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ABSTRACT

Given a graph� and a query node @, the goal of community search

(CS) is to �nd a structurally cohesive subgraph from� that contains

@. Signi�cant progress has been made in community search using

deep learning in recent years. To the best of our knowledge, no ex-

isting work has provided a comprehensive review of learning-based

community search methods. Additionally, we �nd that: (1) Existing

methods o�er diverse de�nitions or descriptions of communities,

which require systematic summarization. (2) The methods rely on

distinct metrics for limited community assessment. (3) Overhead

evaluations of the methods vary and exhibit certain biases.

Therefore, a comprehensive survey and experimental study are

essential to achieve four key objectives: designing a uni�ed pipeline,

clarifying community de�nitions, enriching community evaluation,

and establishing overhead assessment. In this paper, we �rst pro-

pose a uni�ed pipeline for these methods, highlighting techniques.

We categorize community de�nitions and analyze the relationships

between identi�ed communities. Beyond that, we proposed several

community metrics to evaluate the communities comprehensively.

Moreover, we introduce a more detailed overhead evaluation ap-

proach that considers resource consumption during both the train-

ing and search phases. Finally, we employ the proposed community

evaluation metrics and overhead assessment framework to evaluate

and analyze the methods, examine correlations among metrics, and

explore the e�ects of several commonly used techniques.
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1 INTRODUCTION

Since graphs are widely used to represent entities (nodes) and their

interconnections (edges) in various real-world applications [24, 44,

56, 70, 78, 88], graph mining has attracted extensive research inter-

ests [62], enabling the discovery of particular patterns and valuable

insights within graphs. As a fundamental problem in graph min-

ing, Community Search (CS) aims to identify a cohesive subgraph

from a given graph � that contains the user-speci�ed query node

@ [9, 36, 84, 85]. Community search can be applied across a variety of

tasks, e.g., online recommendations [13, 16, 22, 29, 39, 54, 59, 82], ex-

pert �nding [77, 81], and biological data analysis [20, 40, 42, 57, 86].

For example, in a movie database (e.g., IMDb), a recommenda-

tion system can perform CS using one of her favorite movies as

a query and recommend movies based on the returned commu-

nity of movies. In collaboration networks (e.g., DBLP), researchers

can leverage CS to structure academic workshops based on the

identi�ed communities.

1.1 Background

The methods for community search can be roughly categorized into

two groups, including non-learning-based methods and learning-

based methods. Non-learning-based methods tackle the commu-

nity search problem without relying on learning techniques. For

more details, please refer to two survey papers [26, 27]. Signi�cant

progress in deep learning, particularly in Computer Vision (CV)

with models like Vision Transformer (ViT) [19], and in Natural

Language Processing (NLP) with models such as BERT [18] and

GPT [64], has led to the development of numerous learning-based

methods [14, 21, 23, 37, 41, 52, 53, 74–76], aimed at addressing the

challenges of community search. Despite of the rapid advance-

ment of such methods, there is no systematic analysis or survey of

learning-based community search methods yet.

In this paper, we present a systematic analysis of learning-based

community search methods. Given the crucial role of community

search, a comprehensive survey is warranted that goes beyond

merely listing existing methods, providing an overview of the devel-

opment roadmap, summarizing common techniques, and conduct-

ing systematic experimental analysis. Our goal is to systematically

evaluate the learning-based community search methods, providing

system designers with insights to make more informed choices.

To achieve this, we need to address the following challenges:
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Figure 1: Roadmap of learning-based CS methods

(1) Diverse de�nitions of communities. Existing methods o�er

diverse de�nitions or descriptions of communities. Is it possible

to integrate these de�nitions into a uni�ed framework?What, if

any, are the relationships or connections that link these di�erent

community de�nitions?

(2) Variability in community evaluation metrics. Various met-

rics have been introduced to evaluate community quality. How-

ever, di�erent communities often rely on distinct metrics in

assessments, making comprehensive comparisons di�cult.

(3) Incompletion in overhead evaluation. Evaluating learning-

based CS methods requires not only measuring their e�ective-

ness but also analyzing the associated costs, including both

time and space overhead. However, most existing approaches

report only partial cost metrics, typically focusing on either

time or space overhead during the training and search phases.

1.2 Contributions

Hightlighting Trends & Pipeline.We �rst outline the develop-

ment paths of recent methods, highlighting the technical connec-

tions between them. Figure 1 illustrates these connections, with

colored lines linking methods that share similar techniques. The

evolution of these methods is driven by various factors, including

application requirements, data resources, model architectures, and

computational resources. From an application perspective, interac-

tive search strategies ( 1○) can signi�cantly enhance user experience

in real-world applications. For training data, contrastive learning

( 3○) and meta-learning ( 2○) are e�ective in addressing few-shot

and cross-task challenges. In terms of model architecture, Graph

Transformers ( 4○) help alleviate issues like over smoothing [10]

and over squashing [2] often encountered in Graph Neural Net-

works (GNNs). Furthermore, candidate subgraphs ( 5○) and graph

partitioning strategies ( 6○) are employed to reduce computational

overhead and improve search e�ciency. We also analyze the work-

�ow of these methods and summarize a uni�ed pipeline consisting

of three stages (preparation, training, and search), presenting guid-

ance and suggestions for subsequent researchers in method design.

This pipeline provides a structured guide for future researchers in

method design, identifying where each technique is applied.

Exploring Connections Among Communities. We review di-

verse de�nitions and descriptions of communities from various

methods and �nd it challenging to generalize all communities un-

der a single de�nition, as community characteristics vary depending
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Figure 2: Heatmap of di�erent methods’ community inter-

section on Cora dataset

Table 1: Metrics for evaluating communities

Methods F1 Pre Rec NMI ARI JAC Community Quality* (Table 7)

ICS-GNN [33] ✔ ✔ ✔ ✘ ✘ ✘ ✘

(A)QD-GNN [46] ✔ ✘ ✘ ✘ ✘ ✘ ✘

ICS-GNN+ [11] ✔ ✔ ✔ ✘ ✘ ✘ ✘

COCLE(P) [52] ✔ ✘ ✘ ✔ ✘ ✔ ✘

CS-TGN [41] ✔ ✘ ✘ ✘ ✘ ✘ ✘

CommunityAF [14] ✔ ✘ ✘ ✘ ✘ ✘ ✘

CS-GE [37] ✔ ✘ ✘ ✘ ✘ ✘ ✘

CGNP [21] ✔ ✔ ✔ ✘ ✘ ✘ ✘

Transzero [74] ✔ ✘ ✘ ✔ ✘ ✔ ✘

ALICE [75] ✔ ✘ ✘ ✘ ✘ ✘ ✔ (average degree [65])
CSFormer [76] ✔ ✘ ✘ ✘ ✘ ✘ ✘

MK [53] ✔ ✘ ✘ ✘ ✘ ✘ ✘

IACS [23] ✔ ✔ ✔ ✘ ✘ ✘ ✘

*Detailed community quality metrics are listed in Table 7.

on particular requirements and application contexts. Therefore, we

distinguish between explicitly de�ned and implicitly described com-

munities, categorizing the existing communities into three types:

score-based, structure-based, and ground truth-based communities.

Furthermore, we investigate the connections among communi-

ties discovered by di�erent methods. Figure 2(a) shows the ratio

of community intersection to community union across methods

on the Cora dataset. The low ratios observed between most meth-

ods suggest that communities identi�ed by di�erent approaches

share few common nodes. However, as illustrated in Figure 2(b),

the precision of nodes within these intersections is relatively high,

characterizing the signi�cance of these shared nodes.

Comprehensive Evaluation of Identi�ed Communities. Eval-

uating discovered communities re�ects the accuracy performance

of di�erent methods. We summarize the metrics for community

evaluation used by various methods in Table 1. Notably, while all

methods employ the F1-score to measure how closely the identi�ed

communities align with the ground truth, not all report metrics

related to community quality, such as cohesiveness-related met-

rics (e.g., TPR [83] and FOMD [83]), despite their signi�cance in

evaluating community structures. This raises an important ques-

tion: do methods that perform well on accuracy metrics also excel

in community quality metrics? To address this, we analyze the

ranking shifts of various methods across multiple metrics on four

datasets, as illustrated in Figure 3. The results demonstrate that high

F1-scores do not necessarily translate to strong performance on

cohesiveness-speci�c metrics. This �nding underscores the limita-

tions of relying solely on accuracy metrics like F1-score to evaluate

overall community quality.

Overhead Evaluation of Di�erent Methods. Besides evaluat-

ing the e�ectiveness of a method, it is essential to consider the

resources required to achieve this performance by analyzing each

method’s computational costs, e.g., GPU usage and processing time.

Speci�cally, we report computational resource demands and time
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Table 2: Metrics for evaluating community search methods

Methods
Train Phase Search Phase

Parameters GPU Time GPU Time

ICS-GNN [33] ✘ ✘ ✔ ✘ ✔

(A)QD-GNN [46] ✘ ✘ ✔ ✘ ✔

ICS-GNN+ [11] ✘ ✘ ✔ ✘ ✔

COCLE(P) [52] ✘ ✘ ✔ ✘ ✔

CS-TGN [41] ✘ ✘ ✘ ✘ ✔

CommunityAF [14] ✘ ✘ ✔ ✘ ✘

CS-GE [37] ✔ ✘ ✔ ✘ ✔

CGNP [21] ✘ ✘ ✔ ✘ ✔

Transzero [74] ✘ ✘ ✔ ✘ ✔

ALICE [75] ✘ ✘ ✔ ✘ ✔

CSFormer [76] ✔ ✘ ✔ ✘ ✔

MK [53] ✘ ✔ ✔ ✘ ✔

IACS [23] ✘ ✘ ✔ ✘ ✔

consumption across both the training and search phases. For the

training phase, key factors include model parameters, GPU usage,

and training time per epoch; for the search phase, we focus pri-

marily on GPU usage and search time. However, as depicted in

Table 2, the evaluation of existing methods remains incomplete,

highlighting the need for comprehensive cost evaluations to enable

a more in-depth comparison of method performance.

In summary, we make the following contributions in this paper.

• To the best of our knowledge, we are the �rst to review the evolu-

tion of learning-based community search methods and highlight

the technical connections among them.We also propose a uni�ed,

three-stage pipeline to summarize the existing methods.

• We classify existing community de�nitions into three categories

and investigate their connections by analyzing shared charac-

teristics across various methods. We observe that nodes within

community intersections often demonstrate high precision.

• We conduct a comprehensive evaluation of communities iden-

ti�ed by various methods, examining community assessment

metrics across multiple datasets. Our �ndings highlight that ac-

curacy metrics alone do not fully capture community quality.

• In addition to the e�ectiveness evaluation of di�erent methods,

we systematically compare the computational overhead of these

methods, o�ering a detailed performance comparison.

2 DEFINITION AND PRELIMINARY

We consider an undirected graph � = (+ , �) with a node set

+ = {E1, E2, ..., E |+ | } and an edge set � = {4Eý Eþ |E8 , E 9 ∈ + }, where

4Eý Eþ represents the edge between E8 and E 9 . Let # (E) denote the

neighbors of node E , i.e., # (E) = {D ∈ + |4D,E ∈ �}. Thus, the degree

of node E is denoted as 346(E) = |# (E) |. The graph can be repre-

sented by using an adjacency matrix � ∈ R
|+ |× |+ | , where �8 9 = 1

if 48 9 ∈ � and �8 9 = 0 if 48 9 ∉ �. A graph may have an initial node

feature matrix - ∈ R
|+ |×� , where each row GEý ∈ R

� corresponds

to the feature vector of node E8 , GEý is the 8-th row of the matrix - .

Definition 1 (Community Search (CS)). For a graph � =

(+ , �), given a query node E@ ∈ + , the problem of Community Search

Table 3: Community de�nition

Explicit Implicit
Score-based Structure-based Ground Truth-based

ICS-GNN [33] CS-GE [37] (A)QD-GNN [46] CGNP [21]
ICS-GNN+ [11] CSFormer [76] COCLEP [52] CommunityAF [14]

MK [53] CS-TGN [41] IACS [23]
ALICE [75] Transzero [74]

(CS) is to �nd a query-dependent subgraph (i.e., a community), denoted

as �@ , that contains E@ .

The di�erences in de�nitions of the CS problem across various

methods primarily stem from how each method de�nes a commu-

nity. As shown in Table 3, existing communities can be roughly cate-

gorized into three groups: (1) score-based community, (2) structure-

based community, and (3) ground truth-based community.

Definition 2 (Score-based Community). Given a commu-

nity of size< and a score function 5 (·) that is used to evaluate the

community score of individual nodes, the score-based community,

denoted as �� = (+� , �� ), is a subgraph with the requirements: (1)

The query vertex @ ∈ +� , and �� is connected, (2) |+� | =<, and (3)

The community score
∑<
8=1 5 (E8 ) is maximized.

ICS-GNN [33] and ICS-GNN+ [11] utilize a GNN to score nodes,

returning an <-sized community that includes the query node

and has the highest GNN scores. Similarly, MK [53] employs GNN-

based scoring but introduces an additional constraint on node types,

providing an<-sized community that includes the query node, max-

imizes GNN scores, and ensures uniform node types throughout.

Definition 3 (:-core [3–5, 28]). Given an undirected graph

� = (+ , �) and a non-negative integer : , a :-core of � is the largest

subgraph �: ⊆ � , such that ∀E ∈ �: has degree at least : , i.e.,

346(E, �: ) ≥ : , where 346(E, �: ) denotes the degree of E in �: .

Definition 4 (Structure-based Community). Structure-

based communities impose speci�c structural constraints to character-

ize the structural cohesiveness of the community, where cohesiveness

means that nodes in the community are intensively linked to each

other according to a particular subgraph metric, e.g., :-core (: quan-

ti�es the cohesiveness of the community).

CS-GE [37] de�nes a community as a :-core [3–5, 28], returning

a :-core community that includes the query node with a cohesive-

ness parameter : . Similarly, CSFormer [76] also identi�es :-core

communities but returns the :-core community containing the

query node with the highest cohesiveness.

Score-based and structure-based communities o�er explicit de�-

nitions of what constitutes a community. In contrast, another re-

search direction focuses on communities de�ned implicitly, where

the community structure is not clearly speci�ed but is instead

learned from ground-truth communities provided in the dataset.

We refer to this type as the ground truth-based community.

Definition 5 (Ground truth-based community). Ground

truth-based community is a connected subgraph in which nodes are

densely intra-connected and share similar attributes. For training and

evaluation purposes, the ground-truth communities are manually

annotated within the datasets.

Based on di�erent supporting graphs, we can categorize com-

munity search problems as follows:
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Table 4: Learning-based community search methods

Methods Graph Sample Learning Paradigm Backbone Contrastive Interactive

ICS-GNN Candidate Subgraph supervised GCN ✘ ✔

(A)QD-GNN - supervised GCN ✘ ✔

ICS-GNN+ Candidate Subgraph supervised GCN ✘ ✔

COCLE - semi-supervised GCN ✔ ✘

COCLEP Graph Partitioning semi-supervised GCN ✔ ✘

CS-TGN - meta-learning GCN ✘ ✔

CommunityAF - supervised iGPN ✘ ✘

CS-GE - supervised GCN ✔ ✘

CGNP - meta-learning GCN ✘ ✘

Transzero - unsupervised GT ✔ ✘

ALICE Candidate Subgraph supervised GIN ✘ ✔

CSFormer Candidate Subgraph supervised GT ✘ ✘

MK Candidate Subgraph supervised HGNN ✘ ✘

IACS Graph Partitioning meta-learning GAE ✘ ✘

(1) Basic Community Search (BCS): Methods like QD-GNN [46],

ICS-GNN [33], CommunityAF [14], COCLEP [52], CGNP [21],

Transzero [74], and IACS [23] aim to identify a query-dependent,

densely connected subgraph �@ .

(2) Attributed Community Search (ACS): ACS �nds communities

that possess both structural cohesiveness and attribute homo-

geneity, meaning that nodes within the community are densely

intra-connected and share similar attributes. For example, AL-

ICE [75], AQD-GNN [46], and the attributed version of IACS.

(3) Community Search in Temporal Networks (CST): CST aims to

identify a query-dependent community that maintains connec-

tivity and structural cohesiveness across a temporal network

� = {�1, . . . ,�C }, such as CS-TGN [41].

This paper primarily focuses on a comparative study of learning-

based methods for solving the basic community search problem.

3 OVERVIEW OF LEARNING-BASED
COMMUNITY SEARCH

We categorize and summarize learning-based community search

methods according to the three community de�nitions presented

in Section 2. We also provide development roadmaps (Figure 1) and

present a summary of key properties for these methods in Table 4.

3.1 Methods for Score-based Community

These methods generally aim to identify a :-sized maximum-GNN-

score (:MG) community, where scores are derived from the pre-

dicted GNN scores of nodes, indicating the likelihood of each node

belonging to a community. They focus on optimizing three key as-

pects: (1) Candidate Update: re�ning the candidate subgraph based

on user feedback; (2) Model Training: enhancing the model’s accu-

racy in predicting community membership; and (3) Search Phase:

e�ciently locating the :MG community, particularly when the

query node lies at the community boundary.

ICS-GNN [33] is the �rst method to leverage GNN models for

solving the interactive community search problem. The ICS-GNN

process consists of the following steps: �rst, a candidate subgraph is

constructed using breadth-�rst search (BFS) and edge enhancement

strategies, then trained with a GNN model to infer the probability

of nodes belonging to a community. Next, the GNN model predicts

node scores, allowing for the identi�cation of a :-sized Maximum-

GNN-score (:MG) community. Finally, users can provide feedback

on the retrieved community to re�ne subsequent model training.

ICS-GNN+ [11] is an enhanced version of ICS-GNN. It introduces

an adaptive algorithm for candidate subgraph maintenance to e�ec-

tively control the size of the candidate subgraph. To further enhance

GNN performance, ICS-GNN+ incorporates an unsupervised clus-

tering loss during the training phase, ensuring node embeddings

closely align with their respective cluster centers.

MK [53] extends the ICS-GNN approach to heterogeneous attrib-

uted graphs by introducing the MK framework which is a com-

prehensive solution with modules for local subgraph construction,

HGNN training and inference, and community rewriting. To en-

hance training and query e�ciency, the framework incorporates

various optimization techniques, including a self-training algorithm

that reduces the need for user-provided labels.

3.2 Methods for Structure-based Community

These methods generally aim to identify communities using struc-

tural community models, such as :-core [3–5, 28] and :-truss [1,

43, 45, 55]. They often need to address two primary challenges: (1)

e�ciently handling searches for arbitrary cohesiveness values :

across various community models, and (2) managing large-scale,

complex scenarios, such as dynamic graphs.

CS-GE [37] is a community search framework leveraging graph

embeddings and operates in two stages: o�ine learning and online

search. In the o�ine stage, CS-GE introduces a :-core injected

graph embedding technique to capture cohesiveness features for

any speci�ed : . During the online stage, it constructs a Proximity

Graph (PG) to facilitate rapid community retrieval.

CSFormer [76] introduces a novel neighborhood community vec-

tor, leveraging the =-th order ℎ-index to e�ectively capture struc-

tural features related to community cohesiveness, which are bene�-

cial for community search (CS) tasks. To handle large-scale graphs,

CSFormer employs a transformer encoder model with an attention-

based readout function to process neighborhood community vec-

tors, enabling e�cient online CS through lightweight coreness

prediction. Additionally, CSFormer extends the solution to more

complex scenarios, including CS on dynamic graphs and CS with

various community models.

3.3 Methods for Ground Truth-based
Community

These methods leverage ground-truth communities as supervised

signals to identify cohesive communities. They primarily focus

on: (1) handling large-scale scenarios with limited computational

resources, (2) operating e�ectively with limited or unlabeled data,

and (3) enabling inductive inference.

QD-GNN [46] is the �rst query-driven GNNmodel designed specif-

ically for community search. It integrates local query-dependent

structures with global node embeddings to e�ectively return com-

munity results based on any given query using trained models.

AQD-GNN [46] enhances the capabilities of QD-GNN by incorpo-

rating node attribute bipartite graphs into its learning framework.

ALICE [75] builds upon the idea of QD-GNN and introduces a

novel learning-based approach to improve the performance of ACS.

It utilizes a two-step methodology: �rst, it identi�es promising

candidate subgraphs to narrow the search scope, then it performs

community searches using ConNet.

CS-TGN [41] extends the framework of QD-GNN to temporal

graphs and designs a query-driven temporal graph convolutional
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Figure 4: Process of CS methods. Dotted lines represent an optional step, and grey regions indicate the available modules.

neural network that integrates the local query-dependent structure

and global node embeddings at each timestamp.

CommunityAF [14] is a community generation framework con-

sisting of two key components: (1) SEAL [87] integrates community-

aware structural features to learn node embeddings for large-scale

graphs while minimizing computational resource requirements and

enabling incremental embedding updates; and (2) An autoregres-

sive �ow-based generation (AF) component, which is designed to

select the next node to be added to the current community.

COCLE [52] is a semi-supervised model utilizing contrastive learn-

ing. It employs a hypergraph-based augmentation method along

with a contrastive learning strategy that integrates low-order intra-

view learning, high-order intra-view learning, and low-high-order

inter-view learning. Moreover, COCLEP [52], an extension of CO-

CLE, further reduces training resource costs via graph partitioning.

CGNP [21] is a novel framework built on the conceptual Condi-

tional Neural Process [34] (CNP), designed to learn the meta model

from an e�cient, metric-based learning perspective. It is the �rst

approach to investigate the application of meta-learning techniques

to address community search (CS) problems with limited data.

Transzero [74] is a learning-based CS framework that runs with-

out using labeled data. In the o�ine pre-training phase, two self-

supervised losses including the personalization loss and link loss

are utilized to pre-train the model without using labels. In the on-

line search phase, Transzero �nds promising communities based

on the new proposed expected score gain function.

IACS [23] utilizes a GNN-based encoder-decoder model tailored

for heterogeneous attributed ACS tasks and can generalize across

diverse datasets. The IACS framework follows a structured work-

�ow: it begins by training a shared model using a meta-algorithm

across multiple ACS tasks, then �ne-tunes the model for new tasks

with limited data, and �nally deploys it for online queries.

4 COMPONENT ANALYSIS

Despite the diversity of learning-based CS methods, they all adhere

to a uni�ed processing pipeline. As illustrated in Figure 4, methods

can be broadly categorized into three parts: preparation (left), train-

ing (middle), and search (right). We further decompose these three

parts into seven �ne-grained components (C1–C7 in Figure 4).

4.1 Preparation

As Figure 4 (left) shows, the preparation part can be divided into

two components: Feature Processing (C1) and Graph Sample (C2).

4.1.1 C1: Feature Process. In graph learning, we need to represent

node or edge features using matrices (or vectors). The main ways

of representing node features in learning-based community search

methods are summarized as follows:

One-hot Query Feature [46]. Given a graph � = {+ , �}, each

query node E@ is encoded as a one-hot vector G@ = {0, 1} |+ | , where

the 8-th bit equals to one if E8 is a query node.

Attribute Feature [46, 75]. If nodes have numerical or categorical

attributes, these attribute values can be directly used as node fea-

tures. Given an attribute set 0CCA = {01, 02, ...}, each node attribute

feature can be encoded as G0 ∈ {0, 1} |0CCA | , where the 8-th bit equals

to one if there exists an attribute 08 while 08 ⊆ 0CCA .

Graph Structural Feature. Structural features are derived from the

graph’s structural information, leveraging learning algorithms such

as DeepWalk [63] and Node2Vec [38]. These algorithms capture

both local and global structural information of the nodes.

Community-related Feature [76]. Community-related features

can be designed and extracted using community-speci�c informa-

tion. For example, COCLEP constructs the feature matrix by utiliz-

ing the normalized core number of each node. The core number of

a node D is the maximum : that a :-core contains D [25].

4.1.2 C2: Graph Sample. In many real-world applications, graphs

can contain millions or even billions of nodes and edges, making

direct computation on the entire graph both time-consuming and

resource-intensive. To mitigate this, graph sampling techniques

are employed to create smaller, more manageable subgraphs, thus

simplifying the computation process. In learning-based community

search methods, sampling strategies are typically applied either

prior to training or during the search phase. These methods can gen-

erally be classi�ed into two main categories (as shown in Table 4):

(1) Candidate subgraph sampling and (2) Graph partitioning.

Candidate Subgraph Sampling [33]. Given a query node, the

sampling process is to extract a subgraph containing the query node,

typically via graph traversal from the query node, for instance,

by employing a breadth-�rst search (BFS) from the query node.

According to small-world theory [51, 58], community members

typically exhibit strong access locality [79], meaning that two nodes

are more likely to belong to the same community if they are located

within each other’s localized space. Several methods have developed

candidate subgraph strategies tailored to their particular needs. For

example, ICS-GNN [11] utilizes an edge enhancement strategy to

capture as many nodes related to the target community as possible,

while ALICE [75] applies a strategy based on modi�ed modularity

to ensure the quality of the candidate subgraph.

Graph Partitioning. Graph partitioning aims to decompose the

original graph into multiple smaller, mutually exclusive subgraphs,

each constructed from distinct node groups [6]. Graph partitioning
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may separate nodes that originally belong to the same community

into di�erent subgraphs. If a community spans multiple partition

boundaries, training based solely on a single subgraph may result in

the loss of critical community information. COCLEP [52] tackles the

issue of out-of-memory when training on large graphs by employ-

ing graph partitioning methods such as Metis [47] and mitigating

community information loss through the boundary nodes.

4.2 Training Stage

As Figure 4 (middle) shows, the training part can be divided into

three components: Learning Paradigm (C3), Neural Network (C4),

and Loss Function (C5). Generally, we need to select the appropri-

ate learning paradigm based on the practical scenario, followed

by determining the model architecture, and �nally selecting the

suitable loss function for model training.

4.2.1 C3: Learning Paradigm. The choice of an appropriate learn-

ing paradigm depends on the speci�c characteristics of the problem,

the availability of data, and the objectives of the task. Based on

their reliance on labeled data, learning-based community search

methods can be categorized into the following types:

Supervised Learning. Most learning-based CSmethods depend on

a substantial amount of labeled data because of supervised learning

techniques. (A)QD-GNN [46], a representative method based on

supervised learning, constructs the training set using query nodes

and ground truth communities. With a su�cient number of training

samples, the model is capable of accurately predicting communities.

Semi-Supervised Learning. In many scenarios, obtaining labeled

data is often di�cult, resulting in only a small amount of labeled

data being available. COCLE(P) [52] employs a contrastive learning-

based multi-view strategy. By constructing the original graph and

an augmented hypergraph, it captures node representations from

di�erent perspectives. This approach allows the model to learn

node features from multiple angles, enhancing its understanding

of the community structure.

Unsupervised Learning. Self-supervised learning is a good strat-

egy as it does not rely on any labeled data but utilizes the structure

and attributes of the data itself to generate training signals. For

example, Transzero [74] utilizes a link prediction loss to enable

the model to learn the original structure of the graph, treating the

edges in the graph as supervised signals.

Meta Learning. Meta-learning [71] enables a model to extract use-

ful information from a few samples by sharing knowledge across

di�erent tasks. The rapid development of meta-learning has given

rise to numerous meta-learning frameworks, such as MAML [30],

Reptile [61], Prototypical Networks [69], and LEO [67]. This ap-

proach allows the model to quickly adapt to new tasks with minimal

data. In CS tasks, the model can swiftly adjust to new query nodes

or new graph structures without needing to learn from scratch.

4.2.2 C4: Neural Network. The rise of deep learning has led to

the development of numerous models capable of learning and per-

forming a wide range of tasks. In particular, Graph Neural Net-

works (GNNs) have signi�cantly advanced graph-based learning

approaches. In this section, we will introduce the commonly used

model architectures for learning-based community search methods.

Table 5: Loss function of learning-based community search

Methods Loss Function

ICS-GNN BCE loss (Eq. (2)), Rank Loss (Eq. (9))
(A)QD-GNN BCE loss (Eq. (2))
ICS-GNN+ BCE loss (Eq. (2)), Rank Loss (Eq. (9)), MSE Loss (Eq. (5))
COCLE(P) Distance Loss (Eq. (7))
CS-TGN BCE loss (Eq. (2))

CommunityAF Generate Loss, Rank Loss (Eq. (9))
CS-GE Distance Loss (Eq. (8))
CGNP BCE loss (Eq. (2))

Transzero Distance Loss (Eq. (8) and Eq. (6))
ALICE BCE loss (Eq. (2)), Distance Loss (Eq. (5) and Eq. (6))

CSFormer Cross-Entropy Loss (Eq. 3)
MK BCE loss (Eq. (2))
IACS BCE loss (Eq. (2))

Graph Neural Network (GNN). GNNs have emerged as a pow-

erful technique for modeling graph-structured data, enabling the

solution of a wide range of tasks on graph data, including node clas-

si�cation, link prediction, and graph classi�cation, among others.

The most widely used GNN models, such as GCN [50], GAT [73],

and GIN [80], are based on the message-passing mechanism. In

each GNN layer, node representations are updated by aggregating

information from neighboring nodes, allowing the model to cap-

ture the graph’s structural properties. Below, we outline the general

process for updating a node’s representation at layer ; :

ℎ
(; )
E = AGG (; ) (ℎ

(;−1)
E , {ℎ

(;−1)
D , D ∈ # (E)}), (1)

where ℎ
(; )
E is the node E ’s representation at layer ; and AGG (; )

denotes the aggregation function.

Some methods incorporate variants of GNNs to meet speci�c

requirements. For instance, CommunityAF [14] employs iGPN, a

GNN designed for incremental scenarios, to facilitate generative

community search. CS-TGN [41] utilizes temporal GNNs to capture

temporal graph information, enabling CS on temporal graphs.

Graph Transformer (GT). Graph transformer [12] can handle

serialized graphs, with memory consumption during computation

remaining una�ected by the graph’s scale, while mitigating the com-

mon issues of over-smoothing and over-squashing seen in GNNs.

In CSFormer [76], the graph transformer learns the relationships

between neighborhood tokens in the neighborhood community

vector sequence, generating node representations that incorporate

neighborhood community information for downstream tasks. Simi-

larly, Transzero [74] leverages graph transformers to obtain both

community-level and node-level representations, using contrastive

learning for node representation training.

4.2.3 C5: Loss Function. In learning-based CS methods, the choice

of loss function is typically dictated by the type of downstream task.

In this section, we will analyze various categories of downstream

tasks based on their corresponding loss functions. Table 5 provides

a summary of the loss functions used by various methods.

Label-based Loss. Label-based loss is primarily used in classi�ca-

tion tasks with labeled data. It measures the di�erence between the

model’s predictions and the actual labels, guiding training by using

the di�erence to iteratively optimize the model’s parameters.

Binary Cross Entropy Loss. The binary cross entropy (BCE) loss

function is commonly used for binary classi�cation tasks. Some

methods primarily use the BCE loss function to enable the model

to determine whether candidate nodes belong to the community of
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the query node, which also means that during the search phase, the

model can �lter out community nodes from the candidate nodes.

The BCE loss function is de�ned as follows:

L124 = −
∑

E∈+

(~E · log(~̂E) + (1 − ~E) · log(1 − ~̂E)), (2)

where ~E ∈ {0, 1} is the true label of node E and ~̂E ∈ [0, 1] is the

predicted probability that node E belongs to the query’s community.

Cross Entropy Loss. When more complex classi�cation tasks are

required beyond simple binary classi�cation, the cross-entropy loss

function is suitable for handling multi-class classi�cation tasks. The

cross-entropy loss function is de�ned as follows:

L24 = −~ log~∗E, (3)

where ~E represents the actual label (usually one-hot encoded) and

~
∗
E represents the predicted probability distribution for node E .

Link Loss. Link Loss is a loss function measuring the connections

between nodes in a graph and is commonly used in link prediction

tasks. It’s also widely used in self-supervised tasks within graphs,

where the edges in the graph serve as supervised signals to learn

structural information. The link loss function is de�ned as follows:

L;8=: =

∑

D∈+

∑

E∈# (D )

−4DEf (ℎ
)
DℎE) + (1 − 4DE)f (ℎ

)
DℎE), (4)

where 4DE = {0, 1} represents the edge between node D and E (1

and 0 indicate the edge’s existence or not) and f (G) = 1
1+4−G is a

sigmoid function mapping the result to a value between 0 and 1.

Distance Loss. Distance loss is a type of loss function used to opti-

mize the distance between samples, particularly in representation

learning and metric learning tasks. It plays a crucial role in con-

trastive learning, where the primary objective is to minimize the

distance between similar samples while maximizing the distance

between dissimilar ones, thereby enabling the model to learn an

appropriate feature space.

Simple Distance Loss. These loss functions are typically derived

from distance metrics such as Euclidean distance or cosine similar-

ity. Minimizing the objective function corresponds to reducing the

distance between target samples, thereby improving the model’s

ability to capture meaningful relationships in the feature space.

(1) Mean Squared Error Loss. The mean squared error (MSE) loss

function calculates the average of the squared di�erences between

the predicted values and the true values. Besides, MSE loss can

also measure the squared Euclidean distance between the predicted

values and the true values. In ICS-GNN+ [11], the MSE loss is used

to minimize the distance between community membership and the

community centroid in the vector space:

L<B4 =
1

|+� |

∑

D∈+�

(ℎD − ℎ� )
2, (5)

where ℎD is the community membership vector and ℎ� represents

the community centroid vector.

(2) Inner Product Loss: this loss function is based on the inner

product calculation between two node vectors (ℎD and ℎE ). The loss

function is de�ned as follows:

L8==4A = −f (ℎD · ℎE), (6)

Contrastive Loss. In the contrastive loss, distance loss plays a

central role as it de�nes the similarity or dissimilarity between

pairs of samples. A typical way for constructing a contrastive loss

function involves leveraging the softmax function to distinguish

between positive and negative samples, as seen in methods like

NT-Xent [72] and InfoNCE [15], which can be formalized as follows:

L2>=CA0BC = − log

(

exp(B8<(ℎ@, ℎD )/g)
∑

E∈+ exp(B8<(ℎ@, ℎE)/g)

)

, (7)

where ℎ@ represents query’s embedding and ℎD is the positive sam-

ple’s embedding. g denotes the temperature parameter that controls

the sensitivity of penalties on hard negative samples. The cosine

distance function B8<(·) measures the embeddings’ similarity.

Triplet Loss. Triplet Margin (TM) optimization strategy directly

enforces an increase in the relative distance between positive and

negative example pairs. Given an anchor EB , a corresponding pos-

itive sample E+, and a negative sample E− , the loss is formulated

as:

LC< = max(3 (EB⃗ , E+⃗) − 3 (EB⃗ , E −⃗) + 2, 0), (8)

where 2 is a margin value and 3 (·) is distance function measuring

similarity between samples.

Rank Loss. Ranking loss functions play a crucial role in tasks such

as information retrieval [7], where optimizing the performance of

the ranking model enhances the relevance of results. Ranking loss

can be used for: (1) interactive approaches: optimizing the returned

results based on user feedback, and (2) generative strategies: ensur-

ing that the results generated at a current snapshot are superior to

those generated at a previous snapshot. Pairwise ranking loss fo-

cuses on the ranking relationship between pairs of samples. Given

a pair of sample nodes (E ,D), the goal is to ensure that E has a higher

ranking score than D. The rank loss is formulated as:

LA0=: =

∑

E,D∈+

max(0, (E − (D − W), (9)

where (E ((D ) represents the score of node E (D) and W is a threshold

ensuring a minimum di�erence between the scores of E and D.

Generative Loss. Generative models (e.g., GAN [35], Flow [66],

and VAE [49]) are learned to estimate the likelihood of data to

be close to the true data distribution. In CS, the generative loss

function ensures that the generated communities are as close as

possible to the true community distribution.

4.3 Search Stage

As Figure 4 (right) shows, the search part involves three compo-

nents: Graph Sample (C2), Search Strategy (C6), and Interaction

(C7). In this stage, we can also apply graph sampling (mentioned in

Section 4.1.2) to reduce the search space, then use a search strategy

with a trained model to return the identi�ed community. Finally,

an interactive approach can be employed to manually evaluate the

communities and generate updated training samples for �ne-tuning.

4.3.1 C6: Search Strategy. Depending on the search strategies em-

ployed, the methods can be classi�ed into two categories: (1) com-

munity �ltering strategy and (2) community scoring strategy.

Community Filtering Strategy. A �lter-based strategy compares

the model-predicted scores (label) with a preset threshold (label) in

the search to determine whether the candidate nodes belong to the
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Table 6: Dataset statistics

Datasets Abbr. # Nodes # Edges 5 40CDA4dim 3avg # Commmunity

EMAIL-EU Emai 1,005 16,064 - 31.97 42
Cora Cora 2,708 5,429 1433 3.9 7

Citeseer Cite 3,312 4,732 3703 2.7 6
DBLP DBLP 317080 1049866 - 6.62 13,477

Amazon Amaz 334863 925872 - 5.53 75,149
Orkut Orku 3,072,441 117,185,083 - 76.28 15,301,901

LiveJournal Live 3,997,962 34,681,189 - 17.35 664,414

communities of query nodes. The search expands outward from

the query node, employing the strategy to �lter out community

nodes. Based on the di�erent types of scores, �lter-based methods

can be classi�ed into three categories: (1) Probability score-based,

(2) Similarity score-based, and (3) Category-based.

Probability Score-based. (A)QD-GNN [46], CS-TGN [41] and AL-

ICE [75] use the trained model to directly predict candidate nodes’

probability score (denoted as (?A>1 ∈ [0, 1]) indicating the likeli-

hood that the candidate node belongs to query node’s community. If

the predicted probability score exceeds the threshold, the candidate

node is considered a community membership, and vice versa.

Similarity Score-based. These methods generate node embeddings

with the trained model, compute similarities between query and

candidate node embeddings, and apply a threshold or top-: �lter

to identify the query node’s community. CS-GE [37] calculates the

cosine similarity between the query node and candidate nodes, and

then returns the identi�ed community using a top-: strategy.

Category-based. These methods use the trained model for node

classi�cation and apply prede�ned rules during the search phase

to �lter candidates. CSFormer [76] �lters candidate nodes during

the search by predicting their coreness and selecting those with a

coreness greater than that of the query node.

Community Scoring Strategy. The community score-based strat-

egy calculates node scores during the search process to identify the

highest-score community containing the query node. The method

traverses the graph from a query node, maintaining the max score

community, and terminates when a stopping condition is met (e.g.,

all nodes are searched or scores no longer improve). Based on the

method of score calculation, the strategies can be classi�ed into

two categories: (1) Probability score and (2) Prede�ned score.

Probability Score. In the community score-based strategy, the prob-

ability score is used to assess which candidate nodes are more

likely to be members of the query node’s community. Based on the

probability scores predicted by the GNN, ICS-GNN and ICS-GNN+

maintain a :-sized Maximum-GNN-score (:MG) community using

a vertex swapping strategy.

Prede�ned Score. Prede�ned scores are calculated using prede�ned

formulas or learnable functions to quantify community properties

(e.g., cohesiveness). For example, in Transzero [74], the ESG score in-

dicates that higher values correspond to stronger cohesiveness and

greater relevance to the query node. Similarly, CommunityAF [14]

uses a scoring component (MLP) to predict community scores, al-

lowing the model to decide whether to continue or stop the gener-

ation process based on score changes.

4.3.2 C7: Interactive module. To better adapt to real-world scenar-

ios, some methods incorporate interactive functionality, allowing

users to provide feedback and update data labels for retraining.

ICS-GNN and ICS-GNN+ �ne-tune the model based on rank loss

Table 7: Community quality metrics

Type Metrics Abbr. Function

Internal Connectivity

Internal Density [65] ID <�

=� (=�−1)/2

Triangle Participation Ratio [83] TPR
| {D |D∈�,)≠∅} |

=�

Fraction over Median Degree [83] FOMD
| {D |D∈�,346 (D )>3< } |

=�

Average Degree [65] AD 2<�

=�

External Connectivity
Expansion [65] EP =��

=�

Cut Ratio [32] CR =��

=� (=−=� )

Internal & External

Conductance [68] CD =��

2<�+=��

Normalized Cut [68] NC =��

2<�+=��
+ =��

2(<−<� )−=��

Average Out Degree Fraction [31] ADF 1
=�

∑

D∈�
| { (D,E) ∈� |E∉� } |

346 (D )

Flake Out Degree Fraction [31] FDF
| {D |D∈�, | { (D,E) ∈� |E∈� } |<346 (D )/2} |

=�

Network Model
Modularity [60] MD 1

2= (2<� −
(
∑

D∈+�
346 (D ) )2

2< )

Density Modularity [48] DM 1
2=�

(2<� −
(
∑

D∈+�
346 (D ) )2

2< )

(Equation (9)) and updated data to ensure improved results that

better align with user preferences in future searches.

5 EXPERIMENTS

This section presents a series of experiments aiming at addressing

the following questions:

Q1: How do the methods perform on di�erent evaluation metrics?

Is it possible for a method to achieve optimal performance in both

accuracy and community metrics simultaneously? (Section 5.2)

Q2: What are the relationships between the communities identi�ed

by di�erent methods? (Section 5.2)

Q3: If a method achieves high search e�ectiveness, does it also o�er

advantages in computational resource e�ciency? (Section 5.3)

Q4: How do the techniques employed impact the overall perfor-

mance of the methods? (Section 5.4)

5.1 Experimental Setting

5.1.1 Datasets. The experiments are conducted on seven widely

used real-world datasets, which cover a variety of graphs, includ-

ing citation networks (Cora and Citeseer), collaboration networks

(DBLP), social networks (LiveJournal and Orkut), product networks

(Amazon), and an email network (Email-Eu). The main characteris-

tics of these datasets are summarized in Table 6. Some methods may

encounter out-of-memory (OOM) issues when processing large-

scale datasets. To ensure a fair and comprehensive comparison, we

perform experiments on subgraphs when the dataset contains more

than 10,000 nodes (e.g., DBLP, Amazon, etc.).

5.1.2 Compared methods. We selected 7 representative learning-

based methods for our experiments, each with its unique charac-

teristics: (1) ICS-GNN: subgraph candidate strategy; (2) QD-GNN:

query-driven framework; (3) COCLE: contrastive learning frame-

work for few-label scenarios; (4) COCLEP: graph partition strategy;

(5) CGNP: meta-learning framework; (6) CommunityAF: generative

framework; and (7) Transzero: free-label learning strategy.

5.1.3 Evaluationmetrics. Tomeasure overall methods performance,

we employ various metrics related to community and search perfor-

mance. For evaluating communities, we use both accuracy metrics

and quality metrics to assess how closely they resemble the ground-

truth communities and to evaluate their community quality.

The accuracy metrics primarily include F1, Recall, Precision,

NMI, ARI, and JAC. We use twelve metrics to characterize the
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Table 8: Community evaluation under di�erent metrics

Datasets Methods F1 Pre Rec NMI ARI JAC ID AD FOMD TPR EP CR NC CD ADF FDF MD DM

Email-Eu

ICS-GNN 0.479 0.729 0.357 0.270 0.405 0.331 0.312 15.294 0.239 0.967 6.770 2.717 × 10−2 0.659 0.616 0.529 0.584 0.020 6.268
QD-GNN 0.179 0.110 0.480 0.001 0.002 0.099 0.037 16.709 0.260 0.839 1.071 3.198 × 10−2 0.996 0.514 0.469 0.466 0.001 0.036
COCLE 0.585 0.726 0.567 0.382 0.511 0.462 0.195 15.764 0.273 0.902 4.311 1.473 × 10−2 0.581 0.479 0.401 0.388 0.027 5.810
COCLEP 0.432 0.404 0.587 0.190 0.301 0.302 0.145 21.581 0.394 0.951 4.181 3.147 × 10−2 0.752 0.518 0.431 0.436 0.037 4.021
CGNP 0.322 0.461 0.281 0.134 0.236 0.209 0.355 21.836 0.430 0.993 11.035 5.993 × 10−2 0.863 0.717 0.619 0.718 0.019 4.294

CommunityAF 0.337 0.807 0.217 0.196 0.280 0.211 0.510 13.185 0.098 0.970 14.962 4.993 × 10−2 0.802 0.760 0.674 0.814 0.009 4.857
Transzero 0.616 0.520 0.829 0.393 0.486 0.488 0.124 20.987 0.411 0.903 2.174 1.457 × 10

−2 0.459 0.350 0.256 0.138 0.080 6.758
:-core 0.118 0.077 0.344 0.023 0.037 0.064 0.373 50.811 0.974 1.000 5.326 4.875 × 10−2 0.840 0.406 0.382 0.347 0.034 4.230
:-truss 0.116 0.074 0.369 0.020 0.033 0.063 0.332 51.572 0.970 1.000 4.573 4.409 × 10−2 0.841 0.373 0.353 0.274 0.034 3.797

Cora

ICS-GNN 0.681 0.909 0.544 0.421 0.575 0.517 0.017 4.173 0.400 0.677 1.013 5.864 × 10−4 0.294 0.254 0.180 0.089 0.081 1.711
QD-GNN 0.972 1.000 0.945 0.905 0.956 0.945 0.011 4.142 0.410 0.658 0.271 1.707 × 10−4 0.105 0.087 0.066 0.020 0.126 1.686
COCLE 0.864 0.777 0.976 0.659 0.780 0.762 0.009 4.154 0.420 0.625 0.366 2.460 × 10−4 0.148 0.116 0.068 0.043 0.143 1.574
COCLEP 0.805 0.715 0.931 0.545 0.687 0.678 0.007 4.017 0.425 0.605 0.149 9.765 × 10

−5 0.064 0.049 0.044 0.002 0.160 1.537
CGNP 0.659 0.724 0.606 0.410 0.555 0.537 0.013 3.963 0.363 0.649 1.126 6.660 × 10−4 0.331 0.274 0.219 0.141 0.094 1.500

CommunityAF 0.188 0.912 0.114 0.104 0.139 0.112 0.099 3.495 0.318 0.541 5.734 2.437 × 10−3 0.638 0.615 0.269 0.225 0.016 1.565
Transzero 0.835 0.757 0.931 0.586 0.738 0.717 0.008 3.947 0.397 0.591 0.265 1.597 × 10−4 0.103 0.082 0.082 0.040 0.148 1.524
:-core 0.265 0.197 0.621 0.007 -0.002 0.155 0.021 4.829 0.575 0.751 0.550 4.833 × 10−4 0.432 0.110 0.075 0.014 0.074 0.367
:-truss 0.277 0.340 0.631 0.029 0.029 0.166 0.084 4.314 0.474 0.799 0.558 3.511 × 10−4 0.204 0.124 0.095 0.029 0.074 0.701

Citeseer

ICS-GNN 0.459 0.816 0.320 0.204 0.319 0.299 0.018 4.378 0.538 0.497 0.714 3.475 × 10−4 0.230 0.195 0.163 0.084 0.097 1.757
QD-GNN 0.766 1.000 0.633 0.567 0.662 0.633 0.009 3.821 0.480 0.430 0.342 2.355 × 10−4 0.190 0.149 0.139 0.040 0.131 1.416
COCLE 0.678 0.591 0.864 0.343 0.430 0.519 0.006 3.962 0.518 0.439 0.128 6.598 × 10−5 0.058 0.041 0.038 0.008 0.195 1.365
COCLEP 0.629 0.611 0.652 0.245 0.418 0.459 0.006 3.916 0.511 0.448 0.062 2.750 × 10

−5 0.026 0.019 0.014 0.000 0.198 1.365
CGNP 0.537 0.775 0.414 0.249 0.386 0.374 0.015 4.505 0.560 0.489 0.643 3.341 × 10−4 0.207 0.169 0.150 0.091 0.120 1.708

CommunityAF 0.255 0.811 0.162 0.109 0.169 0.154 0.051 3.759 0.522 0.473 1.600 7.792 × 10−4 0.396 0.371 0.204 0.139 0.046 1.644
Transzero 0.656 0.725 0.603 0.304 0.486 0.491 0.007 3.925 0.501 0.424 0.151 7.708 × 10−5 0.065 0.048 0.048 0.016 0.168 1.448
:-core 0.267 0.327 0.419 0.027 0.033 0.159 0.043 5.181 0.731 0.675 0.889 4.501 × 10−4 0.222 0.125 0.098 0.032 0.142 1.234
:-truss 0.230 0.209 0.475 0.018 0.006 0.138 0.029 3.746 0.532 0.499 0.371 1.457 × 10−4 0.056 0.052 0.042 0.024 0.142 0.612

Amazon(9k)

ICS-GNN 0.705 0.982 0.551 0.553 0.679 0.546 0.016 3.979 0.400 0.644 0.405 7.092 × 10−5 0.148 0.143 0.100 0.060 0.025 1.917
QD-GNN 0.012 1.000 0.006 0.009 0.011 0.006 0.451 1.677 0.017 0.155 2.283 3.233 × 10−4 0.621 0.620 0.537 0.541 0.000 0.837
COCLE 0.147 0.997 0.083 0.108 0.136 0.082 0.149 3.814 0.367 0.663 1.083 1.540 × 10−4 0.272 0.271 0.186 0.144 0.004 1.889
COCLEP 0.852 0.815 0.898 0.724 0.833 0.767 0.009 3.907 0.391 0.629 0.017 2.127 × 10

−6 0.005 0.005 0.004 0.000 0.044 1.857
CGNP 0.762 0.863 0.716 0.646 0.745 0.676 0.015 3.958 0.384 0.642 0.263 3.983 × 10−5 0.078 0.076 0.067 0.039 0.032 1.901

CommunityAF 0.460 0.994 0.306 0.343 0.434 0.306 0.036 4.135 0.409 0.638 0.500 7.096 × 10−5 0.123 0.121 0.061 0.034 0.014 2.026
Transzero 0.295 0.996 0.202 0.225 0.279 0.201 0.109 3.822 0.354 0.620 0.301 3.786 × 10−5 0.091 0.091 0.092 0.045 0.011 1.881
:-core 0.168 0.280 0.641 0.062 0.103 0.099 0.059 4.760 0.604 0.847 0.485 1.024 × 10−4 0.309 0.100 0.072 0.029 0.029 0.998
:-truss 0.145 0.400 0.668 0.060 0.084 0.085 0.114 4.525 0.525 0.791 0.322 4.747 × 10−5 0.066 0.065 0.049 0.018 0.006 1.033

DBLP(5K)

ICS-GNN 0.325 0.616 0.221 0.148 0.271 0.198 0.042 6.213 0.453 0.851 1.617 4.476 × 10−4 0.286 0.274 0.207 0.175 0.030 2.920
QD-GNN 0.086 0.467 0.106 0.012 0.023 0.046 0.103 3.392 0.219 0.640 1.658 9.903 × 10−4 0.679 0.568 0.509 0.516 0.033 1.101
COCLE 0.262 0.279 0.420 0.080 0.152 0.160 0.090 4.990 0.360 0.796 1.623 6.292 × 10−4 0.440 0.360 0.274 0.215 0.039 1.943
COCLEP 0.384 0.378 0.425 0.128 0.283 0.242 0.014 6.089 0.455 0.890 0.264 8.129 × 10

−5 0.066 0.059 0.046 0.006 0.091 2.675
CGNP 0.311 0.330 0.306 0.104 0.226 0.196 0.020 5.837 0.429 0.850 1.733 5.383 × 10−4 0.341 0.308 0.245 0.211 0.061 2.483

CommunityAF 0.117 0.445 0.070 0.057 0.085 0.066 0.100 5.728 0.484 0.884 1.018 2.611 × 10−4 0.197 0.193 0.121 0.091 0.016 2.787
Transzero 0.428 0.330 0.614 0.170 0.306 0.282 0.007 5.648 0.397 0.863 0.280 9.635 × 10−5 0.082 0.068 0.066 0.024 0.125 2.324
:-core 0.141 0.229 0.428 0.019 0.031 0.076 0.115 10.095 0.791 0.990 1.067 4.372 × 10−4 0.405 0.117 0.096 0.027 0.075 2.640
:-truss 0.159 0.417 0.407 0.043 0.067 0.089 0.209 9.273 0.719 0.976 0.912 2.852 × 10−4 0.143 0.102 0.080 0.028 0.062 3.283

Orkut(5K)

ICS-GNN 0.625 0.969 0.462 0.436 0.561 0.456 0.080 20.028 0.690 0.954 1.545 1.170 × 10−3 0.246 0.225 0.213 0.091 0.057 8.778
QD-GNN 0.161 0.126 0.378 0.001 0.004 0.088 0.004 6.904 0.198 0.757 1.400 2.810 × 10−3 0.971 0.573 0.543 0.623 0.007 0.139
COCLE 0.467 0.372 0.779 0.200 0.291 0.314 0.017 12.353 0.427 0.865 1.051 8.660 × 10−4 0.284 0.188 0.193 0.125 0.102 4.261
COCLEP 0.914 0.892 0.963 0.814 0.882 0.862 0.031 17.435 0.550 0.893 0.260 8.742 × 10

−5 0.031 0.027 0.036 0.009 0.113 7.310
CGNP 0.662 0.747 0.612 0.450 0.599 0.539 0.050 17.457 0.605 0.922 1.789 1.098 × 10−3 0.247 0.217 0.204 0.146 0.081 7.177

CommunityAF 0.203 0.989 0.115 0.135 0.168 0.115 0.241 12.978 0.492 0.939 5.196 2.622 × 10−3 0.465 0.456 0.370 0.291 0.011 6.192
Transzero 0.911 0.894 0.948 0.792 0.885 0.849 0.032 16.560 0.529 0.869 0.417 1.362 × 10−4 0.047 0.042 0.068 0.037 0.104 7.046
:-core 0.208 0.200 0.466 0.042 0.061 0.120 0.038 25.204 0.858 0.996 1.054 1.155 × 10−3 0.412 0.125 0.125 0.020 0.103 4.471
:-truss 0.246 0.269 0.512 0.071 0.095 0.150 0.052 24.246 0.833 0.993 1.002 9.813 × 10−4 0.384 0.118 0.119 0.023 0.096 4.492

LiveJournal(5K)

ICS-GNN 0.687 0.952 0.538 0.486 0.630 0.524 0.034 8.366 0.522 0.767 1.000 4.552 × 10−4 0.211 0.202 0.181 0.083 0.033 3.926
QD-GNN 0.163 0.468 0.144 0.041 0.094 0.094 0.059 3.334 0.172 0.457 2.328 1.515 × 10−3 0.709 0.666 0.607 0.708 0.016 1.351
COCLE 0.315 0.307 0.330 0.080 0.209 0.193 0.042 5.868 0.352 0.675 1.439 6.523 × 10−4 0.345 0.337 0.288 0.217 0.019 2.800
COCLEP 0.865 0.810 0.952 0.710 0.820 0.779 0.014 7.446 0.430 0.702 0.147 4.419 × 10

−5 0.028 0.026 0.026 0.003 0.063 3.423
CGNP 0.521 0.589 0.493 0.328 0.448 0.406 0.025 7.674 0.472 0.740 1.296 6.620 × 10−4 0.292 0.273 0.234 0.161 0.043 3.470

CommunityAF 0.223 0.958 0.135 0.148 0.191 0.134 0.121 5.853 0.379 0.706 3.759 1.642 × 10−3 0.557 0.550 0.469 0.478 0.007 2.818
Transzero 0.939 0.912 0.967 0.827 0.919 0.885 0.016 7.392 0.429 0.685 0.170 4.935 × 10−5 0.032 0.030 0.037 0.011 0.054 3.438
:-core 0.292 0.345 0.566 0.143 0.183 0.203 0.079 27.286 0.807 0.938 0.828 1.029 × 10−3 0.394 0.092 0.109 0.016 0.066 5.305
:-truss 0.279 0.430 0.599 0.137 0.171 0.193 0.173 23.391 0.724 0.914 1.366 1.089 × 10−3 0.292 0.133 0.138 0.081 0.057 4.832

community quality of � from four aspects as listed in Table 7:

quantify community quality, such as internal connectivity, external

connectivity, both internal and external connectivity, and network

model [8, 83]. Given a graph � = (+ , �) with = = |+ | nodes and

< = |� | edges, a community � = (+� , �� ) is a subgraph of � with

=� = |+� | nodes and<� = |+� | where �� = {(D, E) ∈ � |D ∈ +� , E ∈

+� }. The number of edges on the boundary of community� can be

represented as =�� = |��� | = |{(D, E) ∈ � |D ∈ +� , E ∉ +� }|. Note

that ) = {(E,F) |E,F ∈ �, (D, E) ∈ �, (D,F) ∈ �, (E,F) ∈ �}, 3< is

the median value of 3 (D) in + .

For search evaluation, we focus on three aspects: search e�ec-

tiveness and search cost. Search e�ectiveness is measured using

the aforementioned metrics, search cost is assessed along two as-

pects: (1) Training phase: The time required for model training,

GPU resources (memory overhead), and (2) Search phase: the time

consumption to complete a single query, and the GPU resources.

5.2 Community Evaluation

We evaluated the identi�ed communities using various metrics. For

all methods, we employed 50 query nodes to assess the communities

identi�ed by these approaches.

5.2.1 Community Evaluation Across Multiple Metrics. We employ

18 metrics, including accuracy and community quality metrics,

to measure the communities identi�ed by 9 methods (including

2 non-learning methods :-core [4] and :-truss [17]). The results

are shown in Table 8. Learning-based methods demonstrate a sig-

ni�cant advantage over non-learning-based methods in accuracy

metrics (e.g., F1 and NMI). However, non-learning-based methods

achieve better performance in community quality metrics (e.g., AD,

FOMD, and TPR) due to prede�ned subgraph metrics. Moreover,

for these learning-based methods, we observe that COCLE, CO-

CLEP, and Transzero perform well on F1 and several quality metrics
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Figure 6: Metric correlation analysis

across most datasets. Despite using fewer labeled samples or none,

the introduction of contrastive learning allows the models to learn

additional information, thereby improving method performance.

We visually compare the changes in rankings of learning-based

methods across various metrics, as illustrated in Figure 5. Notably,

methods that rank highly on accuracy metrics (e.g., F1-score) do not

achieve high rankings on community metrics, particularly those

measuring internal connectivity, such as TPR. We also observe

that most methods exhibit consistent rankings across metrics AD,

FOMD, and TPR (or CD, ADF, and FDF), suggesting that these

metrics capture similar community properties. It is interesting to

note that ID, TPR, FOMD, and AD are all quality metrics measuring

internal connectivity, but ID does not exhibit ranking consistency.

A similar phenomenon is observed with EP and CR as well.

5.2.2 Metric Correlation Analysis. To better analyze the relation-

ships between metrics and select appropriate metrics for evalu-

ation, we explored the correlations among di�erent metrics on

four datasets using Pearson correlation coe�cients. The results are

presented in the heatmaps as shown in Figure 6.

Figure 6 presents the correlation calculations among all metrics.

It is evident that there is a strong correlation among the accuracy

metrics, while the correlation between the accuracy metrics and

community quality metrics is relatively weak. We can observe that

accuracy metrics and community metrics evaluate di�erent aspects

of communities. This suggests that incorporating community met-

rics into the evaluation process is reasonable, thereby enriching the

methods for measuring communities.

For community quality metrics, we observed that metrics based

on internal connectivity exhibit strong positive correlations with

each other on most datasets, while those related to external con-

nectivity also show relatively strong positive correlations within

their group. We can select representative metrics from those with

strong positive correlations to evaluate speci�c community quality

(e.g., internal cohesiveness). In this paper, we recommend TPR, EP,

DM, and CD as the representative community quality metrics.

5.2.3 Relationships between Identified Communities. We explore

the relationships between the communities identi�ed by di�erent
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Figure 7: Connection between identi�ed communities
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Figure 8: Correlation between methods’ e�ectiveness across

di�erent datasets

methods for the same query. Figure 7 (�rst row) shows the ratio of

the intersection of methods’ communities to their union, there is

relatively little overlap between the communities identi�ed by dif-

ferent methods. Additionally, we analyze the proportion of nodes in

the intersection that belong to the ground truth. Figure 7 (last row)

shows a signi�cant proportion of the intersection nodes that belong

to the ground truth, suggesting the existence of key community

nodes that are more likely to be identi�ed by di�erent methods.

5.2.4 Relationships between Methods and Datasets. We analyze the

correlations between methods’ e�ectiveness (including F1, NMI,

ARI, JAC, TPR, EP, CD, and DM) across di�erent datasets, as il-

lustrated in Figure 8. ICS-GNN and Transzero exhibit consistently

strong positive correlations across nearly all datasets (highlighted

in red), indicating their robustness and insensitivity to dataset vari-

ations. In contrast, QD-GNN and COCLE show strong correlations

between the Cora and Citeseer datasets, demonstrating better per-

formance on these datasets and indicating a preference for speci�c

datasets. Notably, Cora and Citeseer have lower average degrees

than other datasets and are commonly used for node classi�cation.

5.3 Overhead Evaluation of Methods

This section will conduct a comprehensive analysis of the methods’

overhead, considering both the training phase and the search phase.

5.3.1 Training Phase Analysis. During the training phase, we focus

on model’s initialization parameters, GPU usage, and epoch time.

Model Parameters. The number of model parameters generally

determines the model’s expressive capacity. We statistically analyze

the learnable parameters of the models, as illustrated in Figure 9.

The hyperparameters for the models are set to their respective

default values, primarily regarding the number of layers, input
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Figure 10: GPU consumption and training time

dimensions, and hidden dimensions. The number of layers and

hidden dimensions are often con�gured manually and are typically

positively correlated with the model parameters. In Figure 9, the

signi�cantly lower parameter of ICS-GNN and GS-GE compared to

other models can be attributed to their smaller hidden dimension

setting. The input dimension is determined by the initial features

of the nodes, and it is positively correlated with the model size.

Training GPU Usage. Figure 10 (top) illustrates the time required

for di�erentmethods to train for one epoch on seven datasets during

the training process. As evident from the propagation formula

of GNNs, both the adjacency matrix and input features occupy a

signi�cant amount of space. Consequently, the scale of the dataset

(determines the size of the adjacency matrix and the number of

input features) and the input dimension can greatly in�uence GPU

memory usage. The �gure illustrates that in the largest dataset,

Amazon (9k), most methods exhibit the highest GPU usage.

Training Time. Figure 10 (bottom) illustrates the GPU memory

usage of di�erent methods during the training process on 7 datasets.

ICS-GNN achieves a very short training time for each epoch due

to its minimal model parameters and candidate subgraph strategy.

This e�ciency allows it to perform online training and searching.

Comparison of Training Costs. We visually compare the e�ec-

tiveness of di�erent methods and the associated costs during the

training phase through ranking shifts, as shown in Figure 12 (top).

Except for ICS-GNN, no other method demonstrates consistency

across Model, GPU, and Time. Moreover, very few methods can

achieve good e�ectiveness while gaining advantages in the training.

5.3.2 Search Phase Analysis. During the search phase, we primarily

analyze GPU usage and the search time required for a single query.

Search GPU Usage. Figure 11 (top) illustrates the GPU memory

usage of di�erent methods during the training process on 7 datasets.

GPU usage during the search phase mainly depends on model pa-

rameters and input feature size. CGNP shows higher GPU consump-

tion than other methods, likely due to its meta-learning strategy,
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Figure 13: The tradeo� between query time and e�ectiveness

which requires preliminary training before searching. Moreover,

ICS-GNN bene�ts from the candidate subgraph strategy, maintain-

ing stable memory consumption across di�erent datasets.

Search Time. Figure 11 (bottom) illustrates the time required for

di�erent methods to train for one epoch on seven datasets during

the training process. COCLEP achieves faster search speeds than

COCLE on most datasets, indicating that graph partitioning en-

hances search e�ciency. On the other hand, GS-GE bene�ts from

the proximity graph, resulting in the least time consumption among

all methods. In contrast, ICS-GNN consumes more search time on

most datasets, likely due to the iterative vertex swapping required

during the search process to optimize the identi�ed community.

Comparison of Search Costs. We visually compare the e�ective-

ness of di�erent methods and the associated costs during the search

phase using ranking shifts, as shown in Figure 12 (bottom). It is ob-

served that there is no consistency between GPU usage and search

time; most methods that demonstrate good search performance

tend to require more search time.

Tradeo� between Query Time and E�ectiveness. We visually

illustrate the tradeo� between query time and e�ectiveness, as

shown in Figure 13. It shows that Transzero achieves an impressive

balance between e�ectiveness and e�ciency, whereas ICS-GNN

demands more time due to its online training.

5.4 Techniques In�uencing Performance

The techniques of graph sampling methods and training paradigms

play a critical role in designing learning-based community search
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Figure 14: The e�ect of candidate size (ICS-GNN)
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Figure 15: The e�ect of graph partition number (COCLEP)

techniques (as discussed in Section 4). In this section, we analyze

the impact of these techniques on the performance of the methods.

5.4.1 The E�ect of Candidate Subgraph. As shown in Figure 14, we

investigate the e�ect of candidate subgraph size on the performance

of ICS-GNN. For community evaluation, its accuracy decreases with

increasing candidate size on some datasets, while the community

quality shows no clear patterns of change. Regarding method over-

head, training time, and memory consumption during training and

searching, do not exhibit noticeable trends. This might be attrib-

uted to ICS-GNN’s lightweight model and relatively small candidate

subgraphs. However, search time increases with the increase of can-

didate subgraph size. This is likely due to the expanded search

space, which requires more time for the greedy search.

5.4.2 The E�ect of Graph Partitioning. We analyze the e�ect of

graph partition number on method performance, as shown in Fig-

ure 15. For community evaluation, the results reveal that accuracy

metrics initially improve but then decline as the partition number

increases, indicating that a higher partition count does not nec-

essarily yield better performance. Notably, DM and TPR exhibit

relative insensitivity to changes in partition number, whereas EP

and CD show a gradual increase with higher partition counts. This

trend may be attributed to the disruption of graph structure caused

by graph partitioning, which a�ects EP and CD to a greater extent.

In terms of method overhead, training time per epoch, search time

per query, and memory consumption during training and search

all decrease as the partition number increases.

5.4.3 The E�ect of Contrastive Learning. We present the relation-

ship between the number of labeled samples required by di�erent

methods and their performance metrics (averaged on all datasets)

in Figure 16. As shown, under comparable amounts of labeled data,

contrastive learning-based methods such as Transzero and COCLEP

demonstrate strong performance across most metrics, indicating

that contrastive learning enables models to capture useful informa-

tion beyond what is provided by the labels.

0.0

0.5

1.0

F1

0.0

0.5

1.0

N
M

I

0.0

0.5

1.0

A
R

I

0.0

0.5

1.0

JA
C

0 200 400 600
Labeled Data Number

0.0

0.5

1.0

TP
R

0 200 400 600
Labeled Data Number

0

2

4

EP

0 200 400 600
Labeled Data Number

0.0

0.5

1.0

C
D

0 200 400 600
Labeled Data Number

0

2

4

D
M

Transzero CGNP CommunityAF COCLE COCLEP QD-GNN ICS-GNN

Figure 16: The e�ect of contrastive learning
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6 RECOMMENDATION

Based on the experimental results, we provide the following rec-

ommendations for method evaluation and method selection:

Method Evaluation. To comprehensively evaluate learning-based

CS methods, we recommend evaluating these methods from two

perspectives: e�ectiveness and overhead, as shown in Figure 17

(left). The e�ectiveness of the method is evaluated from two per-

spectives: (1) community quality metrics, including the selected

TPR, EP, DM, and CD; and (2) accuracy metrics, including F1 score,

NMI, ARI, and JAC, which assess the alignment with ground-truth

communities. Overhead evaluation considers resource consump-

tion in both training and search phases. In the training phase, key

factors include model parameters, GPU consumption, and training

time, while in the search phase, GPU consumption and query search

time are rigorously assessed.

Method Selection. According to the experimental results, we

�nd that method selection highly depends on speci�c conditions,

as shown in Figure 17 (right): 1) Limited labeled data: COCLEP

and Transzero, leveraging contrastive learning, e�ectively capture

meaningful representations without extensive supervision; 2) Large-

scale graphs or constrained computational resources: COCLEP (via

graph partitioning) and ICS-GNN (via candidate subgraphs) reduce

graph size, thereby lowering the computational costs required for

training and inference; 3) Interactive scenarios: ICS-GNN dynami-

cally adjusts candidate subgraphs based on user feedback, providing

results more aligned with user interests.

7 CONCLUSIONS

In this paper, we present a comprehensive survey and experimen-

tal study of learning-based CS methods, highlighting emerging

trends and proposing a uni�ed pipeline. Furthermore, we address

the limitations of relying solely on accuracy metrics by including

a comprehensive evaluation to measure community holistically.

We empirically study the performance and overhead of di�erent

methods under various metrics, investigating correlations among

metrics and exploring the e�ects of commonly used techniques.
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