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ABSTRACT

Disaggregating memory from compute o�ers the opportunity to

better utilize stranded memory in cloud data centers. It is important

to cache data in the compute nodes and maintain cache coherence

across multiple compute nodes. However, the limited computing

power on disaggregated memory servers makes traditional cache

coherence protocols suboptimal, particularly in the case of stranded

memory. This paper introduces SELCC; a Shared-Exclusive Latch

Cache Coherence protocol that maintains cache coherence without

imposing any computational burden on the remote memory side. It

aligns the state machine of the shared-exclusive latch protocol with

theMSI protocol, thereby ensuring both atomicity of data access and

cache coherence with sequential consistency. SELCC embeds cache-

ownership metadata directly into the RDMA latch word, enabling

e�cient cache ownership management via RDMA atomic opera-

tions. SELCC can serve as an abstraction layer over disaggregated

memory with APIs that resemble main-memory accesses. A concur-

rent B-tree and three transaction concurrency control algorithms

are realized using SELCC’s abstraction layer. Experimental results

show that SELCC signi�cantly outperforms RPC-based protocols

for cache coherence under limited remote computing power. Ap-

plications on SELCC achieve comparable or superior performance

over disaggregated memory compared to competitors.
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1 INTRODUCTION

Memory disaggregation has emerged as a signi�cant trend in

cloud databases in both academia [20, 27, 28, 38, 41, 47, 48, 53]

and industry [8, 44, 49]. An important motivation behind disag-

gregated memory is to utilize the substantial amounts of stranded

memory [14, 15, 31, 36, 46] in cloud data centers. Stranded mem-

ory refers to memory that is inaccessible due to all the available

cores being allocated to virtual machines [46]. Memory disaggre-

gation addresses this issue by accessing the stranded memory via

high-speed networks, physically decoupling the memory resources

from compute servers. By establishing disaggregated memory over
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stranded memory, cloud providers can signi�cantly enhance mem-

ory utilization and reduce the total cost of ownership (TCO).

One-Sided RDMA: Key to E�cient Memory Disaggregation.

The unique feature of disaggregated memory is that memory nodes

have very limited computing power. This constraint necessitates

a more e�cient data access method that is provided by Remote

Direct Memory Access technology (RDMA), particularly one-sided

RDMA operations. One-sided RDMA allows data transfer to fully

bypass the CPU on remote memory, achieving low latency and

minimal use of remote computing resources. In contrast, traditional

RPC-based access schemes become ine�cient for disaggregated

memory, especially when the computing power on memory nodes

is limited or, at times, nonexistent.

The Cache Coherence Problem over Disaggregated Memory.

Memory disaggregation enables sharing the main memory among

multiple compute nodes. This advancement drives the next genera-

tion of multi-primary architectures [24, 44] that resolve con�icts

among multiple writers through disaggregated memory. The key

challenge in designing multi-primary systems over disaggregated

memory is maintaining cache coherence between the compute nodes.

Given that RDMA latency is approximately 10 times slower than

main-memory access, compute-side caching is necessary as it can

e�ectively reduce these round trips by leveraging locality. However,

multiple copies of data across compute nodes introduce consistency

challenges, necessitating a robust software-level cache-coherence

protocol to ensure data integrity.

Limitations of Existing Cache-Coherence Solutions. Exist-

ing cache-coherence protocols over RDMA, e.g., GAM [7], Scale-

Store [50], and the solutions in PolarDB MP [44] and GaussDB [24]

are all RPC-based protocols, which rely on the computing resources

in memory nodes. As in Figure 1a, these protocols have been de-

signed for distributed shared-memory systems, where compute

and memory resources are co-located (i.e., not disaggregated). In

these systems, a server can utilize abundant computing power

to process cache ownership management and resolve access con-

�icts. However, these protocols become suboptimal when applied

to disaggregated memory, particularly when the memory pool is

established over stranded memory. RPC requests su�er due to the

limited computing power in memory nodes (Figure 1b). Thus, there

is a pressing need for a native cache coherence protocol over disag-

gregated memory that bypasses the CPU on the remote memory.

Challenges. This paper investigates how to maintain cache coher-

ence among multiple compute nodes while adhering to the one-sided

access scheme between compute nodes and the disaggregated memory.

There are many challenges: (1) Managing cache ownership distribu-

tively via one-sided RDMA is extremely challenging and is funda-

mentally di�erent from RPC-based protocols. Simply leveraging

RDMA read and write to manage the cache directory is ine�cient

due to the introduced RDMA round trips. (2) Optimizing the proto-

col to minimize RDMA round-trips and bandwidth consumption is
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Figure 1: RPC-based cache coherence protocols vs. SELCC protocol

non-trivial. (3) Maintaining fair data access among multiple com-

pute nodes is complicated, especially given that the new protocol

bypasses the processing of remote memory.

Our Approach. This paper presents the Shared-Exclusive Latch-

based Cache-Coherence protocol (SELCC), a new protocol for the

cache coherence problem over disaggregated memory. By intro-

ducing lazy latch-release and invalidation messages, the one-sided

RDMA shared-exclusive latch protocol can be upgraded to address

the cache-coherence problemwith sequential consistency. It embeds

the cache ownership information into RDMA latch words, allowing

both the latch and cache ownership to be managed within a single

RDMA atomic operation. To optimize performance, SELCC priori-

tizes local ownership handover over global ownership handover,

employs batched processing for cache eviction, and minimizes the

bandwidth for dirty data �ush back. Additionally, SELCC enhances

fairness by incorporating priority into invalidation messages. In

Figure 1c, SELCC operates without involving remote memory com-

puting power, making it particularly suited for memory disaggrega-

tion. Note that in scenarios where remote memory has computing

resources, they can be used for other functionalities (rather than

handling cache coherence), such as operator pushdown, which can

result in signi�cant performance gains [27, 40, 42].

Contributions. The contributions of this paper are as follows.

(1) We introduce SELCC, a new one-sided RDMA latch protocol

that supports RDMA access atomicity and cache coherence across

multiple compute nodes (Section 3–5). Compared to other cache-

coherence protocols, SELCC is agnostic to whether or not CPU com-

pute power is available at the disaggregated memory side. (2) We

present an API for SELCC that serves as an abstraction layer over

disaggregated memory. We demonstrate the usefulness of this API

by realizing a concurrent B-tree and three transaction concurrency

control algorithms (Section 6). The proposed API simpli�es real-

izing databases over disaggregated memory. While prior research

works optimize indexes and transaction engines for disaggregated

memory, these e�orts have been studied independently. Integrating

them into a single uni�ed database is di�cult due to their di�ering

approaches to data synchronization. With SELCC, we can build

indexes and transaction management directly on the same SELCC

layer without worrying about cache coherence.

Open-source. SELCC is available at https://github.com/ruihong123/

SELCC (around 29,200 LOC).

2 BACKGROUND

RDMA Technology. Remote Direct Memory Access (RDMA) is

a high-speed inter-memory communication method with low la-

tency. It allows direct access to the memory of a remote node [19].

RDMA bypasses the host operating system when transferring data

to avoid extra data copies. RDMA’s kernel-bypassing and low-

latency features make it applicable to high-performance data cen-

ters [1, 3, 8, 49]. ibverbs is a C++ library for RDMA programming

that provides low-level implementation of RDMA primitives. There

are �ve types of primitives in ibverbs: RDMA send, RDMA receive,

RDMA write, RDMA read, and RDMA atomic. RDMA write, RDMA

read, and RDMA atomic are one-sided RDMA primitives that di-

rectly access the remote server’s memory without involving the re-

mote server’s CPU. Two-sided RDMA primitives (including RDMA

send and RDMA receive) involve both sides of the compute and

memory servers. RDMA atomic includes two primitives: RDMA

compare and swap (RDMA_CAS) and RDMA fetch and add (RDMA_FAA).

These primitives ensure the atomicity of a group of operations on

data of at most 8 bytes. Additionally, RDMA_CAS and RDMA_FAA can

be leveraged to implement shared-exclusive latch over RDMA (SEL),

guaranteeing atomicity among RDMA reads and writes [51].

Cache-Coherence Protocols. Cache coherence is a concept in

multiprocessor systems ensuring that multiple data copies in vari-

ous CPU caches remain consistent [11]. In multiprocessor systems,

consistency is ensured via hardware-level cache-coherence proto-

cols. In disaggregated memory systems, hardware-level protocols

are not present. Thus, a software-level cache-coherence mechanism

is needed when local caches are deployed in compute nodes.

Existing cache-coherence protocols [4, 7, 9, 26, 34, 50] over

RDMA have been originally designed for distributed shared mem-

ory systems, where each object has a main copy stored in its home

node. These protocols maintain cache-coherence using methods

similar to those for multiprocessor systems, e.g., MSI, MESI, and

MOESI [11], and utilize state machines to manage di�erent own-

ership types. Indexes over disaggregated memory caches only the

index metadata, e.g., B-tree internal nodes or hash directory) [28, 39,

53]. These approaches are e�ective, but have limitations: (1) These

caches are typically limited in size and cannot be adjusted to match

the available local memory capacity. (2) Metadata caching is typi-

cally speci�c to particular data structures, limiting its generality.
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Thus, there is a signi�cant need for a general cache coherence pro-

tocol that eliminates the need for computing over remote memory.

3 SYSTEM OVERVIEW

This paper addresses optimizing DBMSs for disaggregated mem-

ory [24, 41, 44], where compute and memory are decoupled, and

multiple compute nodes share a common memory pool (Figure 2).

The memory pool consists of multiple memory servers. Data is ad-

dressed via an 8-byte global pointer (NodeID, o�set), where NodeID

is the memory server identi�er, and o�set is the o�set within server

memory. In Figure 2, the disaggregated memory space is split into

blocks of con�gurable sizes, referred to as Global Cache Lines

(GCLs). GCL is the main data manipulation unit between the com-

pute and memory nodes, and has 3 components: A one-sided global

latch word (8 bytes), a user-de�ned header, and the data region.

The global latch word is a crucial and ensures one-sided RDMA

access atomicity and cache coherence. The user-de�ned header

is application-speci�c, similar to page headers in traditional disk-

based databases. Finally, the data region stores data objects, e.g.,

tuples for data tables and key-value pairs for indexes.

When a GCL is accessed, the system �rst checks local cache. If

the GCL is not found or its ownership state is incorrect, the system

attempts to acquire the corresponding RDMA latch and fetch the

latest GCL using RDMA_CAS and RDMA_Read within a single RDMA

round trip. If the lock acquisition fails, which indicates a con�ict-

ing copy on another compute node, invalidation messages will be

initiated to force the current owner to transfer global ownership

as well as the latest copy (More on this in Section 4.4). SELCC

exposes a simple API to applications that allows users to bypass

the complexities of RDMA programming. Many data structures

and algorithms for monolithic servers can be migrated onto SELCC

seamlessly (Section 6), as the RDMA access atomicity and cache

coherence problem has already been resolved underneath this API.

Disaggregated memory pool

GCL forward & 

Invalidate

Compute node 1

Local cache

Applications

SELCC APIs

…

GCL GCL

GCL GCL

Memory server 1

Compute node n

Local cache

RDMA latch acquire + 

GCL fetch (one-sided)

Applications

SELCC APIs

… GCL GCL

GCL GCL

Memory server n

RDMA latch acquire + 

GCL fetch (one-sided)

Figure 2: System overview

4 THE SELCC PROTOCOL

We introduce the SELCC Protocol; Shared-Exclusive Latch-based

Cache Coherence protocol (SELCC). It guarantees cache coherence

and atomicity for concurrent RDMA reads and writes. We follow

the established design practice in [19, 51] to ensure both correctness

and e�ciency.

4.1 Protocol Overview

Main Idea. The SELCC protocol draws inspiration from the one-

sided Shared-Exclusive Latch protocol (SEL) [51] and the Modi�ed,

Shared, Invalid protocol (MSI) [11]. SEL uses RDMA atomic opera-

tions to ensure the atomicity of RDMA accesses, enabling concur-

rent RDMA reads through the use of shared state. MSI is a widely

adopted cache coherence protocol in multiprocessor systems. It

manages the cache ownership states (Modi�ed, Shared, and Invalid)

via a state machine for consistent data reads and writes (Figure 3c).

Interestingly, we observe that the semantic meanings of MSI

states are analogous to those of SEL. In SEL, the Exclusive state

indicates a locally modi�ed copy, the Shared state indicates a locally

shared copy, and the Latch O� state indicates an invalid local copy.

However, the conditions triggering state transitions di�er signi�-

cantly. In SEL, compute nodes eagerly release an RDMA latch once

local access is complete, leading to immediate invalidation of data

copies (Figure 3a). In contrast, MSI has a lazy invalidation strategy,

where cache states are invalidated only upon receiving bus signals

from other processors. By mapping cache states to latch states

and synchronizing SEL’s state machine with that of MSI’s,

we can resolve the cache-coherence problem.

To align the state machines, SELCC introduces two key mecha-

nisms: lazy latch-release and invalidationmessages (PeerRd, PeerWr),

as in Figure 3b.When a compute node acquires the latch, the fetched

copy is stored in local cache. Unlike traditional latch mechanisms,

SELCC defers the release of the latch until either another compute

node accesses the same GCL or the corresponding cache frame is

evicted. This deferred latch-release allows SELCC’s state machine

to align with the MSI, as in Figure 3b and 3c. When a compute node

fails to acquire the global latch, an invalidation message is issued,

prompting the current owners to release the latch.

SELCC Flow. Data access in SELCC is divided into three phases.

(1) The accessing thread searches local cache for the target Global

Cache Line (GCL), leveraging access locality to minimize RDMA

round trips (Section 4.2). (2) If no valid cache frame is found, the

thread employs one-sided RDMA to retrieve the latest copy from

disaggregated memory (Section 4.3). (3) If con�icting cache copies

are found in other compute nodes, e.g., an exclusive copy in another

node, the con�ict is resolved by invalidation messages (Section 4.4).

Challenges. The key challenge lies in e�ciently managing owner-

ship using one-sided RDMA while ensuring it incurs no additional

round trips compared to RPC-based solutions. Each phase of the

process presents speci�c challenges: (1) How to e�ectively lever-

age metadata in local cache frames to minimize remote accesses?

(2) How to e�ciently acquire ownership in remote memory through

one-sided RDMA operations? (3) How to correctly and e�ciently

transfer ownership and the latest GCL copies across compute nodes?

This challenge becomes particularly complex in the presence of

varying con�ict scenarios, each of which requires a tailored design.

4.2 Local GCL Access via Cache

The local cache frame not only stores a copy of the Global Cache

Line (GCL) but also maintains an ownership memo and a local

shared-exclusive latch. The ownership memo records the acquired

global ownership (Shared, Modi�ed, or Invalid) on this data copy.

The latter accesses can verify whether they are permitted without
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Figure 3: State machines for SELCC, SEL, and MSI protocols

involving any RDMA operation. The local latch synchronizes con-

current accesses to the cache frame between local accessing threads

and invalidation message handlers.

When accessing a GCL, the thread searches local cache for the

target GCL. In case of a cache miss, the thread fetches the data and

acquires ownership from the disaggregated memory. For a cache

hit, the thread acquires the local latch, and then checks against the

ownership memo. If the ownership satis�es the current access type,

the thread can directly access data via local cache. Else, RDMA

operations are invoked to acquire the appropriate ownership (Sec-

tion 4.3.2) and the latest GCL copy. Ownership veri�cation rules

are given in Table 1, where rows represent the type of local access,

and columns represent the ownership states in the memo. Once

the corresponding ownership is acquired and local cache access

is completed, the accessing thread releases the local latch, while

leaving the global ownership memo unchanged.

Table 1: Veri�cation rules for data access

Modi�ed Shared Invalid / cache miss

Reader ✓ ✓ Require Shared own.

Writer ✓ Require own. upgrade Require Modi�ed own.

4.3 Remote GCL Access via One-Sided RDMA

When no valid copy of the target GCL is present in local cache,

the accessing thread must retrieve the latest GCL via one-sided

RDMA and update global ownership in the disaggregated memory.

In RPC-based protocols, there are message handling threads in the

disaggregated memory, managing the cache ownership directory

of GCLs. However, maintaining this ownership directory via one-

sided RDMA is challenging, particularly when no additional RDMA

round-trip is expected compared to the RPC-based solution.

4.3.1 Embeded Ownership in RDMA Latch Word. In SELCC,

we propose to embed cache ownership within the RDMA latch

words, allowing both cache ownership and RDMA latch to be man-

aged via one RDMA atomic operation. As in Figure 4, the latch word

is a 64-bit �eld, the maximum size supported by RDMA atomic oper-

ations. We divide the 64 bits into 2 parts: (1) An ID of the exclusive

latch holder (6 bits), and (2) A bitmap of IDs recording the concur-

rent Shared latch holders (58 bits).1

1This protocol can support up to 58 compute nodes. With multi-cores on each compute
node, a system using SELCC can support thousands of cores.

Exclusive holder ID Shared holder IDs’ bitmap 

6 bits 58 bits

k 0 0 0 0, ... 0, 0, 00 0 0 . . . 0 0

Exclusive latch on / Modified state

0 0 1 0 . . . 0 1

Shared latch on / Shared state

0 0 0 0 . . . 0 0

Latch off / Invalid state

Figure 4: RDMA latch words in SELCC

This new structure allows the RDMA latch to simultaneously

track both shared and exclusive latch holder IDs. For instance, if

a node with ID ý holds a modi�ed copy of a GCL, say ĝ, the latch

word associated with ĝ is represented as (ý, 000...0), whereý is the

exclusive holder ID and the reader bitmap is cleared. When two

nodes, say ý and þ, concurrently hold shared copies of ĝ, the latch

word is represented by (0, (1 << ý) | (1 << þ)), where no exclusive

holder exists, and the bit positions for ý and þ are set to 1 in the

reader bitmap. If there is no valid cached copy in the compute nodes,

the RDMA latch is set to (0, 00..0). This approach has two bene�ts:

(1) No additional RDMA round trips are needed to maintain

the cache directory, (2) Atomicity of directory changes is

ensured. If lock acquisition fails, a compute node gets the latest

cache holders’ IDs via the RDMA atomic operation’s return value,

enabling the determination of invalidation message recipients.

4.3.2 Acquiring Ownership via One-Sided RDMA. With em-

bedded ownership in an RDMA latch word, acquiring ownership

globally is equivalent to acquiring the corresponding RDMA latch

from disaggregated memory. Based on the type of access and the

current ownership mode in the cache frame, there are three types

of ownership requests implemented via one-sided RDMA.

Acquiring “Modi�ed" Ownership. To acquire Modi�ed owner-

ship, a writer atomically compares the latch word with (0, 00..0),

and swaps it with (ĊĥĚěąĀ, 00..0). If the RDMA_CAS fails, the prior

latchword is returned to the compute node that parses the shared/ex-

clusive latch holder IDs and sends them invalidation messages.

Acquiring “Shared" Ownership. To acquire shared ownership,

a reader atomically fetches the latch word and sets its own posi-

tion in the bitmap using RDMA_FAA (with the add operand set to

(1 << ĊĥĚěąĀ)). The reader checks the return value of RDMA_FAA

to determine if a writer is currently holding the latch. If so, the

acquisition fails, and the reader resets its bit in the bitmap using

2981



another RDMA_FAA. Then it sends an invalidation message based on

the holder ID of the exclusive latch.

Upgrading “Shared" to “Modi�ed" Ownership. When a writer

�nds that the target GCL is cached in “Shared" state, the compute

node needs to upgrade the global latch from shared to exclusive.

First, the compute node attempts to compare and swap the global

latch words from (0, 1 << ĊĥĚěąĀ) to (ĊĥĚěąĀ, 00..0). If two

nodes simultaneously upgrade the same global latch, both nodes

will continuously fail at the CAS operation. This issue is analogous

to the deadlock problem for lock upgrade within a single machine,

and is resolved using a typical fallback approach. After several

failed attempts to upgrade the latch, SELCC resorts to releasing the

shared latch and then acquiring the exclusive latch.

(b) In RPC-based approaches, 

ownerships are managed by 

CPUs on disaggregated memory.

(a) In SELCC approach, 

ownerships are managed by 

RDMA atomic operations.

Compute Node

RDMA Send 

& Receive

Memory node

GCL

RDMA 

Write

Directory

RDMA Read + 

Atomic (Batched)

Compute Node

GCL

Memory node

GCL

1 1 2

One-sided RDMA RPC over RDMA

Figure 5: Di�erent approaches for remote access

As in Figure 5a, SELCC issues RDMA read and atomic operations

to atomically retrieve the latest data copy and modify the latch state

(ownership). Since RDMA read and atomic operations are conducted

in a batch, this procedure consumes only one RDMA round-trip.

In contrast to the RPC-based solution (Figure 5b), SELCC reduces

latency, as RPC-based protocols typically require two RDMA oper-

ations issued separately on both sides.

4.4 Resolving Con�icted GCL Accesses

When a thread fails to acquire the global latch for a GCL via

RDMA, it issues an invalidation message (Section 5.1) to prompt the

current owner to either relinquish or transfer its ownership, as well

as the data copy, and, if necessary, �ush back the dirty GCL. There

are three types of con�ict scenarios: (1) A writer on the sender side

invalidates a modi�ed copy on the receiver side. (2) A reader on the

sender side invalidates a modi�ed copy on the receiver side. (3) A

writer on the sender side invalidates one or more shared copies on

the receiver sides. Each scenario must be handled di�erently.

4.4.1 Case 1: AWriter on the Sender Side Invalidates a “Mod-
ified" Copy on the Receiver Side. Refer to Figure 6 for illustra-

tion. Node ý attempts to write a GCL while Node þ holds a copy

in the “Modi�ed" state. To resolve this con�ict, the naive approach

is that the message receivers simply release the global latch and

actively �ush back the dirty data to disaggregated memory. Mean-

while, the message senders repeatedly attempt to acquire the latch

and retrieve the latest data from disaggregated memory (Figure 6a),

following the procedure outlined in Section 4.3.2. However, this

naive approach is ine�cient for two reasons: (1) The retry mech-

anism consumes a large amount of RDMA bandwidth between

compute and memory nodes. (2) Compared to RPC-based solutions

(Figure 6c), it takes four RDMA round-trips, higher than three in

RPC-based solutions. To optimize it, we introduce two new tech-

niques: Global Ownership Handover and GCL Forwarding.

Global Ownership Handover allows the receiver of an invalidation

message to transfer ownership directly to the requester through

one atomic RDMA_FAA operation, rather than requiring the sender

to repeatedly attempt latch acquisition (Figure 6b) [17, 18]. For ex-

ample, if Node ý (Writer) issues an invalidation message to Node þ

(“Modi�ed" state), where ý and þ are the Node IDs, ownership can

be atomically transferred from Node þ to Node ý by adding the

value (ý − þ, 00..0) onto the latch word via RDMA_FAA.

GCL Forwarding enables a message sender to retrieve the latest

GCL copy directly from the message receiver, bypassing the need to

fetch it from disaggregated memory. The sender includes its local

bu�er address in the invalidation message, allowing the receiver

to write back the latest GCL via an RDMA write. Additionally, if

GCL ownership is transferred between nodes as a “Modi�ed" copy,

the dirty GCL does not need to be �ushed back to disaggregated

memory, as the following owner always acquires the latest copy

from the last exclusive owner in a compute node.

As in Figure 6b, SELCC requires only three RDMA round trips

to handle this cases, which is the same as RPC-based solutions.

Furthermore, SELCC fully bypasses remote processing, making

it e�ective over even stranded memory. Notably, the victim of

an invalidation message can immediately forward the dirty GCL

to the sender’s local bu�er without waiting for the ownership

handover round-trip (RDMA_FAA). Although this design may result

in outdated invalidation messages being sent by compute nodes,

outdated messages can simply be discarded upon detection.

4.4.2 Case 2: A Reader on the Sender Side Invalidates a
“Modified" Copy on the Receiver Side. Refer to Figure 6 for

illustration. Node ý attempts to read a GCL while Node þ holds

a copy in the “Modi�ed" state. This scenario is generally han-

dled in a manner similar to Case 1, with minor adjustments for

global ownership handover and GCL forwarding. As in Figure 6b,

when the current owner in the “Modi�ed" state receives an inval-

idation message, it atomically modi�es the latch word by adding

(−þ, (1 << ý) | (1 << þ)) via RDMA_FAA. This operation clears the

modi�ed ownership for Node þ and assigns shared ownership to

both Nodes ý and þ. Additionally, in the same RDMA round trip,

the latest GCL is �ushed back to the disaggregated memory to-

gether (unlike Case 1), ensuring that future concurrent readers can

acquire the latest “Shared" copy from the disaggregated memory

rather than fetch it from another compute node. Finally, the latest

GCL is forwarded to the sender.

4.4.3 Case 3: AWriter on the Sender Side Invalidates One or
More “Shared" Copies on the Receiver Sides. Refer to Figure 7

for illustration. Node þ attempts to write a GCL, while Nodes ý

and ÿ hold copies in the “Shared" state. Unlike the previous case,

GCL forwarding and ownership handover cannot be applied here,

as atomic ownership transfer among multiple nodes with shared

copies is impossible. For example (Figure 7a), consider a scenario

where Node þ (writer) identi�es shared copies on Nodes ý and

ÿ . ý and ÿ cannot collectively transfer the “Shared" ownership

to þ in the latch word atomically. Thus, one node must take the

responsibility as a leader to manage ownership on behalf of the
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others. Even if Node ý is designated as the leader, it cannot de-

termine whether another node, e.g., Ā , has successfully acquired

shared ownership during the message transmission. In these cases,

Ā’s "Shared" ownership is overlooked by ý (the leader), potentially

leading to corruption of the RDMA latch word. As a result, our

design in SELCC is as follows. Refer to Figure 7. The invalidation

message prompts each victim node to release its shared lock while

the sender continues attempting to acquire the exclusive latch. Com-

pared to an RPC-based solution (Figure 7b), SELCC may have one

extra RDMA round-trip, but given that it fully bypasses the need

for remote compute power, this trade-o� is acceptable.

5 OPTIMIZATIONS

We implement SELCC into the compute-side cache over disaggre-

gated memory. The compute-side cache is a lightweight hash table

with the LRU replacement policy and is sharded to support high

concurrency. Several instantiation challenges remain unaddressed:

(1) E�ciently implementing invalidation messages across compute

nodes, (2) Optimizing cache eviction to minimize its impact on read

and write operations, and (3) Avoiding latch starvation to maintain

fairness among the compute nodes.

RDMA send 

& receive

RDMA write
GCL   Flag

Accessing 

threads

GCL   Cache frame

MsgHandler
Accessing 

threads

Meta data

Compute node 1 Compute node 2

Figure 8: Invalidation message

5.1 E�cient Invalidation Messages

Invalidation messages, implemented via RPC over RDMA, play

a critical role in coordinating global cache-line (GCL) ownership

in SELCC. Invalidation messages contain key information, e.g., the

global address of the target GCL and the case of invalidation (Sec-

tion 4.4). As in Figure 8, the RPC request is sent via RDMA_send,

to the receiver side maintaining a ring bu�er to capture incoming

messages via RDMA receive. The background message handlers

in the receiver node process the invalidation messages by releas-

ing/handing over the global latch. After processing, the handler

sends an acknowledgment along with the latest GCL copy to a local

bu�er on the sender’s side via RDMA write. Importantly, in SELCC,

RPC is used only between compute nodes, while the communica-

tion between compute and memory layers are strictly one-sided.

SELCC adheres to the compute-free design principle for memory

nodes, distinguishing it fundamentally from RPC-based protocols.

The e�ciency and robustness of SELCC are supported by two

key design choices: (1) Prioritizing local accesses over invalidation

message processing, and (2) Implementing a message drop-and-

resend mechanism to handle scenarios where invalidation cannot

be processed immediately.

5.1.1 Lower Priority for Processing Invalidation Messages.
In scenarios where invalidation messages are handled concurrently

with front-end accessing threads, synchronization is required for

message handlers to manage access to cache frame metadata. A

straightforward approach is to acquire the local exclusive latch

before processing the invalidation messages. However, this can

lead to two problems: (1) the message handler can get blocked if the

local accessing thread holds the local latch for an extended period,

preventing the processing of subsequent invalidation messages, and

(2) such a design assigns equal priority to local accessing threads and

global accessing threads for handing over the data ownership. In

workloadswith high contention, this can lead to frequent ownership

transfers among compute nodes, signi�cantly increasing read/write

latency and generating a large volume of invalidation messages.

To address these issues, SELCC adopts a design that assigns

lower priority to invalidation message handlers compared to local

accessing threads. This is achieved through the use of the try_lock,

which attempts to acquire the local latch without blocking the

handler. If try_lock fails, the handler either defers or drops the

message and proceeds to the next one. This approach ensures that

global ownership transfers have lower priority than local owner-

ship transfers within the same node, thus reducing latency and

conserving RDMA bandwidth. However, prioritizing local access

over global access can potentially prevent invalidation messages

from taking e�ect under highly skewed workloads, potentially lead-

ing to global starvation on other compute nodes. The solution to

this starvation problem is presented in Section 5.3.

5.1.2 Message Dropping and Resending Mechanism. An-

other important design is the message drop and resending mecha-

nism. Invalidation messages can be dropped by RPC handlers under

three speci�c conditions: (1) the cached entry has already been

invalidated by other compute nodes, (2) the target cache line has

been evicted, or (3) the target GCL is currently being accessed by

a local thread. When a message is dropped, the receiver writes a
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"dropped" �ag to the end of the reply bu�er in the sender side via

RDMA (Figure 8). Upon receiving this �ag, the message sender

retries the global latch to update its view of valid cache copies and

adjusts the targets of subsequent invalidation messages accordingly.

To prevent network saturation due to excessive message resending,

the protocol enforces a time interval Đ =
ÿ×ĎĐĐ

ĊĨ

between each

resend, where ÿ is an empirical constant, ĎĐĐ is the round-trip

time for RDMA atomic operations, and ĊĨ is the number of global

latch retries. This interval also plays a crucial role in maintaining

fairness among compute nodes, as will be discussed in Section 5.3

5.2 E�cient Cache Eviction

Cache eviction is also an important part of SELCC. In SELCC,

cache eviction is managed by background threads, which monitor

the length of the GCL free lists and initiate evictionwhen the list size

falls below a prede�ned threshold. We employ the Least Recently

Used (LRU) replacement policy to select cache frames for eviction.

The cache eviction involves two main steps: releasing ownership

and, if necessary, �ushing back dirty data. Releasing ownership is

equivalent to releasing the global latch.When releasing an exclusive

latch, the compute node atomically fetches and decrements the latch

word by (ĊĥĚěąĀ, 000...0), while any dirty GCLs are �ushed back

using RDMA write within the same RDMA round trip. We do not

adopt the method from [51] for releasing the exclusive latch via

RDMA_CAS, as this can lead to spurious failures due to concurrent

read lock operations, potentially resulting in livelock. For releasing

the shared latch, the compute node resets its corresponding bit in

the bitmap using RDMA_FAA.

However, having the background thread release latches and �ush

back dirty data for every cache frame is not e�cient because: (1)

each GCL eviction requires at least one RDMA round trip, and

if the background thread cannot keep up with eviction requests,

additional RDMA round trips may be added to the critical path of

read and write over SELCC; and (2) the bandwidth consumed by

�ushing dirty GCLs is non-trivial. To address these challenges, we

next introduce two optimizations in SELCC.

5.2.1 Batched Processing for GCL Eviction. To enhance the

e�ciency of GCL eviction, we process evictions in batches. The

eviction worker continuously monitors the length of the GCL free

list ĢĜ and compares it against a prede�ned threshold Ĉ. If ĢĜ < Ĉ,

the eviction worker selects Ĉ − ĢĜ victims from the back of the

LRU list. The selected GCLs are then grouped according to their

node ID, which represents the memory node they belong to. This

allows all RDMA evictions within the same group to be processed

in a single batched RDMA work request. Importantly, the eviction

worker does not need to wait for RDMA operation completion and

can immediately proceed to the next batch of victims. However,

this approach presents two technical challenges: (1) The local cache

frames for dirty GCL cannot be immediately reused until the RDMA

operation for �ushing is complete. (2) There is a limit on the total

number of outstanding RDMA operations per queue ĈĥīĪ .

To address these issues, we equip a RDMA-registered ring bu�er

for every queue pair connection to remote memory. The ring bu�er

size is set to match the maximum number of outstanding RDMA

work requests per queue pair, ĈĥīĪ . Before executing RDMA opera-

tions, the eviction worker attempts to acquire an available slot from

the ring bu�er and copies the payload from the cache frame into

this bu�er slot. If no slot is available, the worker must busy-wait

for the completion of previous RDMA operations. Upon receiving

Ĥ completion noti�cations from the completion queue, the ring

bu�er’s tail is advanced by Ĥ positions. This design ensures that

the number of outstanding RDMA requests always be within the

threshold ĈĥīĪ , and the cache frames can be immediately recycled

once the dirty GCL is copied to the ring bu�er.

5.2.2 Dynamic Dirty Boundaries for GCL Flushing . To re-

duce RDMA bandwidth during GCL eviction, it is essential to min-

imize the payload size for �ushing dirty GCLs. The GCL header

maintains two boundaries, ĚĢ and Ěℎ , which de�ne the address

range encompassing all modi�cations made since the GCL was

fetched into the local cache. Initially, these boundaries are both

set to zero, indicating that no modi�cations have occurred. When

the �rst modi�cation over GCL comes in, the ĚĢ and Ěℎ will be

initialized as the start and end addresses of this modi�cation. Af-

terwards, whenever a new modi�cation arrives, ĚĢ will be updated

as ģğĤ(ĚĢ , ĩĪėĨĪ) and Ěℎ will be updated as ģėĮ (Ěℎ, ěĤĚ). When

�ushing a GCL, the eviction thread checks the dirty boundaries and

only writes back the data within the speci�ed range, rather than

the entire GCL, thereby reducing RDMA bandwidth consumption.

5.3 Fairness

Fairness is a signi�cant challenge for the SELCC protocol, as it

is based on a shared-exclusive spinlock. A server may experience

starvation if it fails to acquire the latch repeatedly. Next, we present

the root causes of latch starvation over SELCC and propose relevant

solutions accordingly. Due to the two-level hierarchy of the system,

two root causes of latch starvation can be identi�ed, each requiring

distinct resolution techniques.

Root cause 1: asymmetric local latch acquisition. As stated

in Section 5.1.1, to minimize the volume of invalidation messages

tra�c, front-end accessing threads have higher priority than invali-

dation message handlers when acquiring the local latch. A compute

node can experience global latch starvation for a particular data ob-

ject if a peer compute node with a valid copy continuously receives

local access requests from multiple threads for that data object. In

this scenario, the local accessing threads continuously hold the

local latch, causing the invalidation message handler’s try_Lock

requests to fail continuously, leading to global latch starvation.

Root cause 2: asymmetric global latch acquisition. It is un-

necessary to have symmetric hardware con�gurations across all

the compute nodes. Consequently, some compute nodes with weak

CPU or network may experience latch starvation due to the low fre-

quency of RDMA latch retries. Additionally, if there are continuous

global read requests for a particular data object, a write request for

that data object may struggle to acquire the exclusive latch because

peer compute nodes continuously hold the shared latch, preventing

the writer from obtaining the exclusive latch.

5.3.1 Handling Local Latch Starvation. To address local latch

starvation, we implement a lease mechanism that forces the com-

pute node to release the global latch when a data object has been

continuously accessed by local front-end threads for an extended pe-

riod. To interrupt these continuous local accesses at an appropriate

time, two counters, the read access counter (Ďę ) and the write access
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counter (ēę ), are maintained in each cache entry. These counters

are activated only when an invalidation message is dropped due to

the ongoing local access and is deactivated when a thread acquires

the latch without spinning, indicating that the data is no longer

heavily accessed. The counters are incremented by 1 when a local

access waits for the latch. Synthetic access times for the cache entry

are calculated byýĪğģěĩ =
Ďę
Č +ēę , where Č represents the number

of front-end threads on the compute node. When the synthetic ac-

cess times ýĪğģěĩ exceed a prede�ned threshold Ā , the local thread

proactively release the global latch and reset the counters.

5.3.2 HandlingGlobal Latch Starvation. To handle global latch
starvation for asymmetric hardware among compute nodes, we

adopt a priority aging mechanism, originally devised to solve the

starvation problem in CPU scheduling [35]. In SELCC, each invali-

dation message is assigned a priority that is positively correlated

to the number of retries a compute node has conducted for a par-

ticular RDMA latch. The global ownership handover mechanism

introduced in Section 4.4.1 takes starvation priority as a key factor

in determining the next owner of the data. The exclusive latch

holder, receiving invalidation messages from all con�icting servers,

acts as a centralized decision-maker for global latch ownership

transfer. During the continuous local access (Section 5.3.1), the in-

validation message handler keeps receiving invalidation messages

from other compute nodes and memorizes those messages as well

as their priority. Upon handing over the global ownership, it is

deliberately transferred to the sender with the highest priority. Fur-

thermore, as in Section 5.1, there is a manually injected time interval

between each retry for a particular latch. This interval decreases

as the priority of latch acquisition increases. Thus, compute nodes

with prolonged wait times are more likely to successfully acquire

the latch through more frequent latch retries.

To address global write starvation induced by continuous global

reads, the protocol employs spin-waiting and priority-matching

mechanisms. Speci�cally, when a high-priority invalidation mes-

sage is detected on reader nodes, a �ag is set in the corresponding

local cached frame, forcing subsequent global readers to spin for a

predetermined duration. The spin duration is proportional to the

starved writer’s priority. This design creates a su�ciently large

time window during which no concurrent reader holds the targeted

shared latch, allowing a concurrent writer to preempt latch own-

ership. Although this approach mitigates the starvation, readers

still achieve higher throughput compared to writers. To further

balance performance between read and write, when write starva-

tion is detected, its priority is recorded in the cache frame. This

GCL cache frame can only be invalidated by a global reader with

equal or greater priority. By this priority-matching mechanism, the

performance of global readers and writers can be balanced given

skewed workloads (See Figure 12 b).

6 SELCC AS ABSTRACTION LAYER

As cache coherence is addressed in SELCC, we observe that it can

be used to build an abstraction layer to simplify building databases

over disaggregated memory. This is because many existing database

data structures and algorithms can be easily migrated, as the issues

of RDMA access atomicity and cache coherence have already been

resolved within the abstraction layer.

6.1 Programming Interface

SELCC exposes a straightforward interface to upper-level appli-

cations (Table 2). Users can allocate or deallocate global cache lines

by calling Allocate/Free. Each data access is conducted via the lo-

cal cache, and has to be protected by an SELCC latch that consists of

a local latch in the cache frame and a global latch in the remotemem-

ory. The acquisition of a SELCC latch (SELCC_SLock/SELCC_XLock)

ensures that both the local and global latch are obtained, thereby

guaranteeing access atomicity and cache coherence across compute

nodes. Upon acquisition, the API returns a cache handle point-

ing to the local copy of the target GCL. Due to the lazy latch-

release introduced in Section 4.1, the release of the SELCC latch

(SELCC_SUnLock/SELCC_XUnLock) only ensures the immediate re-

lease of the local latch while deferring the release of the global

latch until another compute node accesses the same GCL. Addition-

ally, SELCC provides APIs for global atomic operations that can be

utilized to generate global timestamps or sequential numbers.

Table 2: The API of SELCC

API Input Output Description

Allocate/Free NA gaddr Allocate/ free a GCL

SELCC_SLock/

SELCC_XLock
gaddr handle

Acquire the shared/exclusive

permission of the target GCL.

SELLC_SUnlock/

SELCC_XUnlock
handle NA

Release the shared/exclusive

permission of the target GCL.

Atomic
gaddr,

args

latch

word

Conduct RDMA atomic operation

on the given global address.

6.2 Consistency Model

SELCC guarantees a high level of consistency: sequential consis-

tency. Every compute node observes operations from di�erent com-

pute nodes in the same sequential order [5, 21, 33] Sequential con-

sistency is essential for a general cache framework because many

applications, e.g., banking and �nancial services rely on strong

consistency to provide reliable and accurate services to users. The

primary reason for SELCC achieving sequential consistency is its

latch-based design combined with synchronized invalidation mes-

sages. The latch, which is acquired before reads or writes, acts as a

barrier, preventing reordering of operations within a thread. The

invalidation messages mechanism ensures that any con�icting read

or write can only proceed after the corresponding invalidation mes-

sage has been processed. This mechanism guarantees that, before

a compute node modi�es data in disaggregated memory, it must

invalidate all existing cache copies, forcing all subsequent reads to

fetch the most up-to-date data from disaggregated memory. Conse-

quently, when a compute node releases an SELCC exclusive latch,

all other nodes can simultaneously be able to observe the write,

establishing a total order of writes that is consistent across the sys-

tem. By default, SELCC ensures sequential consistency. However,

its consistency guarantees can be relaxed to enhance performance.

For example, write operations can be bu�ered in a local queue and

returned immediately, allowing the execution order of reads and

writes to be relaxed. These bu�ered write requests can then be pro-

cessed in batches, enabling multiplexing of invalidation messages

and data transfers, which reduces RDMA bandwidth consumption.

By carefully setting deadlines for processing the bu�ered write
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requests, SELCC can achieve varying levels of consistency, ranging

from sequential consistency to eventual consistency.

6.3 Index Support

By leveraging SELCC APIs, disaggregated indexes can be im-

plemented as easily as the single-node indexes. For example, we

implemented a concurrent B-link tree with SELCC in approximately

1,200 lines of code. More importantly, SELCC APIs allow develop-

ers to adapt existing single-node index codebases to disaggregated

memorywith just a few hundred lines of modi�cations. For instance,

we adapted a B-tree codebase [6] from a single-server setup to dis-

aggregated memory with only 430 lines of changes, which is less

than 20% of the original codebase. The migration process involves

four key steps: (1) allocate index blocks using SELCC::Allocate,

ensuring each block is aligned with the GCL size; (2) replace local

pointers with global pointers; (3) substitute mutex-based latches

with SELCC latches; and (4) create an index catalog in a GCL to

globally store the root node of the tree-structured index. However,

not all index types can be migrated with such minimal modi�ca-

tions. Data structures without block organization (e.g., bw-tree [22]

and skip list [29]) may require a reorganization to reduce RDMA

round trips. We evaluate the concurrent B-link-tree’s performance

using the YCSB benchmark (Figure 14), �nding it achieves competi-

tive performance compared to state-of-the-art B-trees over shared

disaggregated memory.

6.4 Transaction Support

We can migrate existing concurrency control algorithms to the

disaggregated architecture by leveraging the abstraction layer en-

abled by SELCC as follows. (1) Tuples should be properly orga-

nized into GCLs. (2) Local shared-exclusive latches are replaced

with SELCC_XLock/SELCC_SLock locks. (3) Algorithms that require

monotonic timestamps utilize Atomic provided by SELCC API to

perform RDMA Fetch-and-Add (FAA) operations on a global times-

tamp generator to obtain monotonically increasing timestamps.

We implement three types of algorithms over SELCC: Two-Phase

Locking with no wait strategy (2PL), Timestamp Ordering (TO),

and Optimistic Concurrency Control (OCC). Tuples are organized

in a heap style, meaning they are placed in GCLs in chronological

order of insertion. To ensure atomicity of tuple accesses, these

accesses must be protected by SELCC_XLock/ SELCC_SLock locks.

For two-phase locking, SELCC latches on the GCLs are reused

for locking purposes, minimizing the RDMA round trips required

by the transaction concurrency control. Since all transactions are

executed within the same compute node via RDMA, transaction

support over SELCC does not require two-phase commit protocols.

7 EXPERIMENTAL EVALUATION

.

Platform. Experiments are mostly conducted on a cluster of 16

nodes in Cloudlab [13]. The chosen instance type is c6220 which

features two Xeon E5-2650v2 processors (8 cores, 2.6GHz) and 64GB

(8GB X 8) of memory per node. The cluster is interconnected using

56 Gbps Mellanox ConnectX-3 FDR Network devices. Each server

runs Ubuntu 18.04.1, and the NICs are driven by Mellanox OFED-

4.9-0.1.7. The 16 servers are divided into two groups: 8 compute

servers and 8 memory servers. Asymmetrical compute and memory

resources are allocated on these two types of servers. The compute

servers can utilize all the CPU cores but have a limited local cache

(8GB by default). The memory agents on the memory servers can

access all the memory but are restricted to a very limited number

of CPU cores (1 core by default) using the numactl command.

7.1 Evaluating SELCC

Baselines. To show the e�ciency of SELCC, we compare SELCC

against three competitors over disaggregated memory: (1)GAM [7],

an RPC-based cache-coherence protocol designed for distributed

shared memory. We test GAM with di�erent consistency mod-

els: total store order consistency (TSO) and sequential consistency

(SEQ). (2) ScaleStore [50], state-of-the-art RPC-based protocol de-

signed for distributed shared memory over distributed shared SSDs.

(3) SEL [51], a one-sided access framework that operates without

compute-side caching. While it employs the shared-exclusive latch

(SEL) to ensure RDMA access atomicity, it does not have the cache

coherence problem.

Benchmarks. We test the competitors by a micro-benchmark

tool [7] that allows for adjustments in sharing ratios, read/write

ratios, data skewness and access locality. The accesses in the micro-

benchmark directly targets the global address of GCL. Each compute

server issues 16 Million accesses over 24 million allocated GCLs

(2KB per GCL , 48GB in total). The overall throughput with di�erent

read ratios 95% (Read intensive), 50% (Write intensive), 0% (Write

only) are tested.

7.1.1 Evaluating the Scalability of SELCC. To evaluate the

scalability of the SELCC protocol, we run the benchmark under a

uniformly distributed workload while varying the number of com-

pute nodes. The total number of nodes is temporarily increased to

32 for this experiment. We scale the number of memory nodes in

proportion to the number of compute nodes. Furthermore, we in-

creased the local cache size to 16GB to more clearly reveal the over-

head associated with cache invalidation. We compare SELCC under

various sharing ratios (ĩĨ ), following the methodology in [7, 12, 44].

The sharing ratio (ĩĨ ) indicates the percentage of allocated data

accessible by all compute nodes, while the remainder is accessed

privately. When the sharing ratio is zero, the system essentially

operates as a sharding-based system over disaggregated memory.

Figure 9 shows the experimental results. The point values rep-

resent the overall throughput, while the bar values indicate the

proportion of operations requiring invalidation messages. For the

read-intensive workloads, SELCC demonstrates great scalability

regardless of the sharing ratio, as there is very little cache coher-

ence overhead introduced in the system. For write-intensive and

write-onlyworkloads, SELCC scalability deteriorates with increased

shared data ratio (Figure 9c and d). The reason is that a higher shared

data ratio increases the likelihood of two compute nodes caching

the same data, resulting in a higher volume of invalidation mes-

sages. Compared to the fully partitioned SELCC (0% shared ratio),

the fully shared SELCC (100% shared) shows a 37.7%/33.2% perfor-

mance degradation at 16 nodes in write-intensive and write-only

workloads, respectively. Compared to the single compute node de-

ployment, the 16-node SELCC increases throughput by 10.4×/9.83×,

corresponding to the write-intensive and write-only workloads.
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Figure 9: Scalability of SELCC over multiple compute nodes.

7.1.2 Evaluating the Workloads with Access Locality. Work-

loads with access locality are scenarios where the local cache pro-

vides signi�cant bene�ts. To illustrate the performance bene�ts, we

modify the uniformly distributedworkload such that each operation

accesses the same GCL as the preceding one with 50The benchmark

is executed with 8 compute nodes, 100% sharing ratio, and varying

numbers of threads across the nodes. Compared with SEL, SELCC

shows signi�cant performance gains in all workloads (Figure 10a),

with improvements up to 1.85× at 64 threads. Compared with GAM

(TSO), GAM (SEQ) and ScaleStore, SELCC demonstrates higher

performance , achieving up to 6.31× the throughput, respectively

under write-only workload. GAM exhibits limited thread scala-

bility due to its serialized queue for all the read/write operations

and ScaleStore’s performance is limited by the insu�cient remote

computing power.

8 16 32 64
0
2
4
6
8

10

M
o
p

s/
se

c

num. of threads
(a) Read intensive

8 16 32 64
0
1
2
3
4
5
6

num. of threads
(b) Write Intensive

8 16 32 64
0

2

4

6

8

num. of threads
(c) Write only

SELCC SEL GAM (TSO) GAM (SEQ) ScaleStore

Figure 10: Performance evaluation with access locality.

7.1.3 Evaluating the Workloads with Access Skewness (zipf

distribution). Workloads with access skewness represent addi-

tional scenarios where cache can achieve signi�cant bene�ts. To

illustrate the performance bene�ts of SELCC under a workload

with access skewness, we run the benchmark with a Zip�an dis-

tribution, 100% sharing ratio. The skewness parameter, Ă , is set to

0.99, without applying the access locality. Other parameters are

con�gured in the same way as those in the previous subsection.

For read-intensive workloads, SELCC exhibits signi�cant perfor-

mance gains, achieving throughput 3.09× over that of SEL at 64

threads. These gains result from the high cache hit ratios (60.7%) of

skewed workloads (Figure 11). For write-intensive and write-only

workloads, SEL shows better performance than SELCC when the

thread count is low, as SELCC su�ers from a large number of in-

validation messages triggered by the data hotspot. As the thread

count increases, SEL experiences signi�cant performance degra-

dation , due to the high contention in RDMA atomic operations

over the data hotspot. In contrast, SELCC exhibits better thread

scalability as it prioritizes local concurrency control (Section 5.1.1),

shifting the bottleneck from RDMA con�ict to local con�ict. Finally,

SELCC outperforms GAM(TSO), GAM(SEQ), and ScaleStore across

most workloads, highlighting its e�ectiveness as a native cache

coherence protocol for disaggregated memory.

To show the e�ectiveness of our approaches in improving fair-

ness, we employ two experimental setups. First, we run a write-only

workload with varying handover thresholds Ā as introduced in Sec-

tion 5.3.1. As shown in Figure 12 a, prioritizing local ownership

transfer (Ā = ąĤĜ ) improves performance while prioritizing global

ownership transfer (Ā = 0) guarantees access fairness. Selecting an

intermediate threshold (Ā = 256) e�ectively balances performance

and fairness. Second, we con�gure a single-writer, multiple-reader

setup, in which one compute node executes 100% writes while the

others execute 100% reads. We enable spin-waiting and priority-

matching mechanisms (Section 5.3.2) one at a time to evaluate

their e�ectiveness. We show the cumulative executed operations

over time for one reader node and one writer node in Figure 12 b.

When no optimization is applied, the writer experiences starvation.

After enabling spin-waiting, the writer is no longer blocked by

the readers, but its throughput remains substantially lower. Once

we activate the priority-matching mechanism, the writer’s perfor-

mance becomes comparable to that of the readers, demonstrating

signi�cantly enhanced access fairness.

8 16 32 64
0

2

4

6

8

M
o
p

s/
se

c

num. of threads
(a) Read intensive

8 16 32 64
0

1

2

3

num. of threads
(b) Write Intensive

8 16 32 64
0

1

2

3

num. of threads
(c) Write only

SELCC SEL GAM (TSO) GAM (SEQ) ScaleStore

Figure 11: Performance evaluation with access skewness.
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Figure 12: Performance evaluation on access fairness.

7.1.4 Evaluating the Workloads with Varying Remote Com-

puting Power. In this subsection, we aim to demonstrate the CPU-

agnostic nature of SELCC.We evaluate SELCC and ScaleStore under

three di�erent con�gurations: (1) Stranded remote memory, where

we exhaust the computing power on memory nodes when running

the memory-server processes. (2) 1 remote core, the default con�gu-

ration; and (3) 8 remote cores, where there is no CPU limitation on

memory nodes when running the memory-server processes. As in

Figure 13, SELCC achieves a performance comparable to ScaleStore

when there is no limitation on remote CPU. SELCC slightly outper-

forms ScaleStore with 8 remote cores in write-intensive workloads
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due to its dirty data �ushing optimization (Section 5.2.2). The per-

formance gap in read-intensive workloads is due to RDMA read

and atomic operations reaching bandwidth limitations faster than

RDMA send, receive, or write operations, as RDMA atomic and

RDMA read require more processing in the RDMA NIC2. Finally,

the impact of remote computing power on the performance of RPC-

based protocols is signi�cant, especially under stranded memory

conditions, where the throughput of ScaleStore is less than 0.3

Mops/s across all workloads.
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Figure 13: Performancewith varied remote computing power.

7.2 Evaluating Index Support over SELCC

While the previous experiments highlight the performance ad-

vantages of SELCC as a cache coherence protocol, its e�ciency in

supporting applications remains uncertain. In this subsection, we

construct an index following the methodology outlined in Section 6,

and evaluate its performance using YCSB [10].

Baselines. Four B-tree baselines are evaluated in this experiment.

The �rst baseline is Sherman [39], an optimized index over disaggre-

gated shared memory. The second baseline is the B-tree over Scale-

Store [50], con�gured the same as the one in the micro-benchmark.

The third baseline is DEX [27], a sharding-based B-tree over dis-

aggregated memory. Unlike the other shared-memory baselines,

DEX employs a sharding mechanism to bypass the cache coherence

problem. The �nal baseline is the B-tree over SEL.

Benchmarks & Con�guration.We benchmark the indexes using

YCSB, following methodologies established in the existing liter-

ature [27, 39, 42]. Each index is loaded with 2 billion key-value

records (around 40GB) and tested under varying read ratios and

data skewness (Ă = 0.99). The experiments are conducted over 8

compute nodes, with 8 threads per node.

7.2.1 Results of UniformWorkloads. Compared to Sherman,

the B-tree over SELCC outperforms Sherman by factors up to

1.76×, because Sherman’s remote synchronization requires one

more RDMA round trip compared with SELCC and Sherman cannot

cache leaf nodes locally. SELCC outperforms scalestore by factors

up to 1.87×, showing better performance as an abstraction layer

over compute-limited disaggregated memory. Finally, the B-tree

over SELCC slightly loses to DEX under uniform workloads. This

result is expected, as the sharding mechanism in DEX fully bypasses

the cache coherence problem and includes many index-speci�c op-

timizations. Moreover, DEX has limitations when serving as an

index component in a full-�edged multi-primary database due to

the overhead of cross-shard transactions (See Section 7.3).

2This gap could be mitigated with more advanced RDMA NICs, such as ConnectX-5.
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Figure 14: B-tree performance over disaggregated memory.

7.2.2 Results of Skewed workloads. The B-tree over SELCC

outperforms Sherman by factors up to 4.00×, because the local

cache in SELCC can hold most of the hot data. The B-tree over

SEL has very limited performance under skewed workloads due to

the excessive RDMA round trips required for traversing the tree.

Sherman exhibits weaker performance than the B-tree over SELCC,

because its leaf nodes cannot be cached locally, resulting in high

RDMA atomic tra�c contention over the hot spots. In contrast,

SELCC can mitigate this tra�c by pre-resolving con�icts in the

local cache. SELCC outperform ScaleStore greatly, aligning with

our micro-benchmark results in Section 7.1. DEX demonstrates

extremely fast performance as it completely avoids concurrency

control and caches data locally.
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Figure 15: Ablation study

7.2.3 Ablation Study. We evaluate the impact of several opti-

mizations from Section 4 and 5 using the YCSB benchmark with

a uniform workload and varied read ratios. We start with 3 key

optimizations disabled (GCL Forwarding in Section 4.4.1, Batched

Eviction in Section 5.2.1, and dynamic dirty boundaries in Sec-

tion 5.2.2) and then re-enable them one at a time. First, enabling

GCL Forwarding results in huge improvements (40% and 17%) for

write-only and write-intensive workloads. Next, we activate the

Batched Eviction, which yields performance improvements across

all workloads. Finally, we enable the dynamic dirty boundaries opti-

mization for GCL �ushing, which signi�cantly boosts performance

for pure-write and write-intensive workloads by 11% and 12%.

7.3 Evaluating Transaction Support over SELCC

In this subsection, we evaluate the performance of transaction

engines over SELCC using the TPC-C benchmark.

Baselines. We build transactional engines using various represen-

tative concurrency control algorithms: two-phase locking (2PL)

with no-wait strategy, timestamp ordering (TO), and optimistic con-

currency control (OCC), following the methodology in Section 6.

Also, we build transaction engines over SEL’s abstraction layer to

explore the bene�ts of cache under OLTP workloads. Additionally,

2988



T1
0.0
0.3
0.6
0.9
1.2

K
tx

n
/s

ec

1e2

T2
0

2

4

6
1e2

T3
0.0
0.2
0.4
0.6
0.8
1.0

1e3

T4
0.0
0.3
0.6
0.9
1.2

1e2

T5
0.0
0.6
1.2
1.8
2.4
3.0

1e3

Mixed
0.0
0.4
0.8
1.2
1.6
2.0

1e2
SELCC (2PL) SELCC (TO) SELCC (OCC) SEL (2PL) SEL (TO) SEL (OCC)

0 20 40 60 80 100
distribution ratio

0
10
20
30
40
50

K
tx

n
/s

ec

SELCC fully shared SELCC partitioned with 2PC

(a) Evaluation of di�erent concurrency control algorithms over SELCC and SEL. (b) Fully shared vs. partitioned with 2PC.

Figure 16: TPC-C benchmark results

we built a 2-Phase Commit (2PC) engine over partitioned SELCC.
By comparing the performance of fully-shared SELCC against par-
titioned SELCC, we aim to demonstrate the advantages of fully-
shared SELCC for bypassing the two-phase commit (2PC) protocol.
Benchmark & Con�guration. A database is loaded with 256
warehouses, occupying approximately 64GB of disaggregated mem-
ory. The benchmark suite includes �ve transactions: three of them
(T1, T2 and T4) contain insertions and updates3 . The experiment is
conducted in two parts. First, we evaluate SELCC against SEL using
three concurrency control algorithms, with all data fully-shared.
The B-tree over SELCC serves as the index for this benchmark.
Write-ahead logging is disabled to clearly highlight performance
discrepancies. In the second part, we compare fully-shared SELCC
against partitioned SELCC using the same database setup. The trans-
action concurrency control algorithm is set to 2PL, and write-ahead
logging is enabled to fully demonstrate the overhead of 2PC.

7.3.1 Results for SELCC vs. SEL. As in Figure 16a, concurrency
control algorithms over SELCC o�er signi�cant performance ben-
e�ts compared to those over SEL when handling workloads gen-
erated by TPC-C. SELCC achieves up to 24.8× throughput with
read-only transactions, 7.96× with update transactions, and 4.29×
in mixed scenarios. SELCC has a considerable advantage over SEL
even for update transactions as there are still numerous reads on
immutable data (e.g., index traversal and reading immutable ta-
bles). Also, the performance of concurrency control algorithms
varies when dealing with di�erent transactions. Algorithm TO over
SELCC exhibits poor performance in read-only transactions (T3
and T5) because even read operations require updating the read
timestamp, resulting in cache invalidation. However, TO outper-
forms the 2PL algorithm for update transactions due to its lower
abort rate. Generally, OCC has slower performance than 2PL as it
requires acquiring the SELCC latch for the GCL twice per tuple;
once during the read phase and again during the validating phase
that results in a higher volume of cache invalidation messages.

7.3.2 Fully-Shared SELCC vs. Partitioned SELCC. For parti-
tioned SELCC, we partition the data according to warehouse IDs.
T1 (New Order) is evaluated with varying distribution ratios, repre-
senting the percentage of cross-shard transactions. As in Figure 16b,
partitioned SELCC outperforms fully-shared SELCC when the dis-
tribution ratio is 0. The gap between fully-shared and partitioned
SELCC is not apparent due to slow log writing onto SSD, shifting
the bottleneck from RDMA access to SSD writes. As the number of
cross-shard transactions increases, the performance of partitioned
SELCC decreases signi�cantly. This decline is attributed mainly to

3T1: NewOrder, T2: Payment, T3: OrderStatus, T4: Delivery, T5: StockLevel [30].

communication overhead and the high cost of fsync during both
the prepare and commit stages, despite the use of group commit to
reduce overhead. In contrast, the fully-shared SELCC that bypasses
2PC, remains una�ected by the distribution ratio.

8 RELATED WORK

As cache coherence has been covered in Section 2, this section
presents additional related work.
Database systems over disaggregated memory. Approaches to
database research over disaggregated memory di�er signi�cantly
between academia and industry. Academic research focuses on re-
designing speci�c database components, e.g., indexes [27, 28, 39, 42,
52, 53] and transaction concurrency control algorithms [37, 43, 45]
over the disaggregated memory. SELCC converges the individual
database research by providing a layer of abstraction. In contrast,
industry, e.g., Alibaba PolarDB and Huawei GaussDB, conducts
research in full-�edged system support over disaggregated mem-
ory [8, 23, 32, 44, 49]. They migrate the bu�er pool onto disaggre-
gated memory, achieving a higher cache hit ratio [8, 49], instant
failure recovery [8, 23], elasticity resource provisioning [8], and
multiple primary nodes [24, 44]. Existing multi-primary databases
use RPC-based protocols to maintain cache coherence over disag-
gregated memory, but their performance could be constrained by
the limited remote computing power.
CXL-based disaggregated memory CXL is an emerging technol-
ogy for disaggregation [16, 25]. In CXL 3.0 speci�cation [2], cache
coherence is expected to be guaranteed at the hardware level. How-
ever, that coherence is maintained between the CPU caches and
remote memory. This work focuses on cache coherence between
the local memory in compute nodes and remote memory. SELCC
will remain valuable even with CXL 3.0, as there is still a need to
cache data in the local memory of compute nodes, which introduces
the software-level cache coherence problem.

9 CONCLUSION

This paper addresses a key challenge for database systems over
disaggregated memory: Maintaining cache coherence over disag-
gregated memory via one-sided RDMA. SELCC provides a disag-
gregated memory abstraction that facilitates further research, e.g.,
in indexing and transaction management. SELCC can be utilized by
cloud-native databases to enable scalable multi-primary designs.
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