
STsCache: An Efficient Semantic Caching Scheme for Time-series
Data Workloads Based on Hybrid Storage

Tao Kong

Xidian University

jasonk@stu.xidian.edu.cn

Hui Li*

Xidian University

Yunxi Technology Co., Ltd

hli@xidian.edu.cn

Yuxuan Zhao

Xidian University

yuxzhao@stu.xidian.edu.cn

Liping Li

Xidian University

lipingli@stu.xidian.edu.cn

Xiyue Gao

Xidian University

xygao@xidian.edu.cn

Qilong Wu

Xidian University

qilongwu@stu.xidian.edu.cn

Jiangtao Cui

Xidian University

cuijt@xidian.edu.cn

ABSTRACT
Due to the increasing demand for extreme-scale time-series data

workloads in data centers, it is required to build a high-performance

semantic caching system that leverages the semantics and results

of historical queries to answer time-series queries. Existing caching

solutions either ignore the semantics of queries, offering suboptimal

performance, or focus only on specific scenarios, providing small-

capacity, limited functionality.

In this paper, we summarize the query patterns of time-series

data workload and propose the definition of semantic time-series

caching for the first time. Accordingly, we present a semantic time-

series caching system, STsCache, based on a hybrid storage model

with memory and NVMe SSD. We propose a series of optimized

strategies, such as slab-based semantic data management, semantic

index, semantic value-driven batch eviction, time-aware deduplica-

tion insertion, and lazy compaction. We implemented and evaluated

STsCache via benchmarks and production environments. STsCache

can increase throughput of popular time-series databases (InfluxDB,

TimescaleDB) by 4.8-10.8× and reduce latency by 79.9%-93.5%.

Compared with the latest time-series caching schemes (TSCache,

BSCache), STsCache can increase throughput by 1.5-4.5×, reduce
latency by 59.4%-81.9%, and increase hit ratios by 22.5%-82.4%.

PVLDB Reference Format:
Tao Kong, Hui Li, Yuxuan Zhao, Liping Li, Xiyue Gao, Qilong Wu,

and Jiangtao Cui. STsCache: An Efficient Semantic Caching Scheme for

Time-series Data Workloads Based on Hybrid Storage. PVLDB, 18(9): 2964 -

2977, 2025.

doi:10.14778/3746405.3746421

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/ts-lab1024/ts-semantic-caching.

1 INTRODUCTION
Time-series data is a collection of data points arranged in chrono-

logical order, commonly used to represent values that change

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.

doi:10.14778/3746405.3746421

over time [41]. The past decades have witnessed an explosive

growth of time-series data in numerous applications, e.g., Internet
of Things (abbr., IoT) [30, 68, 78], meteorology [1, 52, 74], financial

engineering [27, 64], manufacturing [40, 58, 63], Internet monitor-

ing [21, 46, 67], etc. Therefore, time-series databases (abbr., TSDBs)
have become essential in data centers for managingmassive, rapidly

growing time-series data. For most cases, fast response to queries

over massive time-series data is fundamental [80]. As time-series

queries are highly skewed towards recent data, they tend to overlap

more than other queries [22, 53]. Moreover, these queries typically

involve time-ranges, tags, and aggregations. In order to reuse query

results flexibly, it requires to explore the correlation between the

semantics of queries. Thus, designing a large-capacity cache to

answer new queries using the semantics and results of past queries

is a potent solution to enhance query performance.

Memcached [34], as a representative key-value cache system,

proposes to cache frequently accessed data, i.e., hot data, in mem-

ory, effectively improving query performance. However, key-value

cache systems [2, 4, 9, 34, 49, 51] do not work on TSDBs as they can-

not accommodate the varying time-ranges in queries. Due to that,

TSCache [53], a flash-based caching scheme, adopts a time-range

based query interface to match varying time-ranges. It hashes the

query content excluding the time-range into a key and encodes the

data points as the value. Obviously, this design loses the relation-

ship between metadata (e.g., tags) and the data, which brings two

disadvantages. ❶ It cannot provide a flexible tag-based interface like
popular TSDBs [10, 12], which is used for retrieving and grouping

specified time-series data by tags. ❷ It may suffer from a low hit

ratio. The cache can only be hit if the hashed query key perfectly

matches one in the cache. The flexible parameter combinations in

time-series data workloads, especially with tags, result in a large

number of unique keys, significantly reducing the hit ratio. To per-

ceive the relationship between metadata and data, Zhang et al. [77]
proposed to rely on semantic caching. However, as stated by them,

it is difficult to achieve that goal without embedded into the target

system. Accordingly, they present a caching scheme, BSCache, act-

ing as a built-in component for a performance monitoring system.

Notably, it is a pure in-memory caching component designed for a

specific system, thus lacking generality and unsuitable for large-

capacity caching scenarios. Furthermore, BSCache overlooks the

semantic relationships between queries, which hinders its ability to

effectively reuse cached data, such as aggregating data in the cache

2964

https://doi.org/10.14778/3746405.3746421
https://github.com/ts-lab1024/ts-semantic-caching
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746421
https://www.acm.org/publications/policies/artifact-review-and-badging-current

to respond to new queries. Given the progress of these efforts, it sug-

gests that an efficient and large-capacity semantic caching scheme

designed for time-series workloads, referred to as semantic time-
series caching, can help alleviate pressure on back-end databases

and reduce query time accordingly. However, proposing such a

scheme is challenging for the following reasons.

• Costly semantic matching. Although semantic match-

ing usually enables better utilization of cache data than

key-value matching, it is more complex and incurs higher

overhead. In large-capacity caching, the overhead of seman-

tic matching can significantly degrade the performance of

the caching system.

• Memory overhead/Performance trade-offs. Handling
large time-series data volume requires larger capacity

caches, which can incur significant memory overhead if en-

tirely built in memory. TSCache proposes to build caches on

flash storage, but this can limit the performance because of

flash I/O. Current semantic caching efforts haven’t balanced

memory overhead and overall efficiency.

• Cache penetration.Cache penetration refers to queries for
non-existent data, resulting in direct access to the back-end

database at all times. This degrades system performance

and increases the burden on the database.

In this paper, to overcome the aforementioned challenges, we

study and summarize the characteristics and query patterns of time-

series data, and we propose a formal definition of semantic time-

series caching for the first time. In particular, we define semantic
meta and semantic series. The former encapsulates the semantics

of time-series queries, while the latter refers to the semantics of

the data sources in queries. Based on this formal definition, we

propose a semantic time-series caching scheme called STsCache,

which is built on a hybrid storage of memory and NVMe SSD.

Unlike BSCache, which is binding to a specific system and scenario,

STsCache can provide caching services for general TSDBs.

We designed a series of mechanisms to ensure the STsCache

performance. ❶ It uses slabs (i.e., contiguous blocks in memory

or SSD) to efficiently store data points from the same semantic

series in chronological order, leveraging hardware sequential I/O

and reducing management costs. ❷ To reduce semantic matching

costs, we designed a semantic index using a graph and skip lists,

avoiding expensive matching processes and storing lightweightly

empty query semantics to prevent cache penetration. ❸ To retain

hot data in the cache and keep hotter data in memory, we have

quantified the hotness of the data as semantic values and designed

a batch eviction scheme accordingly to improve cache performance.

❹ To improve cache space utilization, we proposed deduplication

insertion algorithms and slab compaction under certain conditions

to reduce space fragmentation.

To evaluate performance, we implemented STsCache based on

Fatcache [9] and its client based on gomemcache [13], modify-

ing the Golang clients of InfluxDB and TimescaleDB to access

both cache and database services. Experimental results on popu-

lar TSDB benchmarks show that, compared to advanced TSDBs,

STsCache can improve throughput by 4.8-10.8× and reduce latency

by 79.9%-93.5%. Compared with the latest time-series cache [53, 77],

STsCache can increase throughput by 1.5-4.5×, reduce latency by

59.4%-81.9%, and increase hit ratios by 22.5%-82.4%.

In summary, the major contributions in this work are as follows:

• We propose the formal definition of semantic caching de-

signed specifically for time-series data workloads for the

first time. This serves as a foundation for building semantic

time-series caches for general TSDBs.

• We propose building a large capacity cache based on the

hybrid storage of memory and NVMe SSD, and design a

batch eviction scheme based on semantic values. By keeping

hotter data in memory, it balances the query performance

and the memory overhead of the caching system.

• We propose a novel semantic index. It can effectively store

the semantics of queries and the semantic relations between

queries. The semantic index can avoid many expensive se-

mantic matching processes. In addition, it can prevent cache

penetration by storing the semantics of empty queries.

• We propose a low-cost compaction strategy, i.e., deduplicat-
ing insertions and lazy compaction, to improve the utiliza-

tion rate of the cache space.

The rest of this paper is organized as follows. In Section 2, we

introduce the preliminary concepts of TSDBs and review related

works. In Section 3, we propose a formal definition of semantic

time-series caching. In Section 4, we provide a detailed description

of the overall design as well as details for each module of STsCache.

The experimental settings and results are reported in Section 5.

Finally, Section 6 concludes this paper.

2 PRELIMINARIES AND RELATEDWORK
2.1 Preliminaries of TSDBs
TSDBs are specifically designed to efficiently store, manage,

and query large volumes of time-series data [47]. Some of

the most well-known and widely recognized TSDBs include In-

fluxDB [10], TimescaleDB [12], Apache IoTDB [7], OpenTSDB [3],

Prometheus [6], QuestDB [5], and others [16, 18].

For ease of discussion, we introduce the relevant concepts of

TSDBs using the IoT use case in InfluxDB and TSBS (as shown in

Figure 1). Each record in the table is called a point, which consists of
ameasurement, a tag set, a field set and a timestamp. Ameasurement
is similar to a table in relational databases. The tag set comprises

key-value pairs (i.e., tag name and tag value) that describe static
characteristics of the data source, such as the truck’s name and

driver. The field set contains a key-value pair (i.e., field key and

field value) that capture values dynamically changing over time,

such as velocity and heading.
TSDBs employ the notion series to refer to a group of points that

share the same measurement, tag set and field key. For example,

the first two datapoints in Figure 1 belong to the same series, i.e.,
series1. Each series represents the data of a specific field from a

particular data source.

2.2 Related Work
2.2.1 Semantic Caching. Traditional caching mechanisms[2, 4, 34]

rely on exact key-based matching, which fails to identify inter-

sections of results from similar queries. In contrast, semantic

2965

measurement tag set [name, driver] field key timestamp field value

readings [truck_0, Seth] velocity 2022-01-01T00:00:00Z 9.3

readings [truck_0, Seth] velocity 2022-01-01T00:00:10Z 9.5

readings [truck_1, Rondey] heading 2022-01-01T00:00:00Z 100

series1

series2

Figure 1: An example of points and series.

caching[31, 61] caches both query results and semantics, answering

new queries by matching semantics, thereby fully reusing cached

data. Semantic caching has been widely studied [24, 43, 72, 73, 76]

and applied in various domains, such as client-server database

[31, 61], mobile computing [50, 59, 60], web services [28, 29],

Large Language Models [23, 32], and performance monitoring [77].

BSCache [77] is a lightweight semantic cache for cloud-based perfor-

mance monitoring time-series systems. It focuses on the semantic

relationships between metadata (e.g., tags) and data (timestamps,
field values). However, it overlooks semantic relationships between

queries, underutilizes semantic caching potential, and its memory-

based design is cost-prohibitive for large-scale caching of massive

time-series data. These limitations drive the design of STsCache.

2.2.2 Query Containment. The query containment problem [45, 48,

56, 62] is a fundamental issue in data management. It asks whether,

for two queries 𝑄1 and 𝑄2, 𝑄1 (𝐷) is contained within 𝑄2 (𝐷) for
any database 𝐷 . Here,𝑄𝑖 (𝐷) refers to the result of executing𝑄𝑖 on
database 𝐷 . Chen et al. [26] proposed XCache, an XML semantic

cache that determines query containment using regular expression-

like pattern variables. Luo et al. [55] designed a semantic cache

for web proxy, based on query containment for keyword-based

and spatial queries. However, prior work on query containment is

unsuitable for time-series semantic caching. Time-series queries,

involving predicates, thresholds, aggregations, and time-ranges,

differ significantly from other query types. This motivates formal

definitions of semantic relationships in time-series queries.

2.2.3 Materialized View. Materialized views [25, 36, 69, 71] pre-
compute store and query results to reduce real-time computation

costs. They retain SQL definitions like regular views [33, 65] and

can be periodically refreshed. MVs are used in some TSDBs (e.g.,

TimescaleDB’s continuous aggregates [12]), but they rely on prede-

fined query logic by DBAs and may add storage and refresh burdens

to the database server. In contrast, semantic caching matches query

semantics more flexibly without predefined logic and operates inde-

pendently to avoid resource competition with the database server.

2.3 Time-series Caching
TSCache [53] builds time-series caches on flash memory. It uses two

composite indexes to accelerate data retrieval. It uses a columnar

slab structure for data, with key arrays and bit arrays to match

queries to cache entries. It also employs a time-aware mechanism

to manage cache replacement. However, as TSCache calculates

the hash value of the query excluding the time-range predicate, it

ignores the semantics, leading to low hit rates under practical work-

loads. MinMaxCache [57] provides an error-bounded, in-memory

adaptive caching for visualization applications. The success of Min-

MaxCache in visualization applications has motivated us to design

caching schemes for broader time-series data applications.

3 FORMAL DEFINITION OF SEMANTIC
CACHING IN TSDBS

According to the elegant work on semantic cache in generic

queries [31, 61], the meaning (referred to as semantic) of a query

is interpreted as the projected columns, predicates, etc. involved in

the query. Accordingly, semantic caching studies whether cached

data can satisfy a new query by comparing the correlation between

their semantics (i.e., query meaning), i.e., the projected columns,
predicates, etc. In this regard, we have been following this defini-

tion and put it one step further, i.e., formally defining time-series

query semantics as well as exploring the semantic relationships

between them. Based on well-known benchmarks [8, 14, 15, 17, 54]

and related work [37, 39, 44, 47, 66, 70, 79], we identified that time-

series query patterns typically include time-ranges, aggregations,

threshold filtering, and tags. For clarity, we present the following

query examples in an SQL-like language.

• Q1: Basic time-range query.

SELECT velocity , heading FROM readings
WHERE name='truck_0 ' AND time >='2022 -01 -01 T09

:00:00Z' AND time <'2022 -01 -01 T12 :00:00Z';

• Q2-1: Time-range query with tag grouping.

SELECT velocity , heading FROM readings
WHERE (name='truck_0 ' OR name='truck_1 ') AND

time >='2022 -01 -01 T09 :00:00Z' AND time <'
2022 -01 -01 T12 :00:00Z'

GROUP BY name;

• Q2-2: Time-range query with tag grouping.

SELECT velocity , heading FROM readings
WHERE (name='truck_0 ' OR name='truck_2 ') AND

time >='2022 -01 -01 T08 :00:00Z' AND time <'
2022 -01 -01 T11 :00:00Z'

GROUP BY name;

• Q3: Time-range query with field predicate.

SELECT velocity , heading FROM readings
WHERE name='truck_0 ' AND time >='2022 -01 -01 T10

:00:00Z' AND time <'2022 -01 -01 T11 :00:00Z'
AND velocity >99;

• Q4: Time-range query with aggregation.

SELECT max(velocity) FROM readings
WHERE (name='truck_0 ' OR name='truck_1 ') AND

time >='2022 -01 -01 T11 :00:00Z' AND time <'
2022 -01 -01 T13 :00:00Z'

GROUP BY name , time (10m);

3.1 Query Semantics
Suppose that there is a TSDB instance, denoted as 𝐷 , let 𝑀

be a specific combination of values for measurement and tag
sets within 𝐷 , which can be used to denote one or more

data sources. For example, in Figure 1, there are two 𝑀s, i.e.,
𝑀1 = 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠.(𝑛𝑎𝑚𝑒 = 𝑡𝑟𝑢𝑐𝑘_0, 𝑑𝑟𝑖𝑣𝑒𝑟 = 𝑆𝑒𝑡ℎ) and 𝑀2 =

𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠.(𝑛𝑎𝑚𝑒 = 𝑡𝑟𝑢𝑐𝑘_1, 𝑑𝑟𝑖𝑣𝑒𝑟 = 𝑅𝑜𝑛𝑑𝑒𝑦). Then, we use 𝐹 to

denote the collection of field keys (e.g., velocity, heading) in 𝐷 .

Next, let 𝑃 be the field predicate, and let 𝑃𝐹 be the field keys

involved in 𝑃 . Then, let 𝑇 = [𝑡𝑠𝑏𝑒𝑔𝑖𝑛, 𝑡𝑠𝑒𝑛𝑑] be a time-range, where

𝑡𝑠 denotes a timestamp and 𝑡𝑠𝑏𝑒𝑔𝑖𝑛 ⩽ 𝑡𝑠𝑒𝑛𝑑 . For instance, consider

query Q3, 𝑃 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 > 99, 𝑃𝐹 = {𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦}, 𝑇 of Q3 is [2022−
01−01𝑇 10 :00 :00𝑍, 2022−01−01𝑇 11 :00 :00𝑍].

2966

Table 1: Notations.

Notations Descriptions

𝑞 / 𝑞̂ A cached query. / A new query.

𝐷 A time-series database.

𝑀 / 𝑞𝑀
A combination of measurement and tag sets. / All

𝑀s in q.

𝐹 / 𝑃𝐹 / 𝑞𝐹 All field keys of 𝐷 / 𝑃 / 𝑞.

𝑃 / 𝑞𝑃 Field predicate. / 𝑃 in 𝑞.

𝑞𝐺 Aggregation function and time interval in 𝑞.

𝑇 / 𝑞𝑇 Time-range predicate. /𝑇 in 𝑞.

𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) Semantics corresponding to each data source.

𝑀𝑒𝑡𝑎 (𝑞) Some 𝑆𝑒𝑟𝑖𝑒𝑠 within a specific time-range.

𝑀𝑒𝑡𝑟𝑖𝑐 (𝑞𝐹 , 𝑞𝑃 , 𝑞𝐺) A collection of 𝑆𝑒𝑟𝑖𝑒𝑠 with same 𝑞𝐹 , 𝑞𝑃 , 𝑞𝐺 .

Given the above, we formally define Semantic Meta as follows.

Definition 1 (Semantic Meta). Given a time-series query 𝑞,
the semantics contained in it is defined as the Semantic Meta of 𝑞,
denoted in the following form.

𝑀𝑒𝑡𝑎(𝑞) =< 𝑞𝑀 , 𝑞𝐹 , 𝑞𝑃 , 𝑞𝐺 , 𝑞𝑇 >,

where 𝑞𝑀 refers to the corresponding set of𝑀 values defined in 𝑞, 𝑞𝐹
are the field keys appearing in 𝑞, 𝑞𝑃 and 𝑞𝑇 are the field predicate and
the time-range predicate of 𝑞, respectively. 𝑞𝐺 = {𝐴𝑔𝑔𝑟 (∗), 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙},
where 𝐴𝑔𝑔𝑟 (∗) can be any of {COUNT, MEAN, SUM, MAX, MIN} or
kept empty; 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 can be empty or a user-specified time interval
used in GROUP BY time() clause.

Example 1. The semantic meta ofQ4 can be represented as follows.

<𝑞𝑀 = {𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠.(𝑛𝑎𝑚𝑒 = 𝑡𝑟𝑢𝑐𝑘_0), 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠.(𝑛𝑎𝑚𝑒 = 𝑡𝑟𝑢𝑐𝑘_1)},
𝑞𝐹 = {𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦}, 𝑞𝑃 = ∅, 𝑞𝐺 = {MAX, 10𝑚},
𝑞𝑇 = [2022−01−01𝑇 11 :00 :00𝑍, 2022−01−01𝑇 13 :00 :00𝑍] > .

Notably, 𝑞𝑀 may contain multiple𝑀s (e.g., Example 1), referring

to different data sources. Therefore, to differentiate the meta be-

tween data sources in queries, we define Semantic Series as follows.

Definition 2 (Semantic Series). Given a time-series query 𝑞,
the Semantic Series identifies the semantics corresponding to each
data source in 𝑞, i.e., a specific value of𝑀 (𝑀 ∈ 𝑞𝑀), can be formally
represented as follows.

𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) =< 𝑀,𝑞𝐹 , 𝑞𝑃 , 𝑞𝐺 > .

Obviously, each semantic meta corresponds to one or more se-

mantic series within a specific time-range, i.e.,

𝑀𝑒𝑡𝑎(𝑞) =< {𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀𝑖) |𝑀𝑖 ∈ 𝑞𝑀 }, 𝑞𝑇 > .

In the above equation, all 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀𝑖) share the same value of

𝑞𝐹 , 𝑞𝑃 and 𝑞𝐺 , we further define Semantic Metric accordingly to

denote such a collection of semantic series.

Definition 3 (Semantic Metric). Given a particular set of
values of 𝑞𝐹 , 𝑞𝑃 , and 𝑞𝐺 , the collection of those semantic series
𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) =< 𝑀,𝑞𝐹 , 𝑞𝑃 , 𝑞𝐺 > is referred to as Semantic Metric
of 𝑞𝐹 , 𝑞𝑃 , 𝑞𝐺 , formally represented as follows.

𝑀𝑒𝑡𝑟𝑖𝑐 (𝑞𝐹 , 𝑞𝑃 , 𝑞𝐺)= {𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) |𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀)=<∗, 𝑞𝐹 , 𝑞𝑃 , 𝑞𝐺 >}.

Cache Entry

tsbegin tsend

1 20 Answerabletsbegin tsend

21 3 4 5 60 7 8 9

tsbegin tsend

41 32
Query A & B

interval=30min interval=10min

interval=10min
10

0

Figure 2: An illustration of Aggregated Answer.

3.2 Semantic Relationships between Queries
Given the above definitions, we are ready to explore the seman-

tic relationship between 𝑞̂ and a cached query 𝑞. Suppose that

𝑞̂𝑇 ∩𝑞𝑇 ≠ ∅ and𝑀 ∈ 𝑞̂𝑀 ∩𝑞𝑀 , depending on whether and how the

results corresponding to 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀), which have been cached, can

be relied upon to answer 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀), we can categorize the answer
paths into three types: ❶ If 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀) = 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀), i.e., they
have identical field keys, predicates, then the results of 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀)
can be directly employed to answer part of 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀), subject to
𝑞̂𝑇 ∩ 𝑞𝑇 ≠ ∅. ❷ Otherwise, if 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀) .𝑞̂𝐺 = 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) .𝑞𝐺 ,
and the field keys of 𝑞̂ are contained by that of 𝑞, with 𝑞̂𝑃 contained

by 𝑞𝑃 , we consider that the results w.r.t. 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) can be used to

answer 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀) through filtering. ❸ Finally, if 𝑞̂𝑃 = 𝑞𝑃 , 𝑞̂𝐹 is

contained by 𝑞𝐹 and they share the same aggregation types but dif-

ferentiate in interval (or𝑞𝐺 = ∅), we check if the groups aggregated

in 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀) can align with that of 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀). If alignable, the
results w.r.t. 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) can be used to answer 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀) by
aggregating the cached groups. As shown in Figure 2, QA (with

𝑞̂𝐺 .𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 30𝑚𝑖𝑛) can be answered by cache results (with

𝑞𝐺 .𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 10𝑚𝑖𝑛) as the second aggregation interval for QA
(upper green) aligns exactly with three cached intervals (bottom

green). In comparison, QB cannot be answered by the cache.

Accordingly, we formally define the answer paths as follows.

Definition 4 (Cache Answerable). Given a pair of queries, 𝑞̂
and𝑞, subject to𝑀 ∈ 𝑞̂𝑀∩𝑞𝑀 , 𝑞̂𝐹 ⊆ 𝑞𝐹 , 𝑞̂𝑇 ∩𝑞𝑇 ≠ ∅, in the following
cases 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) can be relied upon to answer 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀), referred
to as 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) is answerable to 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀).

• Direct Answer: Results for 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) can be directly used
to answer the 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀), if: 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀) = 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀);

• Filtered Answer: Results for 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) needs to be filtered
before it can be used to answer 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀), if: 𝑞̂𝑃 ⇒ 𝑞𝑃
and 𝑞̂𝑃𝐹 ⊆ 𝑞𝐹 and 𝑞̂𝐺 = 𝑞𝐺 ;

• Aggregated Answer: Results for 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) needs
to undergo aggregation before it can be used to an-
swer 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀), if, 𝑞̂𝑃 = 𝑞𝑃 , (𝑞̂𝐺 .𝐴𝑔𝑔𝑟 (∗) =

𝑞𝐺 .𝐴𝑔𝑔𝑟 (∗) 𝑜𝑟 𝑞𝐺 .𝐴𝑔𝑔𝑟 (∗) = 𝑛𝑢𝑙𝑙) and 𝑞̂𝐺 .𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =

𝑘 · 𝑞𝐺 .𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑘 ∈ N+). Notably, it also requires that
𝑞̂𝑇 .𝑡𝑠𝑏𝑒𝑔𝑖𝑛 + 𝑘1𝑞̂𝑇 .𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑞𝑇 .𝑡𝑠𝑏𝑒𝑔𝑖𝑛 + 𝑘2𝑞𝑇 .𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

and 𝑞̂𝑇 .𝑡𝑠𝑏𝑒𝑔𝑖𝑛 +𝑘3𝑞̂𝑇 .𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑞𝑇 .𝑡𝑠𝑏𝑒𝑔𝑖𝑛 +𝑘4𝑞𝑇 .𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
(𝑘1 < 𝑘3 and 𝑘2 < 𝑘4, 𝑘1, 𝑘2, 𝑘3, 𝑘4 ∈ N).

Definition 4 studied ‘Whether’, but not ‘How’, the results for a

cached query 𝑞 can be relied upon to answer a new query 𝑞̂. We

now move on and study ‘How’ 𝑞̂ can be answered by 𝑞. We present

two cases of cache hit, namely full hit and partial hit.

Definition 5 (Full hit and Partial hit). Given a cached query
𝑞 and a new query 𝑞̂, we define two types of cache hits as follows:

• Full Hit: 𝑞̂ can be fully answered by 𝑞, if:
– ∀𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀), ∃𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀), 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) is answer-

able to 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀) and 𝑞̂𝑇 ⊆ 𝑞𝑇 .

2967

Probe Query:
SELECT velocity, heading
FROM readings
WHERE name='truck_0'
 AND time>='2022-01-01T09:00:00Z'
 AND time<'2022-01-01T11:00:00Z' ;

2022-01-01T
12:00:00Z

2022-01-01T
11:00:00Z

2022-01-01T
10:00:00Z

2022-01-01T
09:00:00Z

2022-01-01T
08:00:00Z

Semantic
Series1

Semantic
Series3

Semantic
Series2

* Semantic Series1=
 {M=readings.(name=’truck_1’),
 qF={velocity, heading},
 qP=∅ , qG=∅ }
* Semantic Series2=
 {M=readings.(name=’truck_0’),
 qF={velocity, heading},
 qP=∅ , qG=∅ }

* Semantic Series3=
 {M=readings.(name=’truck_2’),
 qF={velocity, heading},
 qP=∅ , qG=∅ }

Q2-1

Q2-2

Q2-1

Probe Query Remainder Query

Q2-2

Probe Query:
SELECT velocity, heading
FROM readings
WHERE name='truck_0'
 AND time>='2022-01-01T09:00:00Z'
 AND time<'2022-01-01T11:00:00Z' ;

2022-01-01T
12:00:00Z

2022-01-01T
11:00:00Z

2022-01-01T
10:00:00Z

2022-01-01T
09:00:00Z

2022-01-01T
08:00:00Z

Semantic
Series1

Semantic
Series3

Semantic
Series2

* Semantic Series1=
 {M=readings.(name=’truck_1’),
 qF={velocity, heading},
 qP=∅ , qG=∅ }

* Semantic Series2=
 {M=readings.(name=’truck_0’),
 qF={velocity, heading},
 qP=∅ , qG=∅ }

* Semantic Series3=
 {M=readings.(name=’truck_2’),
 qF={velocity, heading},
 qP=∅ , qG=∅ }

Q2-1

Q2-2

Q2-2

Q2-1

Probe Query Remainder Query

Figure 3: Query trimming for Q2-2 by Q2-1 cache.

• Partial Hit: 𝑞̂ can be partially answered by 𝑞, if:
– ∃𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀), ∃𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) such that 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞,𝑀) is

answerable to 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀) and 𝑞̂𝑇 ∩ 𝑞𝑇 ≠ ∅.

In the former case, all the results of 𝑞̂ can be found from the

cache w.r.t. 𝑞. Whenever the latter case happens, the answer to 𝑞̂

can be decomposed into two parts: the cached results w.r.t. 𝑞 that

supply as a partial answer to 𝑞̂ and the marginal records that belong

to 𝑞̂ but are not in the cache. We refer to the query task for each

part as probe query and remainder query, respectively.

Example 2. Suppose that Q2-1 has been executed before, the se-
mantics and query results have been cached correspondingly. Consider
that a new query Q2-2 is submitted, it is easy to find that Q2-2 can
be partially hit by Q2-1 following Definition 5. Moreover, the cached
answer of Q2-1 does not need to undertake filter or aggregation, ac-
cording to Definition 4. Therefore, Q2-2 can be answered via a probe
query and a remainder query (details in Figure 3).

4 STSCACHE DESIGN
Based on the definitions above, we present STsCache, a semantic

time-series caching scheme. Like Memcached [34], STsCache is a

standalone system using a cache-aside architecture (see Figure 4).

Clients first access STsCache. If there’s no full hit, they query on

TSDBs and store the query semantics and results in STsCache. The

cache-aside architecture decouples STsCache from TSDBs, elim-

inating the need for cumbersome data loading logic. Developers

can flexibly manage cache through the client programs we provide,

which are modified from existing clients [13] with minimal changes.

4.1 Architecture Overview
As shown in Figure 5, STsCache consists of the following parts:

Semantic-based Interface. We have designed an interface based

on query semantics to provide caching services for general TSDBs.

Data Management. The basic unit of data management in

STsCache is the slab, which is a collection of chronologically or-

dered data points of the same semantic series. Slabs can be stored in

memory and SSD to balance performance and memory overhead.

Semantic Index. A composite index composed of a graph and

skip lists, which can store the semantic relationships of historical

queries. Accessing cached data through the semantic index avoids

a large number of expensive semantic matching processes.

Eviction. It uses semantic value to quantify slab contributions and

prioritizes retaining high-value slabs in memory. When memory is

full, it evicts a batch of low-value slabs to SSD.

Compaction Module. Deduplication insertion and lazy com-

paction are presented to improve the utilization rate of cache space.

4.2 Semantic-based Interface
In order to provide an efficient semantic caching service for general

TSDBs while keeping the easy-to-use experience like key-value

caches, we have designed a custom serialization method and an

interface similar to key-value caching.

4.2.1 Customized Serialization and Deserialization. STsCache con-
verts queried data points to binary and stores them contiguously

(see Figure 6). Using common serialization methods like Protobuf

and JSON embedmetadata into binary data for parsing, which forces

STsCache to deserialize and re-encode data points into contiguous

binary format, adding overhead. Moreover, text-based serialization

(e.g., JSON) also increases data size for network transmission.

Therefore, we propose custom serialization and deserialization

methods. For query 𝑞̂, we sequentially encode each 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀𝑖)
in𝑀𝑒𝑡𝑎(𝑞̂) (see Definition 2) and its data points into binary format.

This enables STsCache to store data points directly, avoiding re-

dundant deserialization and re-encoding. During query responses,

STsCache sends results to the client in the same format, which the

client converts into query results via custom deserialization.

4.2.2 API Design. Similar to TSCache [53], we also provide an

interface with the time-range parameter. But differently, instead of

hashing the query into a key, we introduce SemanticKey, which
we keep as a standard string format that includes all the content of

semantic meta except for the time-range, i.e., {𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀𝑖) |𝑀𝑖 ∈
𝑞̂𝑀 }. STsCache focuses solely on parsing SemanticKey, avoiding
compatibility issues with diverse TSDB query formats.

Set(SemanticKey, BeginTime, EndTime, Value). Add the se-

mantics and results of a query to STsCache. Value is a byte
stream by serializing the query result. For empty queries,

clients set Value to ‘NULL’.

Get(SemanticKey, BeginTime, EndTime). Retrieve the query

results from STsCache. The client receives binary data and

converts it into query results through deserialization.

4.2.3 Client for STsCache. We implemented our designed API

based on an advanced Memcached client [13]. Developers can use

the modified client (i.e., STsCache Client) to interact with STsCache.

To simplify usage, we encapsulated the cache-aside architecture

logic and custom serialization/deserialization into a client called

STsCache-Aside Client. This client interacts with both STsCache

and TSDBs and merges query results from both sources.

4.3 Slab-based Semantic Data Management
The basic data unit in STsCache is the slab. Each slab is a contiguous

block of space in memory or SSD, used to store the data points

associated with the same semantic series in chronological order.

Due to the append-only and write-once characteristics of time-series

data, STsCache does not need to consider cache consistency issues.

2968

STsCache Server

TSDB Servers
Data

Client

Data
Flow:

Set

Get

Figure 4: Data flow.

Data

Slab Management

Parallel I/O

Mem Slab... ...Slab SlabSlab Slab Slab

Index

Semantic Graph

Time-range Skiplist

Eviction

Semantic Values

Batch Eviction

Compaction

Deduplication Insertion

Lazy Compaction

Semantic-based Interface

SSD Slab... ...Slab SlabSlab Slab Slab

Figure 5: Architecture of STsCache.

Header

Timestamp Field Values

Timestamp Field Values

Timestamp Field Values

Timestamp Field Values

Slab

Figure 6: Structure of Slab.

This method of data storage brings several advantages. ❶ Since

the data points within a slab are associated with the same semantic
series, there is no need to store metadata for each data point within

the slab to record their semantics. Minimal metadata for the entire

slab suffices, enhancing storage space utilization. ❷ According

to Definition 4, we can determine whether the semantic series of
the slab is answerable to the new query 𝑞̂, without the need to

access each data point within the slab, thus improving cache access

efficiency. ❸ Slab-based storage enables efficient sequential writes

in 4KB multiples, which extends the lifespan of flash devices.

4.3.1 Slab Structure. As shown in Figure 6, a slab consists of two

parts: header and data. The former stores a small amount of meta-

data. The latter stores data points associated with the same semantic
series in chronological order. Unlike row or column storage, the

slab stores all fields corresponding to the semantic series involved.
Compared to row storage, it avoids the waste of row space when

accessing only a subset of fields. Compared to column storage, it

can prevent a large number of random I/O during read and write.

In terms of size, intuitively, a larger slab size can benefit more

from the sequential I/O performance of flash devices. However,

a larger capacity is more prone to causing space fragmentation.

According to our experiments (see Section 5.4), overall performance

is the best when the slab size is set to 16KB.

4.3.2 Parallel Slab I/O Operations on NVMe SSDs. The I/O over-

head of SSDs is greater than that of memory and network [49],

making it the bottleneck of the entire caching system. Batch reading

and writing of slabs from SSDs offers the opportunity for multi-

threaded parallel I/O. Therefore, we have equipped STsCache with a

thread pool for parallel I/O on NVMe SSDs. High degrees of parallel

random I/O can leverage the performance of NVMe SSDs [38, 75].

4.4 Semantic Index
For semantic caching, indices must also consider query semantics

to accelerate matching. We propose an efficient semantic index

comprising two parts (see Figure 7): a Semantic Graph and Time-
range based Skip Lists, the former is used to store and manage

semantic series and their semantic relationships (i.e., answer path
in Definition 4); and the latter accelerates data retrieval within a

given time-range.

4.4.1 Semantic Graph. We present a graph-based index to record

the answer path between 𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀), i.e., slabs.
Semantic Node. Intuitively, it is rational to denote each cached

𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀) using a node, and connect nodes based on the answer

path. However, it may result in a large number of nodes and ac-

cordingly improve the search complexity within the graph index.

Therefore, to limit the scale of the graph index, we select to cor-

relate each Semantic Node to a semantic metric, but not a single
semantic series. As the semantic series within a𝑀𝑒𝑡𝑟𝑖𝑐 (𝑞̂𝐹 , 𝑞̂𝑃 , 𝑞̂𝐺)
correlates with multiple 𝑀 , we introduce a Mapping List to map

each specific value of𝑀 to a Time-based Skip List.

Semantic Edge. As the answer path in Definition 4 is defined

based on the relationship between 𝑞̂𝑃 , 𝑞̂𝐹 , 𝑞̂𝐺 (assuming identical

𝑞̂𝑀), each value of which corresponds to a semantic node, it is ap-

plicable to connect pairs of semantic nodes according to the answer

path accordingly. The weights of edges store the corresponding

answer path in Definition 4. Notably, a Semantic Edge 𝑢 → 𝑣 in-

dicates that the semantic series in 𝑢 is answerable to the semantic

series in 𝑣 that has the same𝑀 .

4.4.2 Time-range based Skip List. We design a time-range based

skip list for efficient data retrieval within a time-range. Each node

has a non-overlapping time-range key𝑇 , and is associated with a list
of slabs (Sids in Figure 7) falling into 𝑇 . In particular, it is possible

that the time-range for a pair of nodes becomes overlapped due to

data point insertion (resp., deletion), in that case the corresponding

nodes in the skip list can be merged (resp., split). Intuitively, we
can adopt the time-range of each slab in the time-range keys in the

skip list. However, this can never cache the time-range of empty

queries and leads to cache penetration. To address that, we select

to adopt a query-driven index construction, where time-range of

the query semantics is used as the time-range keys and store the

time-range of the data points in the corresponding slab in the nodes

of the slab list. As shown in Figure 7, the time-range node [𝑡6, 𝑡11]
is associated with a slab list that contains [𝑡7, 𝑡8] and [𝑡9, 𝑡10], each
of which corresponds to a single slab, where 𝑡6⩽𝑡7⩽𝑡8<𝑡9⩽𝑡10⩽𝑡11.

This can bring benefits in the following aspects: ❶ Rapid de-

termination of cache hits. It can efficiently find nodes where the

time-range keys overlap with the time-range of the current query. ❷

More granular search. A node may be associated with many slabs.

We further refine the slabs we want to search based on the time-

ranges in the slab list. ❸ Prevent cache penetration. We store the

time-ranges of empty queries as time-range keys. If query 𝑞 matches

the time-range keys in the index but no slab is found, STsCache will

return a cache hit directly, effectively handling cache penetration.

4.4.3 Operations Based on Semantic Index. We implement a pair

of SetByIndex and GetByIndex operations by the semantic index.

Set by Index.Algorithm 1 illustrates the process of Set. It parses
the SemanticKey to obtain a list of semantic series, and then stores

the semantics and data into the slab within the cache. If there is not

a semantic node containing the series, we create one accordingly

and connect it with other nodes based on the answer path.

2969

M Ptr

readings.(name=truck_0)

readings.(name=truck_1)

Mapping List Time-range based Skip List
Time-range
Node [t6,t11]

Sid
[t7,t8]

Sid
[t9,t10]

Aggr. Aggr.

Filtered

Aggr.

Filtered Filtered
Sid Sid

Slab List

Semantic Graph

head

head

head [t0,t1] [t2,t3] [t4,t5] [t6,t11]

[t2,t3] [t6,t9]

[t6,t9]

Figure 7: Semantic index.

Algorithm 1: SetByIndex
Input: 𝐼 : Semantic index, 𝐾 : SemanticKey from Set, 𝐷 : Data to be

inserted,𝑇 : Time-range of 𝐷

Output: 𝐼 ′: 𝐼 after set
1 Function SetByIndex(&𝐼 ,𝐾 ,𝐷 ,𝑇):
2 𝑆𝑆𝑒𝑟𝑖𝑒𝑠𝐿𝑖𝑠𝑡 = ParseSkey(𝐼) ; 𝑆𝐺𝑟𝑎𝑝ℎ = GetSGraph(𝐼) ;

3 𝑆𝑁𝑜𝑑𝑒 = FindSNode(𝐺𝑟𝑎𝑝ℎ,𝑆𝑆𝑒𝑟𝑖𝑒𝑠𝐿𝑖𝑠𝑡) ;
4 if 𝑆𝑁𝑜𝑑𝑒 == 𝑛𝑢𝑙𝑙 then
5 𝑆𝑁𝑜𝑑𝑒 = CreateSNode(𝑠𝑒𝑟𝑖𝑒𝑠) ;

6 𝐸𝑑𝑔𝑒𝑠 = FindSRelationship(𝐺𝑟𝑎𝑝ℎ,𝑆𝑁𝑜𝑑𝑒) ;

7 Append(&𝐺 ,𝐸𝑑𝑔𝑒𝑠 ,𝑆𝑁𝑜𝑑𝑒)

8 foreach 𝑠𝑒𝑟𝑖𝑒𝑠 ∈ 𝑆𝑆𝑒𝑟𝑖𝑒𝑠𝐿𝑖𝑠𝑡 do
9 𝑇𝑆𝑘𝑖𝑝𝐿𝑖𝑠𝑡 = FindTSkipList(𝑆𝑁𝑜𝑑𝑒 ,𝑠𝑒𝑟𝑖𝑒𝑠) ;

10 if 𝑇𝑆𝑘𝑖𝑝𝐿𝑖𝑠𝑡 == 𝑛𝑢𝑙𝑙 then
11 𝑇𝑆𝑘𝑖𝑝𝐿𝑖𝑠𝑡 = CreateTSkipList(𝑠𝑒𝑟𝑖𝑒𝑠) ;

12 SetMap(&𝑆𝑁𝑜𝑑𝑒, 𝑠𝑒𝑟𝑖𝑒𝑠 ,𝑇𝑆𝑘𝑖𝑝𝐿𝑖𝑠𝑡) ;

13 DeduplicationInertion(𝐷 ,𝑇 ,&𝑇𝑆𝑘𝑖𝑝𝐿𝑖𝑠𝑡) ;

Probe Query Initial/Remainder Query

Se
m

an
ti

c
Se

ri
es

Time

(a) Query q̂

Time-range of q

Cache

Series(q,M)^

(b) Trimming and Cache Hit.

Se
m

an
ti

c
Se

ri
es

Time

(c) Query q.

Figure 8: An illustration of Query Trimming.

Query Trimming. According to Definition 2, the semantics of

query 𝑞̂, i.e.,𝑀𝑒𝑡𝑎(𝑞̂), composed of {𝑆𝑒𝑟𝑖𝑒𝑠 (𝑞̂, 𝑀𝑖)} and 𝑞̂𝑇 , can be

plotted as a rectangle on the semantic series and time-range space

(Figure 8a). We perform query trimming based on semantic series.

We only trim the query when the cache covers either 𝑞̂𝑇 .𝑡𝑠𝑏𝑒𝑔𝑖𝑛 or

𝑞̂𝑇 .𝑡𝑠𝑒𝑛𝑑 , allocating the cache-hit parts to the probe query and the

cache-miss parts to the remainder query (Figure 8b). Each semantic

series in remainder query is linked to a continuous time-range,

simplifying the client’s result merging process (Figure 8c).

Get by Index. Algorithm 2 illustrates the Get process. We trim

the query and retrieve data by semantic series and time-range. If the

query is not met, we traverse the incoming edges of the Semantic
Node to retrieve data for the remainder time-range, i.e., RemainT.

The time complexity of Algorithm 2 is 𝑂

(︂∑︁𝑛𝑣
𝑖=1

(1 + log(𝑁𝑖))
)︂
,

where 𝑛𝑣 denotes the number of semantic nodes traversed for cache

access and 𝑁𝑖 represents the number of slabs for the correspond-

ing skip list index. Without index-based access to the cache, the

complexity escalates to 𝑂 (𝑁 · 𝜎), where 𝑁 is the number of slabs

(𝑁 ≥ ∑︁𝑛𝑣
𝑖=1

𝑁𝑖 ≫ 𝑛𝑣) and 𝜎 refers to the time required for one

semantic match strictly following Definition 4 and Definition 5.

Algorithm 2 reduces the overhead of large-capacity cache access

by efficiently replacing costly and frequent semantic matches with

graph traversal and skip list searches.

Algorithm 2: GetByIndex
Input: 𝐼 : Semantic index, 𝐾 : SemanticKey from get,𝑇 : Time-range

of query

Output: 𝐷 : Data retrieved from cache

1 Function GetByIndex(𝐼 ,𝐾 ,𝑇):
2 𝑆𝑆𝑒𝑟𝑖𝑒𝑠𝐿𝑖𝑠𝑡 = ParseSkey(𝐼) ; 𝑆𝐺𝑟𝑎𝑝ℎ = GetSGraph(𝐼) ;

3 𝑆𝑁𝑜𝑑𝑒 = FindSNode(𝐺𝑟𝑎𝑝ℎ,𝑆𝑆𝑒𝑟𝑖𝑒𝑠𝐿𝑖𝑠𝑡) ; 𝐷 = [] ;

4 if 𝑆𝑁𝑜𝑑𝑒 ≠ 𝑛𝑢𝑙𝑙 then
5 foreach 𝑠𝑒𝑟𝑖𝑒𝑠 ∈ 𝑆𝑆𝑒𝑟𝑖𝑒𝑠𝐿𝑖𝑠𝑡 do
6 𝑇𝑆𝑘𝑖𝑝𝐿𝑖𝑠𝑡 = FindTSkipList(𝑆𝑁𝑜𝑑𝑒 ,𝑠𝑒𝑟𝑖𝑒𝑠) ;
7 𝑅𝑒𝑚𝑎𝑖𝑛𝑇 = 𝑇 ;

8 if 𝑇𝑆𝑘𝑖𝑝𝐿𝑖𝑠𝑡 ≠ 𝑛𝑢𝑙𝑙 then
9 // trim query and get probe query’s data.

10 𝑅𝑒𝑚𝑎𝑖𝑛𝑇 = GetData(𝑇𝑆𝑘𝑖𝑝𝐿𝑖𝑠𝑡,𝑇 ,&𝐷) ;

11 if 𝑅𝑒𝑚𝑎𝑖𝑛𝑇 ≠ 𝑛𝑢𝑙𝑙 then
12 foreach 𝑒𝑑𝑔𝑒 ∈ GetInEdges(SNode) do
13 // trim query and get probe query’s data.

14 GetDatabyEdge(𝑒𝑑𝑔𝑒,&𝑅𝑒𝑚𝑎𝑖𝑛𝑇 ,&𝐷) ;

15 if 𝑅𝑒𝑚𝑎𝑖𝑛𝑇 == 𝑛𝑢𝑙𝑙 then
16 break;

17 Return 𝐷 ;

4.5 Batch Eviction Based on Semantic Value
When cache space is full, retaining valuable content for future

queries is key tomaintaining high hit rates. In hybrid storage caches,

this involves keeping valuable slabs and hotter data in memory.

4.5.1 Semantic Value. To quantify the eviction priority of a slab, we
propose using the total read/write data volume of the slab, referred

to as semantic value. In high-frequency read-write caching systems,

real-time sorting of all semantic values is costly, so we sort them

only during eviction. We create a semantic value array to track

semantic values of all slabs. On slab eviction, the value resets to

zero. On each read/write for a slab, its semantic value increases.

4.5.2 Aging. We address slab eviction misguidance by old hot data

using an aging strategy that periodically halves semantic values

via bitwise operations. To reduce traversal costs in large caches,

we hide the aging traversal in the eviction process. We introduce a

factor to denote the weight of current operations: each read/write

shifts the semantic value left by the factor bits, and during batch

replacement, the value is shifted right by the factor bits to age it.

The factor is incremented regularly and reset to 0 at traversal end,

giving higher weight to recent operations.

2970

Algorithm 3: Batch Eviction Based on Semantic Values

Input: 𝑆 : Semantic value array, 𝐿: List of used slab IDs, 𝐹 : List of

free slab IDs, 𝐸: List of evictable slab IDs, 𝐾 : batch size

Output: 𝑆 ′, 𝐿′, 𝐸′, 𝐹 ′: 𝑆, 𝐿, 𝐸, 𝐹 after eviction

1 Function BatchEviction(&𝑆 ,&𝐿,&𝐸,&𝐹 ,𝐾):
2 // Two min-heaps sorted by S[id].

3 𝑀𝐻𝑒𝑎𝑑 = InitMinHeap() ; 𝐷𝐻𝑒𝑎𝑑 = InitMinHeap() ;

4 foreach 𝑠𝑖𝑑 ∈ 𝐿 do
5 𝑆 [𝑠𝑖𝑑] » 𝑓 𝑎𝑐𝑡𝑜𝑟 ;
6 if IsMem (𝑠𝑖𝑑) then
7 PushHead(&𝑀𝐻𝑒𝑎𝑑, 𝑠𝑖𝑑) ;

8 else
9 PushHead(&𝐷𝐻𝑒𝑎𝑑, 𝑠𝑖𝑑) ;

10 𝑁𝑢𝑚 = 0 ;𝑊𝑟𝑖𝑡𝑒𝐿𝑖𝑠𝑡 = InitList() ;

11 while !IsEmpty(𝑀𝐻𝑒𝑎𝑝 ,𝐷𝐻𝑒𝑎𝑝) and 𝑁𝑢𝑚 + + < 𝐾 do
12 𝑀𝑇𝑜𝑝 = GetTop(𝑀𝐻𝑒𝑎𝑑) ; 𝐷𝑇𝑜𝑝 = GetTop(𝐷𝐻𝑒𝑎𝑑) ;

13 if 𝑆 [𝐷𝑇𝑜𝑝] ⩽ 𝑆 [𝑀𝑇𝑜𝑝] then
14 DeleteSlab(&𝐿,𝐷𝑇𝑜𝑝) ; PopHead(&𝐷𝐻𝑒𝑎𝑑) ;

15 InsertList(&𝐹, 𝐷𝑇𝑜𝑝) ;

16 else
17 PopHead(&𝑀𝐻𝑒𝑎𝑑) ; InsertList(&𝐸,𝑀𝑇𝑜𝑝) ;

18 for 𝑖 = 1 → 𝐾 − GetSize(E) do
19 𝑀𝑇𝑜𝑝 = GetTop(𝑀𝐻𝑒𝑎𝑑) ; PopHead(&𝑀𝐻𝑒𝑎𝑑) ;

20 InsertList(&𝑊𝑟𝑖𝑡𝑒𝐿𝑖𝑠𝑡 ,𝑀𝑡𝑜𝑝) ;

21 // Write to SSD slabs and free memory slabs.

BatchWriteSSD(𝑊𝑟𝑖𝑡𝑒𝐿𝑖𝑠𝑡,&𝐿,&𝐹) ;

4.5.3 Batch Evicton. We propose a batch eviction algorithm based

on semantic values (see Algorithm 3). First, we select 𝑘 slabs with

the lowest semantic values, evicting those in SSD directly and plac-

ing those in memory into the eviction list 𝐸. Slabs on the list 𝐸 are

ready for quick eviction and insertion. Next, we search for (k - Get-
Size(E)) additional slabs in the memory slab list and batch-write

them into the SSD. This approach has three benefits: ❶ Batch evic-

tion spreads the overhead of sorting semantic values. ❷ It retains 𝑘

free or evictable slabs in memory for efficient cache insertion. In

our experiments, 𝑘 is set to
1

16
of the number of slabs in memory to

achieve optimal performance (see Section 5.5). ❸ Parallel writing

of slabs takes full advantage of the hardware bandwidth.

4.6 Compaction Module
Although managing data in slabs leverages SSD sequential I/O and

reducesmanagement costs, it causes cache spacewastage due to two

main issues. ❶ Insertion of duplicate data. The results of different

queries may overlap; hence, STsCache faces the issue of inserting

duplicate data. ❷ Space fragmentation within slabs. STsCache uses

slabs in memory to store incoming data for rapid processing, rather

than strictly using space in a time-sequential manner from slabs

that are not fully utilized. This leads to space fragmentation in many

slabs. Therefore, we propose a deduplication insertion algorithm and

a lazy compaction algorithm to address the two issues above.

4.6.1 Time-aware Deduplication Insertion. Inserting duplicate data
into STsCache causes extra I/O, storage costs, and read amplifica-

tion. We employ a time-aware mechanism to avoid the insertion of

Algorithm 4: Time-aware Deduplication Insertion

Input: 𝐷 : Data to be inserted,𝑇 : Time-range of 𝐷 , 𝐿: Time-range

based skip list

Output: 𝐿′: 𝐿 after data insertion

1 Function DeduplicationInsertion(𝐷 ,𝑇 ,&𝐿):
2 𝐼𝑛𝑠𝑒𝑟𝑡𝑃𝑜𝑖𝑛𝑡𝐿𝑖𝑠𝑡 = FindInsertPoint(𝐿,𝑇) ;
3 foreach 𝑝𝑜𝑖𝑛𝑡 ∈ 𝐼𝑛𝑠𝑒𝑟𝑡𝑃𝑜𝑖𝑛𝑡𝐿𝑖𝑠𝑡 do
4 𝑆𝑢𝑏𝐷𝑎𝑡𝑎 = GetSubData(𝐷 ,𝑝𝑜𝑖𝑛𝑡 .𝑇𝑖𝑚𝑒𝑅𝑎𝑛𝑔𝑒) ;

5 𝐼𝑛𝑠𝑒𝑟𝑡𝑂𝑣𝑒𝑟 = false ;

6 if 𝑝𝑜𝑖𝑛𝑡 .𝑆𝑖𝑑 ≠ 𝑛𝑢𝑙𝑙 then
7 𝐼𝑛𝑠𝑒𝑟𝑡𝑂𝑣𝑒𝑟 = Insert(𝑝𝑜𝑖𝑛𝑡 .𝑆𝑖𝑑 ,𝑆𝑢𝑏𝐷𝑎𝑡𝑎) ;

8 while !𝐼𝑛𝑠𝑒𝑟𝑡𝑂𝑣𝑒𝑟 do
9 𝑆𝑖𝑑 = CreateSlab() ;

10 𝐼𝑛𝑠𝑒𝑟𝑡𝑂𝑣𝑒𝑟 = Insert(𝑆𝑖𝑑 ,𝑆𝑢𝑏𝐷𝑎𝑡𝑎) ;
11 UpdateSkipList(&𝐿,𝑝𝑜𝑖𝑛𝑡 .𝑇𝑖𝑚𝑒𝑅𝑎𝑛𝑔𝑒 ,𝑆𝑖𝑑) ;

Tend

Time-range for Data Insertion

Time-range Node SIDs: 7,8SIDs: 4,5,6SIDs: 1,2,3
T1 T2 T3 T4 T5 T6

Tstart

SID Mem
3 True
6 True
8 False
... ...

InsertPoint
Time-range SID

[T2, T3] 3
[T4, T5] 6

[T6, Tend] null

Figure 9: An example of Find InsertPoint.

duplicate data into STsCache (see Algorithm 4). We identify all In-
sertPoints, which are composed of the time-range of non-duplicate

data and the ID of the slab that can be inserted (see Figure 9). To

ensure efficiency, the target slab must be in memory. We then tra-

verse the InsertPointList, locate non-duplicate data intervals by
time-range, and insert them into specified or new slabs. Since data

points are chronological, binary search enables quick location.

4.6.2 Lazy Compaction Based on Time-range Node. To enhance

cache space utilization and leverage SSDs’ sequential I/O perfor-

mance, we have designed a compaction mechanism that compacts

multiple slabs associated with a time-range skip list node, storing

logically adjacent data in contiguous space. Thanks to Algorithm 4,

the compaction does not need to consider the deletion of duplicate

data. However, compaction may still be costly, especially when

slabs on SSD require extensive I/O. Therefore, we designed a lazy

compaction mechanism that is triggered when inserting new data

increases the number of slabs for a Time-range Node and at least

one slab can be reduced through compaction.

5 EXPERIMENT
5.1 Implementation
We have implemented a prototype system of STsCache on Fat-

cache [9]. In our prototype, we compactly store data in restructured

slabs and use a semantic index based on graphs and skip lists to

accelerate cached data access. Unlike Fatcache’s FIFO policy, we

have implemented a batch eviction algorithm based on semantic

values. We have integrated aggregation and filtered operators into

the prototype, enabling it to answer new queries by processing the

cached data. To provide caching services for general TSDBs, we

have implemented Get and Set interfaces for STsCache, similar to

2971

Table 2: Statistics of two TSBS datasets: Sample interval=10s,
Duration (UTC): 2022.01.01T00:00:00Z ~2022.12.31T23:59:59Z.

Name #fields Scale #devices #data points Size (GB)

IoT 16

Small 100 5,045,760,000 42.29

Medium 500 25,228,800,000 211.47

Large 1,000 50,457,600,000 422.93

DevOps 10

Small 100 3,153,600,000 25.85

Medium 500 15,768,000,000 129.23

Large 1,000 31,536,000,000 258.46

key-value caching systems, and implemented a client for STsCache

based on gomemcache [13]. We have modified the Golang clients

of InfluxDB and TimescaleDB to access STsCache and database

services, as well as merge the query results. Our implementation

for all the above results in about 10000 lines of C/C++/Golang code.

5.2 Experimental Setting
To evaluate STsCache, we established a testing platform and bench-

marked STsCache comprehensively against baseline systems.

Setup. We use three DELL T7920 workstations as TSDB server,

cache server, and client server. Each has a 2.9 GHz 16-core Intel

Xeon Gold 6226R CPU, 128GB DDR5 RAM, 1TB SSD, 16TB HDD,

and runs 64-bit Ubuntu 20.04 LTS. The dataset on the TSDB servers

is deployed on the HDD. On the cache server, all SSD I/O operations

bypass the OS page cache, executed in ‘direct_io’ mode.

Baselines. We will compare our approach with: ❶ TSDB (In-

fluxDB 1.8.10 [10] and TimescaleDB 2.6.0 [12]), ❷ TSCache [53], ❸

BSCache [77]. Notably, as BSCache in [77] is an internal system com-

ponent, in order to conduct a comparison as a standalone caching

service, we strictly follow [77] and implement it on Fatcache [9].

Datasets.we used two use cases from TSBS [14] for benchmarks.

• IoT (Internet of Things). This use case simulates diag-

nostic data and metrics streaming from a fleet of trucks.

• DevOps (CPU-only). This use case focuses only on CPU

metrics, generating 10 metrics per read.

We set up three datasets of different scales for each case, with

the data time span ranging from January 2022 to December 2022.

More details on the datasets can be found in Table 2.

Workloads. We adopt the query patterns from TSBS [14], a

well-known benchmark, which includes aggregations, threshold

filtering, and tag grouping, etc. Additionally, referring to the YCSB-

TS [8], we generate a reasonable time-range [time_begin,time_end]

for queries based on the Latest distribution, the length of the query

time-range following a Zipfian distribution between 3 hours and

1 month. In the IoT use case, average request sizes are 124.75 KB,

620.53 KB, and 1.21 MB for small, medium, and large datasets. In

the DevOps use case, they are 82.34 KB, 413.96 KB, and 819.69 KB.

Metrics.We evaluate system performance based on three met-

rics: throughput, latency, and hit ratio. The unit of throughput is

the number of queries per second, i.e., queries/s. End-to-end latency
refers to the time from when the query request is sent until the

client receives the query result object, with the unit milliseconds
(ms). The hit ratio is classified into full hit ratio and partial hit ratio
to measure the hit ratios for the two cases specified in Definition 5.

In our experiments, we enabled 64 client threads, which can fully

utilize the system without overloading the server. Cache capacity

was set to 4% of the dataset volume with a memory/disk ratio of

1:3. For each experiment, we regenerate and execute the workload

five times and take the average metrics.

5.3 Overall Comparison
We set up six systems based on the baselines mentioned in Sec-

tion 5.2 for comparison: ① Single-TSDB. A single TSDB server with

data stored on HDD. ② Single-TSDB-SSD.A single TSDB server with

data stored on SSD. ③ Dual-TSDB. As STsCache employs an extra

server, for a fair comparison w.r.t. #servers, we construct a system
with two TSDB servers, each of which stores a replica of the full

datasets on SSD. The client distributes the query load across the two

database servers in a round-robin manner. ④ STsCache. STsCache is
deployed on the cache server, along with a TSDB server. Whenever

there is not a full hit, the query results as well as the semantics w.r.t.
the query are then stored by the cache server. ⑤ BSCache and ⑥

TSCache. Each is deployed as a cache server, with other settings

identical to ④. Notably, TSCache defaults to only 128 query keys in

its slab and employs a hashing-based matching mechanism, making

it unsuitable for benchmarks. Thus, we separately configured a

simplified workload for comparison with TSCache.

Overall Performance. Figure 10 illustrates the overall perfor-
mance of these systems in all use cases and data scales. STsCache,

i.e., System④, performs best in all conditions. Compared to a single

TSDB server, STsCache boosts throughput by 4.8-10.8× and cuts la-

tency by 84.1%-92.4%. Compared to dual TSDB servers, it increases

throughput by 1.8-4.0× and reduces latency by 65.6%-83.5%. These

results show STsCache can provide excellent caching for TSDBs.

As shown in Figure 10 and Figure 11, STsCache outperforms

existing semantic time-series caching schemes, achieving 1.5-3.4×
higher throughput, 59.4%-77.1% lower latency, and 22.5%-38.8%

higher hit ratios than BSCache. This superiority stems from two

key factors. First, STsCache exploits semantic relationships between

queries to enhance result reuse and employs a semantic index for

efficient semantic matching. In contrast, BSCache overlooks these

semantic relationships, diminishing result reuse. Second, BSCache

is designed as a lightweight memory caching component, but its

scheme is not suitable for large-capacity caching on hybrid storage.

For example, BSCache’s eviction algorithm requires calculating

the distances between each storage unit and recent queries, which

results in significant overhead in large-capacity cache systems.

SSD vs. HDD. We compared Single-TSDB to Single-TSDB-SSD

to assess SSDs’ impact on TSDB performance. Figure 10 shows

minimal performance gains from SSDs due to CPU-bound opera-

tions like aggregation, filtering, and data decompression. STsCache,

optimized for NVMe SSDs, caches query results and semantics

to reduce redundant calculations. Unlike STsCache, InfluxDB and

TimescaleDB are designed for general storage devices and lack

specific optimizations for NVMe SSDs.

For ease of discussion and space limit, by default we shall report

the results of the medium-sized dataset in the rest of this section.

STsCache vs. TSCache. As the default size of the key array in

TSCache is 128, we need to simplify the workload by limiting query

parameters such as tag combinations to a maximum of 128 keys

(after hashing). For fairness, we set the TSCache’s capacity to 4%

of the data set, with a 1:3 memory/disk ratio. Figure 12 shows that

2972

Single-Influx
Single-Timescale

Single-Influx-SSD
Single-Timescale-SSD

Dual-Influx
Dual-Timescale

STsCache(Influx)
STsCache(Timescale)

BSCache(Influx)
BSCache(Timescale)

0
250
500
750

1000
1250

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

)

IoT(Small) DevOps(Small) 0

100

200

300

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

)

IoT(Medium) DevOps(Medium) 0
25
50
75

100
125

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

)

IoT(Large) DevOps(Large)

0
150
300
450
600
750

La
te

nc
y

(m
s)

IoT(Small) DevOps(Small) 0

1500

3000

4500

La
te

nc
y

(m
s)

IoT(Medium) DevOps(Medium) 0
15000
30000
45000
60000
75000

La
te

nc
y

(m
s)

IoT(Large) DevOps(Large)

Figure 10: Throughput and latency of different systems on datasets of various scales.

BSCache (Full Hit)
BSCache Partial Hit

STsCache (Full Hit)
STsCache Partial Hit

0
20
40
60
80

100

H
it

 R
at

io
 (%

)

SmallMedium
IoT (Influx)

Large SmallMedium
DevOps (Influx)

Large 0
20
40
60
80

100

H
it

 R
at

io
 (%

)

SmallMedium
IoT (Timescale)

Large SmallMedium
DevOps (Timescale)

Large

Figure 11: Hit ratio comparison for BSCache and STsCache.

InfluxDB
TimescaleDB

TSCache (Full Hit)
TSCache Partial Hit

STsCache (Full Hit)
STsCache Partial Hit

0
50

100
150
200
250

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

)

IoTDevOpsIoTDevOps
Influx Timescale

0

1000

2000

3000

4000

La
te

nc
y

(m
s)

IoTDevOpsIoTDevOps
Influx Timescale

0

20

40

60

80

100

H
it

Ra
tio

 (%
)

IoTDevOpsIoTDevOps
Influx Timescale

Figure 12: Comparison between TSCache and STsCache.

STsCache outperforms TSCache with 2.9-4.5× higher throughput,

76.4%-81.9% lower latency, and 46.9%-82.4% higher hit ratio.

STsCache outperforms TSCache for three main reasons. First,

STsCache retrieves data more efficiently using the semantic in-

dex proposed in Section 4.4, while TSCache filters data through

key and bit arrays. Second, STsCache has higher space utilization,

storing more data points with only 8 bytes of metadata per slab,

compared to TSCache’s additional storage for key and bit arrays,

which occupy over 50% of the slab space. Third, STsCache better

reuses historical query data by integrating aggregation and filter

operators, increasing cache hit opportunities.

Scalability.We compared scalability by increasing the number

of clients. As shown in Figure 13, the throughput of STsCache

also increases with more clients. However, the throughput of

TimescaleDB (resp., InfluxDB) reached a bottleneck when the num-

ber of clients increased to 16 (resp., 32). Compared to a single client,

STsCache achieved 16.7-36.8× higher throughput and only 3.4-7.4×
higher latency with 128 clients, showing better scalability due to

its efficient indexing and SSD-based parallel I/O.

Cache Size.To explore the effect of cache size, we vary cache

sizes from 1% to 5% of the dataset size. As shown in Figure 14,

STsCache’s performance improves with increasing cache size. At

Influx-IoT
Influx-DevOps
Timescale-IoT
Timescale-DevOps

STsCache(Influx)-IoT
STsCache(Influx)-DevOps
STsCache(Timescale)-IoT
STsCache(Timescale)-DevOps

Number of Clients
0

50
100
150
200
250
300

Th
ro

ug
hp

ut
 (q

ue
ri

es
/s

)

1 2 4 8 16 32 64 128
Number of Clients

0

1500

3000

4500

6000

7500

La
te

nc
y

(m
s)

1 2 4 8 16 32 64 128

Figure 13: Effect of number of clients.

Cache Size (%)
0

50
100
150
200
250
300

Th
ro

ug
hp

ut
 (q

ue
ri

es
/s

)

1 2 3 4 5
Cache Size (%)

0
200
400
600
800

1000

La
te

nc
y

(m
s)

1 2 3 4 5
Cache Size (%)

75

80

85

90

95

H
it

 R
at

io
 (%

)

1 2 3 4 5

Figure 14: Effect of different cache sizes.

5% cache size, STsCache achieved 0.9-1.9× higher throughput, 45.2%-

65.7% lower latency, and a 14.12%-16.5% higher hit ratio. Even at

1% cache size, STsCache still outperformed TSDBs.

Semantic Overlap. By preloading data into STsCache, we cre-

ated varying levels of semantic overlap and conducted two experi-

ments using InfluxDB: ❶ We compared STsCache with competitors

on a medium-scale DevOps dataset with varying semantic overlap.

❷ We studied the impact of query size and semantic overlap on

STsCache performance. As shown in Figure 15, STsCache achieves

the lowest latency. Even with zero-overlap, STsCache incurs min-

imal latency increase from cache misses. Figure 16 shows that

STsCache reduces latency with higher semantic overlap, especially

for larger queries. For example, at a 4MB request size, 20% overlap

reduces latency by 24.3%. At a 16KB request size, STsCache shows

significant latency reduction only with full hits, as partial hits incur

network overhead that offsets its performance benefits.

5.4 Slab Management
In this section, we explore the impact of the following parameters:

Slab Size. As shown in Figure 17, the cache performance im-

proves as the slab size decreases from 1024KB to 16KB. When slab

2973

Semantic Overlap (%)
0

3000

6000

9000

12000

15000

La
te

nc
y

(m
s)

0 20 40 60 80 100

TSDB
TSCache

BSCache
STsCache

Figure 15: Latency under dif-
ferent semantic overlaps.

Request size

0

1000

2000

3000

4000

La
te

nc
y

(m
s)

16KB 64KB 256KB 1MB 4MB

0%
10%
20%
30%

40%
50%
60%
70%

80%
90%
100%

Figure 16: Latency with differ-
ent request sizes and overlaps.

Slab Size (KB)
0

50
100
150
200
250
300

Th
ro

ug
hp

ut
 (q

ue
ri

es
/s

)

4 16 64 256 1024
Slab Size (KB)

0
500

1000
1500
2000
2500
3000

La
te

nc
y

(m
s)

4 16 64 256 1024
Slab Size (KB)

50

60

70

80

90

100

H
it

 R
at

io
 (%

)

4 16 64 256 1024

Figure 17: Effect of slab size.

Ratio (Mem:Disk)
0

75

150

225

300

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

)

1:0 1:1 1:3 1:5 1:7 1:9
Ratio (Mem:Disk)

0

100

200

300

400

500

La
te

nc
y

(m
s)

1:0 1:1 1:3 1:5 1:7 1:9

Figure 18: Effect of memory/disk ratio.

 STsCache
 (Influx)-IoT
 STsCache
 (Influx)-DevOps
 STsCache
 (Timescale)-IoT
 STsCache
(Timescale)-DevOps

size decreases to 16KB, cache performance stabilizes. Given higher

overhead for smaller slabs, e.g., more space for metadata and larger

arrays for semantic values, we set slab size to 16KB in experiments.

Memory/Disk Ratio. Figure 18 shows performance drops with

higher disk storage proportions. To balance memory overhead and

cache performance, we have chosen a memory/disk ratio of 1:3.

Compared to a purely memory-based setup, throughput only de-

creases by 6.1%-14.9%, and the latency only increases by 7.2%-19.3%,

while memory overhead is reduced by 75%.

5.5 Cache Replacement Policy
Effectiveness. To evaluate the batch eviction strategy, we extra

implement FIFO and LRU in STsCache for comparison. Figure 19

shows that the batch eviction outperforms both FIFO and LRU.

STsCache achieves 1.2-2.1× the throughput of FIFO and 1.1-1.5×
that of LRU. Its average latency is 48.4%-83.6% of FIFO and 67.9%-

89.1% of LRU. STsCache’s hit ratio is slightly higher or on par with

LRU, and significantly higher than that of FIFO. STsCache’s full hit

ratio is 20.9%-59.7% higher and its total hit ratio is 6.1%-10.7% higher

than FIFO. FIFO evicts the oldest slab, ignoring its hotness, making

it significantly worse than STsCache and LRU. LRU evicts the least

recently accessed slabs, storing recent ones as hot data in memory,

which is better than FIFO but still doesn’t effectively distinguish

between hot and hotter data. STsCache, however, quantifies slab

hotness as semantic values, keeping hotter data in memory and hot

data on SSD, thus boosting system performance.

Batch Size. In our setup, the batch size is set to
1

16
of the slabs

in memory. This choice, as Figure 20 shows, performs the best. A

smaller batch size increases the cost of frequent evictions, which

involve traversing and sorting data. A larger batch size can cause

FIFO (Full Hit)
FIFO Partial Hit

LRU (Full Hit)
LRU Partial Hit

STsCache (Full Hit)
STsCache Partial Hit

0
50

100
150
200
250

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

)

IoT DevOps IoT DevOps
Influx Timescale

0
125
250
375
500
625
750

La
te

nc
y

(m
s)

IoT DevOps IoT DevOps
Influx Timescale

0

20

40

60

80

100

H
it

 R
at

io
 (%

)

IoT DevOps IoT DevOps
Influx Timescale

Figure 19: Effect of replacement policy.

Ratio (Batch Size:Mem Slabs)
0

50
100
150
200
250
300

Th
ro

ug
hp

ut
 (q

ue
ri

es
/s

)

1:1 1:4 1:16 1:64
Ratio (Batch Size:Mem Slabs)

0
100
200
300
400
500
600
700

La
te

nc
y

(m
s)

1:1 1:4 1:16 1:64

Figure 20: Effect of batch size.

 STsCache
 (Influx)-IoT
 STsCache
 (Influx)-DevOps
 STsCache
 (Timescale)-IoT
 STsCache
(Timescale)-DevOps

Disabled (Full Hit)
Disabled Partial Hit

Enabled (Full Hit)
Enabled Partial Hit

0
50

100
150
200
250
300

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

)

IoT DevOps IoT DevOps
Influx Timescale

0
100
200
300
400
500
600

La
te

nc
y

(m
s)

IoT DevOps IoT DevOps
Influx Timescale

0

20

40

60

80

100

H
it

 R
at

io
 (%

)

IoT DevOps IoT DevOps
Influx Timescale

Figure 21: Effect of deduplication insertion.

delays due to a large amount of random I/Os on SSDs. It indicates

that
1

16
setting strikes a balance between eviction and I/O costs.

5.6 Compaction Module
Time-aware Deduplication Insertion. To evaluate the effective-

ness of the time-aware deduplication insertion algorithm, we com-

pared the performance of STsCache with and without deduplication

insertion. As shown in Figure 21, STsCache with deduplication in-

sertion shows improved throughput and latency, with a 27.1%-36.8%

increase in throughput and a 23.6%-25.9% reduction in latency. Both

use lazy compaction, so the hit ratio is similar. However, STsCache

without deduplication insertion incurs extra costs for removing

duplicates during compaction, leading to worse performance.

Lazy Compatcion.To evaluate the effectiveness of the lazy com-

paction mechanism, we compared the performance of STsCache

without compaction, STsCache with real-time compaction, and

STsCache with the lazy compaction, respectively.

Figure 22 shows that STsCache with lazy compaction performs

best. In particular, real-time compaction can increase throughput

by 8.6% -48.4%, reduce latency by 5.1% -33.2%, and improve the total

hit ratio 4.5%-8.6%. These positive impacts of compaction have two

main reasons. ❶ It reduces slab fragmentation, letting the cache

store more data and raising the hit ratio. ❷ It compacts data storage,

reducing random I/O. Compared to real-time compaction, the lazy

compaction mechanism can further increase throughput by 3.2%-

15.9% and reduce latency by 4.1%-13.7%. This is because the lazy

compaction mechanism avoid frequent compaction overhead.

2974

Disabled (Full Hit)
Disabled Partial Hit

Real-Time (Full Hit)
Real-Time Partial Hit

Lazy (Full Hit)
Lazy Partial Hit

0
50

100
150
200
250

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

)

IoTDevOpsIoTDevOps
Influx Timescale

0
100
200
300
400
500
600

La
te

nc
y

(m
s)

IoTDevOpsIoTDevOps
Influx Timescale

0

20

40

60

80

100

H
it

 R
at

io
 (%

)

IoTDevOpsIoTDevOps
Influx Timescale

Figure 22: Effect of lazy compaction.

Single-threaded Multi-threaded

0
50

100
150
200
250
300

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

)

IoT DevOps IoT DevOps
Influx Timescale

0
100
200
300
400
500

La
te

nc
y

(m
s)

IoT DevOps IoT DevOps
Influx Timescale

Figure 23: Performance under multi-threading.

Disabled (Full Hit)
Disabled Partial Hit

Storage (Full Hit)
Storage Partial Hit

Empty Query Proportion (%)
0

200
400
600
800

1000
1200

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

)

12.5 25 50 100
Empty Query Proportion (%)

0
300
600
900

1200
1500
1800

La
te

nc
y

(m
s)

12.5 25 50 100
Empty Query Proportion (%)

0

20

40

60

80

100

H
it

 R
at

io
 (%

)

12.5 25 50 100

Figure 24: Performance under cache penetration.

5.7 Alleviate Performance Bottlenecks
Parallel Slab I/O Operations. Utilizing the parallel I/O bandwidth

of NVMe SSDs can mitigate performance bottlenecks due to I/O

overhead. To explore the effectiveness of parallel I/O, we compared

the performance of single-threaded STsCache and multi-threaded

STsCache. As shown in Figure 23, the multi-threaded parallel I/O

has boosted STsCache throughput by 12.6% to 42.2% and reduced

latency by 11.7% to 29.8%. This is because SSD I/O overhead is a

bottleneck for STsCache, and sufficient parallelism significantly

improves random I/O performance on NVMe SSDs.

Avoid Cache Penetration. STsCache stores empty query se-

mantics in the index to prevent cache penetration. To verify that,

we set up four workloads with empty query proportions of 12.5%,

25%, 50%, and 100% to simulate cache penetration. We refer to

STsCache with and without empty query semantic storage as

STsCache-Storage and STsCache-Disabled, respectively, and report

the results in InfluxDB under the IoT use case. As shown in Fig-

ure 24, STsCache-Storage performs the best in all workloads. The

performance gap widens as the empty query proportion increases.

Especially in a 1:1 workload, storing empty query semantics enables

STsCache to increase throughput by 31.5×, reduce latency by 96.8%,
and increase the hit ratio by 97.1 percentage points. The results

show that STsCache can effectively prevent cache penetration.

5.8 Production Environment Evaluation
We evaluated STsCache in the following two production environ-

ments:

TSDB TSCache BSCache STsCache

Query latency
sensitive workload

0
250
500
750

1000
1250

La
te

nc
y

(m
s)

Influx Timescale
 Historical data

request workload

0
2500
5000
7500

10000
12500

La
te

nc
y

(m
s)

Influx Timescale
Smart factory

0
500

1000
1500
2000
2500
3000

La
te

nc
y

(m
s)

Influx Timescale

Figure 25: Query latency in the production environments.

① DevOps (Monitoring and Analysis): We followed the
production environment of BSCache [77]. We deployed 100

containers with Node Exporter [20] using Docker [19]. Prometheus

collects metrics from these 100 containers every 5 seconds and

writes them to TSDBs.We adopt the same two different work-
loads as [77]. WL.1 Query latency-sensitive workload, requesting
the latest 10-minute and 5-minute data from an hour ago for ten

key metrics (e.g., cpu_avg) for monitoring systems (e.g., Grafana
[11]). WL.2 Historical data request workload, querying 12-hours

data for half of time-series in the last 72-hours for analysis and

prediction[35, 42]. Both queries run every minute.

② Smart Factory:We collected data from 200 devices (i.e., 100
machine tools and 100 electricity meters) at a 15-second interval

and wrote it into TSDBs. Smart factory applications require real-

time monitoring and regular analysis of device data.WL.3 Smart
factory workload includes real-time queries for the latest 1 hour of

data every 5 minutes and daily queries for the past week’s data.

Experiments start after 1-week of data collection and run for

48-hours. Cache capacity is 512MB with a memory/disk ratio of 1:3.

We integrated the client of STsCache into production applications

(e.g., Grafana [11]) to compare the end-to-end query latency against

baselines. Figure 25 shows STsCache performs the best. Specifically,

inWL.1, STsCache reduced latency by up to 82.8%, 71.8%, and 65.3%
compared to TSDBs, TSCache, and BSCache, respectively. In WL.2,
reductions reached 93.5%, 57.2%, and 65.5% compared to TSDBs,

TSCache, and BSCache. InWL.3, reductions were 84.1%, 68.3%, and
63.3% compared to TSDBs, TSCache, and BSCache. ForWL.1 and

WL.3, STsCache’s gain over TSDB was lower than in WL.2, due to
frequent queries for new data, which required more time to fetch

from TSDBs. Overall, STsCache effectively offloads query pressure

and reduces latency for TSDBs in production environments.

6 CONCLUSION
In this paper, we propose the formal definition of semantic time-

series caching and present STsCache, a semantic caching system

for hybrid memory and NVMe SSD storage. We have designed

a series of components for STsCache, including slab-based cache

unit, semantic index, semantic value-driven batch eviction, dedu-

plication insertion, and lazy compaction. Exhaustive experiments

demonstrated that STsCache can effectively enhance the efficiency

of time-series queries compared to a series of baselines.

ACKNOWLEDGMENTS
This work was supported by the Special Task Project of the Ministry

of Industry and Information Technology of China (No. ZTZB-23-

990-024), and the National Natural Science Foundation of China

(No. 62272369, 62302370).

2975

REFERENCES
[1] 2008. Air Quality Dataset. https://archive.ics.uci.edu/dataset/360/air+quality

[2] 2009. Redis. https://redis.io/

[3] 2011. OpenTSDB. http://opentsdb.net/

[4] 2013. etcd. https://etcd.io/

[5] 2014. QuestDB. https://questdb.io/

[6] 2015. Prometheus. https://prometheus.io/

[7] 2018. Apache IoTDB. https://iotdb.apache.org/

[8] 2019. Yahoo Cloud Server Benchmark for Time Series. https://github.com/

TSDBBench/YCSB-TS

[9] 2021. Fatcache: Memcache on SSD. https://github.com/twitter/fatcache

[10] 2021. InfluxDB. https://www.influxdata.com/

[11] 2022. Grafana: The open observability platform. https://grafana.com/

[12] 2022. TimescaleDB. https://www.timescale.com/

[13] 2023. Gomemcache: Amemcache client library for the Go programming language.

https://github.com/bradfitz/gomemcache

[14] 2023. Time Series Benchmark Suite: A tool for comparing and evaluating

databases for time series data. https://github.com/timescale/tsbs

[15] 2024. ClickBench: A Benchmark For Analytical Databases. https://github.com/

ClickHouse/ClickBench

[16] 2024. DB-Engines Ranking of Time Series DBMS. https://db-engines.com/en/

ranking/time+series+dbms

[17] 2024. InfluxDB-comparisons: Benchmark suite for InfluxDB against other

databases and time series solutions. https://github.com/influxdata/influxdb-

comparisons

[18] 2024. Time Series Database - Ranking. https://ossinsight.io/collections/time-

series-database/

[19] 2025. Docker. https://www.docker.com/

[20] 2025. Node exporter: Exporter for machine metrics. https://github.com/

prometheus/node_exporter

[21] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak Borkar, Bhuwan Chopra,

Ciprian Gerea, Daniel Merl, Josh Metzler, David Reiss, Subbu Subramanian,

Janet L Wiener, and Okay Zed. 2013. Scuba: diving into data at facebook. Pro-
ceedings of the VLDB Endowment 6, 11 (Aug. 2013), 1057–1067.

[22] Nitin Agrawal and Ashish Vulimiri. 2017. Low-Latency Analytics on Colossal

Data Streams with SummaryStore. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP ’17). ACM, 647–664.

[23] Fu Bang. 2023. GPTCache: An Open-Source Semantic Cache for LLM Appli-

cations Enabling Faster Answers and Cost Savings. In Proceedings of the 3rd
Workshop for Natural Language Processing Open Source Software (NLP-OSS ’23).
ACL, 212–218.

[24] Muhammad Farhan Bashir, Raja Asad Zaheer, Zohaib Mansoor Shams, and

Muhammad Abdul Qadir. 2007. SCAM: Semantic Caching Architecture for Effi-

cient Content Matching over Data Grid. In Advances in Intelligent Web Mastering
(WIC ’07). Springer Berlin Heidelberg, 41–46.

[25] Randall G Bello, Karl Dias, Alan Downing, James J Feenan, James L Finnerty,

William D Norcott, Harry Sun, Andrew Witkowski, and Mohamed Ziauddin.

1998. Materialized Views in Oracle. In Proceedings of the 24rd International
Conference on Very Large Data Bases (VLDB ’98). Morgan Kaufmann Publishers

Inc., 659–664.

[26] Li Chen, Elke ARundensteiner, and SongWang. 2002. XCache: a semantic caching

system for XML queries. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’02). ACM, 618.

[27] Dawei Cheng, Fangzhou Yang, Sheng Xiang, and Jin Liu. 2022. Financial time

series forecasting with multi-modality graph neural network. Pattern Recognition
121, C (Jan. 2022), 108218.

[28] Boris Chidlovskii and Uwe M Borghoff. 2000. Semantic caching of Web queries.

The International Journal on Very Large Data Bases 9, 1 (March 2000), 2–17.

[29] Boris Chidlovskii, Claudia Roncancio, and Marie Luise Schneider. 1999. Semantic

cache mechanism for heterogeneous Web querying. Computer Networks 31, 11
(May 1999), 1347–1360.

[30] Andrew A Cook, Goksel Misirli, and Zhong Fan. 2020. Anomaly Detection for

IoT Time-Series Data: A Survey. IEEE Internet of Things Journal 7, 7 (July 2020),

6481–6494.

[31] Shaul Dar, Michael J Franklin, Bjorn Por Jonsson, Divesh Srivastava, and Michael

Tan. 1996. Semantic Data Caching and Replacement. In Proceedings of the 22th
International Conference on Very Large Data Bases (VLDB ’96). Morgan Kaufmann

Publishers Inc., 330–341.

[32] Soumik Dasgupta, Anurag Wagh, Lalitdutt Parsai, Binay Gupta, Geet Vudata,

Shally Sangal, Sohom Majumdar, Hema Rajesh, Kunal Banerjee, and Anirban

Chatterjee. 2024. waLLMartCache: A Distributed, Multi-tenant and Enhanced

Semantic Caching System for LLMs. In Pattern Recognition (ICPR ’24). Springer
Nature Switzerland, 232–248.

[33] Umeshwar Dayal and Hai YannHwang. 1984. ViewDefinition and Generalization

for Database Integration in aMultidatabase System. IEEE Transactions on Software
Engineering SE-10, 6 (Nov. 1984), 628–645.

[34] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux Journal
2004, 124 (Aug. 2004), 5.

[35] Thibaut Germain, Samuel Gruffaz, Charles Truong, Alain Durmus, and Laurent

Oudre. 2024. Shape analysis for time series. In Advances in Neural Information
Processing Systems (NeurIPS ’24). Curran Associates, Inc., 95607–95638.

[36] Jonathan Goldstein and Per Ake Larson. 2001. Optimizing queries using ma-

terialized views: a practical, scalable solution. In Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’01). ACM,

331–342.

[37] Peeyush Gupta, Michael J Carey, Sharad Mehrotra, and oberto Yus. 2020. Smart-

Bench: a benchmark for data management in smart spaces. Proceedings of the
VLDB Endowment 13, 12 (July 2020), 1807–1820.

[38] Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can Do, and

How to Exploit it: High-Performance I/O for High-Performance Storage Engines.

Proceedings of the VLDB Endowment 16, 9 (May 2023), 2090–2102.

[39] Yuanzhe Hao, Xiongpai Qin, Yueguo Chen, Yaru Li, Xiaoguang Sun, Yu Tao, Xiao

Zhang, and Xiaoyong Du. 2021. TS-Benchmark: A Benchmark for Time Series

Databases. In 2021 IEEE 37th International Conference on Data Engineering (ICDE
’21). IEEE, 588–599.

[40] RueiJie Hsieh, Jerry Chou, and Chih Hsiang Ho. 2019. Unsupervised Online

Anomaly Detection on Multivariate Sensing Time Series Data for Smart Man-

ufacturing. In 2019 IEEE 12th Conference on Service-Oriented Computing and
Applications (SOCA ’19). IEEE, 90–97.

[41] Soren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2017. Time

Series Management Systems: A Survey. IEEE Transactions on Knowledge and
Data Engineering 29, 11 (Nov. 2017), 2581–2600.

[42] Chengtao Jian, Kai Yang, and Yang Jiao. 2024. Tri-Level Navigator: LLM-

Empowered Tri-Level Learning for Time Series OOD Generalization. In Advances
in Neural Information Processing Systems (NeurIPS ’24). Curran Associates, Inc.,

110613–110642.

[43] Bjorn Por Jonsson, Maria Arinbjarnar, Bjarnsteinn Porsson, Michael J Franklin,

and Divesh Srivastava. 2006. Performance and overhead of semantic cache

management. ACM Transactions on Internet Technology 6, 3 (Aug. 2006), 302–331.

[44] Rui Kang and Shaoxu Song. 2024. Optimizing Time Series Queries with Versions.

Proceedings of the ACM on Management of Data 2, 3 (May 2024), 27.

[45] Mahmoud Abo Khamis, Phokion G Kolaitis, Hung Q Ngo, and Dan Suciu. 2021.

Bag Query Containment and Information Theory. ACM Transactions on Database
Systems 46, 3 (Sept. 2021), 39.

[46] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. 2019. Confluo: Distributed

Monitoring and Diagnosis Stack for High-speed Networks. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’19). USENIX
Association, 421–436.

[47] Abdelouahab Khelifati, Mourad Khayati, Anton Dignos, Djellel Difallah, and

Philippe CudreMauroux. 2023. TSM-Bench: Benchmarking Time Series Database

Systems for Monitoring Applications. Proceedings of the VLDB Endowment 16,
11 (July 2023), 3363–3376.

[48] Phokion GKolaitis andMoshe Y Vardi. 1998. Conjunctive-query containment and

constraint satisfaction. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS ’98). ACM, 205–213.

[49] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. 2019. Reaping the

performance of fast NVM storage with uDepot. In 17th USENIX Conference on
File and Storage Technologies (FAST ’19). USENIX Association, 1–15.

[50] Ken C K Lee, H V Leong, and Antonio Si. 1999. Semantic query caching in a

mobile environment. ACM SIGMOBILE Mobile Computing and Communications
Review 3, 2 (April 1999), 28–36.

[51] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019. KVell:

the design and implementation of a fast persistent key-value store. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles (SOSP ’19). ACM,

447–461.

[52] Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, and Yu Zheng. 2018. Ge-

oMAN: multi-level attention networks for geo-sensory time series prediction.

In Proceedings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI ’18). AAAI Press, 3428–3434.

[53] Jian Liu, Kefei Wang, and Feng Chen. 2021. TSCache: an efficient flash-based

caching scheme for time-series data workloads. Proceedings of the VLDB Endow-
ment 14, 13 (Sept. 2021), 3253–3266.

[54] Rui Liu, Jun Yuan, and Xiangdong Huang. 2024. Benchmarking Time Series

Databases with IoTDB-Benchmark for IoT Scenarios. arXiv:1901.08304 [cs.DB]

[55] Qiong Luo and Jeffrey F Naughton. 2001. Form-Based Proxy Caching for

Database-Backed Web Sites. In Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers Inc., 191–200.

[56] Jerzy Marcinkowski and Mateusz Orda. 2024. Bag Semantics Conjunctive Query

Containment. Four Small Steps Towards Undecidability. Proceedings of the ACM
on Management of Data 2, 2 (May 2024), 24.

[57] Stavros Maroulis, Vassilis Stamatopoulos, George Papastefanatos, and Manolis

Terrovitis. 2024. Visualization-Aware Time Series Min-Max Caching with Error

Bound Guarantees. Proceedings of the VLDB Endowment 17, 8 (April 2024),

2091–2103.

[58] L M D Owsley, L E Atlas, and G D Bernard. 1997. Automatic clustering of vector

time-series for manufacturing machine monitoring. In 1997 IEEE International

2976

https://archive.ics.uci.edu/dataset/360/air+quality
https://redis.io/
http://opentsdb.net/
https://etcd.io/
https://questdb.io/
https://prometheus.io/
https://iotdb.apache.org/
https://github.com/TSDBBench/YCSB-TS
https://github.com/TSDBBench/YCSB-TS
https://github.com/twitter/fatcache
https://www.influxdata.com/
https://grafana.com/
https://www.timescale.com/
https://github.com/bradfitz/gomemcache
https://github.com/timescale/tsbs
https://github.com/ClickHouse/ClickBench
https://github.com/ClickHouse/ClickBench
https://db-engines.com/en/ranking/time+series+dbms
https://db-engines.com/en/ranking/time+series+dbms
https://github.com/influxdata/influxdb-comparisons
https://github.com/influxdata/influxdb-comparisons
https://ossinsight.io/collections/time-series-database/
https://ossinsight.io/collections/time-series-database/
https://www.docker.com/
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://arxiv.org/abs/1901.08304

Tao Kong, Hui Li*, Yuxuan Zhao, Liping Li, Xiyue Gao, Qilong Wu, and Jiangtao Cui

Conference on Acoustics, Speech, and Signal Processing (ICASSP ’97). IEEE, 3393–
3396 vol.4.

[59] Qun Ren and Margaret H Dunham. 1999. Using clustering for effective man-

agement of a semantic cache in mobile computing. In Proceedings of the 1st
ACM International Workshop on Data Engineering for Wireless and Mobile Access
(MobiDe ’99). ACM, 94–101.

[60] Qun Ren and Margaret H Dunham. 2000. Using semantic caching to manage

location dependent data in mobile computing. In Proceedings of the 6th Annual
International Conference on Mobile Computing and Networking (MobiCom ’00).
ACM, 210–221.

[61] Qun Ren, M H Dunham, and V Kumar. 2003. Semantic caching and query

processing. IEEE Transactions on Knowledge and Data Engineering 15, 1 (Jan.

2003), 192–210.

[62] Guillem Rull, Philip A Bernstein, Ivo Garcia dos Santos, Yannis Katsis, Sergey

Melnik, and Ernest Teniente. 2013. Query containment in entity SQL. In Proceed-
ings of the 2013 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’13). ACM, 1169–1172.

[63] Alexander Schultheis, Lukas Malburg, Joscha Gruger, Justin Weich, Yannis

Bertrand, Ralph Bergmann, and Estefania Serral Asensio. 2024. Identifying

Missing Sensor Values in IoT Time Series Data: A Weight-Based Extension of

Similarity Measures for Smart Manufacturing. In Case-Based Reasoning Research
and Development (ICCBR ’24). Springer Nature Switzerland, 240–257.

[64] Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. 2020.

Financial time series forecasting with deep learning : A systematic literature

review: 2005-2019. Applied Soft Computing 90 (May 2020), 106181.

[65] Veda C Storey and Robert C Goldstein. 1988. A methodology for creating user

views in database design. ACM Transactions on Database Systems 13, 3 (Sept.
1988), 305–338.

[66] Yunxiang Su, Shaoxu Song, Xiangdong Huang, Chen Wang, and Jianmin Wang.

2024. Distance-Based Outlier Query Optimization in Apache IoTDB. Proceedings
of the VLDB Endowment 17, 11 (July 2024), 2778–2790.

[67] Zhiqi Wang, Jin Xue, and Zili Shao. 2021. Heracles: an efficient storage model

and data flushing for performance monitoring timeseries. Proceedings of the
VLDB Endowment 14, 6 (Feb. 2021), 1080–1092.

[68] Xiaomin Xu, Sheng Huang, Yaoliang Chen, Kevin Browny, Inge Halilovicy, and

Wei Lu. 2014. TSAaaS: Time Series Analytics as a Service on IoT. In 2014 IEEE
International Conference on Web Services (ICWS ’14). IEEE, 249–256.

[69] Zhenrong Xu, Pengfei Wang, Guoze Xue, Qitong Yan, Shenghao Gong, Yelan

Jiang, Yuren Mao, Yunjun Gao, Shu Shen, Wei Zhang, Dan Luo, and Lu Chen.

2024. UniView: A Unified Autonomous Materialized View Management System

for Various Databases. Proceedings of the VLDB Endowment 17, 12 (Aug. 2024),
4353–4356.

[70] Jin Xue, Zhiqi Wang, Tianyu Wang, and Zili Shao. 2022. TagTree: Global Tag-

ging Index with Efficient Querying for Time Series Databases. In 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS ’22). IEEE,
1283–1293.

[71] Jian Yang, Kamalakar Karlapalem, and Qing Li. 1997. Algorithms for Materialized

View Design in Data Warehousing Environment. In Proceedings of the 23rd
International Conference on Very Large Data Bases (VLDB ’97). Morgan Kaufmann

Publishers Inc., 136–145.

[72] Zhe Yang, Kun Ma, Xiaoli Zhang, Lizhen Cui, and Bo Yang. 2020. RSCVC: Row-

based semantic cache with incremental versioning consistency. Concurrency and
Computation: Practice and Experience 32, 17 (March 2020), e5672.

[73] Zhe Yang, Kun Ma, and Jialin Zhong. 2016. Toward a Semantic Cache Supporting

Version-Based Consistency. In 2016 10th International Conference on Complex,
Intelligent, and Software Intensive Systems (CISIS ’16). IEEE, 367–372.

[74] Xiuwen Yi, Yu Zheng, Junbo Zhang, and Tianrui Li. 2016. ST-MVL: filling missing

values in geo-sensory time series data. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI ’16). AAAI Press, 2704–2710.

[75] Geoffrey X Yu, Markos Markakis, Andreas Kipf, Per Ake Larson, Umar Farooq

Minhas, and Tim Kraska. 2022. TreeLine: an update-in-place key-value store for

modern storage. Proceedings of the VLDB Endowment 16, 1 (Sept. 2022), 99–112.
[76] Wenhan Yu and Jun Zhao. 2023. Semantic Communications, Semantic Edge

Computing, and Semantic Caching with Applications to the Metaverse and

6G Mobile Networks. In 2023 IEEE 43rd International Conference on Distributed
Computing Systems (ICDCS ’23). IEEE, 983–984.

[77] Kai Zhang, Zhiqi Wang, and Zili Shao. 2023. BSCache: A Brisk Semantic Caching

Scheme for Cloud-based Performance Monitoring Timeseries Systems. In Pro-
ceedings of the 51st International Conference on Parallel Processing (ICPP ’22).
ACM, 10.

[78] Xin Zhao, Jialin Qiao, Xiangdong Huang, Chen Wang, Shaoxu Song, and Jianmin

Wang. 2024. Apache TsFile: An IoT-Native Time Series File Format. Proceedings
of the VLDB Endowment 17, 12 (Aug. 2024), 4064–4076.

[79] Bolong Zheng, Yongyong Gao, Jingyi Wan, Lingsen Yan, Long Hu, Bo Liu, Yunjun

Gao, Xiaofang Zhou, and Christian S Jensen. 2023. DecLog: Decentralized

Logging in Non-Volatile Memory for Time Series Database Systems. Proceedings
of the VLDB Endowment 17, 1 (Sept. 2023), 1–14.

[80] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2015. RINSE: inter-

active data series exploration with ADS+. Proceedings of the VLDB Endowment 8,
12 (Aug. 2015), 1912–1915.

2977

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Preliminaries of TSDBs
	2.2 Related Work
	2.3 Time-series Caching

	3 Formal Definition of Semantic Caching in TSDBs
	3.1 Query Semantics
	3.2 Semantic Relationships between Queries

	4 STsCache Design
	4.1 Architecture Overview
	4.2 Semantic-based Interface
	4.3 Slab-based Semantic Data Management
	4.4 Semantic Index
	4.5 Batch Eviction Based on Semantic Value
	4.6 Compaction Module

	5 Experiment
	5.1 Implementation
	5.2 Experimental Setting
	5.3 Overall Comparison
	5.4 Slab Management
	5.5 Cache Replacement Policy
	5.6 Compaction Module
	5.7 Alleviate Performance Bottlenecks
	5.8 Production Environment Evaluation

	6 Conclusion
	Acknowledgments
	References

