000. A clustering algorithm based on graph
connectivity. Inform. Process. Lett. 76, 4 (2000), 175–181. https://doi.org/10.1016/
S0020-0190(00)00142-3

[38] Loc Hoang, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. 2019. Cusp:
A customizable streaming edge partitioner for distributed graph analytics. In
2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 439–450.

[39] Petter Holme and Beom Jun Kim. 2001. Growing scale-free networks with tunable
clustering. Physical review. E, Statistical, nonlinear, and soft matter physics 65 2
Pt 2 (2001), 026107. https://api.semanticscholar.org/CorpusID:4643442

[40] Jiewen Huang and Daniel J. Abadi. 2016. Leopard: lightweight edge-oriented
partitioning and replication for dynamic graphs. Proc. VLDB Endow. 9, 7 (2016),
540–551. https://doi.org/10.14778/2904483.2904486

[41] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. 2016. Time-
evolving graph processing at scale. In Fourth international workshop on graph
data management experiences and systems. 1–6.

[42] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. 2016. Time-
evolving graph processing at scale. In Fourth International Workshop on Graph
Data Management Experiences and Systems. 6 pages. https://doi.org/10.1145/
2960414.2960419

[43] Nilesh Jain, Guangdeng Liao, and Theodore LWillke. 2013. Graphbuilder: scalable
graph etl framework. In First international workshop on graph data management
experiences and systems. 1–6.

[44] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scienti�c Computing 20, 1
(1998), 359–392.

[45] George Karypis, Kirk Schloegel, and Vipin Kumar. 1997. Parmetis
parallel graph partitioning and sparse matrix ordering library, In
https://api.semanticscholar.org/CorpusID:9818727. University of Minnesota 1, 1,
315–320.

[46] Brian W Kernighan and Shen Lin. 1970. An e�cient heuristic procedure for
partitioning graphs. The Bell system technical journal 49, 2 (1970), 291–307.

3004

https://doi.org/10.14778/3236187.3236208
https://doi.org/10.14778/2336664.2336671
https://doi.org/10.1109/TPDS.2020.3001645
https://arxiv.org/abs/2007.08869
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1002/widm.1178
https://doi.org/10.1109/WODES.2016.7497841
https://doi.org/10.1109/TPDS.2024.3471574
https://doi.org/10.1145/2623330.2623660
https://doi.org/10.1609/icwsm.v4i1.14033
https://doi.org/10.1609/icwsm.v4i1.14033
https://doi.org/10.1145/3298989
https://doi.org/10.1145/3298989
https://arxiv.org/abs/2410.07732
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.1145/2382577.2382581
https://doi.org/10.1145/2382577.2382581
https://doi.org/10.1145/2432622.2432624
https://doi.org/10.1145/2432622.2432624
https://doi.org/10.1145/3434393
https://doi.org/10.1109/IPDPSW.2013.107
https://doi.org/10.1145/2872518.2890525
https://doi.org/10.1145/3318464.3389745
https://doi.org/10.14778/3389133.3389142
https://doi.org/10.1016/j.physa.2019.122058
https://doi.org/10.1073/pnas.122653799
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://arxiv.org/abs/2312.08356
https://doi.org/10.1016/j.phpro.2011.05.051
https://doi.org/10.1016/j.phpro.2011.05.051
https://doi.org/10.14778/2777598.2777604
https://doi.org/10.1016/S0020-0190(00)00142-3
https://doi.org/10.1016/S0020-0190(00)00142-3
https://api.semanticscholar.org/CorpusID:4643442
https://doi.org/10.14778/2904483.2904486
https://doi.org/10.1145/2960414.2960419
https://doi.org/10.1145/2960414.2960419

[47] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan Williams,
and Panos Kalnis. 2013. Mizan: a system for dynamic load balancing in large-
scale graph processing. In 8th ACM European conference on computer systems.
169–182.

[48] J. H. Kim and V. H. Vu. 2006. Generating Random Regular Graphs. Combinatorica
26, 6 (2006), 683–708. https://doi.org/10.1007/s00493-006-0037-7

[49] Christine Klymko, David Gleich, and Tamara G Kolda. 2014. Using triangles to
improve community detection in directed networks. Technical Report. arxiv pages.
https://arxiv.org/abs/1404.5874

[50] Donald E. Knuth. 1997. The art of computer programming, volume 2 (3rd ed.):
seminumerical algorithms.

[51] Deyu Kong. 2022. Clustering-based Partitioning for Large Web Graphs. In 2022
IEEE 38th International Conference on Data Engineering (ICDE). 593–606. https:
//github.com/USTC-DataDarknessLab/GraphPartitioning/tree/main/CLUGP

[52] Deyu Kong, Xike Xie, and Zhuoxu Zhang. 2022. Clustering-based Partitioning for
LargeWeb Graphs. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). 593–606. https://doi.org/10.1109/ICDE53745.2022.00049

[53] Los Alamos National Laboratory, United States. Department of Energy. O�ce of
Scienti�c, and Technical Information. 2008. Exploring Network Structure, Dy-
namics, and Function Using Networkx. https://books.google.co.in/books?id=
yOiJAQAACAAJ

[54] Dominique LaSalle and George Karypis. 2013. Multi-threaded graph partitioning.
In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.
225–236.

[55] Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Hung Ngo Quoc, Tuan Tran Nhat,
and Manfred Hauswirth. 2016. The graph of things: A step towards the live
knowledge graph of connected things. Journal of Web Semantics 37 (2016), 25–35.

[56] Hyeonbyeong Lee, Jeonghyun Baek, Sangho Song, Yuna Kim, Hyunjung Hwang,
Jongtae Lim, Dojin Choi, Kyoungsoo Bok, and Jaesoo Yoo. 2025. E�cient Large
Graph Partitioning Scheme Using Incremental Processing in GPU. IEEE Access
13 (2025), 43889–43903. https://doi.org/10.1109/ACCESS.2025.3547976

[57] Lun Li, David Alderson, John Doyle, and Walter Willinger. 2005. Towards a
Theory of Scale-Free Graphs: De�nition, Properties, and Implications. Internet
Mathematics 2 (2005). https://doi.org/10.1080/15427951.2005.10129111

[58] Lingda Li, Robel Geda, Ari B. Hayes, Yanhao Chen, Pranav Chaudhari, Eddy Z.
Zhang, and Mario Szegedy. 2017. A Simple Yet E�ective Balanced Edge Partition
Model for Parallel Computing. Proc. ACM Meas. Anal. Comput. Syst. 1, 1 (2017),
21 pages. https://doi.org/10.1145/3084451

[59] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing
He. 2021. Pick and Choose: A GNN-based Imbalanced Learning Approach for
Fraud Detection. InWeb Conference. 3168–3177. https://doi.org/10.1145/3442381.
3449989

[60] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
Scale Graph Processing. In ACM SIGMOD International Conference on Manage-
ment of Data. 135–146. https://doi.org/10.1145/1807167.1807184

[61] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. InACM SIGMOD International Conference onManagement
of Data. 135–146. https://doi.org/10.1145/1807167.1807184

[62] Anna Mastikhina, Oleg Senkevich, Dmitry Sirotkin, Danila Demin, and Stanislav
Moiseev. 2024. An improvement of degree-based hashing (DBH) graph par-
tition method, using a novel metric. Technical Report. 1–15 pages. https:
//api.semanticscholar.org/CorpusID:269043059

[63] Christian Mayer, Ruben Mayer, Muhammad Adnan Tariq, Heiko Geppert, Larissa
Laich, Lukas Rieger, and Kurt Rothermel. 2018. Adwise: Adaptive window-based
streaming edge partitioning for high-speed graph processing. In 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS). IEEE, 685–
695.

[64] Christian Mayer, Ruben Mayer, Muhammad Adnan Tariq, Heiko Geppert, Larissa
Laich, Lukas Rieger, and Kurt Rothermel. 2018. Adwise: Adaptive window-based
streaming edge partitioning for high-speed graph processing. In 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS). 685–695.

[65] Ruben Mayer, Kamil Orujzade, and Hans-Arno Jacobsen. 2022. Out-of-Core
Edge Partitioning at Linear Run-Time . In 2022 IEEE 38th International Conference
on Data Engineering (ICDE). 2629–2642. https://doi.org/10.1109/ICDE53745.2022.
00242

[66] Ruben Mayer, Kamil Orujzade, and Hans-Arno Jacobsen. 2022. Out-of-Core
Edge Partitioning at Linear Run-Time . In 2022 IEEE 38th International Conference
on Data Engineering (ICDE). 2629–2642. https://doi.org/10.1109/ICDE53745.2022.
00242

[67] Henning Meyerhenke, Peter Sanders, and Christian Schulz. 2017. Parallel graph
partitioning for complex networks. IEEE Transactions on Parallel and Distributed
Systems 28, 9 (2017), 2625–2638.

[68] Seth A. Myers, Chenguang Zhu, and Jure Leskovec. 2012. Information di�usion
and external in�uence in networks. In 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 33–41. https://doi.org/10.1145/2339530.
2339540

[69] Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, and Azalia Mirhoseini. 2019.
GAP: Generalizable Approximate Graph Partitioning Framework. Technical Report.
https://api.semanticscholar.org/CorpusID:67855909

[70] David F. Nettleton. 2013. Data mining of social networks represented as graphs.
Computer Science Review 7 (2013), 1–34. https://doi.org/10.1016/j.cosrev.2012.12.
001

[71] Mark EJ Newman. 2006. Modularity and community structure in networks.
Proceedings of the National Academy of Sciences 103, 23 (2006), 8577–8582.

[72] M. E. J. Newman. 2004. Fast algorithm for detecting community structure in
networks. Phys. Rev. E 69 (2004), 066133. https://doi.org/10.1103/PhysRevE.69.
066133

[73] Fabio Petroni. 2015. VGP : Vertex-cut balanced Graph Partitioning. In 24th ACM
international on conference on information and knowledge management. 243–252.
https://github.com/fabiopetroni/VGP

[74] Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali, and Gior-
gio Iacoboni. 2015. Hdrf: Stream-based partitioning for power-law graphs. In
24th ACM international on conference on information and knowledge management.
243–252.

[75] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Reposi-
tory with Interactive Graph Analytics and Visualization. In AAAI. all. http:
//networkrepository.com/road-road-usa.php

[76] Matthew Saltz, Arnau Prat-Pérez, and David Dominguez-Sal. 2015. Distributed
community detection with the wcc metric. In 24th International Conference on
World Wide Web. 1095–1100.

[77] Sebastian Schlag, Christian Schulz, Daniel Seemaier, and Darren Strash. 2019.
Scalable edge partitioning. In Twenty-First Workshop on Algorithm Engineering
and Experiments (ALENEX). SIAM, 211–225.

[78] Yogesh Simmhan, Alok Gautam Kumbhare, Charith Wickramaarachchi, Soonil
Nagarkar, Santosh Ravi, Cauligi S. Raghavendra, and Viktor K. Prasanna. 2014.
GoFFish: A Sub-graph Centric Framework for Large-Scale Graph Analytics.
In Euro-Par 2014 Parallel Processing - 20th International Conference, Vol. 8632.
451–462. https://doi.org/10.1007/978-3-319-09873-9_38

[79] Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning for large
distributed graphs. In 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. 1222–1230.

[80] Ana-Andreea Stoica, Nelly Litvak, and Augustin Chaintreau. 2024. Fairness
Rising from the Ranks: HITS and PageRank on Homophilic Networks. In ACM
Web Conference. 2594–2602. https://doi.org/10.1145/3589334.3645609

[81] Rahul Swamy, Douglas M. King, and Sheldon H. Jacobson. 2024. Highly Connected
Graph Partitioning: Exact Formulation and Solution Methods. Technical Report.
https://arxiv.org/abs/2406.08329

[82] Manuel Then, Moritz Kaufmann, Fernando Chirigati, Tuan-Anh Hoang-Vu, Kien
Pham, Alfons Kemper, Thomas Neumann, and Huy T. Vo. 2014. The more the
merrier: e�cient multi-source graph traversal. Proc. VLDB Endow. 8, 4 (2014),
449–460. https://doi.org/10.14778/2735496.2735507

[83] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan
Vojnovic. 2014. Fennel: Streaming graph partitioning for massive scale graphs.
In 7th ACM international conference on Web search and data mining. 333–342.

[84] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-
world’ networks. Nature 393 (1998), 440–442. https://api.semanticscholar.org/
CorpusID:3034643

[85] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-
world’ networks. Nature 393 (1998), 440–442. https://api.semanticscholar.org/
CorpusID:3034643

[86] Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, and Xiangjie
Kong. 2020. Random Walks: A Review of Algorithms and Applications. IEEE
Transactions on Emerging Topics in Computational Intelligence 4, 2 (2020), 95–107.
https://doi.org/10.1109/tetci.2019.2952908

[87] Cong Xie, Ling Yan, Wu-Jun Li, and Zhihua Zhang. 2014. Distributed power-
law graph computing: theoretical and empirical analysis. In 27th International
Conference on Neural Information Processing Systems - Volume 1. 1673–1681.

[88] Rong Yan, Wei Yuan, Xiangdong Su, and Ziyi Zhang. 2023. FLPA: A fast label
propagation algorithm for detecting overlapping community structure. Expert
Systems with Applications 234 (2023), 120971. https://doi.org/10.1016/j.eswa.2023.
120971

[89] Jaewon Yang and Jure Leskovec. 2012. De�ning and Evaluating Network Commu-
nities based on Ground-truth. Technical Report. https://snap.stanford.edu/data/
com-Orkut.html

[90] Abdurrahman Yaşar, Sivasankaran Rajamanickam, JonathanWBerry, and Ümit V
Çatalyürek. 2021. A Block-Based Triangle Counting Algorithm onHeterogeneous
Environments. IEEE Transactions on Parallel and Distributed Systems 33, 2 (2021),
444–458.

[91] Wei Zhang, Yong Chen, and Dong Dai. 2018. AKIN: A Streaming Graph Partition-
ing Algorithm for Distributed Graph Storage Systems. In 2018 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). 183–
192. https://doi.org/10.1109/CCGRID.2018.00033

[92] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2021. DistDGL: Distributed Graph

3005

https://doi.org/10.1007/s00493-006-0037-7
https://arxiv.org/abs/1404.5874
https://github.com/USTC-DataDarknessLab/GraphPartitioning/tree/main/CLUGP
https://github.com/USTC-DataDarknessLab/GraphPartitioning/tree/main/CLUGP
https://doi.org/10.1109/ICDE53745.2022.00049
https://books.google.co.in/books?id=yOiJAQAACAAJ
https://books.google.co.in/books?id=yOiJAQAACAAJ
https://doi.org/10.1109/ACCESS.2025.3547976
https://doi.org/10.1080/15427951.2005.10129111
https://doi.org/10.1145/3084451
https://doi.org/10.1145/3442381.3449989
https://doi.org/10.1145/3442381.3449989
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://api.semanticscholar.org/CorpusID:269043059
https://api.semanticscholar.org/CorpusID:269043059
https://doi.org/10.1109/ICDE53745.2022.00242
https://doi.org/10.1109/ICDE53745.2022.00242
https://doi.org/10.1109/ICDE53745.2022.00242
https://doi.org/10.1109/ICDE53745.2022.00242
https://doi.org/10.1145/2339530.2339540
https://doi.org/10.1145/2339530.2339540
https://api.semanticscholar.org/CorpusID:67855909
https://doi.org/10.1016/j.cosrev.2012.12.001
https://doi.org/10.1016/j.cosrev.2012.12.001
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.69.066133
https://github.com/fabiopetroni/VGP
http://networkrepository.com/road-road-usa.php
http://networkrepository.com/road-road-usa.php
https://doi.org/10.1007/978-3-319-09873-9_38
https://doi.org/10.1145/3589334.3645609
https://arxiv.org/abs/2406.08329
https://doi.org/10.14778/2735496.2735507
https://api.semanticscholar.org/CorpusID:3034643
https://api.semanticscholar.org/CorpusID:3034643
https://api.semanticscholar.org/CorpusID:3034643
https://api.semanticscholar.org/CorpusID:3034643
https://doi.org/10.1109/tetci.2019.2952908
https://doi.org/10.1016/j.eswa.2023.120971
https://doi.org/10.1016/j.eswa.2023.120971
https://snap.stanford.edu/data/com-Orkut.html
https://snap.stanford.edu/data/com-Orkut.html
https://doi.org/10.1109/CCGRID.2018.00033

Neural Network Training for Billion-Scale Graphs. Technical Report. https:
//arxiv.org/abs/2010.05337

[93] Michał Zwolak, Zainab Abbas, Sonia Horchidan, Paris Carbone, and Vasiliki
Kalavri. 2022. GCNSplit: bounding the state of streaming graph partitioning. In

Fifth International Workshop on Exploiting Arti�cial Intelligence Techniques for
Data Management. 12 pages. https://doi.org/10.1145/3533702.3534920

3006

https://arxiv.org/abs/2010.05337
https://arxiv.org/abs/2010.05337
https://doi.org/10.1145/3533702.3534920

	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Graph Partitioning
	2.2 Streaming Graph Partitioning
	2.3 Partitioning for Platforms and Analytics

	3 Problem Formulation
	3.1 Preliminaries
	3.2 Preserving Communities
	3.3 Optimization Problem

	4 System Architecture
	4.1 Workflow
	4.2 States Maintained at the Leader
	4.3 Load Balancing

	5 Partitioning heuristics
	6 Experiments
	6.1 Setup
	6.2 Analysis of Partitioning Quality
	6.3 Performance of TriParts

	7 Conclusions
	References

