
Maximum :-Plex Finding: Choices of Pruning Techniques
Maer!

Akhlaque Ahmad
Indiana University Bloomington

akahmad@iu.edu

Da Yan
Indiana University Bloomington

yanda@iu.edu

Xiao Chen
Indiana University Bloomington

xc56@iu.edu

Lyuheng Yuan
Indiana University Bloomington

lyyuan@iu.edu

Qin Zhang
Indiana University Bloomington

qzhangcs@iu.edu

Saugat Adhikari
Indiana University Bloomington

adhiksa@iu.edu

ABSTRACT
A :-plex is a dense subgraph structure where every vertex can be dis-
connected with at most : vertices. Finding a maximum :-plex (M:P)
in a big graph is a key primitive in many real applications such as
community detection and biological network analysis. A lot of M:P
algorithms have been actively proposed in recent years in top AI and
DB conferences, featuring a broad range of sophisticated pruning
techniques. In this paper, we study the various pruning techniques
from nine recent M:P algorithms including kPlexT, Maple, See-
saw, DiseMKP, kPlexS, KpLeX, Maplex, BnB and BS by unifying
them in a common framework called U-M:P. We summarize their
proposed techniques into three categories, those for (1) branching,
(2) upper bounding, and (3) reduction during subgraph exploration.
We find that different pruning techniques can have drastically dif-
ferent performance impacts, but there exists a configuration of the
techniques dependent on : that leads to the best performance in vast
majority of the time. Interestingly, extensive experiments with our
unified framework reveal that some techniques are not effective as
claimed in the original works, and we also discover an unmentioned
technique that is actually the major performance booster when : > 5.
We also study problem variants such as finding all the M:Ps and
finding the densest M:P (i.e., with the most edges) to cover com-
munity diversity, and effective algorithm parallelization. Our source
code is released at https://github.com/akhlaqueak/MKP-Study.

PVLDB Reference Format:
Akhlaque Ahmad, Da Yan, Xiao Chen, Lyuheng Yuan, Qin Zhang,
and Saugat Adhikari. Maximum :-Plex Finding: Choices of Pruning
Techniques Matter! PVLDB, 18(9): 2928 - 2940, 2025.
doi:10.14778/3746405.3746418

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/akhlaqueak/MKP-Study.

1 INTRODUCTION
Finding cohesive subgraphs in a large graph is useful in various ap-
plications, such as finding protein complexes or biologically relevant
functional groups [28, 33, 43, 52] and social communities [42, 48].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.
doi:10.14778/3746405.3746418

(a) A Clique

a

c
bd

(b) A 2-Plex (c) Missing Edges of a

a

c
bd

a

c
bd

Figure 1: Examples of a Clique and a 2-Plex

One classic notion of cohesive subgraph is clique which requires
every pair of distinct vertices to be connected by an edge (see Fig-
ure 1(a)). However, in real graphs, communities rarely appear in
the form of cliques due to various reasons such as the existence of
data noise [37, 38, 49, 54]. As a relaxed clique model, :-plex was
first introduced in [51], which is a graph where every vertex E is
adjacent to all but at most : vertices (including E itself). Figure 1(b)
shows a 2-plex where every vertex is not adjacent to at most : = 2
vertices. For example, 0 is not connected to {0, 2} (see dotted edges
in Figure 1(c)). It has found extensive applications in the analysis of
social networks [51], especially in the community detection [38, 49].
However, mining :-plex structures is NP-hard [29, 47], so existing
algorithms rely on branch-and-bound search which runs in exponen-
tial time, but utilize effective pruning techniques to make the search
process tractable on medium-sized graphs.

Let us focus on the problem of finding a maximum :-plex (M:P),
i.e., when there are ties, an algorithm only needs to return one of
the maximum :-plexes (other variants will be studied in Section 6).
Surprisingly, in recent years, there is a surge of algorithms with
new pruning techniques proposed by the AI and DB communities
to significantly speed up M:P computation. However, they share a
lot of common pruning techniques, many of which are just reinvent-
ing the wheels. Moreover, some new techniques may not improve
performance at all, or only improve performance for small : values
but can lead to catastrophic performance when : is large. However,
these issues were not explicitly reported by the respective papers.
Even worse, there is a work [53] whose implementation is totally dif-
ferent from what was proposed in its paper, and its performance gain
mainly comes from an unmentioned technique. Without a thorough
experimental study of these techniques under a unified framework,
claims in some of these papers can mislead users to adopt the pruning
techniques that result in performance pitfalls.

This paper provides a timely (and in-depth) summary and experi-
mental study of the various techniques proposed by the recent M:P
algorithms, by placing them into a unified algorithmic framework.
We categorize the pruning techniques applied during subgraph ex-
ploration into three categories, those for (1) branching, (2) upper
bounding, and (3) reduction. To be self-contained, we provide the

2928

https://www.acm.org/publications/policies/artifact-review-and-badging-current

proofs of all techniques in our full technical report [27] with intuitive
diagrams and consistent notations, so that the main paper can focus
on providing intuitions about the idea behind these techniques. The
goal is to provide a benchmark of M:P with which future works can
avoid reinventing the wheel and focus on what are really new, and to
serve as a comprehensive testbed of the pruning techniques on their
performance impacts. We also provide algorithms for variants of
M:P that find all the M:Ps or the M:P with the most edges to cover
community diversity, and parallel versions of all our algorithms.

The insightful experimental findings are summarized as follows:
(1) Different pruning techniques can have drastically different

performance impacts (e.g., by thousands of times), but there
exists a configuration of the techniques (dependent on : only)
that leads to the best performance in vast majority of the time.

(2) The AI community actively designs the upper-bound-based
techniques to prune an entire branch of unpromising subgraph
search space, but those techniques are only useful for branch-
ing instead [44] when : is small. Moreover, a sophisticated
strategy such as the one by Seesaw [62] is not more beneficial
than a simple one. Even worse, branching in this way can
backfire when : is large (not tested and reported in [44]).

(3) When : is large, an unmentioned pivot-based branching method
works the best (up to thousands of times faster than upper-
bound-based branching), which we extract from the code
of Maple [53]. In fact, we find that [53] describes a totally
different algorithm which is not actually implemented.

(4) The DB community focuses on designing reduction rules to
reduce the size of candidate sets for subgraph expansion dur-
ing exploration. The latest algorithm kPlexT [35] proposes
a new branching method to improve worst-case time com-
plexity, but empirically we find it not competitive to those
proposed by the AI community. In contrast, kPlexT manages
to find a new reduction rule that continues to significantly
improve the search performance. Its prior version kPlexS [34]
advocates an incremental reduction technique called CTCP;
but we find that CTCP is only worthwhile at the top-level
subgraph exploration, but it backfires if it is further applied
with the lower-level branches due to the incurred overheads.

The main contributions of this paper are summarized as follows:
(1) To enable the discovery of the 4 findings above, we summa-

rize the pruning techniques of nine state-of-the-art M:P algo-
rithms into three categories, and place them into a carefully-
designed unified algorithmic framework called Unified M:P
(abbr. U-M:P) to facilitate the flexible configuration of tech-
niques. We utilize U-M:P for extensive experimental studies.

(2) Through the experimental studies, we obtain the above 4 find-
ings which clearly show what techniques work and what do
not, which the existing papers fail to reveal. We also identify
a configuration of the techniques (dependent on : only) that
leads to the best performance in vast majority of the time, and
recommend concrete alternatives to try in the rare cases when
this configuration is slow (which are difficulty to forecast).

(3) We formalize an unmentioned pivot-based branching method
that is the key to the performance of M:P when : > 5. We also
generalize [44]’s partition-based branching method (using S-
based upper bounding) to work with R- and SR-based upper
bounding, and it supports additional branch pruning.

(4) To ensure efficiency, we design efficient container structures
such as dual-array and auxiliary buffers that are preallocated
and incrementally reused/updated during the recursive sub-
graph exploration to maintain the necessary vertex sets.

(5) We provide algorithms for variants of M:P that find all M:Ps
or the M:P with the most edges, to avoid missing important
dense communities due to returning only one M:P.

(6) We parallelize U-M:P using a task-based approach with time-
out mechanism for load balancing to scale up almost ideally.

In the sequel, Section 2 introduces our notations and the branch-
and-bound framework adopted by M:P algorithms for subgraph
exploration. Then, Section 3 overviews our U-M:P framework and
introduces the types of pruning techniques focusing on upper bound-
ing ones. Subsequently, Section 4 summarizes the various branching
methods, and Section 5 summarizes the various reduction methods.
We discuss the M:P variants and parallelization in Section 6. Finally,
Section 7 reports our comprehensive experiments, Section 8 reviews
the related works, and Section 9 concludes this paper.

2 PRELIMINARIES
Notations. We consider an undirected and unweighted simple graph
⌧ = (+ , ⇢), where+ is the vertex set, and ⇢ is edge set. The degree of
a vertex E is denoted by 3⌧ (E) = |#⌧ (E) |. We also define the concept
of non-neighbor: a vertex D is a non-neighbor of E in ⌧ if (D, E) 8 ⇢.
Accordingly, the set of non-neighbors of E is denoted by #⌧ (E) =
+ #⌧ (E), and we denote its cardinality by 3⌧ (E) = |#⌧ (E) |. Given
a vertex subset (✓ + , we denote by ⌧ [(] = ((, ⇢ [(]) the subgraph
of⌧ induced by (, where ⇢ [(] = {(D, E) 2 ⇢ | D, E 2 (}. We simplify
the notation #⌧ [(] (E) to #((E), and define other notations such as
#((E),#((E) and 3((E) in a similar manner. For an arbitrary graph
6,+ (6) and ⇢ (6) denote the vertex set and edge set of 6, respectively.
The diameter of ⌧ , denoted by (⌧) is the shortest-path distance of
the farthest pair of vertices in ⌧ , measured by the number of hops.
Problem Definition. We next define the concept of :-plex and M:P.

Definition 2.1. (:-Plex) A graph 6 is a :-plex if every vertex
E 2 + (6) has at least |+ (6) |: neighbors in6, i.e.,36 (E)  |+ (6) |: .
Equivalently, 6 is a :-plex if every vertex E 2 + (6) has at most : non-
neighbors in 6 (including E itself as a non-neighbor), i.e., 36 (E)  : .

Definition 2.2. (Maximum :-Plex Finding) Given a graph ⌧ , the
maximum :-plex finding problem finds a largest vertex set % ✓ +
such that the subgraph ⌧ [%] induced by % is a :-plex.

The above M:P finding problem only finds one of the potentially
many maximum :-plexes (i.e., M:Ps) in ⌧ , but all of them could
be interesting since they may correspond to different (and even non-
overlapping) communities in a social network. Moreover, even all
M:Ps are ties in terms of vertex number, some may have more edges
than others and it would be interesting to find the densest one among
them. We, therefore, also consider two problem variants below:

Definition 2.3. (Finding All M:Ps) Given a graph ⌧ , the problem
finds all largest vertex sets % ✓ + such that ⌧ [%] is a :-plex.

Definition 2.4. (Finding the Densest M:P) Given a graph ⌧ , the
problem finds an M:P in ⌧ with the largest number of edges.

In Appendix A of our technical report [27], we show a case
study where it is necessary to mine multiple M:Ps to cover different

2929

Algorithm 1: Basic Branch-and-Bound Search

1 function BB_basic((,',6) # The basic BB(.) variant
2 if (reduce_and_prune((,',6) = true) then return
3 for each E 2 ' do
4 BB_basic(([{E},'  {E},6)
5 ' '  {E}

important communities. Note that the algorithms for these problem
variants are just variants of our M:P algorithm (see Section 6).
Hereditariness and Diameter of :-Plex. Note that :-plex satisfies
the hereditary property which says that: any induced subgraph (de-
noted by 60) of a :-plex 6 is also a :-plex, since a vertex in 60 cannot
miss more neighbors than those already missed in 6.

THEOREM 2.5. (Hereditariness) Given a :-plex % ✓ + , any

subset % 0 ✓ % is also a :-plex.

The proof is in Appendix C of our technical report [27].
Moreover, as proved by [55], the diameter of :-plexes with a rea-

sonably large size (which is usually the case for M:Ps) is bounded:

THEOREM 2.6. For a :-plex % and any integer 2  2, if |% | >
2:  2, then (%)  2 [55].

Most works [34, 53] only consider the case when 2 = 2 by assum-
ing |% |  2:  1, which gives the following corollary:

THEOREM 2.7. Given a :-plex % , if |% |  2:  1, then (%)  2.

We provide the proof of this special case in Appendix D [27].
The assumption |% |  2:  1 is reasonable for a maximum :-plex

% , since natural communities that our M:P problems aim to discover
are connected, and 2:  1 is relatively small. For example, when
: = 5, we only require |% |  9. Note that a :-plex with |% | = 2:  2
may be disconnected (e.g., formed by two disjoint (:  1)-cliques).
Subgraph Exploration by Branch and Bound. All existing M:P
algorithms follow (but are variants of) the branch-and-bound search
framework shown in Algorithm 1, where (is the set of vertices
already included into the current subgraph, and ' is the set of can-
didate vertices yet to be added to (to form a larger subgraph that
can become an M:P. Specifically, given a vertex-set pair h(,'i in
graph 6, Line 2 first calls a function reduce_and_prune((,',6) to
apply reduction and upper-bounding rules, which may decide that
the entire search branch to extend (is unpromising so that true

is returned, in which case Line 2 returns directly to terminate the
extension of (. We will discuss this function in more detail when
we introduce Algorithm 3 in Section 3. If the branch is not pruned,
Line 3 then takes the next candidate E 2 ', and split the search space
into two cases: (1) E is in the M:P to find, in which case Line 4
further extends h([{E},'  {E}i by recursion; (2) E is not in the
M:P to find, in which case Line 5 removes E so that it will not appear
in future iterations of the for-loop in Line 3.

Figure 2 illustrates the search process of Algorithm 1 on a toy
graph with four vertices 0, 1, 2 and 3, which corresponds to a set-
enumeration search tree where each node denotes (and we also
annotate its corresponding ' near the node (assuming that no node is
pruned, and that vertices in ' are always ordered with 0 < 1 < 2 < 3).

{}

{a} {b} {c} {d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b, c, d}

R = {a, b, c, d}

R = {b, c, d}

R = {c, d}

R = {d}

R = {}

R = {c, d} R = {d} R = {}

R = {} R = {} R = {}

R = {} R = {}

R = {d}

R = {} R = {d}

Figure 2: Set-Enumeration Search Tree
We can see that the search space is perfectly partitioned without
redundancy. Note that calling Algorithm 1 on (basically grows the
set-enumeration subtree under node (, which we denote by)(.

Also note that we do not need to create new input sets h([{E},'
{E}i at Line 4, but can reuse the space of h(,'i, and operations like
removing E from ' can be done in $ (1) time, using the dual-array
data structure introduced in Appendix I [27] with Figure 15.
Degeneracy Ordering. The :-core of a graph⌧ is its largest induced
subgraph with minimum (vertex) degree :. The degeneracy of ⌧ ,
denoted by ⇡ (⌧), is the largest value of : for which a :-core exists in
⌧ . It is well-known that the degeneracy of a graph can be computed
in linear time by a peeling algorithm that repeatedly removes a vertex
with the minimum current degree at a time [30], which produces
a degeneracy ordering of vertices. Appendix B of our technical
report [27] provides an illustration of this process. Note that ⇡ (⌧)
is usually a small value (see Table 2) since while a high-degree
vertex tends to appear later in the degeneracy ordering, so many of
its neighbors could have already been removed by peeling.

3 U-M:P: A UNIFIED M:P FRAMEWORK
Initialization. Before subgraph exploration, we first aim to find a
large (though may not be maximum) :-plex % as well as an upper
bound D1 on the size of any M:P in ⌧ , so that (1) if |% | = D1, then %
is already an M:P and can be directly returned, otherwise (2) we can
still prune those search branches that cannot lead to a larger :-plex
with size at least (|% | +1). We follow kPlexS [34] to compute h%,D1i
while running the peeling algorithm in linear time, and Appendix E
provides the detailed algorithm and its explanations.
Top-Level Branching. Recall from Theorem 2.6 that reasonably
large :-plexes (|% | > 2:  2) have diameter (%)  2. In other
words, for the top-level nodes E8 (E8 = 0, 1, 2, 3) in Figure 2, the
branch){E8 } under it only needs to consider a subgraph of⌧ , denoted
by 68 , where vertices are within 2 hops from E8 . It is thus worthwhile
to shrink ⌧ to 68 , and explore subgraphs in the branch){E8 } over
68 since (1) 68 is much smaller than ⌧ so checking the neighbors
of each vertex becomes much faster, and (2) this is an efficient
one-time processing that can benefit the entire branch){E8 } . So, we
follow this approach which is also adopted by recent algorithms
such as kPlexT [35], kPlexS [35], and Maple [53]. In contrast, when
processing){E8 } , even though whenever a vertex E is added to (, we
can shrink 68 further to remove vertices > 2 hops away from E , this
cost is associated with each expansion of (and so not worthwhile.

Algorithm 2 shows the pseudocode to create top-level search
branches){E8 } , where we assume there are two globally maintained
variables accessible any time during subgraph exploration: (1) % : the
current largest :-plex found, and (2) D1: size upper bound of an M:P.
These two variables are initialized in Line 2 using Algorithm 6 in

2930

Algorithm 2: Top-Level Branching (2 = 2)
Input: A graph ⌧ = (+ , ⇢) and an integer :  2
Output: A maximum :-plex in ⌧

1 function top_branching(⌧)
2 %,D1 find_init(⌧) # global variables set by Algo. 6
3 if |% |  D1 then return %
4 CTCP(⌧ , ;, |% | + 1  : , |% | + 1  2:)
5 Sort [E1, . . . , E=] following degeneracy ordering of ⌧
6 for 8 = 1 to |+ | do
7 1 # (E8) \ {E8+1, . . . , E=}
8 2 # (1) \ {E8+1, . . . , E=}
9 6 the subgraph of ⌧ induced by ({E8 } [1 [2)

10 BB({E8 },+ (6)  {E8 },6) # call a BB variant
11 Remove E8 from ⌧
12 CTCP(⌧ , {E8 }, |% | + 1  : , |% | + 1  2:)

13 return %

Appendix E, and during subgraph exploration, D1 stays the same
while % will be updated whenever a larger :-plex is found, so that
if we know that a branch cannot generate a :-plex larger than |% |, it
can be pruned without exploration. If |% | equals D1, then the initial
% is already a M:P and is thus returned in Line 3. Otherwise, Line 4
then further prunes unpromising vertices and edges from⌧ using the
CTCP reduction technique from kPlexS [34] which we will introduce
soon, so that top-level branches are created from the pruned ⌧ .

We then create branches){E8 } in the degeneracy ordering as
shown in Lines 5-6, which keeps the sizes of all 68 ’s small to avoid
having a giant branch that needs to search a deep set-enumeration
subtree with potentially high node fanouts. This is because a high-
degree vertex E8 tends to appear later in the degeneracy ordering, so
+8 has excluded many neighbors of E8 originally in + .

Without loss of generality, let us assume that 2 = 2, that is, an M:P
% has |% |  2:1 (i.e., |% | > 2:2). To create 68 for each E8 , Line 7
first obtains one-hop neighbors of E8 in+8 , and Line 8 then uses them
to obtain the two-hop neighbors (where # (1) = [E2# (1)# (E));
finally, Line 9 creates 68 using them (i.e., excluding other vertices in
+8 that are > 2 hops away from E8). Note that it is easy to extend 68
for the general case of 2. For example, when 2 = 3, we can addition-
ally compute 3 # (2) \ {E8+1, . . . , E=} and then compute 68 to
be the subgraph of ⌧ induced by ({E8 } [1 [2 [3).

Once 68 is created, Line 10 then explores it by extending (= {E8 }
using branch and bound. For now, we can think of BB(.) simply as
BB_basic(.) presented in Algorithm 1, and Section 4 will describe
two variants using more efficient branching methods. We then re-
move E8 from ⌧ in Line 11 (similar to Line 5 of Algorithm 1) so that
later branches will not consider E8 to avoid redundancy. Note that we
do not actually need to do the intersections in Lines 7 and 8 since
{E1, . . . , E81} have already been removed in previous iterations.
Core-Truss Co-Pruning (CTCP). kPlexS [34] proposes a CTCP
technique to prune the vertices and edges using the fact that to find a
larger :-plex with size at least |% | +1, we only need to consider those
vertices with degree at least gE = (|% | + 1  :) and those edges (D, E)
where D and E share at least g4 = (|% | + 1  2:) common neighbors
(see Theorem D.1 in our technical report [27]). Figure 3 shows an
illustration where vertices and edges below thresholds are alternately

Algorithm 3: Reduction and Pruning Function

1 function reduce_and_prune((,',6) # returns if)(is pruned
2 if (|% | = D1) then return true

3 Apply reduction rules to ((,',6)
4 if 6union = 6[(['] is a :-plex then
5 if |(| + |' | > |% | then % (['
6 return true

7 if partition((,',6) = ; then return true # Seesaw UB
8 return false

…

τv = 3, τe = 2

deg < 3,
remove

#{shared neighbors} < 2,
remove deg < 3, remove

Figure 3: Illustration of CTCP
pruned. kPlexS [34] shows that the reduced graph by CTCP is guar-
anteed to be no larger than that computed by BnB [40], Maplex [63]
and KpLeX [63] and was then the most efficient M:P algorithm.

We adopt the efficient implementation of CTCP(⌧ ,&E , lb_changed,
gE , g4) from kPlexS [34], where &E keeps the set of vertices that
must be removed from ⌧ , and lb_changed is a flag indicating if
the current largest :-plex % has changed (so that g4 is increased
and more edges may be pruned). By maintaining all 3⌧ (E) for all
E and the triangle counts for all edges (D, E) (denoted by 3⌧ (D, E)),
and dynamically updates them while propagating pruning from ver-
tices in &E (and if lb_changed = true, also from new edges with
3⌧ (D, E) < g4), CTCP can minimize its graph update footprint and
overhead to shrink ⌧ .

Refer back to Algorithm 2 where for simplicity, we omit argument
lb_changed of CTCP. Line 4 conducts CTCP over the entire ⌧
before creating branches (with lb_changed = false). Moreover, after
Line 11 removes E8 from ⌧ , new edges (e.g., E8 ’s adjacent ones)
may have 3⌧ (D, E) reduced below g4 , so CTCP is called in Line 12
with &E = {E8 } to shrink ⌧ further for use by future iterations (Here,
lb_changed is determined by whether BB(.) called in Line 10 has
found a larger :-plex to update %).
Reduction and Upper-Bound-Based Branch Pruning. Recall from
Line 2 of Algorithm 1 that BB(.) first calls reduce_and_prune(.) over
the instance ((,',6) for further reduction before extending (with
vertices from ', the pseudocode of which is shown in Algorithm 3.
Specifically, Line 1 first checks if the current % already reaches the
maximum possible size D1, and if so, it returns true to notify BB(.)
to terminate its subgraph exploration (see Line 2 of Algorithm 1).
Right after the call of BB(.) in Line 10 of Algorithm 2, we can check
if |% | = D1 and return % directly if so to terminate early.

Otherwise, we apply reduction rules (to be introduced in Sec-
tion 5) in Line 3 to reduce the candidate size of '. Before extending
(with vertices in ' (e.g., Lines 3–5 in Algorithm 1), we first conduct
a look-ahead pruning in Line 4 to see if the entire 6union = 6[(['] is
a :-plex, and if so, Line 6 returns true so that Line 2 of Algorithm 1
will return directly to terminate its exploration of)(. Moreover, if
([' is larger than the current % , % is updated with ([' in Line 5.

Finally, we check if)(can still produce a :-plex larger than % ,
and if not, Line 7 returns true to let BB(.) terminate its exploration
of)(. The function partition(.) (to be introduced in Section 4) uses

2931

Table 1: M:P Algorithms and Their Pruning Techniques
Upper Bounding (UB)

Algorithm

Branching Reduction
S-
Ba
se
d

R-
Ba
se
d

SR
-B
as
ed

UB
R1

UB
R2

Bi
na
ry

Pi
vo
t

S-
Ba
se
d

R-
Ba
se
d

SR
-B
as
ed

Tw
o-
H
op

RR
1

RR
2

RR
3

CT
CP

BR
1

BR
2

Algorithm

U-MkP (Our Work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g ✓ ✓ ✓ ✓ T ✓ ✓
kPlexT (SIGMOD’24) ✓ ✓ ✓ g ✓ ✓ ✓ ✓ T ✓ ✓
Maple (IJCAI’23) ✓ ✓ ✓ g ✓ ✓ ✓ ✓ + ✓ ✓
Seesaw (arXiv’23) ✓ + ✓ + ✓ — — — — — — — — — — — — — —
DiseMKP (IJCAI’23) ✓ + ✓ + ✓ ✓ ✓ ✓ T

kPlexS (PVLDB’22) ✓ ✓ ✓ g ✓ ✓ ✓ ✓ + ✓ ✓
KpLeX (IJCAI’21) ✓ ✓ ✓ ✓ ✓
Maplex (AAAI’21) ✓ ✓ ✓ ✓ ✓ ✓ ✓ T

BnB (IJCAI’18) ✓ ✓ ✓ ✓
BS (AAAI’17) ✓ ✓ ✓ ✓ ✓ ✓

✓ g : Two-hop graph constructed; ✓ + : Improved version; ✓ T : Top-level only
— : Seesaw only proposes UB rules, no open-source code;

* Note:

KpLeX (IJCAI’21)

BS (AAAI’17)

BnB (IJCAI’18)
Maplex (AAAI’21)

kPlexS (PVLDB’22)

DiseMKP (IJCAI’23) Maple (IJCAI’23)

Seesaw (arXiv’23) kPlexT (SIGMOD’ 24)

U-MkP (This Work)

Figure 4: Reported Algorithm Dominance Relationships
upper-bound-based pruning to return the subset of vertices in ',
denoted by ⌫, that is still worth branching with (i.e., to extend (only
with a vertex in ⌫ in the next step), and if ⌫ = ;, there is nothing
worth extending with so the entire)(is pruned.
Overview of Pruning Techniques. We now place the various prun-
ing techniques of nine recent algorithms under our U-M:P frame-
work established in Section 3, including kPlexT [35] Maple [53],
Seesaw [62], DiseMKP [44], kPlexS [34], KpLeX [45], Maplex [63],
BnB [40] and BS [55]. Table 1 summarizes the pruning techniques
of these algorithms into three categories, those for upper bounding,
branching, and reduction. We can see that most algorithms are from
the AI community (AAAI and IJCAI), since we can regard M:P
finding as a search problem. Specifically, the set-enumeration tree
defines a state space where each node (is a state, extension set '
defines the successor function, and an M:P for (to expand into is a
goal state. Moreover, the two works kPlexT [35] and kPlexS [34] are
from the DB community, actually the same group. Figure 4 shows
the performance dominance relationships reported by the respective
papers to their compared algorithms.

We have covered two reduction rules “Two-Hop” (or more gener-
ally, “2-Hop”) and “CTCP” since they are essential for describing
our U-M:P framework, and we will introduce the other reduction
rules in Section 5. Branching rules will be introduced in Section 4.

Regarding upper-bounding rules, one usage is to prune an entire
unpromising branch)(as mentioned in Line 7 of Algorithm 3, but
since it is also applied by a branching strategy, we will present the
details in Section 4.1 next. Note that there are still two more upper-
bounding rules UBR1 and UBR2 in Table 1, and since they are used
for reduction, we will present them in Section 5.

Also, Table 1 shows that BS uses more techniques than BnB but
is slower. This is because instead of finding a large initial :-Plex as
in Algorithm 6 to enable effective pruning (e.g., by CTCP in Line 4
of Algorithm 2), BS solves a decision version of M:P that guesses

S

k = 3

𝐼1

R

𝐼2 𝐼3

𝑢𝑏1 = min 𝐼1 , 𝑘 = 3
𝑢𝑏2 = min 𝐼2 , 𝑘 = 3

𝑢𝑏3 = min 𝐼3 , 3 = 2

𝑆 = 5

Figure 5: Illustration of Partition-Based Upper Bounding

its size, and relies on binary search on the size range to locate M:P
by running explorations for up to $ (log |+ |) times [55].

4 BRANCHING METHODS
This section reviews two competitive branching methods, one using
partition-based upper bounding, and the other using pivoting,
both significantly beating a baseline binary branching method. For
the former, we show that although the latest cost-model-driven See-
saw upper bound [62] was originally proposed only for entire-branch
pruning (see Line 7 of Algorithm 3), it can actually be adapted for
branching. For the latter, we actually reverse engineered this unmen-
tioned technique from the code of Maple [53], which unfortunately,
implements something totally different from what their paper de-
scribed. Recall our contribution (3) in Section 1.

4.1 Partition-Based Upper Bounding
The partitioning-based upper bounding technique was proposed
and improved by series of works: Maplex [63], KpLeX [45], Dis-
eMKP [44], Seesaw [62]. Given h(,'i, the goal is to compute a
size upper bound *⌫(on the largest :-plex that (can be extended
into using candidates from ' (i.e., within branch)(), by partitioning
vertices of ' into C subsets 1, 2, . . ., C . If for each 8 , we can show
that at most D18 vertices from 8 can be added to (without breaching
the :-plex requirement, then*⌫(can be computed as |(| +ÕC

8=1 D18 .
We illustrate by the example in Figure 5 that uses Maplex’s color-

based method, which repeatedly removes a maximal independent set
8 from ' at a time. Since vertices in 8 do not have any mutual edges
(so can share the same color during graph coloring, hence the name),
if more than : vertices are added from 8 to (, then each added vertex
will have more than : non-neighbors in (, breaching the :-plex
requirement and the set cannot be further extended into a :-plex due
to the hereditary property. Therefore, D18 = min{|8 |,:}. In Figure 5,
the upper bound is given by*⌫(= |(| +Õ3

8=1 D18 = 5+3+3+2 = 13.
R-Based Upper Bounding. We present the above algorithm to
obtain each h8 ,D18 i in Appendix F of our technical report [27]. We
call this method as R-based strategy, since it computes independent
sets directly from ' without referring to (’s content.

Seesaw [62] further tightens this bound. To explain its method,
we first define the concept of vertex support.

Definition 4.1. (Support) The support of a vertex E is defined
as X((E) = :  |#((E) |, which indicates the maximum number of
non-neighbors of E that can be added to (.

Intuitively, X((E) serves as the non-neighbor “quota” of E that
can be added to ((including E itself if E 8 () without breaching the
:-plex requirement. This support definition is also used a lot in the
reduction rules, as we shall see in Section 5.

We actually maintain 3((E) incrementally and keep it up to date
whenever we move vertices around ' and (, so X((E) = :  (|(| 
3((E)) can always be obtained in $ (1) time for use by our pruning
techniques. See Appendix J [27] for the details.

2932

b

a

c

d

e f

h

i

g

b

a

c

d

e f

h

i

g

𝑆
b

a

c

d

e f

h

i

g

πa={h, i}, δS (a) = 1
uba = min(|πa|, δS (a))
disea = |πa|/uba = 2/1 = 2

πb={ f, g, i}, δS (b) = 1
ubb = min(|πb|, δS (b))
diseb = |πb|/ubb = 3/2 = 1.5

πc={e, f, g, h}, δS (c) = 1
ubc = min(|πc|, δS (c))
disec = |πc|/ubc = 4/1 = 4

𝑆𝑆(a) (b) (c)

Figure 6: An Example Graph for S-Based Partitioning
Now we are ready to present Seesaw’s R-based strategy. Seesaw

tightens D18 = min{|8 |, :} into D18 = max{8 | X((E8)  8} (see
Lemma 1 of [62]). Moreover, for each h8 ,D18 i obtained where 8 is
a maximal independent set, Seesaw [62] further relaxes 8 to include
additional vertices from ' without increasing the value of D18 (see
Lemmas 2–3 of [62]). This reduces the number of remaining vertices
in ' (from which future partitions are obtained) hence tends to reduce
the upper bound*⌫(. Our current work uses this improved approach
to obtain h8 ,D18 i rather than the simple approach of Maplex, and
we denote this operation by

h8 ,D18 i get_R_part(', (,6)
where get_R_part(.) is specified by Algorithm 2 of [62].
S-Based Upper Bounding. KpLeX [45] proposes a different way to
obtain h8 ,D18 i by partitioning vertices of ' based on vertices in (, so
we call this approach S-based strategy. Specifically, it partitions '
by obtaining from ' (1) the common neighbors of all vertices in (as
c0, (2) for each E8 2 (, obtain c8 as all the remaining non-neighbors
of E8 in '. Consider the graph in Figure 6(a) where (= {0,1, 2} and
vertices 3 to 8 belong to ': if we check vertices in (by the order
[0,1, 2], we obtain c0 = {3}, c1 = {⌘, 8}, c2 = {5 ,6}, c3 = {4}.

KpLeX treats each c8 (8  1) as 8 , we have D18 = X((E8) since it
is the quota of non-neighbors of E8 that can be pulled into (. Clearly,
we can compute*⌫(= |(| + |c0 | +

Õ |(|
8=1 min{|c8 |, X((E8)}. However,

the value of *⌫(depends on the checking order of vertices in (.
To find an ordering that leads to small *⌫(, DiseMKP [44] pro-

poses the concept of distribution efficiency (dise) where 38B4 (c8) =
|c8 |/D18 . Intuitively, we prefer high 38B4 (c8) since we want to re-
move a large set c8 from ' while adding a small D18 to *⌫(. Based
on this idea, DiseMKP proposes to greedily check 38B4 (c8) for all
the remaining E8 2 (whose c8 has not been selected, and choose the
one with the highest 38B4 (c8) as the next 8 . Figure 6 illustrates how
1 is determined by computing the dise scores, and c2 is picked as
1 since it has the highest dise. Note that c8 ’s are initialized as all
non-neighbors of E8 that could overlap, so after 1 = c2 is picked, we
need to update c0 = c0  1 = {8} and c1 = c1  1 = {8}, and then
pick 2 by comparing their dise scores.

We denote the above operation to obtain a partition 8 as
h8 ,D18 i get_S_part(', (,6,⇧)

where ⇧ = [E8 2(c8 is an auxiliary set that keeps the (potentially
overlapping) non-neighbor sets c8 of all E8 2 (, which is initialized
before computing*⌫(, and tracks the candidate partitions to choose
next. Note that whenever a partition c8 is chosen, its vertices are
removed from all partitions in ⇧, so if c is previously chosen, it will
become empty. Function get_S_part(.) simply chooses the next par-
tition among those non-empty c8 ’s in ⇧, and the detailed algorithm
is specified in Appendix G of our technical report [27].

{}

{a}{b}{c}{d}

{a, b}{a, c}{a, d}{b, c}{b, d}{c, d}

{a, b, c}{a, b, d}{a, c, d}{b, c, d}

{a, b, c, d}

R = {a, b, c, d}

R = {b, c, d}

R = {c, d}

R = {d}

R = {}

R = {c, d}R = {d}R = {}

R = {}R = {}R = {}

R = {}R = {}

R = {d}

R = {}R = {d}

Figure 7: Set-Enumeration Search Tree (Horizontal Flip)

RS BI1

ub1

I2

ub2

Im

ubm

… … …

Partitions Vertices

count = ntail

|P| – |S| = β = ub1 + ub2 + + ubm + ntail…

reverse
candidate
scan order

Figure 8: Illustration of Branching Set Computing
SR-Based Upper Bounding. Since 38B4 (c8) = |c8 |/D18 is also well
defined for R-based partitions, Seesaw [62] proposes to run both
method when picking the next partition from ':

h'8 ,D1'8 i get_R_part(', (,6),
h(8 ,D1(8 i get_S_part(', (,6,⇧),

and pick the partition with the higher dise as the next partition 8 .
Of course, vertices of 8 need to then be removed from ' and all
candidate sets c 9 maintained for the S-based strategy, and D18 is
added to *⌫(. This is repeated until ' becomes empty (so c0 will
be refined by R-based strategy at the end), after which we add |(| to
*⌫(to obtain the final *⌫(. This method is the SR-based strategy.

4.2 Partition-Based Branching
Branching Set. The above partition-based upper bounding technique
can actually be used for branching that allows some branches to be
pruned, as proposed by DiseMKP [44]. Specifically, let us consider
the horizontal flip of the set-enumeration tree in Figure 2, which we
show in Figure 7. We can observe that when we scan the candidates
from right to left till reaching a candidate E 2 ', the set-enumeration
subtrees rooted at E and all the candidates in front of E in ' can only
involve vertices in (, E , and those vertices before E in '. For example,
for node (= {} in Figure 7, when we scan ' and reach 1, all the
three subtrees rooted at nodes {3}, {2} and {1} contain vertices in
{1, 2,3}. Similarly, for node (= {0}, when we scan ' and reach 2,
the two subtrees rooted at nodes {0,3} and {0, 2} contain vertices in
{0, 2,3}. Now let us consider Figure 8 with h(,'i, and the last few
vertices constitute a set ⌫. Following the above discussion, we know
that subtrees rooted at the vertices in '0 = '  ⌫ can only involve
those vertices in (['0. If we can show that the size upper bound of
a :-plex obtained by extending (with candidates in '0, denoted by
*⌫(('0), cannot exceed |% | (i.e., cannot produce a larger :-plex),
then we do not need to extend (with those vertices in '0 in the next
level. In other words, we only need to branch over vertices in ⌫,
hence we call ⌫ the branching set.

Note, however, that vertices of '0 can still appear in the subtrees
of those nodes that extend (with vertices in ⌫, so they are not
removed from 6 (i.e., not reduction) but just skipped for the level
of branching below (. To illustrate with Figure 7 again, assume that

2933

Algorithm 4: Partitioning-Based Branch and Bound
Input: Flag fB443 : true if called by the top level.

Flag fD? : a global variable indicating branch pruning
1 {Updates % if a larger maximum :-plex is found}
2 function BB_part((,',6,fB443)
3 if (reduce_and_prune((,',6) = true) then return
4 ⌫ partition((,',6)
5 '0 ' \ ⌫
6 Sort ⌫ = [E1, . . . , E=] following degeneracy ordering of 6
7 for 8 = |⌫ | to 1 do
8 if (fB443 = CAD4) then fD? false

9 if

fD? = CAD4


then return

10 g>;3 |% |
11 BB_part(([{E8 },'0,6, false)
12 if |% | > g>;3 then fD? CAD4
13 '0 '0 [{E8 }

'0 = {3, 2} for (= {}, then even if we skip the subtrees under {3}
and {2}, 2 and 3 can still appear in the subtrees under {1} and {0}.

We can use the partition-based upper bounding techniques pre-
sented in Section 4.1 to construct '0 (and hence ⌫ = '  '0). As
Figure 8 illustrates, our goal is to find '0 as a subset of ' that is as
large as possible so that *⌫(('0)  |% |. Let us view the computa-
tion of *⌫(('0) as the following process: initially, *⌫(('0) is set
as |(|, and we then partition '0 into partitions h8 ,D18 i and add all
D18 values to *⌫(('0) to obtain the final value of *⌫(('0).

We can use any of the S-based strategy, R-based strategy, or SR-
based strategy presented in Section 4.1 to find h8 ,D18 i one at a time
and expand '0 with 8 . Since we require*⌫(('0)  |% |, we have the
quota V = |% |  |(| for the summation of D18 values when we choose
as many partitions 8 into '0 as possible. Whenever a partition 88
is chosen, we deduct D18 from V so that V is always the remaining
quota. We denote the above process to compute ⌫ ('0 = '  ⌫) as

⌫ partition((,',6),

which keeps obtaining h8 ,D18 i as long as V  D18 (during S-based
partition selection as shown in Figure 6, we also do not consider
those candidates c8 with D18 > V). Finally, as Figure 6 illustrates,
assume that D1<+1 > V for the next partition <+1 (if exists), we
then stop obtaining this and future partitions (with potentially lower
dise scores), but rather taking V more vertices from ' (if exists) to
prune more branches by letting*⌫(('0) reach the allowed value |% |.

Algorithm 9 in Appendix H of our technical report [27] shows
the pseudocode of partition((,',6) when we apply the most sophis-
ticated SR-based strategy, and the counterparts for the other two
strategies can be similarly derived (but much simpler).
Partition-Based Branch and Bound. Operating on the horizontally
flipped set-enumeration tree as shown in Figure 7 allows additional
branch pruning as follows: assume that we have processed the top-
level branches){E1 } ,){E2 } , . . .,){E81 } and the current largest :-plex
is % , then we can find a :-plex with at most (|% | + 1) vertices in
branch){E8 } , so as soon as we find such a :-plex, we can skip the
rest of){E8 } (where we can find at most ties) and move on to){E8+1 } .

To see this, consider Figure 7 again, and assume that){3 } ,){2 }
and){1} have been processed so that % is an M:P found over {1, 2,3}.

Then in){0} , we show that we cannot we find a :-plex % 0 of size
more than |% | + 1 by contradiction: assume that |% 0 | > |% | + 1, then
since 0 is the only additional vertex beyond {1, 2,3}, we must have
0 2 % 0 (otherwise, % is not an M:P over {1, 2,3}); by the hereditary
property of :-plex, % 0  {0} ✓ {1, 2,3} is also a :-plex but has size
more than |% |, which contradicts with the fact that % is an M:P over
{1, 2,3}. This proof can easily be adapted to the general case.

Based on this idea, Algorithm 4 shows the partition-based branch-
and-bound algorithm to be called by Algorithm 2 with fB443 = CAD4.
Here, fB443 indicates if the function is called by the top level, and
within each branch under a top-level node, the recursive call passes
false to fB443 as Line 11 shows. As a result, when computation just
enters a top-level branch){E8 } , Line 8 will initialize the global flag
variable fD? to false to indicate that a :-plex of size (|% | + 1) has not
been found in){E8 } yet. Line 11 then recursively extends ([{E8 }
for a vertex E8 2 ⌫, and Line 12 checks if the recursive call has
increased |% | beyond its old value recorded in Line 10. If so, a larger
:-plex is found (and must have size |% | + 1 based on the previous
discussion), so we terminate the exploration of){E8 } by directly
returning in Line 9 along the backtracking path all the way to the
top level, which will then proceed the exploration to){E8+1 } .

Note from Lines 6–7 that we only branch on vertices in ⌫, and
we check vertices from E |⌫ | to E1 in the reverse degeneracy ordering,
so that dense regions are examined first in hope that a larger % can
be identified early to prune a lot of unpromising branches.

Implementing Auxiliary Buffers Π. Recall that the S- and SR-
based strategies require an auxiliary set ⇧ = [E8 2(c8 that keeps the
(potentially overlapping) non-neighbor sets c8 of all E8 2 (. Creating
and initializing it for each time when partition(.) is called in Line 4
of Algorithm 4 is very expensive, so we propose to preallocate buffer
space for ⇧ to be reused during recursive subgraph exploration in a
space-efficient manner. The details can be found in Appendix K [27].

As our experiments shall show, the partition-based branching
method is usually the most efficient branching method for the small
values of : (2 to 5) that are the focus of most papers (only Maple [53]
tested large values for :), but only adopted by S-based methods
KpLeX [45] and DiseMKP [44] with the scheme not clearly ex-
plained, so later works such as kPlexT [35] still uses binary branch-
ing that is less efficient. By clearly explaining this partition-based
scheme and extending it to support all 3 variants of partition-based
strategies (S-, R-, and SR-based), we hope to motivate future M:P
works to consider this partition-based scheme when : is small.

Also note that instead of evaluating if *⌫( |% | in Line 7 of
Algorithm 3, we evaluate if ⌫ = ; in Line 7, which is equivalent.

4.3 Binary Branching
As Table 1 shows, most algorithms adopt simple binary branching
that given instance h(,'i, chooses a vertex E 2 ' with the smallest
degree (to follow the degeneracy ordering) and divides into two
instances h([{E},'  {E}i (i.e., % containing E) and h(,'  {E}i
(i.e., % not containing E). However, there is no branch pruned like '0

in partition-based method, so simple binary branching is inefficient.
Interestingly, kPlexT [35] recently proposes a slightly improved
binary branching method to choose E more smartly, which is essential
for proving their improved worst-case time complexity. However, our
experiments show that their branching method does not obviously

2934

Algorithm 5: Pivoting-Based Branch and Bound
Input: %,⌫ are global variables, E8 is the top-level vertex

S is the candidate stack
Output: Updates % if a larger maximum :-plex is found

1 function BB_pivot((,',6)
2 if (reduce_and_prune((,',6) = true) then return
3 if S = ; or S.C>? () 2 (or S.C>? () 8 ' then
4 if 9E 2 ', s.t. (E, E8) 8 ⇢ (6) and


X((E) = 1

or X((E8) = 1 or 36 (E) + :  |% | + 1


then
5 S {E}
6 else
7 E? = A vertex with minimum 36 (.) in '
8 S '  #6 (E?)
9 Sort S in descending order of 36 (.)

10 E S.?>? ()
11 BB_pivot(([{E},'  {E},6)
12 Remove E from 6
13 S.2;40A ()
14 BB_pivot((,',6)

vi

gS

v
S

+ u1
…+ u2 + um + um+1 + um+h

…
… …

(a) The “if” Case (b) The “else” Case, Ng(v) = {um+1, …, um+h}

v=

Figure 9: Illustration of Pivot Selection
improve performance, and efficiency of kPlexT is mainly contributed
by a new reduction rule UBR2 and avoiding CTCP in non-top-level
BB recursion (in contrast to their prior algorithm kPlexS).

In contrast, our experiments show that the pivot-based binary
branching method of Maple [53], as shown in Algorithm 5, can
significantly improve performance, and is often many orders of
magnitude faster for branching when : is large. Interestingly, Algo-
rithm 5 is reverse-engineered from Maple’s code, and their paper [53]
proposes something totally different that finds M:P by solving a
complement problem of :-plex called 3-BDD, which is not actually
implemented in their GitHub repo, so cannot be compared.

Our experiments reveal that while partition-based branching is the
most efficient for small : values, it is not competitive to BB_pivot(.)
(Algorithm 5) when : becomes larger. This is mainly because each
D18 = min{|c8 |, X((E8)} becomes loose when : is large (since X((E8) =
:  |#((E8) |), reducing the pruning power of BB_part(.) (Algo-
rithm 4). We recommend BB(.) to choose BB_part(.) when :  5
and BB_pivot(.) otherwise (see Appendix L [27]).

We now explain Algorithm 5, which treats M:P finding as a con-
straint satisfaction problem (CSP) and applies the most-constraining-
variable heuristic to find candidates to extend (that tend to reduce
the remaining candidates in ' the most. As we can see from Lines 11,
12 and 14, BB_pivot(.) is still a binary branching method that selects
a pivot E at a time to divide the instance. The key success lies in its
two methods to select E to be the most constraining.

In Case 1, Line 4 aims to find E as a non-neighbor of top-level
vertex E8 (i.e., we are exploring){E8 }) which decrements X((E8) to
promote pruning. For such a E we also require it to fall in one of the

three candidate-constraining cases (see Figure 9(a)): (1) X((E) = 1,
so after E is added to ((hence X((E) = 0), all non-neighbors of
E can be pruned from '; (2) X((E8) = 1, so after E is added to (
(hence X((E8) = 0), all non-neighbors of E8 can be pruned from ';
(3) 36 (E) + :  |% | + 1, so extending ([{E} cannot lead to a :-plex
larger than |% | + 1 (see reduction rule RR3 in Appendix M [27])
and is more likely to be pruned (36 (E) + : > |% | must hold, or RR3
should have pruned E in Line 2). If E is found, Line 5 will set S to
contain only E , and E will be popped in Line 10 for binary branching.

Otherwise, the else-branch (Case 2) finds E? 2 ' as the vertex
with minimum 36 (.), and pushes the candidates in ' to S so that they
are popped in Line 10 in non-decreasing order of 36 (.) (to follow
the degeneracy ordering), with E? being the first to pop. Note that as
Line 8 does, we do not add #6 (E?) to S since as Figure 9(b) shows,
the last ⌘ branches that correspond to candidates from #6 (E?) can
only produce :-plexes % 0 ✓ #6 (E?); since E? connects to every
vertex in % 0, % 0 [{E? } is also a :-plex, so % 0 cannot be an M:P.

As we shall see in Section 5, reduction rules in Line 2 may
move some candidates directly from ' to (, leading to S.C>? () 2 (;
and may prune some candidates already added to S, leading to
S.C>? () 8 ', in which case Line 3 will activate the selection of a
new pivot. Otherwise, the if-branch in Line 3 will be skipped and
next candidate in S will be popped for binary branching.

5 REDUCTION METHODS
This section briefly overviews the reduction techniques summarized
in Table 1, focusing on categorizing them. Due to the space limit,
the detailed rules and their proofs can be found in Appendix M [27].

The general idea of reduction rules is to remove unpromising
vertices from 6. These rules check 36 (E) and X((E) = :(|(|3((E))
for vertices E frequently, so we incrementally maintain 36 (E) and
3((E) and keep them up to date whenever we move vertices around
' and (, so that 36 (E), 36 (E) = + (6)36 (E) and X((E) can be always
be obtained in $ (1) time for use by our reduction rules below. See
Appendix J [27] for the details on incremental degree maintenance.

Section 3 discussed TwoHop and CTCP. We will now discuss
the remaining ones: RR1–RR3, BR1–BR2, and UBR1–UBR2. Note
that while kPlexS [34] promotes CTCP for each subgraph extension,
we find its overhead to be high, and using the other more efficient
reduction rules for reduce_and_prune(.) in BB(.) is more favorable.
This is also what was done in their follow-up work kPlexT [35].

RR1–RR3 shrink '. Given ((,',6), a vertex E 2 ' is unpromising
if ([{E} is not a :-plex, so RR1 and RR2 prune such E from
', based on conditions that check X((.). Also, E is unpromising if
extending ([{E} cannot produce a :-plex larger than % , so RR3
prunes such E from ' based on a condition that checks 36 (E).

RR1-RR3 are used by all M:P algorithms, so we put them in
the same category. There are two more sophisticated upper-bound-
based reduction rules that utilize tighter upper bounds (of the size
of a :-plex extending ([{E}), so are more powerful in pruning
candidates in ': UBR1 is proposed by kPlexS [34], and UBR2
by kPlexT [35], both from the same group in the DB community.
Notably, our experiments reveal that UBR2 is particularly effective
as a reduction rule even though it is only discovered very recently.

Finally, there are also two reduction rules that directly add a
vertex E 2 ' to (, based on conditions related to 36 (.). Specifically,
BR1 is first proposed by kPlexS [34] based on conditions related

2935

to 36 (E) which ensures that, if there exists an M:P % containing (,
then there must also exist an M:P % 0 containing ([{E}. Therefore,
if we only need to find one M:P, we can directly move such a E into
(, but if our goal is to find all M:Ps, we also need to consider the
other branch where E is removed from '. In contrast, BR2 is first
proposed by BS [55] based on conditions related to 36 (.) of E and
all D 2 #6 (E) which ensures that, every M:P in 6 must contain E , so
we can safely move such E to (, even when we are finding all M:Ps.

6 M:P VARIANTS AND PARALLELIZATION
M:P Variants. For the variant that finds all M:Ps (rather than an
arbitrary one) which we call as All-M:P, we propose a two-phase
approach. Phase 1 finds the size of M:Ps (denoted by ?<0G) using
our M:P framework. Then, Phase 2 loads ⌧ again and prunes it
using CTCP with gE = ?<0G  : and g4 = ?<0G  2:. During
subgraph exploration, we lock the threshold of the current largest
:-plex size to be ?<0G  1, so that the pruning techniques will not
prune the search space that can lead to any :-plex of size ?<0G ; and
whenever such an M:P is found, it is immediately emitted as a result
without incrementing the threshold. Also, we cannot enable BR1 in
reduce_and_prune((,',6) to avoid missing any M:P.

For finding the M:Ps with the most edges (Densest-M:P), Phase 2
instead only update the current densest M:P if a newly found one
has more number of edges.

All-M:P can find diversified communities that have a tie in size
but may not overlap much, while Densest-M:P can further identify
a denser community among them. Appendix A [27] provides a case
study to show how these variants can avoid missing important dense
communities due to returning only one M:P. Note that the algorithms
for these problem variants are just variants of our M:P algorithm.
The Parallel Algorithm. Our M:P framework can be easily par-
allelized with a task-based model [46, 57] that has been exten-
sively applied in compute-intensive graph search and mining prob-
lems [36, 41, 46, 56, 58–61]. The idea is to add all E8 2 + into a task
queue & , where each element E8 defines a top-level branch){E8 } as
an independent task that can be assigned to an idle CPU core for
recursive mining by first creating the two-hop graph (denoted by 68)
created for E8 as shown in Lines 7–9 of Algorithm 2. At any time,
we only process a window of \ tasks and hence maintain \ two-hop
graphs, where \ is the number of computing threads.

Since){E8 } can have drastically different sizes with some giant
branches becoming stragglers, we adopt the timeout mechanism [36,
41, 46, 60, 61] where a task recursively mining branch)(can time
out after running beyond a time threshold gC8<4 (= 0.1 ms by default),
after which any explored node (0 during backtracking will become a
new task for mining)(0 . New tasks are directly added back to the
task queue to be scheduled for processing by idle threads. Since
tasks created from the same top-level branch){E8 } share the same
graph 68 , we adopt the approach detailed in Section 6 of [36] to
group these tasks into one task group: each initial task with (= {E8 }
creates a task group that keeps 68 for use by its tasks, while new
tasks created due to the decomposition of an existing task in E8 ’s
task group are added to the same task group. A task group keeps
track of its active tasks with its own queue, and is released from
memory together with 68 when a thread finishes the last task in the
group. To keep memory bounded, only a window of \ task groups

Table 2: Datasets
Dataset |V | |E | dmax d avg D (G) Category

johnson8-4-4 70 1855 53 53 53 Synthetic Graph
keller4 171 9435 124 110 102 Synthetic Graph
socfb-Duke14 9885 506,437 1887 102 85 Facebook Network
ia-wiki-Talk 92,117 360,767 1220 8 58 Interaction Network
soc-buzznet 101,163 2,763,066 64,289 55 153 Social Network
soc-LiveMocha 104,103 2,193,083 2980 42 92 Social Network
soc-gowalla 196,591 950,327 14,730 10 51 Social Network
soc-digg 770,799 5,907,132 17,643 15 236 Social Network
sc-ldoor 909,537 20,770,807 76 46 34 Scientific Computing
soc-youtube-snap 1,134,890 2,987,624 28,754 5 51 Social Network
soc-lastfm 1,191,805 4,519,330 5150 8 70 Social Network
soc-orkut 2,997,166 106,349,209 27,466 71 230 Social Network
wikipedia-link-en 13,593,032 669,183,050 1,052,326 49 1114 Hyperlink Network
dbpedia-link 18,268,991 253,780,418 612,308 14 149 Hyperlink Network
wikipedia-link-en13 25,921,548 1,086,367,222 4,271,341 42 1120 Hyperlink Network
delicious-ui 33,778,221 203,595,714 29,319 6 193 Social Network
soc-sinaweibo 58,655,849 522,642,066 278,489 9 193 Social Network
web-ClueWeb09 147,925,593 893,533,906 308,477 6 192 Web Graph

are processed at any time, and when there are already \ task groups,
the next new root-level task){E8 } can only start its evaluation when
some existing task group is completed.

Recall that Line 11 of Algorithm 2 removes E8 when){E8 } is
processed, and Line 12 subsequently applies CTCP(.) to further
shrink the graph ⌧ . However, this is not thread-safe in our parallel
implementation since it is possible that when a thread is still creating
68 from ⌧ that needs a vertex D, another thread may have already
finished a different branch){E9 } and deleted D (either because D = E 9
or due to CTCP). We, therefore, disable Lines 11–12 but instead
prune those vertices E 9 with 9 < 8 + 1 in Lines 7–8 (which is not
needed in the serial algorithm due to Line 11) when constructing 68 .

7 EMPIRICAL STUDIES
This section reports our comprehensive experiments to evaluate the
various pruning techniques under the proposed U-M:P framework,
as well as its comparison with the state-of-the-art M:P algorithms.
Our code is written in C++17 and compiled by g++ version 12.3.0
with optimization flag -O3. All the experiments are conducted on a
platform with 24 cores (Intel Xeon Gold 6248R) and 256GB RAM.
The unit of time we report is “second” unless stated otherwise.
Datasets and Experimental Settings. We use 26 datasets as de-
scribed in Appendix N [27]. Due to page limit, we only show the
results of 18 graphs as summarized in Table 2, and results on the full
datasets can be found in our technical report [27]. In Table 2, 3<0G
and 30E6 indicate the maximum degree and average degree, respec-
tively, and ⇡ (⌧) is the degeneracy. These datasets span a wide range
of graph sizes and categories, including 6 with over 107 vertices.

We set the time limit as 1800 s (s = seconds). We use ⇥ in tables
and “OOT” in text descriptions to indicate that execution exceeds
this time limit. We tested the datasets for 11 different values of :,
i.e., 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 and 20. See Table 10 in our technical
report [27] for the M:P sizes of all datasets for all values of : .
Default Configuration of Pruning Techniques: A Summary. Re-
call all our pruning techniques in Table 1. Interestingly, we find that
there exists a configuration of the these techniques (dependent on
: only) that leads to the best performance in vast majority of the
time: we do not apply upper bounding; for branching, we adopt
S-based method when :  5 and pivot-based method when : > 5;
for reduction, we enable Two-Hop, top-level CTCP, RR1–RR3, BR1,
BR2, UBR2, but disable recursive CTCP and UBR1. We will report
the ablation studies to reach this conclusion next, before we compare
this default configuration of U-M:P with other existing algorithms.

2936

Table 3: Comparison of Branching Techniques (Second Best is Underscored)

S-Br R-Br SR-Br Pivot-Br S-Br R-Br SR-Br Pivot-Br S-Br R-Br SR-Br Pivot-Br S-Br R-Br SR-Br Pivot-Br
johnson8-4-4 0.7 1.1 0.8 1.0 5.7 18.9 8.1 10.3 × × × × × × × 1271.9
keller4 25.2 49.9 17.7 69.8 28.9 87.9 31.3 274.0 × × × × × × × ×
socfb-Duke14 1.2 1.9 2.1 1.8 0.8 1.0 1.7 0.8 656.9 6.2 × 0.6 × 52.0 × 0.6
ia-wiki-Talk 0.8 1.1 0.6 1.3 0.6 0.8 0.6 0.8 44.7 2.8 22.8 0.9 436.6 4.3 101.0 1.5
soc-buzznet 358.0 933.6 389.1 1365.3 189.1 589.5 770.2 456.0 × 1438.2 × 75.4 × × × 150.3
soc-LiveMocha 3.3 5.6 2.7 6.6 2.2 3.5 2.6 3.2 492.7 62.2 246.0 4.1 × 16.9 388.6 2.8
soc-gowalla 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.5 0.5 0.1
soc-digg 121.9 226.5 204.9 304.0 49.4 162.5 1373.8 80.2 1296.2 × × 49.1 1580.5 × × 35.1
sc-ldoor 14.1 14.7 14.4 13.6 24.6 26.4 26.3 24.2 6.9 7.0 7.2 7.1 9.0 8.1 8.8 8.6
soc-youtube-snap 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 1.4 0.8 1.1 0.4 21.5 1.0 9.9 0.5
soc-lastfm 3.6 4.6 2.4 7.5 1.9 2.9 2.1 3.4 3.4 2.0 45.4 1.1 54.2 6.8 68.4 1.6
soc-orkut 96.1 135.1 179.0 96.0 79.1 103.0 511.1 77.3 × × × 49.9 × × × 46.1
wikipedia-link-en 12.1 12.5 11.8 11.7 12.0 11.9 14.3 13.4 67.5 68.3 69.4 69.0 12.4 12.6 13.5 12.0
dbpedia-link 76.0 64.8 54.8 233.4 52.2 64.5 48.2 404.0 51.3 × 53.1 × 81.1 × × ×
wikipedia-link-en13 249.0 260.3 288.5 240.5 290.7 277.7 269.8 247.3 302.8 304.6 297.7 284.1 330.6 283.1 265.1 292.3
delicious-ui 62.1 57.8 63.9 51.9 99.0 77.1 94.1 161.7 1320.7 987.1 971.4 × × × × ×
soc-sinaweibo 141.2 1036.8 1805.6 306.3 126.3 1397.6 × 651.5 × × × × × × × ×
web-ClueWeb09 43.8 167.5 155.0 192.0 70.5 × × × × × × × × × × ×

Dataset k = 2 k = 3 k = 8 k = 10

Choice of Upper-Bounding (UB) Techniques: Recall that Sec-
tion 4.1 presented three upper bounding (UB) techniques proposed
by the AI community: S-Based, R-Based and SR-Based. We studied
the effect of these upper bounding techniques and found that they
have a marginal benefit, and in some settings, the cost of upper bound
computation itself is quite high and can backfire. For example, the
running time on soc-digg when : = 5 is 102.4 s, 218.5 s, 1266.5 s,
and OOT for no UB pruning, S-Based, R-Based, and SR-Based
UB pruning, respectively. The full results are shown in Table 11
of our technical report [27], based on which we recommend to
apply no bounding technique by default. We do notice an exception
that S-Based is quite effective on the two largest graphs, especially
web-ClueWeb09 when : = 4, 5. Moreover, S-Based does not bring
much slowdown in most cases, so it could be safe alternative for
large graphs (e.g., |+ | = 107) and worth trying out if OOT happens.
Choice of Branching Method: Section 4 presented two competi-
tive branching methods: partition-based and pivoting-based, where
partition-based methods are based on the above-mentioned 3 UB
techniques. Table 3 shows a comparison of these branching methods
when : = 2, 3, 8 and 10, and the full results are shown in Table 12
of our technical report [27]. The baseline binary branching method
(where pivot is selected simply based on the degeneracy order) is
not competitive and runs OOT most of the time, so is not included
in Table 3 (but is shown in Table 12). Among the 3 partition-based
methods, there is no clear winner, but S-based method is the most
stable and often performs the best for more time-consuming jobs
when : is small, so we adopt S-based branching when :  5 by
default. On the other hand, the pivoting-based branching method by
Maple is a clear winner when : is large, so we adopt pivoting-based
branching when : > 5 by default. This default scheme of U-M:P
generally works very well. For example, as Table 3 shows, when
: = 3, it took 28.7 s on keller4 when applying S-based branching but
274.0 s (⇠10⇥ slower) when applying pivoting-based branching. On
the other hand, when : = 10, it did not finish within the time limit
on socfb-Duke14 when applying S-based branching but finished in
only 0.6 s (> 3000⇥ faster) when applying pivoting-based branching.
Exceptions exist: the advantage of S-based branching goes beyond
: = 5 on dbpedia-link and delicious-ui, so can be an alternative to
try when OOT happens with pivot-based branching.

Finally, as we shall show in Tables 5–6, kPlexT [35], which uses
an improved binary branching method (important for their worst-
case time complexity proof), can be a few orders of magnitude slower
than our default setting with U-M:P. Since the only difference in

pruning techniques between kPlexT and U-M:P is the branching
method, it shows that kPlexT’s branching method is not competitive
in practice where we rarely care about the worst-case performance.
Choice of Reduction Rules: Now, let us consider the 7 reduction
rules in Table 1. Section 3 introduced Two-Hop and CTCP that are
applied to prune each top-level subgraph 68 extended from E8 2 + .
Table 13 in our technical report [27] shows that disabling Two-Hop
is disastrous and cause most experiments to run OOT, so it should
always be enabled. Surprisingly, Table 14 in our technical report [27]
shows that disabling CTCP at the top level does not cause much
slowdown, indicating that its pruning effect is mostly covered also by
other techniques. However, since top-level CTCP has a low overhead
and is slightly beneficial in most cases, we still enable it by default.

However, we observed that applying CTCP inside the BB(.) proce-
dure (i.e., in reduce_and_prune(.)), as kPlexS [34] does, is expensive.
Specifically, Table 15 in our technical report [27] shows that, when
enabling CTCP inside BB(.), the execution time was increased by
one to two orders of magnitude for many datasets. Thus, U-M:P
disables it in BB(.) by default.

Next, we consider the reduction rules presented in Section 5.
We tested the efficiency of those rules by disabling each rule at a
time and observing the performance difference. Tables 16–18 in our
technical report [27] report the effect of RR1–RR3, and we can see
that they can significantly speed up computation, so we enable them
by default. Note that conditions of RR1–RR3 are efficient to check.

Reduction rules BR1 and BR2 aim to add some vertices directly to
(. We report the effect of BR1 and BR2 in Table 19 of our technical
report [27], and to our surprise, we can see that they merely make
any difference for almost all datasets and values of :, except for
delicious-ui where a significant speedup is observed. This shows
that their conditions seldom hold to allow pruning, but since they
are efficient to check, U-M:P enables them by default.

Reduction rule UBR1 requires access to the number of common
neighbors of every pair of vertices in 6 for condition checking, as is
also required by recursive CTCP, so they are usually used together
if enabled in BB(.). However, as we have shown in Table 15 in our
technical report [27], the overhead of dynamically maintaining these
counts is expensive, so U-M:P disables UBR1 by default along with
recursive CTCP. On the other hand, we observed that UBR2 is highly
effective on many datasets. Table 4 shows a comparison between
our default U-M:P that enables UBR2 and the version that disables
it, when : = 3, 4, 8 and 10. The full results are shown in Table 20
of our technical report [27]. We can see that enabling UBR2 can

2937

Table 5: Execution Time for Small Values of : (Unit: seconds)

U-MkP kPlexT Maple DiseMKP U-MkP kPlexT Maple DiseMKP U-MkP kPlexT Maple DiseMKP U-MkP kPlexT Maple DiseMKP
johnson8-4-4 0.7 1.7 1.7 1.1 5.7 24.0 34.4 6.6 29.6 210.9 926.3 239.4 2.0 123.0 × 76.1
keller4 25.2 134.6 111.6 19.7 28.9 2073.1 1251.1 64.0 1504.8 × × × 1120.0 × × ×
socfb-Duke14 1.2 6.4 2.3 129.2 0.8 14.4 43.7 × 1.4 9.2 30.9 × 2.6 21.3 4.8 ×
ia-wiki-Talk 0.8 4.1 4.1 0.7 0.6 2.7 10.1 4.1 0.4 0.8 1.3 6.9 0.7 0.9 4.1 70.7
soc-buzznet 358.0 1577.7 1589.5 × 189.1 2744.2 × × 153.0 × × × 1771.0 × × ×
soc-LiveMocha 3.3 24.6 8.0 8.2 2.2 7.8 178.6 19.2 2.3 10.5 120.2 120.2 7.0 28.1 62.3 ×
soc-gowalla 0.1 0.1 0.2 1.1 0.1 0.1 0.2 0.8 0.1 0.1 0.1 2.3 0.1 0.3 0.2 8.9
soc-digg 121.9 392.2 331.1 × 49.4 × × × 33.2 252.0 × × 102.4 503.7 × ×
sc-ldoor 14.1 9.9 11.7 × 24.6 14.9 40.8 × 56.6 159.9 221.9 × 71.3 298.9 572.2 ×
soc-youtube-snap 0.4 1.3 0.6 1.6 0.5 1.4 0.7 2.2 0.3 0.4 1.6 2.8 0.3 1.0 0.5 10.6
soc-lastfm 3.6 8.1 7.9 4.9 1.9 6.2 63.9 17.8 1.5 6.4 28.8 24.8 2.2 7.5 34.1 11.7
soc-orkut 96.1 505.2 220.0 × 79.1 706.9 603.0 × 611.5 × 1047.9 × × × 1473.2 ×
wikipedia-link-en 12.1 10.7 65.9 × 12.0 9.9 560.5 × 12.9 17.6 1485.6 × 15.3 44.9 × 1520.1
dbpedia-link 76.0 198.4 332.2 × 52.2 700.5 × × 50.5 1371.4 × × 49.3 × × ×
wikipedia-link-en13 249.0 321.0 × × 290.7 364.6 × × 249.3 470.5 × × 290.9 552.6 × ×
delicious-ui 62.1 109.3 189.6 326.9 99.0 441.9 215.1 395.3 101.2 1368.2 215.2 394.3 119.3 × × 1452.4
soc-sinaweibo 141.2 674.8 512.0 × 126.3 × × × 207.3 × × × 1661.7 × × ×
web-ClueWeb09 43.8 355.3 224.6 × 70.5 × × × 613.2 × × × × × × ×

Dataset k = 2 k = 3 k = 4 k = 5

Table 6: Execution Time for Large Values of : on Real Graphs

U-MkP kPlexT Maple DiseMKP U-MkP kPlexT Maple DiseMKP U-MkP kPlexT Maple DiseMKP U-MkP kPlexT Maple DiseMKP

johnson8-4-4 × × × × 1271.9 × × × 20.4 36.3 159.5 401.2 0.0 0.0 0.0 0.0
keller4 × × × × × × × × × × × × × × × ×
socfb-Duke14 0.6 307.8 6.1 × 0.6 × 9.0 × 2.7 × 18.3 × 1.7 × 25.2 ×
ia-wiki-Talk 0.5 4.7 0.6 × 1.5 × 2.5 × 3.6 × 25.5 × 23.7 × × ×
soc-buzznet 76.1 × × × 150.3 × × × 520.7 × × × 701.7 × × ×
soc-LiveMocha 4.1 495.9 365.5 × 2.8 × 24.9 × 0.9 × 1.9 × 3.2 × 335.7 ×
soc-gowalla 0.1 0.4 0.1 15.1 0.1 66.5 0.1 × 0.2 × 0.6 × 0.4 × 4.5 125.0
soc-digg 54.5 1529.0 1683.5 × 35.1 × 608.2 × 7.9 × 28.1 × 7.4 × 26.5 ×
sc-ldoor 11.3 29.8 16.3 × 8.6 5.7 5.7 × 7.3 3.0 4.3 × 10.1 5.2 6.5 ×
soc-youtube-snap 0.3 1.5 0.5 186.4 0.5 143.8 0.5 × 1.2 × 3.6 × 4.6 × 1347.6 ×
soc-lastfm 3.5 168.8 7.0 534.1 1.6 2014.8 1.3 2958.2 5.6 × 6.7 × 21.3 × 824.1 ×
soc-orkut 68.8 × 1200.9 × 46.1 659.4 195.5 × 33.6 519.9 142.5 × 37.2 × 98.3 ×
wikipedia-link-en 247.1 580.8 × × 12.0 179.5 1639.1 39.1 9.9 8.4 18.7 101.7 7.2 8.9 15.3 14.4
dbpedia-link × × × × × × × × × × × × × × × ×
wikipedia-link-en13 304.4 652.2 × × 292.3 × × × 297.2 × × × 277.6 × × ×
delicious-ui × × × × × × × × × × × × × × × ×
soc-sinaweibo × × × × × × × × × × × × × × × ×
web-ClueWeb09 × × × × × × × × × × × × × × × ×

Dataset k = 7 k = 10 k = 15 k = 20

Table 4: Effect of Reduction Rule UBR2

w/ UBR2 w/o UBR2 w/ UBR2 w/o UBR2 w/ UBR2 w/o UBR2 w/ UBR2 w/o UBR2
johnson8-4-4 5.7 7.1 29.6 74.4 × × 1271.9 ×
keller4 28.9 43.5 1504.8 × × × × ×
socfb-Duke14 0.8 3.7 1.4 14.1 0.6 × 0.6 ×
ia-wiki-Talk 0.6 1.4 0.4 1.4 0.9 × 1.5 ×
soc-buzznet 189.1 × 153.0 1701.1 75.4 × 150.3 ×
soc-LiveMocha 2.2 6.7 2.3 7.5 4.1 × 2.8 ×
soc-gowalla 0.1 0.1 0.1 0.1 0.1 0.1 0.1 908.4
soc-digg 49.4 558.3 33.2 918.2 49.1 × 35.1 ×
sc-ldoor 24.6 25.2 56.6 64.6 7.1 7.3 8.6 8.4
soc-youtube-snap 0.5 0.6 0.3 0.4 0.4 × 0.5 ×
soc-lastfm 1.9 7.7 1.5 5.3 1.1 × 1.6 ×
soc-orkut 79.1 809.8 611.5 × 49.9 × 46.1 ×
wikipedia-link-en 12.0 16.1 12.9 468.6 69.0 × 12.0 ×
dbpedia-link 52.2 68.6 50.5 50.8 × × × ×
wikipedia-link-en13 290.7 229.0 249.3 217.6 284.1 247.2 292.3 284.5
delicious-ui 99.0 168.2 101.2 171.8 × × × ×
soc-sinaweibo 126.3 × 207.3 × × × × ×
web-ClueWeb09 70.5 × 613.2 × × × × ×

Dataset k = 3 k = 4 k = 8 k = 10

significantly speed up computation. For example, on socfb-Duke14,
U-M:P w/o UBR2 cannot finish within 1800 s when : = 8, but with
UBR2, U-M:P finishes in 0.6 s, so the speedup is 3000⇥.
Comparison of M:P Algorithms. Recall from the algorithm domi-
nance graph shown in Figure 4 that among existing M:P algorithms,
only kPlexT [35], Maple [53] and DiseMKP [44] are competitive
baselines (Seesaw has no code released). We, therefore, select these
three baselines to compare with our U-M:P framework with the
previously mentioned default configuration of pruning rules. Table 5
shows the running time of the compared algorithms when : = 2,
3, 4 and 5 (so U-M:P adopts S-based branching), where we can
see that U-M:P performs the best in vast majority of the datasets
and often beats the second best by many times to over an order of
magnitude for time-consuming jobs. Even when U-M:P is not the
best, it is very close to the best (except for the only case of soc-orkut

when : = 5 where Maple wins but is not too far from OOT). For
example, U-M:P is 38.5⇥ faster than DiseMKP (the second best)
on johnson8-4-4 when : = 5, and only 1.28⇥ slower than the winner
algorithm for keller4 when : = 2. Among the other algorithms, there
is no clear second best, but kPlexT seems to win on more datasets.
However, due to its ineffective binary branching method, kPlexT is
still much slower than U-M:P. Maple is slow in most time, showing
that its pivot-based branching method is not effective for small :
values. Finally, although DiseMKP uses S-based branching, it does
not utilize effective reduction rules like UBR2, so is not competitive.

Table 6 shows the running time of the compared algorithms when
: = 7, 10, 15 and 20 (so U-M:P adopts pivot-based branching),
where we can see that U-M:P still performs the best and often beats
the second best by a few orders of magnitude. Maple is the only other
algorithm that can properly handle large : values, thanks to its pivot-
based branching. However, it can still be a few orders of magnitude
slower than U-M:P since it does not utilize effective reduction rules
like UBR2. Among the other two algorithms, DiseMKP simply
cannot handle large values of : and runs OOT on most datasets;
while even though kPlexT is the latest algorithm that proposed
UBR2, it generally cannot handle the cases when : = 15, 20 due to
its suboptimal approach for binary branching.

While Tables 5 and 6 cover only a subset of : on 18 datasets,
Table 21 of our technical report [27] shows results on all 26 datasets
for all values of : , where we can see that U-M:P is a clear winner.
Performance of M:P Variants. Section 6 presented a two-phase
approach to compute all M:Ps as well as the densest M:P. Table 7
reports the results of running this variant for : = 5 on 18 graphs (full
results on all our 26 graphs and all : values are shown in Table 22

2938

Table 8: Running Time of Parallel U-M:P on Representative Datasets with Varying Number of Threads

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
keller4 27.6 13.9 6.7 3.4 1.7 0.9 247.0 120.3 60.7 30.7 16.0 8.0 1480.2 1028.2 728.3 423.0 182.1 60.1 1120.2 620.4 287.5 120.3 85.3 43.2
soc-buzznet 301.6 150.5 74.9 36.7 19.1 9.4 145.7 73.3 36.5 18.0 9.2 4.7 143.4 71.1 35.0 17.9 9.0 4.8 1720.7 824.2 421.2 231.4 134.2 61.2
soc-LiveMocha 2.4 1.2 0.6 0.3 0.2 0.1 1.5 0.7 0.4 0.2 0.1 0.1 3.7 1.7 0.8 0.4 0.2 0.2 18.8 10.1 5.5 3.0 1.5 1.5
soc-digg 91.6 45.9 22.2 11.5 5.7 2.9 29.5 15.2 7.6 3.7 1.9 1.0 42.5 16.0 6.6 3.0 1.3 0.9 100.2 54.3 27.3 14.9 8.2 4.3
sc-ldoor 5.9 3.0 1.6 0.8 0.5 0.7 24.2 12.3 5.8 3.7 2.8 3.2 48.2 24.3 15.2 8.9 4.3 3.2 72.8 38.2 20.9 10.3 6.7 3.2
delicious-ui 18.8 9.9 5.3 2.7 1.4 0.6 95.7 48.4 25.4 13.3 6.8 2.8 345.2 178.7 94.8 49.5 24.9 10.2 1282.2 834.2 612.1 406.9 205.2 88.4
soc-sinaweibo 32.0 18.5 10.3 5.3 3.6 2.6 30.2 18.1 10.1 5.2 3.7 2.6 60.1 34.1 19.0 8.7 6.2 5.1 1812.2 918.3 345.2 121.8 74.3 45.7
web-ClueWeb09 9.2 5.9 3.2 1.7 1.2 1.0 16.2 8.8 4.8 2.4 1.9 1.6 57.2 29.4 15.8 7.8 5.7 4.8 52.2 28.9 17.4 8.4 4.9 3.7

Dataset k = 2 k = 3 k = 4 k = 5

Table 7: Finding All M:Ps and Densest M:P

Time #MkPs |E Phase 1| |EDensest|
johnson8-4-4 9 226 644 644
keller4 × × × ×
socfb-Duke14 12 75 2166 2172
ia-wiki-Talk 3 95 530 534
soc-buzznet × × × ×
soc-LiveMocha 15 24 664 676
soc-gowalla 0 40 972 980
soc-digg 90 15 4976 4986
sc-ldoor × × × ×
soc-youtube-snap 1 8 584 590
soc-lastfm 3 2 622 622
soc-orkut × × × ×
wikipedia-link-en 31 24,837 1,219,880 1,219,880
dbpedia-link 91 2 2776 2776
wikipedia-link-en13 67 1 186170 186,170
delicious-ui 882 23 110 132
soc-sinaweibo × × × ×
web-ClueWeb09 × × × ×

Dataset k = 5

in our technical report [27]), including (1) the running time, (2) the
number of M:Ps found, (3) the number of vertices and the number
of edges in the M:P found by Phase 1, and (4) the number of edges
of the densest M:P found in Phase 2. We can see that some graphs
have many M:Ps, so finding one of them is not sufficient to catch all
dense communities. While wikipedia-link-en has 24,837 M:Ps so
are not selective, many graphs have several to tens of M:Ps which
are reasonably selective and interesting for users to examine all these
structures. We can also see that M:Ps found in Phase 1 are not the
densest on many graphs. For example, on soc-LiveMocha, Phase 1
finds an M:P with 664 edges but the densest has 676 edges.
Performance of U-M:P Parallelization. We implemented the par-
allel version of U-M:P based on the description in Section 6. Table 8
reports the running time on 8 datasets when using 1, 2, 4, 8, 16 and
32 threads, respectively, where we use the default timeout thresh-
old gC8<4 = 0.1 ms for load balancing (which consistently works
well). We chose representative datasets where the job time in serial
execution is at least 10 seconds when : = 5, so that it is worth for
parallelization. As Table 8 shows, our parallel algorithm is efficient
and scales up well with the number of CPU cores on all the datasets.
We also show the speedup ratio on 2 representative datasets in Fig-
ure 10. We can see that our parallelization can achieve a speedup
ratio of up to 28.1⇥ with 32 threads. The complete results for all
datasets can be found in Table 23 of our technical report [27].

8 RELATED WORK
This paper has surveyed the algorithms for maximum :-plex finding
as summarized in Table 1. There are also works for finding maximal
:-plexes (i.e., those without a supergraph that is also a :-plex) [31,
36, 38, 39, 54, 64], often with a size threshold @ to find only those
with at least @ vertices. Among them, ListPlex [54] proposes to
create initial tasks each of which consists of a top-level vertex E8
and a subset of its two-hop neighbors, and extend these vertices

   


























   

























(a) soc-buzznet

(b) keller4

   

























   


























   



























of threads:

   

























   


























   



























of threads:

Figure 10: Speedup Ratio of Parallel U-M:P

with candidates from E8 ’s one-hop neighbors. This approach not only
reduces the worst-case time complexity [54], but is also efficient
and hence adopted by a later work [36]. The authors of ListPlex
aim to apply this idea to the M:P problem by proposing Maple [53],
but we found that their implementation does not follow their paper
description. In general, finding maximal :-plexes is more expensive
than M:P since the size lower bound remains at @ rather than |% | + 1,
so many pruning techniques are not as effective; finding maximal
:-plexes also needs to avoid emitting non-maximal results with the
help of an exclusion set following the Bron-Kerbosch algorithm [32].

9 CONCLUSION
We proposed U-M:P, a framework for finding a maximum :-plex
that can be adapted to find all maximum :-plexes or the one with
the most edges. Our framework can integrate the various pruning
techniques from nine recent algorithms including kPlexT, Maple,
Seesaw, DiseMKP, kPlexS, KpLeX, Maplex, BnB and BS, which
were summarized into three categories: those for (1) branching,
(2) upper bounding, and (3) reduction during subgraph exploration.
We found that different pruning techniques can have drastically
different performance impacts, and obtained interesting new insights
about these techniques not studied by prior works. Moreover, we
found that there exists a configuration of the techniques dependent
on : that leads to the best performance in vast majority of the time,
which we recommended as the default configuration of U-M:P.

ACKNOWLEDGMENTS
This work was supported by DOE ECRP Award DE-SC0025228,
NSF OAC-2414474, NSF OAC-2414185 and 2024–2025 Luddy
Faculty Fellow Award from Indiana University Bloomington.

2939

REFERENCES
[1] brock200-2. https://networkrepository.com/brock200-2.php.
[2] dbpedia-link. http://konect.cc/networks/dbpedia-link/.
[3] delicious-ui. http://konect.cc/networks/delicious-ui/.
[4] hamming6-2. https://networkrepository.com/hamming6-2.php.
[5] ia-wiki-talk. https://networkrepository.com/ia-wiki-Talk.php.
[6] johnson8-4-4. https://networkrepository.com/johnson8-4-4.php.
[7] keller4. https://networkrepository.com/keller4.php.
[8] p-hat500-1. https://networkrepository.com/p-hat500-1.php.
[9] sc-ldoor. https://networkrepository.com/sc-ldoor.php.

[10] sc-msdoor. https://networkrepository.com/sc-msdoor.php.
[11] soc-buzznet. https://networkrepository.com/soc-buzznet.php.
[12] soc-digg. https://networkrepository.com/soc-digg.php.
[13] soc-gowalla. https://networkrepository.com/soc-gowalla.php.
[14] soc-lastfm. https://networkrepository.com/soc-lastfm.php.
[15] soc-livemocha. https://networkrepository.com/soc-LiveMocha.php.
[16] soc-orkut. https://networkrepository.com/soc-orkut.php.
[17] soc-pokec. https://networkrepository.com/soc-pokec.php.
[18] soc-sinaweibo. https://networkrepository.com/soc-sinaweibo.php.
[19] soc-youtube. https://networkrepository.com/soc-youtube.php.
[20] soc-youtube-snap. https://networkrepository.com/soc-youtube-snap.php.
[21] socfb-a-anon. https://networkrepository.com/socfb-A-anon.php.
[22] socfb-b-anon. https://networkrepository.com/socfb-B-anon.php.
[23] socfb-duke14. https://networkrepository.com/socfb-Duke14.php.
[24] web-clueweb09. https://networkrepository.com/web-ClueWeb09.php.
[25] wikipedia-link-en. http://konect.cc/networks/wikipedia_link_en/.
[26] wikipedia-link-en13. https://networkrepository.com/web-wikipedia-link-en13-

all.php.
[27] Full Technical Report. https://github.com/akhlaqueak/MKP-Study/blob/main/

Technical_Report.pdf, 2024.
[28] G. D. Bader and C. W. Hogue. An automated method for finding molecular

complexes in large protein interaction networks. BMC bioinformatics, 4(1):2,
2003.

[29] B. Balasundaram, S. Butenko, and I. V. Hicks. Clique relaxations in social network
analysis: The maximum k-plex problem. Oper. Res., 59(1):133–142, 2011.

[30] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decomposition of
networks. CoRR, cs.DS/0310049, 2003.

[31] D. Berlowitz, S. Cohen, and B. Kimelfeld. Efficient enumeration of maximal
k-plexes. In SIGMOD, pages 431–444. ACM, 2015.

[32] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph (algorithm
457). Commun. ACM, 16(9):575–576, 1973.

[33] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling, N. Zhang,
et al. Topological structure analysis of the protein-protein interaction network in
budding yeast. Nucleic acids research, 31(9):2443–2450, 2003.

[34] L. Chang, M. Xu, and D. Strash. Efficient maximum k-plex computation over
large sparse graphs. Proc. VLDB Endow., 16(2):127–139, 2022.

[35] L. Chang and K. Yao. Maximum k-plex computation: Theory and practice. Proc.

ACM Manag. Data, 2(1):63:1–63:26, 2024.
[36] Q. Cheng, D. Yan, T. Wu, L. Yuan, J. Cheng, Z. Huang, and Y. Zhou. Efficient

enumeration of large maximal k-plexes. In EDBT, pages 53–65. OpenProceed-
ings.org, 2025.

[37] A. Conte, D. Firmani, C. Mordente, M. Patrignani, and R. Torlone. Fast enumera-
tion of large k-plexes. In KDD, pages 115–124. ACM, 2017.

[38] A. Conte, T. D. Matteis, D. D. Sensi, R. Grossi, A. Marino, and L. Versari. D2K:
scalable community detection in massive networks via small-diameter k-plexes.
In KDD, pages 1272–1281. ACM, 2018.

[39] Q. Dai, R. Li, H. Qin, M. Liao, and G. Wang. Scaling up maximal k-plex
enumeration. In CIKM, pages 345–354. ACM, 2022.

[40] J. Gao, J. Chen, M. Yin, R. Chen, and Y. Wang. An exact algorithm for maximum
k-plexes in massive graphs. In IJCAI, pages 1449–1455. ijcai.org, 2018.

[41] G. Guo, D. Yan, M. T. Özsu, Z. Jiang, and J. Khalil. Scalable mining of maximal
quasi-cliques: An algorithm-system codesign approach. Proc. VLDB Endow.,

14(4):573–585, 2020.
[42] J. Hopcroft, O. Khan, B. Kulis, and B. Selman. Tracking evolving communities

in large linked networks. Proceedings of the National Academy of Sciences,
101(suppl 1):5249–5253, 2004.

[43] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. Mining coherent dense subgraphs
across massive biological networks for functional discovery. Bioinformatics,
21(suppl_1):i213–i221, 2005.

[44] H. Jiang, F. Xu, Z. Zheng, B. Wang, and W. Zhou. A refined upper bound and
inprocessing for the maximum k-plex problem. In IJCAI, pages 5613–5621.
ijcai.org, 2023.

[45] H. Jiang, D. Zhu, Z. Xie, S. Yao, and Z. Fu. A new upper bound based on
vertex partitioning for the maximum k-plex problem. In IJCAI, pages 1689–1696.
ijcai.org, 2021.

[46] J. Khalil, D. Yan, G. Guo, and L. Yuan. Parallel mining of large maximal quasi-
cliques. VLDB J., 31(4):649–674, 2022.

[47] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary
properties is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980.

[48] J. Li, X. Wang, and Y. Cui. Uncovering the overlapping community structure of
complex networks by maximal cliques. Physica A: Statistical Mechanics and its

Applications, 415:398–406, 2014.
[49] J. Pattillo, N. Youssef, and S. Butenko. On clique relaxation models in network

analysis. European Journal of Operational Research, 226(1):9–18, 2013.
[50] S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269–

287, 1983.
[51] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the clique

concept. Journal of Mathematical Sociology, 6(1):139–154, 1978.
[52] D. Ucar, S. Asur, U. Catalyurek, and S. Parthasarathy. Improving functional

modularity in protein-protein interactions graphs using hub-induced subgraphs.
In European Conference on Principles of Data Mining and Knowledge Discovery,
pages 371–382. Springer, 2006.

[53] Z. Wang, Y. Zhou, C. Luo, and M. Xiao. A fast maximum k-plex algorithm
parameterized by the degeneracy gap. In IJCAI, pages 5648–5656. ijcai.org, 2023.

[54] Z. Wang, Y. Zhou, M. Xiao, and B. Khoussainov. Listing maximal k-plexes in
large real-world graphs. In WWW, pages 1517–1527. ACM, 2022.

[55] M. Xiao, W. Lin, Y. Dai, and Y. Zeng. A fast algorithm to compute maximum
k-plexes in social network analysis. In AAAI, pages 919–925. AAAI Press, 2017.

[56] D. Yan, G. Guo, M. M. R. Chowdhury, M. T. Özsu, W. Ku, and J. C. S. Lui.
G-thinker: A distributed framework for mining subgraphs in a big graph. In ICDE,
pages 1369–1380. IEEE, 2020.

[57] D. Yan, G. Guo, M. M. R. Chowdhury, M. T. Özsu, J. C. S. Lui, and W. Tan.
T-thinker: a task-centric distributed framework for compute-intensive divide-and-
conquer algorithms. In J. K. Hollingsworth and I. Keidar, editors, PPoPP, pages
411–412. ACM, 2019.

[58] D. Yan, G. Guo, J. Khalil, M. T. Özsu, W. Ku, and J. C. S. Lui. G-thinker: a
general distributed framework for finding qualified subgraphs in a big graph with
load balancing. VLDB J., 31(2):287–320, 2022.

[59] D. Yan, W. Qu, G. Guo, X. Wang, and Y. Zhou. Prefixfpm: a parallel framework
for general-purpose mining of frequent and closed patterns. VLDB J., 31(2):253–
286, 2022.

[60] L. Yuan, D. Yan, J. Han, A. Ahmad, Y. Zhou, and Z. Jiang. Faster depth-first
subgraph matching on gpus. In ICDE, pages 3151–3163. IEEE, 2024.

[61] L. Yuan, D. Yan, W. Qu, S. Adhikari, J. Khalil, C. Long, and X. Wang. T-FSM: A
task-based system for massively parallel frequent subgraph pattern mining from a
big graph. Proc. ACM Manag. Data, 1(1):74:1–74:26, 2023.

[62] J. Zheng, M. Jin, Y. Jin, and K. He. Two new upper bounds for the maximum
k-plex problem. CoRR, abs/2301.07300, 2023.

[63] Y. Zhou, S. Hu, M. Xiao, and Z. Fu. Improving maximum k-plex solver via
second-order reduction and graph color bounding. In AAAI, pages 12453–12460.
AAAI Press, 2021.

[64] Y. Zhou, J. Xu, Z. Guo, M. Xiao, and Y. Jin. Enumerating maximal k-plexes with
worst-case time guarantee. In AAAI, pages 2442–2449. AAAI Press, 2020.

2940

