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ABSTRACT

Modern data stores increasingly rely on metadata to enable diverse

activities such as data cataloging and search. However, metadata

curation remains a labor-intensive task, and the broader challenge

of metadata maintenanceÐensuring its consistency and useful-

nessÐhas been largely overlooked. In this work, we tackle the

problem of resolving relationships among metadata concepts from

disparate sources. Inferring these relationships are critical for cre-

ating clean and consistent metadata repositories, and a central

challenge for metadata integration.

We propose OpenForge, a two-stage prior-posterior framework

for metadata integration. In the first stage, OpenForge exploits

multiple methods including fine-tuned large language models to

obtain prior beliefs about concept relationships. In the second stage,

OpenForge refines these predictions using the Markov Random

Field, a probabilistic graphical model. We formalize metadata in-

tegration as an optimization problem, where the objective is to

identify the relationship assignments that maximize the joint prob-

ability of assignments. The MRF formulation allows OpenForge to

capture prior beliefs while encoding critical relationship proper-

ties, such as transitivity, in probabilistic inference. Experiments on

four datasets show the effectiveness and efficiency of OpenForge.

In a use case of matching two metadata vocabularies, OpenForge

outperforms GPT-4, the second-best method, by 25 F1 points.
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1 INTRODUCTION

Clean and consistent metadata is pivotal in enabling the FAIR Data

Principlesśfindability, accessibility, interoperability and reusabilityś

in data repositories [37, 42, 60]. While significant progress has

been made in data discovery through techniques that leverage data
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Figure 1: Illustration of metadata integration problem.

values [5, 8, 10, 13, 22, 41, 43], real-world dataset search engines [8,

26, 56] rely heavily on metadata (e.g., keywords) for indexing and

retrieval. However, the practice of metadata curation, for dataset

publishing and indexing, remains labor-intensive [57]. Ensuring

metadata consistency across disparate dataset sources is an ongoing

challenge, especially as datasets grow in scale and diversity [57].

MetadataGranularity andVocabularyMismatchMost repos-

itories rely heavily on metadata, on which they place significant

requirements, including the vocabulary used. For example, Google

dataset search engine [8] requires data publishers to annotate

their datasets using the schema.org vocabulary; otherwise, their

datasets would not be well indexed for search. Web Data Com-

mons [12], a longstanding effort in curating web tables, publishes

benchmarks [30] annotated with both Schema.org types and DBpe-

dia classes [33]. In contrast, open data portals like CKAN [11] and

Socrata [55] allow metadata to be provided in JSON format with

open vocabulary fields (e.g., description, publisher, theme). As

a result, metadata granularity and vocabularyśranging from con-

trolled schemas to open-ended termsśvary widely across datasets,

organizations, and repositories.

Practice of Metadata Curation A close examination of cu-

ratorial work at ICPSR, the world’s largest social science data

archive [26], reveals that (meta)data curation involves domain ex-

pertise and subjective judgments to resolve inconsistencies and

ensure standardization [57]. Curators revise dataset descriptions

and create metadata records, such as subject terms and geographic

coverage, to improve dataset search. Such tasks are often guided
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by metadata standards, like a manually curated vocabulary or the-

saurus. However, experienced curators view such standards as flex-

ible rather than rigid [57]. To remain relevant, curated vocabular-

iesÐand the metadata based on themÐmust evolve alongside chang-

ing data landscapes. Similarly, curators of platforms like data.gov

must reconcile diverse metadata standards, as individual states and

cities independently collect and manage their datasets.

Maintaining consistent and useful metadata, both within and

across repositories, requires developing techniques to (1) unify and

standardize metadata elements, (2) refine their granularity, and

(3) perform holistic maintenance at scale. Motivated by these chal-

lenges, we study the problem of integratingmetadata from disparate

sources to build a consistent and granular view of metadata, by uni-

fying equivalent metadata elements and definingmetadata semantic

hierarchies. Such hierarchies can be constructed using two primary

types of relationships between metadata elementsśequivalence and

parent-childśas established in knowledge base literature. As illus-

trated in Figure 1, given a collection of potentially noisy metadata

elements and associated data from various sources (optionally in-

cluding dataset contents and descriptions), our goal is to identify all

equivalence and parent-child relationships among element pairs.

We propose OpenForge, a data-driven framework that inte-

grates and resolves inconsistencies among a collection of metadata

elements. Conceptually, OpenForge’s output can be modeled as a

graph of metadata elements (concepts) linked with two types of

relationships. We call this graph, a relationship assignment graph.

Since the relationship instantiations are not known apriori, we cast

the problem of constructing this graph as a probabilistic inference

problem. At the core of our approach lies a unified probabilistic

formulation based on Markov Random Field (MRF), an undirected

graphical model, which can integrate various types of relation-

ships within a single framework. This formulation enables us to

(1) incorporate diverse methods that leverage metadata elements

and accompanying data (if available) to computing prior probabili-

ties, (2) encode relationship axioms, such as transitivity, to prevent

conflicting relationship instantiations and infer the most probable

relationship assignment.

Our model represents relationships between elements as ran-

dom variables within a MRF, framing relationship assignment as

a joint probability distribution over these variables. The optimal

relationship graph is then the assignment that maximizes this joint

probability. By definition, MRFs decompose the joint probability

into a product of factors which are non-negative functions defined

over cliques of the graph. In particular, we leverage ternary factors

(factors defined over ternary cliques of random variables) to encode

transitivity where invalid configurations of random variables are

assigned a probability of zero. This structural enforcement of transi-

tivity is a key reason for adopting the MRF framework, alongside its

principled handling of joint dependencies. However, the challenge

lies in tuning the relative probabilities among valid (transitive) con-

figurations, which critically influence model behavior. Manually

setting these parameters risks poor generalization across datasets.

To address this, we employ Bayesian optimization to learn optimal

parameters in a data-driven manner, as described in Section 5.2.

OpenForge also flexibly integrates a wide range of prior modelsś

including prompting and fine-tuning large language models (LLMs),

as well as traditional machine learning modelsśallowing the MRF

to combine learned priors with structured inference.

Another key challenge in applying probabilistic graphical models

to real-world data is inference scalability [1, 59, 64]. This challenge

is exacerbated for OpenForge when operating on large datasets

with sparse relationships. OpenForge addresses this challenge

through an embedding-based strategy that decomposes the MRF

into smaller, independent subgraphs based on metadata semantics,

enabling efficient parallelized inference over these subgraphs.

In summary, we make the following contributions:

• We introduce the metadata integration problem as crucial for

unification and integrity maintenance of metadata repositories,

identifying equivalence and parent-child relationship determina-

tion as central tasks to address this problem (Section 2.1).

• We propose a probabilistic formulation for resolving equivalence

and parent-child relationships among metadata elements (Sec-

tion 2.2), framing the task as maximum a posteriori inference in

a Markov Random Field (Section 3.2).

• We develop OpenForge, a data-driven technique that integrates

various prior models, including LLMs, and refines their predic-

tions through probabilistic inference (Section 3).

• To address the scalability challenge of probabilistic inference on

large sparse MRFs, we design an embedding-based strategy that

decomposes sparse MRFs into smaller independent subgraphs,

enabling parallelized inference for large datasets (Section 4).

• Experiments on four real-world datasets show that OpenForge

outperforms task-specific baselines and the latest LLMs (includ-

ing GPT-4) significantly. We also demonstrate efficient MRF infer-

ence completes efficiently on the largest dataset and scalability

to synthetic graphs with millions of random variables (Section 6).

2 METADATA INTEGRATION PROBLEM

2.1 Problem Statement

A metadata repository is the union of the metadata of a collection

of datasets. To formalize a metadata repository, we consider meta-

data elements and their relationships as the building blocks of a

metadata repository. Suppose a set of elementsV = {𝑐1, 𝑐2, . . . , 𝑐𝑛},

where each element represents a unit of metadata information for

integration such as column annotations, keywords, entity men-

tions, or dataset metadata attributes. We call each element inV a

metadata element or concept, interchangeably. Consider the rela-

tionship 𝑅 : V × V → {0, 1} that can hold between any pair of

concepts, e.g., equivalence or parent-child. Our concrete goal is to

enrich the metadata of a data repository with a given relationship

𝑅. More specifically, we want to infer the presence or absence of

𝑅 between each pair of concepts inV . The concepts inV are raw

metadata units extracted from metadata and dataset files. However,

discovering equivalence relationships between pairs of concepts

will allow us to unify and standardize these raw concepts. Note

that data repositories may contain various types of metadata (e.g.,

keyword, theme, column annotation). A data curator can choose

to integrate specific types or include all metadata, definingV ac-

cordingly. In addition to metadata elements inV , data repositories

may also include accompanying data content or descriptions. We

refer to this accompanying information, if present, as evidence, as

described in Section 2.2.
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Figure 2: Illustration of the relationship transitivity (left)

and inconsistent relationship assignments that violate the

transitivity (right). Green solid edges indicate correct predic-

tions and red dashed edges indicate conflicting predictions.

In this paper, we focus on two types of relationships: equivalence

and parent-child relationships. We note that identifying equivalent

elements and parent-child elements is similar to tasks in data match-

ing [58] and taxonomy induction [54], respectively. Although these

two relationships are typically addressed with task-specific meth-

ods [14, 34, 49, 58, 62, 63], we demonstrate below that they can be

effectively modeled within the same probabilistic formulation. This

unified approach reduces complexity and maintenance overhead

compared to using separate methods, and our experiments on four

tasks empirically validate our approach’s ability to handle both

relationship types.

2.2 Probabilistic Formulation

We first define a relationship assignment graph for relationship 𝑅,

namely 𝐺𝑅 , where each node represents a metadata concept inV .

The edges in𝐺𝑅 encode whether and how 𝑅 holds between pairs of

concepts. Specifically, for any two distinct concepts 𝑐𝑖 and 𝑐 𝑗 , we

define a random variable 𝑟𝑖 𝑗 that characterizes the relationship:

• If 𝑅 is bi-directional, like equivalence, 𝑟𝑖 𝑗 is a binary random

variable taking values in {0, 1} where 𝑟𝑖 𝑗 = 1 indicates that the

relationship is present in both directions and 𝑟𝑖 𝑗 = 0 means that

no relationship exists.

• If 𝑅 is uni-directional, like parent-child, 𝑟𝑖 𝑗 is a categorical ran-

dom variable taking values in {0, 1, 2} where 𝑟𝑖 𝑗 = 1 indicates

that the relationship is directed from 𝑐𝑖 to 𝑐 𝑗 , 𝑟𝑖 𝑗 = 2 indicates

that the relationship is directed from 𝑐 𝑗 to 𝑐𝑖 , and 𝑟𝑖 𝑗 = 0 means

that there is no relationship.

The relationship assignment graph 𝐺𝑅 can therefore be undi-

rected or directed, depending on the nature of 𝑅. In both cases, each

random variable follows a discrete probability distribution. When

it is clear from the context, we refer to 𝐺𝑅 simply as 𝐺 .

Our goal is to find the most probable relationship assignment

graph 𝐺 defined over V . We define the probability of any given

relationship assignment graph 𝐺 as the joint probability of all ran-

dom variables 𝑟𝑖 𝑗 formed forV of 𝐺 , capturing both the presence

and, if applicable, the directionality of relationships.

Definition 1 (Probability of a Relationship Assignment Graph).

𝑃 (𝐺) = 𝑃 ( { 𝑟𝑖 𝑗 | (𝑐𝑖 , 𝑐 𝑗 ) ∈ V ×V, 𝑖 < 𝑗 } ).

We consider only one ordering of concept pairs, meaning that

for a pair of concepts (𝑐𝑖 , 𝑐 𝑗 ), we model only (𝑐𝑖 , 𝑐 𝑗 ) as a random

variable and not both (𝑐𝑖 , 𝑐 𝑗 ) and (𝑐 𝑗 , 𝑐𝑖 ) as indicated in Definition 1.

Prior Beliefs.Although probabilities 𝑃 (𝑟𝑖 𝑗 ) are not known a pri-

ori, we assume that for each 𝑟𝑖 𝑗 , there exists evidence 𝑒𝑖 𝑗 , consisting

of features that can be observed (computed) to infer the probability

of the concept pair (𝑐𝑖 , 𝑐 𝑗 ) having the relationship 𝑅. This allows us

to compute a prior for 𝑃 (𝑟𝑖 𝑗 | 𝑒𝑖 𝑗 ). We denote the set of observed ev-

idence over all random variables of𝐺 as E and the prior prediction

of 𝑟𝑖 𝑗 as 𝑓𝑖 𝑗 where 𝑓𝑖 𝑗 = argmax𝑟 ∈𝑑𝑜𝑚 (𝑟𝑖 𝑗 ) 𝑃 (𝑟𝑖 𝑗 = 𝑟 ). We defer the

discussion of obtaining these prior beliefs to Section 3.1.

Transitivity: Axiom on Relationships. In addition to the

evidence used as priors for relationships, the considered types of

relationships in our problem setting, equivalence and parent-child,

impose additional structural properties, which can be leveraged

for improving relationship predictions. Let us focus on transitivity

which introduces dependencies among pairwise relationships. For

example, the transitivity condition requires that if an equivalence

relationship exists between concept pairs (𝑐𝑖 , 𝑐 𝑗 ) and (𝑐 𝑗 , 𝑐𝑘 ), then it

must also exist between (𝑐𝑖 , 𝑐𝑘 ). Formally, considering equivalence

or parent-child, for given predictions 𝑓𝑖 𝑗 , 𝑓𝑖𝑘 , and 𝑓𝑗𝑘 evaluated for

three concepts 𝑐𝑖 , 𝑐 𝑗 , and 𝑐𝑘 , if 𝑓𝑖 𝑗 = 𝑓𝑗𝑘 = 1, transitivity requires

that 𝑓𝑖𝑘 must also be 1. However, if these predictions are made

independently, it is possible for 𝑓𝑖𝑘 to be erroneously predicted,

violating the transitivity constraint. The transitivity property of the

relationship further implies that certain relationship assignments

are inherently inconsistent. Specifically, if we aim to infer 𝑓𝑖 𝑗 and

𝑓𝑗𝑘 while knowing 𝑓𝑖𝑘 = 0, transitivity dictates that 𝑓𝑖 𝑗 and 𝑓𝑗𝑘
cannot both be 1, as illustrated in Figure 2. This restriction prevents

certain relationship assignments from coexisting.

Conflicting predictions can arise if pairwise decisions are made

independently and it requires resolution of inconsistencies to main-

tain transitivity. For example, flipping either 𝑓𝑖 𝑗 or 𝑓𝑗𝑘 would resolve

the conflict by ensuring that the assignments align with the tran-

sitivity constraint. Yet, determining which prediction to alter is a

non-trivial task, as it may require additional context. To address

these challenges, we introduce a probabilistic formulation and a

dependency-aware solution below.

Provided that prior beliefs for each 𝑟𝑖 𝑗 , namely 𝑃 (𝑟𝑖 𝑗 | 𝑒𝑖 𝑗 ), are

available and we are given some axiom A on the relationships, the

problem of metadata integration can be cast as an optimization

problem. More specifically, we consider the common and intuitive

transitivity axiom discussed above for our setting. The optimization

objective is to find the relationship graph assignment 𝐺̃ with the

maximum probability, conditioned on observed evidence E, while

satisfying the constraints implied by the relationship axiom A.

Definition 2 (Optimal Relationship Graph). Given a relationship

𝑅, a set of conceptsV , and axiom A, the optimal relationship as-

signment graph 𝐺̃ is the graph with the maximum joint probability

of random variables {𝑟𝑖 𝑗 }𝑖< 𝑗 , conditioned on evidence E and being

subject to axiom A.

𝐺̃ = argmax
𝐺

𝑃 (𝐺 | E,A ) = argmax
{𝑟𝑖 𝑗 }𝑖< 𝑗

𝑃 ( {𝑟𝑖 𝑗 }𝑖< 𝑗 | E,A )

This formulation permits a theoretically optimal solution by

exploiting a probabilistic graphical model called Markov Random

Field, which also allows for incorporating the relationship transi-

tivity and dependencies during the probabilistic inference. We give

a brief introduction to Markov Random Field in Section 3.2.
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Figure 3: Overview of the proposed two-stage prior-posterior framework for integrating metadata concepts.

3 OPENFORGE FRAMEWORK

As illustrated in Figure 3, we introduce OpenForge, a prior-

posterior framework for integrating metadata concepts. Given a

set of concepts and a relationship, the framework operates in two

stages. In the first stage, local predictions are generated as prior

beliefs for each pair of concepts. Various methods may be used to

obtain these prior predictions (Section 3.1). In the second stage,

we address the relationship transitivity and dependencies between

prior predictions through a probabilistic modeling approach using

Markov Random Field (Section 3.2). This graphical model encodes

the transitivity constraints and leverages labeled data to learn de-

pendencies in a data-driven manner, effectively capturing the un-

derlying relationship structures and refining the prior predictions.

3.1 Obtaining Prior Beliefs

Our probabilistic formulation requires a probability distribution

for each random variable. We explore three different methods for

obtaining these prior beliefs.

3.1.1 Prompting Large Language Models. Recent advances in large

language models (LLMs) have shown human-expert performance

on a broad array of natural language processing and multi-modality

tasks [2, 15, 44]. These models are pre-trained on a vast amount

of curated data and can be applied out-of-the-box to new con-

texts following a text-to-text paradigm with instruction tuning or

prompting [9, 48]. Motivated by such success, we supply an LLM

with a task description and prompt the model for predictions and

confidence scores of concept pairs. Besides being straightforward,

this method requires no labeled data or only few labeled data for

demonstration (i.e., few-shot learning), making it feasible for sce-

narios where labeled data are scarce or there are not enough data

for training/fine-tuning a model.

3.1.2 Fine-Tuning Large Language Models. Since LLMs are primar-

ily pre-trained for generation tasks, we also experiment with fine-

tuning them for domain-specific classification tasks if training data

are available. Due to the large size of LLMs and the hardware con-

straints, we choose to fine-tune open-source models that have fewer

than 10 billions of parameters. In particular, We employ Low-Rank

Adaptation (LoRA) [24], a parameter-efficient fine-tuning tech-

nique that introduces a small set of trainable parameters (known

as adapters) while leaving most of the model’s original parameters

unchanged. This method enables effective and efficient adaptation

of an LLM to a specific relationship classification task with a single

GPU. Additionally, LoRA allows for task flexibility: different tasks

can share the base LLM, requiring only a switch in adapters rather

than maintaining a fully fine-tuned model for each task.

3.1.3 TrainingMachine LearningModels. As compared to the previ-

ous methods based on LLMs, we also manually design task-specific

features and train amachine learningmodel, such as Random Forest,

to make predictions. This method serves as a baseline to evaluate

the LLMs’ effectiveness in capturing dataset semantics.

Note that we fine-tune LLMs or train traditional machine learn-

ing models to obtain prior beliefs when training data are available.

Nevertheless, all these methods treat each pair of concepts inde-

pendently and make individual predictions ignoring relationship

dependencies. There is no guarantee of avoiding conflicting predic-

tions. Further details on the models and adaptations used in our

experiments are provided in Section 5.1.

3.2 MRF Modeling of Metadata Integration

3.2.1 Markov Random Field Primer. Markov Random Field (MRF),

also referred to as Markov Network in the literature, is a specific

type of undirected graphical model for representing the joint prob-

ability distribution of a set of random variables [46].

Specifically, an MRF is defined by an undirected graph 𝑀 =

(N ,L) where N denotes the set of nodes representing random

variables and L denotes the set of edges representing the statistical

dependencies between the random variables.

In MRFs, the joint probability distribution of random variables

is factorized as a product of potential functions, each of which is

associated with a clique in the graph. The potential function, also

known as factor, is a function that assigns a non-negative value to

each possible configuration of the random variables in the clique.

Here, a configuration of random variables is an assignment of values

to random variables. The joint probability of random variables is

then proportional to the product of the potential functions over all

cliques in the graph, defined as follows.

𝑃 (𝑥1, ..., 𝑥𝑛) =
1

𝑍

∏︂

𝑐∈𝐶

𝜙𝑐 (𝑥𝑐 ) (1)

where 𝑥𝑖 denotes a random variable in N , 𝐶 denotes the set of

cliques in𝐺 , while 𝜙𝑐 denotes a factor defined over a set of variables
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Figure 4: The plot on the left demonstrates an instance of our

proposed MRFmodel containing six nodes/random variables

and their dependencies; the plot on the right, known as a

factor graph, visualizes the correspondence between factors

and random variables in the MRF.

𝑥𝑐 in a clique 𝑐 ∈ 𝐶 , and 𝑍 is a normalizing constant. Note that

clique set 𝐶 and potential functions 𝜙 (𝑐) need to be specified per

application context.

An MRF can also be represented by a factor graph which ex-

plicitly shows the correspondence between random variables and

factors. Specifically, a factor graph is a bipartite graph where the

nodes are divided into two disjoint sets, one for the random vari-

ables and the other for the factors. An edge exists between a factor

node and a variable node if the factor depends on that variable.

This representation simplifies the computation of probability distri-

butions in MRFs, such as Maximum a Posteriori (MAP) inference,

which determines the most likely assignment of values to the vari-

ables in the MRF. We introduce our MRF design below and discuss

MAP inference in Section 4.1.

3.2.2 Our MRF Design. MRFs are powerful models for capturing

prior beliefs about and the dependencies between random variables.

This makes MRFs a natural fit for our problem formulation, which

require modeling existing knowledge about concepts and their

relationships including encoding the transitivity axiom.

Let us first describe how the relationship assignment graph, its

probability of Definition 1, as well as the transitivity axiom are

modeled as a discrete MRF described in Section 3.2.1. We treat the

presence of a specified relationship between a pair of concepts

(𝑐𝑖 , 𝑐 𝑗 ), an edge between nodes 𝑐𝑖 and 𝑐 𝑗 (directed if applicable)

in a relationship graph, as a categorical random variable 𝑟𝑖 𝑗 . We

consider two types of potential functions, or factors, in our problem.

The first type is unary cliques 𝐶𝑢 to capture prior beliefs, each of

which contains an individual random variable 𝑟𝑖 𝑗 . The second type

is ternary cliques 𝐶𝑡 to capture the relationship transitivity and

dependencies, each of which consists of three random variables

(𝑟𝑖 𝑗 , 𝑟 𝑗𝑘 , 𝑟𝑖𝑘 ) for 𝑖 < 𝑗 < 𝑘 . Note that ternary cliques are the cliques

of the smallest size on which we can encode the relationship transi-

tivity. Although encoding the transitivity with higher-order cliques

is possible, it will make the model more complex (e.g., the total

number of possible configurations of a factor grows exponentially

with respect to the size of a clique) and incur additional compu-

tational cost (we show that the time complexity of inference over

unary and ternary cliques is already quartic with respect to the

number of concepts in Section 4.1). Admittedly, the design choice

of using ternary cliques instead of higher-order cliques weighs the

efficiency over the potential benefit of having a more complex while

expressive model.

The left plot of Figure 4 demonstrates an instance of MRF con-

sisting of six nodes/random variables {𝑟𝑖 𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 4} induced

by four concepts {𝑐1, 𝑐2, 𝑐3, 𝑐4}. The MRF is densely connected but

not fully connected where there is an edge between a pair of nodes

if they involve a common concept. For instance, there is an edge

between 𝑟12 and 𝑟13 because they both involve concept 𝑐1 whereas

there is no edge between 𝑟12 and 𝑟34. Under the hood, the edge

connectivity is attributed to ternary cliques we consider in the MRF.

We do not include all ternary cliques of three random variables

in the MRF (e.g., the clique of 𝑟12, 𝑟13 and 𝑟34) but ternary cliques

that involve exactly three concepts for the purpose of modeling the

relationship transitivity. The right plot of Figure 4 shows the factor

graph representation of the MRF that visualizes the correspondence

between factors and random variables. This factor graph consists

of six random variables and ten factors. Each variable is associated

with three factors while each unary factor is associated with one

random variable and each ternary factor is associated with a clique

of three variables.

Since an MRF computes the joint probability of the graph based

on cliques in the graph, now we can decompose the probability of

our relationship assignment graph following Equation 1 as below.

𝑃 (𝐺 | E,A) = 𝑃 ({𝑟𝑖 𝑗 }𝑖< 𝑗 | E,A ) =
1

𝑍

∏︂

𝑐∈𝐶

𝜙𝑐 ({𝑟𝑖 𝑗 }𝑖< 𝑗,𝑟𝑖 𝑗 ∈𝑐 | E,A)

=

1

𝑍

∏︂

𝑐∈𝐶𝑢

𝜙𝑐 ( 𝑟𝑖 𝑗 | E ) ·
∏︂

𝑐∈𝐶𝑡

𝜙𝑐 ( 𝑟𝑖 𝑗 , 𝑟 𝑗𝑘 , 𝑟𝑖𝑘 | A )

(2)

The potential function for each unary clique 𝜙𝑐 ( 𝑟𝑖 𝑗 | E ) is de-

fined as the conditional probability of the relationship’s presence

given the observed evidence of the concept pair, allowing us to

capture the prior belief of each individual random variable.

While each unary clique has its own potential function, all

ternary cliques share a common potential function, which is pa-

rameterized to capture relationship dependencies. Specifically, con-

figurations that violate transitivity (i.e., invalid configurations) are

assigned a potential value of zero, while each valid configuration is

parameterized to represent its likelihood. Higher parameter values

indicate a greater probability for the corresponding assignment

within the ternary clique. Table 1 gives an example of the param-

eterized potential function for ternary cliques of binary random

variables, where 0 represents no relationship and 1 represents an

equivalence relationship. Among the eight possible configurations

of three binary variables, three configurations (i.e., [0, 1, 1], [1, 0,

1], and [1, 1, 0]) are invalid and thus set to zero. The remaining con-

figurations are parameterized to determine their potential function

values. Although it is technically feasible to assign unique potential

functions to each ternary clique, this would result in a model with

a linear increase in parameters relative to the number of ternary

factors, making the model more complex. To maintain simplicity

and prevent over-parametrization, we instead use a shared poten-

tial function across all ternary cliques. Hence, Equation 2 can be

written as follows.

𝑃 (𝐺 | E,A) =
1

𝑍

∏︂

𝑟𝑖 𝑗 ∈𝐺

𝑃 ( 𝑟𝑖 𝑗 | 𝑒𝑖 𝑗 ) ·
∏︂

𝑐∈𝐶𝑡

𝜙 ( 𝑟𝑖 𝑗 , 𝑟 𝑗𝑘 , 𝑟𝑖𝑘 | A) (3)
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Table 1: Example of the parameterized potential function 𝜙

for ternary cliques of binary random variables 𝑟𝑖 𝑗 , 𝑟 𝑗𝑘 and

𝑟𝑖𝑘 where 0 represents no relationship and 1 represents an

equivalence relationship. The potential values {𝜃𝑖 }
5
𝑖=1 are

learnable parameters.

𝑟𝑖 𝑗 0 0 0 0 1 1 1 1

𝑟 𝑗𝑘 0 0 1 1 0 0 1 1

𝑟𝑖𝑘 0 1 0 1 0 1 0 1

𝜙 (𝑟𝑖 𝑗 , 𝑟 𝑗𝑘 , 𝑟𝑖𝑘 ) 𝜃1 𝜃2 𝜃3 0 𝜃4 0 0 𝜃5

where probabilities 𝑃 (𝑟𝑖 𝑗 | 𝑒𝑖 𝑗 ) are given by some prior model and

𝜙 denotes the shared parameterized potential function for ternary

cliques, which is independent of prior beliefs.

The parametrization of the shared potential function for ternary

cliques enables us to learn relationship dependencies such as the

label distributions in the dataset. In practice, datasets often ex-

hibit skewed class proportions. For example, in an entity matching

dataset, there are typically far more non-equivalent pairs of entities

than equivalent ones. This imbalance affects the configuration of

random variables in ternary cliques. In the parameterized potential

function example in Table 1, the configuration [0, 0, 0] is expected

to have a higher potential value than other configurations, reflect-

ing the larger number of concept pairs with no relationship. To

learn the parameters in the shared potential function, we treat it as

a hyperparameter tuning problem. Rather than manually setting

these parameters, we search for well-performing parameters on a

labeled validation set using a Bayesian Optimization technique [35].

We discuss automatic parameter tuning in Section 5.2.

Provided the learned potential function for ternary cliques, per-

forming Maximum a Posteriori inference over this MRF gives us

posterior predictions, an assignment to random variables yielding

the maximum joint probability. Algorithm 1 summarizes our MRF

modeling approach. Line 1-2 initialize the MRF with random vari-

ables. Lines 3-7 utilize methods, from Section 3.1, to estimate the

conditional probabilities of random variables, and add unary factors

to the MRF. In lines 8-14, we enumerate ternary cliques to create

the ternary factors and line 15 executes the inference algorithm.

We remark that for a set of 𝑛 concepts, the MRF we propose

consists of
(︁𝑛
2

)︁

=

𝑛 (𝑛−1)
2 nodes and 𝑂 (𝑛3) factors (more precisely,

(︁𝑛
3

)︁

factors for ternary cliques plus
(︁𝑛
2

)︁

factors for unary cliques).

Section 4.1 describes MRF inference and presents an analysis on the

time and space complexity of running inference on our proposed

MRF model. Section 4.2 discusses how we scale our MRF modeling

for large and sparse datasets.

4 SCALABLE METADATA INTEGRATION

4.1 Inference in Markov Random Field

In our problem, we are interested in finding the most probable

relationship graph or equivalently, the most probable assignment

to random variables given the observed evidence, i.e., Maximum

a Posteriori (MAP) inference. Performing exact MAP inference on

complex non-tree structuredMRFs is known to be NP-hard and com-

putationally intractable when the graph is large and contains many

Algorithm 1:MRF Modeling

Input :𝑉 , a set of concepts; 𝑓 , a model that gives prior

beliefs; 𝜙 , a shared potential function for ternary

cliques; 𝑔, a MRF inference algorithm

Output :𝐺 , a relationship assignment graph

1 𝑚𝑟 𝑓 ← 𝑖𝑛𝑖𝑡_𝑚𝑟 𝑓 ( ) ;

/* Create random variables for each ordered pair

of concepts from the initial vocabulary */

2 𝑟𝑣𝑠 ← 𝑉 ;

/* Add nodes and factors for unary cliques */

3 foreach 𝑣𝑎𝑟 ∈ 𝑟𝑣𝑠 do

4 𝑚𝑟 𝑓 .𝑎𝑑𝑑_𝑛𝑜𝑑𝑒 (𝑣𝑎𝑟 ), 𝑝𝑟𝑖𝑜𝑟_𝑝𝑟𝑜𝑏 ← 𝑓 (𝑣𝑎𝑟 ) ;

5 𝑢𝑛𝑎𝑟𝑦_𝑓 𝑎𝑐𝑡𝑜𝑟 ← 𝑖𝑛𝑖𝑡_𝑓 𝑎𝑐𝑡𝑜𝑟 ( [𝑣𝑎𝑟 ], 𝑝𝑟𝑖𝑜𝑟_𝑝𝑟𝑜𝑏) ;

6 𝑚𝑟 𝑓 .𝑎𝑑𝑑_𝑓 𝑎𝑐𝑡𝑜𝑟 (𝑢𝑛𝑎𝑟𝑦_𝑓 𝑎𝑐𝑡𝑜𝑟 ) ;

7 end

/* Add edges and factors for ternary cliques */

8 𝑡𝑒𝑟𝑛𝑎𝑟𝑦_𝑐𝑙𝑖𝑞𝑢𝑒𝑠 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑡𝑒𝑟𝑛𝑎𝑟𝑦_𝑐𝑙𝑖𝑞𝑢𝑒𝑠 (𝑟𝑣𝑠) ;

9 foreach (𝑣𝑎𝑟1, 𝑣𝑎𝑟2, 𝑣𝑎𝑟3) ∈ 𝑡𝑒𝑟𝑛𝑎𝑟𝑦_𝑐𝑙𝑖𝑞𝑢𝑒𝑠 do

10 𝑚𝑟 𝑓 .𝑎𝑑𝑑_𝑒𝑑𝑔𝑒𝑠_𝑓 𝑟𝑜𝑚(

11 [(𝑣𝑎𝑟1, 𝑣𝑎𝑟2), (𝑣𝑎𝑟2, 𝑣𝑎𝑟3), (𝑣𝑎𝑟1, 𝑣𝑎𝑟3)]) ;

12 𝑡𝑒𝑟𝑛𝑎𝑟𝑦_𝑓 𝑎𝑐𝑡𝑜𝑟 ← 𝑖𝑛𝑖𝑡_𝑓 𝑎𝑐𝑡𝑜𝑟 ( [𝑣𝑎𝑟1, 𝑣𝑎𝑟2, 𝑣𝑎𝑟3], 𝜙) ;

13 𝑚𝑟 𝑓 .𝑎𝑑𝑑_𝑓 𝑎𝑐𝑡𝑜𝑟 (𝑡𝑒𝑟𝑛𝑎𝑟𝑦_𝑓 𝑎𝑐𝑡𝑜𝑟 ) ;

14 end

15 𝐺 ← 𝑔(𝑚𝑟 𝑓 ); /* Run MRF inference algorithm */

16 return 𝐺

loops [17, 28]. For example, a dataset containing 1000 concepts

results in half a million of random variables and over 166 millions

of factors. We thus resort to approximate inference algorithms,

which mainly fall into three categories: linear programming-based

inference, sampling-based inference, and variational inference [17].

4.1.1 Approximate MAP inference. To find the most efficient exist-

ing inference algorithms, we evaluated various implementations

from each category of approximate inference algorithms (more

details in Section 5.2). We found that Loopy Belief Propagation

(LBP) [28, 40], a special case of variational inference algorithms, is

most efficient and scalable for our MRF model design. Our finding is

consistent with the literature where variational inference methods

often scale better and are more amenable to optimizations such as

parallelization over multiple processors and hardware acceleration

using GPUs [17, 64].

LBP is a message-passing algorithm on a loopy graph that it-

eratively updates the belief of each random variable based on the

beliefs of its neighbors in the graph. More precisely, we use the

max-product LBP algorithm on factor graphs to perform MAP in-

ference and handle high-order potentials (i.e., potentials of ternary

cliques). With respect to the factor graph, LBP computes the mes-

sage𝑚𝑥→𝑤 (𝑥𝑖 ) from a variable node 𝑥 to a factor node𝑤 (here fac-

tor𝑤 contains variable 𝑥 so there is an edge between the two nodes

for message passing) as 𝑚𝑥→𝑤 (𝑥𝑖 ) =

∏︁

𝑦∈𝑁𝑏 (𝑥 )\𝑤𝑚𝑦→𝑥 (𝑥𝑖 ),

where 𝑁𝑏 (𝑥) denotes the set of neighbors of node 𝑥 , and 𝑥𝑖 is

a value that 𝑥 can take. Conversely, the message𝑚𝑤→𝑥 (𝑥𝑖 ) from
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factor node 𝑤 to variable node 𝑥 is computed as 𝑚𝑤→𝑥 (𝑥𝑖 ) =

max𝐼 ,𝐼𝑥=𝑥𝑖 (𝜙 (𝐼 )
∏︁

𝑦∈𝑁𝑏 (𝑤 )\𝑥 𝑚𝑦→𝑤 (𝑦𝑖 )), where 𝐼 is a valid assign-

ment to all variables in factor 𝑤 , tuple (𝐼 , 𝐼𝑥 = 𝑥𝑖 ) denotes a valid

assignment with 𝑥 = 𝑥𝑖 , and 𝜙 is the potential function corre-

sponding to 𝑤 . Once a variable 𝑥 receives messages from all its

neighbors in an iteration, the maximal belief of 𝑥 can be computed

as 𝑥∗ = argmax𝑥𝑖
∏︁

𝑦∈𝑁𝑏 (𝑥 )𝑚𝑦→𝑥 (𝑥𝑖 ).

4.1.2 Time Complexity Analysis. Having described the MRF ap-

proximate inference algorithm we apply for finding the optimal

relationship assignment graph, let us describe its complexity. Let

𝑠 and 𝑑 be the number of possible states and degree of variable 𝑥 ,

respectively. Computing a variable-to-factor message𝑚𝑥→𝑤 (𝑥𝑖 )

requires combining all incoming messages from neighboring factor

nodes excluding𝑤 for each state of 𝑥 . Then the cost of computing

a single variable-to-factor message is 𝑂 (𝑠 · (𝑑 − 1)). It follows that

the time complexity for computing all variable-to-factor messages

in one iteration is 𝑂 (
∑︁

𝑥 𝑑 · 𝑠 · (𝑑 − 1)) = 𝑂 ( |𝑉 | · 𝑠 · 𝑑2) where |𝑉 |

denotes the number of variable nodes in the factor graph.

Let 𝑑𝑤 be the degree of factor node 𝑤 . Computing a factor-to-

variable message𝑚𝑤→𝑥 (𝑥𝑖 ) requires maximizing over the values

of all variables connected to𝑤 excluding 𝑥 . Then, the cost of com-

puting a single factor-to-variable message is 𝑂 (𝑠𝑑𝑤−1) as there

are 𝑠𝑑𝑤−1 configurations of connected variables excluding 𝑥 . It fol-

lows that the time complexity for computing all factor-to-variable

messages in one iteration is 𝑂 (
∑︁

𝑤 𝑑𝑤 · 𝑠
𝑑𝑤 ). Combining the com-

plexities for both types of messages, the time complexity of running

max-product LBP for 𝑙 iterations is𝑂 (𝑙 · ( |𝑉 | · 𝑠 ·𝑑2 +
∑︁

𝑤 𝑑𝑤 · 𝑠
𝑑𝑤 )).

In our proposed MRF model, there are
(︁𝑛
2

)︁

binary variable nodes

with degree 𝑛 − 1,
(︁𝑛
2

)︁

unary factors with degree 1 and
(︁𝑛
3

)︁

ternary

factors with degree 3 given a set of 𝑛 concepts. By plugging in these

numbers, the time complexity above can be simplified to 𝑂 (𝑙 · 𝑛4).

4.1.3 Space Complexity Analysis. Recall from Figure 4 that factors

are modeled as bipartite graphs between variables and factors. Each

edge in the factor graph requires two messagesÐone message from

the variable node to the factor node and another from the factor

node to the variable node. Storing a message requires space pro-

portional to the number of states of a variable. Then, the space

complexity of storing messages is 𝑂 ( |𝐸 | · 𝑠), where |𝐸 | denotes the

number of edges in the factor graph. Additionally, for each variable

node, we store a belief over its possible states, which requires 𝑂 (𝑠)

space per variable. For |𝑉 | variable nodes, the space required for

storing beliefs is 𝑂 ( |𝑉 | · 𝑠). Thus, the overall space complexity for

max-product LBP is𝑂 ( |𝐸 | · 𝑠 + |𝑉 | · 𝑠) which translates to𝑂 (𝑛3) in

our proposed MRF model.

The quartic time complexity and cubic space complexity is for-

bidding for large datasets with thousands of concepts. Next, we

introduce a solution to scale up the MRF inference.

4.2 Scaling MRF Modeling

The high time and space complexity stems from the densely con-

nected graph we construct. For a set of 𝑛 concepts, each node in

the resulting factor graph connects to 𝑛 − 1 neighbors including

one unary and 𝑛 − 2 ternary factors. This dense connectivity leads

to significant computational demands and memory consumption.

Grouped
Concept Pairs

x N

Local MRF Created
for Each Group Batch Inference on

Multiple CPUs

Posterior
Predictions

...
x N

Figure 5: Creating independent MRFs for concept pairs in

large datasets with sparse relationships. Ordered pairs are

first grouped by the left concept and top-𝑘 neighbors (repre-

sented by the purple semi-circles) are retrieved for the left

concept to construct a local MRF of random variables. In-

ference over independent MRFs is parallelized on available

CPUs and posterior predictions of test pairs are collected.

However, we empirically observe that many connections in the

dense graph are unnecessary for ensuring relationship transitivity

and learning dependencies. Specifically, numerous connections are

either redundant or represent weak dependencies that do not sig-

nificantly impact inference accuracy. We propose to systematically

reduce the connections for each node. By reducing the connections

from 𝑛 − 1 to a constant 𝑘 , where 𝑘 << 𝑛, we effectively decrease

the number of message-passing operations required by the LBP al-

gorithm, enabling faster execution and significantly lower memory

usage. Our intuition is that concepts with more similar embeddings

are more likely to share strong relationship dependencies. There-

fore, to select these 𝑘 neighbors for each concept, we employ a text

embedding model, NV-Embed-v2 [32] to represent concepts in em-

bedding space and search for 𝑘-nearest neighbors based on Cosine

similarity. By focusing only on the top-𝑘 neighbors, wemaintain the

essential relationship dependencies while disregarding redundant

connections that contribute little to inference quality.

Reducing the number of connections for each node has the ad-

vantage of dividing the MRF into disconnected local graphs. Our

solution first groups ordered concept pairs by the left concept and

constructs a local MRF for each group. This ensures that the same

concept pair does not appear in multiple MRFs and local MRFs are

independent of each other. The inference for each local MRF can

then be performed independently in constant time. Furthermore,

we can parallelize the inference for local MRFs across the avail-

able CPUs, which significantly reduce the inference time. Figure 5

provides an illustration of the idea.

5 IMPLEMENTATION

5.1 Prior Models

5.1.1 Large Language Models. We employ two open-source LLMs

as prior models for prompting and fine-tuning: gemma-2-9b-it

from Google [36] and Qwen2.5-7B-Instruct from Alibaba [61].

Both models can be accessed from Hugging Face’s model hub. We

choose these two models as we are able to deploy them locally and

they can closely follow our straightforward prompts to generate

both predictions and confidence scores. We refer to both models as

gemma-2 and qwen2.5 respectively for convenience below.
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Due to the space limitation, we have made our prompts and fine-

tuning hyperparameters publicly available in our GitHub repository.

Both models can be fine-tuned efficiently under an hour (for 20

epochs). One noteworthy issue we encountered when fine-tuning

gemma-2 and qwen2.5 is that both models tend to exhibit exces-

sive confidence in their predictions, with most predictions yielding

a probability score above 0.99. This overconfidence hinders the

message-passing process in MRF inference, as only information

from the dominant class gets propagated. To mitigate the issue,

we incorporate three techniques for calibrating model confidence.

Specifically, we use a weighted loss function (with weights inversely

proportional to the frequency of the respective classes) when fine-

tuning models on imbalanced datasets and enable label smooth-

ing [39] in the loss calculation, which assigns a small probability

to incorrect classes to reduce overfitting. Additionally, we apply

temperature scaling [21] to adjust the sharpness of the output logits

during inference, which involves dividing the logits by a temper-

ature value greater than 1 before applying the softmax function,

thereby softening the resulting probabilities.

5.1.2 Machine Learning Models. We train multi-class classifiers on

a predefined set of features to predict the presence of a relation-

ship for each concept pair. We employ three classifiers including

Ridge classifier, Random Forest, and Gradient-Boosted Decision

Tree from scikit-learn [47]. These models were chosen for their

built-in regularization mechanisms, which help reduce overfitting

and improve generalization on class imbalanced datasets. We define

features using concept names and associated data values if available.

These features include string similarities (Q-gram, Jaccard, and edit

distance), embedding similarities (fastText [6]), word and character

count ratios between concept names, and Jaccard and embedding

similarities between column values.

5.2 MRF Inference and Parameter Tuning

We evaluated five implementations of MAP inference for MRFs

from three libraries: Shafer-Shenoy [51] from pyAgrum [16], Belief

Propagation [46], Max-Product Linear Programming (MPLP) [19],

and Gibbs Sampling [18] from pgmpy [3], and Loopy Belief Propaga-

tion (LBP) [40] from PGMax [64]. LBP from PGMax proved the most

efficient and scalable due to their flat array-based implementation

which leverages just-in-time compilation and parallelization for

optimized execution on multi-processors and GPUs.

There are two sources of parameters we tune for our problem:

those in the potential function of ternary cliques and those for LBP

inference (e.g., the damping factor used to improve the convergence

of LBP). In particular, we tune the parameters using SMAC [35], a

robust and flexible Bayesian Optimization framework for hyperpa-

rameter optimization. SMAC treats MRF inference as a black-box

function and iteratively searches for parameter configurations that

maximize a target function which gives accuracy or F1 score for ex-

ample. Internally, SMAC employs a surrogate model to approximate

the target function and in each iteration proposes a configuration

with the maximum expected improvement (which is computed us-

ing the surrogate model) for evaluation. The optimization process

balances between exploration (i.e., search an unknown region in

the parameter space) and exploitation (i.e., search for configura-

tions near the best-so-far configuration), and stops after a fixed

Table 2: Summary of dataset statistics in the training, valida-

tion and test splits. All four datasets exhibit class imbalance.

Datasets SOTAB Walmart-Amazon ICPSR-Detection ICPSR-Direction

Relationship Type Equivalence Equivalence Parent-Child Parent-Child

Number of Concepts 46 / - / 46 5126 / 2507 / 2484 140 / 54 / 54 79 / 46 / 46

Number of Pairs 1035 / - / 1035 6144 / 2049 / 2049 9730 / 1431 / 1431 3081 / 1035 / 1035

% of Minority Class 1.26% / - / 1.26% 9.38% / 9.42% / 9.42% 1.63% / 4.05% / 3.98% 2.08% / 3.29% / 3.29%

number of iterations. SMAC is known to be effective and efficient

for AutoML applications [35] and under active maintenance.

6 EXPERIMENTS

6.1 Experimental Setup

6.1.1 Datasets. We evaluate OpenForge on four datasets involv-

ing two relationship types: equivalence (SOTAB dataset for column

types matching and Walmart-Amazon dataset for entity matching)

and parent-child (ICPSR-Detection and ICPSR-Direction datasets

for taxonomy induction). We have sourced SOTAB and ICPSR

datasets particularly for metadata integration tasks.

SOTAB Dataset. The Schema.org Table Annotation Benchmark

(SOTAB) [29, 30] provides manually verified column type annota-

tion using two vocabularies, schema.org [20] and DBPedia [33].

We merge concepts from both vocabularies to form an initial col-

lection of concepts. If a table column is annotated with concepts

from both vocabularies, we consider the two concepts equivalent.

The many-to-many correspondences from columns to concepts can

challenge the priors. This allows us to test how the proposed MRF

formulation can identify conflicting relationships. Given the limited

vocabulary size, we split it evenly into training and test sets.

Walmart-Amazon Dataset. This dataset has been widely used

to evaluate entity matching algorithms [38, 58]. It provides a chal-

lenging setting (e.g., noisy attributes and missing data) for matching

product entities between two major e-commerce platforms. We use

the same training, validation, and test splits as prior work.

ICPSR-Detection and ICPSR-Direction Datasets. ICPSR,

the institute maintaining the world’s largest social science data

archive [26], makes their controlled vocabularies publicly available.

We create two datasets of parent-child relationships from ICPSR’s

Subject Thesaurus [25]. Following the task definitions in [49], the

ICPSR-Detection dataset is for hypernymy detection where one

predicts whether the hypernymy relationship exists between a pair

of concepts (i.e., binary classification) while for the ICPSR-Direction

dataset, one needs to identify which concept is broader in a given

pair of concepts if the relationship exists (i.e., multi-class classifi-

cation). The dataset comprises social science terms from various

disciplines such as political science and economics. We manually

identify concepts with transitive parent-child relationships (e.g.,

credentials→ academic degrees→ doctoral degrees) and

divide the collection of transitive concept tuples into training, vali-

dation, and test sets at ratio of 0.6:0.2:0.2. The ICPSR datasets have

no column data associated with each concept as ICPSR does not

use subject terms to annotate table elements. The prior beliefs of

these two datasets can only be learned from concept names, which

is a more challenging setting.
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Table 2 summarizes dataset statistics. Notably, all datasets ex-

hibit highly imbalanced class distributions, with minority class

proportions in test splits ranging from 1.26% to 9.42%, which poses

a significant challenge for any solution.

6.1.2 Baselines. For each task defined by a relationship, we com-

pare our approach with the previous state-of-the-art (SOTA) meth-

ods as well as latest LLMs, GPT-3.5 and GPT-4, from OpenAI.

Unicorn. Unicorn [58] is a unified multi-task model for data

integration tasks like entity and schema matching. It leverages

multi-task learning and a Mixture-of-Experts architecture to enable

knowledge sharing across tasks and datasets. Additionally, Uni-

corn claims to support zero-shot prediction for new tasks without

requiring labeled data. We compare OpenForge with Unicorn on

datasets involving equivalence relationships.

COMA. COMA [14] combines multiple match algorithms to

improve the schema matching accuracy. Later extensions of COMA

offer ontology matching among other features.

ADA. Zhang et al. [63] propose a data-driven solution for au-

tomatically discovering attributes in relational databases, which

we refer to as ADA for convenience. ADA clusters columns into at-

tributes based on data distribution similarities where each attribute

represents a unique semantic concept (e.g., telephone numbers).

Ditto. Ditto [34] casts entity matching as a sequence-pair clas-

sification task and fine-tunes pre-trained language models with

labeled data and optimizations to achieve strong performance.

COMA and ADA, recognized as strong schema matching base-

lines [31], are compared with OpenForge on the SOTAB dataset,

where the setup is most aligned with schema matching. We include

Ditto for comparison on the Walmart-Amazon dataset as it is the

task-specific SOTA method for entity matching.

Chain-of-Layer. Zeng et al. [62] propose Chain-of-Layer for

automatic taxonomy induction from a given set of entities. It heavily

relies on prompting a LLM to construct a taxonomy from top to

bottom in an iterative manner and uses another smaller language

model to remove hallucinated entities and relationships.

HypernymySuite. Roller et al. [49] investigates hypernymy

detection through two primary approaches: pattern-based methods,

which utilize predefined lexico-syntactic patterns to identify hier-

archical relationships between words, and distributional methods,

which leverage word co-occurrence statistics in large corpora.

We compare OpenForge with Chain-of-Layer and Hypernymy-

Suite on datasets involving parent-child relationships.

GPT-3.5/4.We prompt GPT-3.5 and GPT-4 [9, 44] to predict re-

lationships between concept pairs using task descriptions and few-

shot learning. We use OpenAI APIs to interact with the models iden-

tified as gpt-3.5-turbo-0125 and gpt-4-turbo-2024-04-09.

Due to class imbalance in the datasets, we evaluate the quality

of all approaches using F1 score (macro F1 for multi-class classifi-

cation) and report the best results of each approach. For example,

LLMs can obtain higher scores without few-shot learning in some

cases. Additionally, we report the runtime of our MRF modeling in

seconds for efficiency and scalability analysis.

6.1.3 Hardware. Experiments involving GPU-accelerated MRF in-

ference, fine-tuning and inference of open-source LLMs, and run-

time measurement are done on a node with a NVIDIA A40 40GB

GPU, 16 cores of Intel Xeon Gold 6226R processors and 256 GB of

Table 3: Comparison of F1 score across methods and datasets.

Datasets Methods

Unicorn COMA ADA GPT-3.5 GPT-4 OpenForge

SOTAB 0.48 0.59 0.10 0.73 0.75 1.00

Unicorn Ditto GPT-3.5 GPT-4 OpenForge

Walmart-Amazon 0.87 0.87 0.67 0.84 0.91

Chain-of-Layer HypernymySuite GPT-3.5 GPT-4 OpenForge

ICPSR-Detection 0.37 0.21 0.58 0.79 0.91

ICPSR-Direction 0.01 0.34 0.41 0.45 0.81

RAM on a shared computing cluster. The rest of experiments are

conducted on a local server with 16 cores of Intel Xeon Bronze 3106

processors and 256 GB of RAM.

6.2 Quality Comparison

RQ1: How does OpenForge compare with baselines for var-

ious metadata integration tasks? As shown in Table 3, Open-

Forge consistently outperforms the baselines by significant margins

in F1 score across all datasets (e.g., 4-36 F1 points improvement over

the second-best baselines). These results highlight OpenForge’s

flexibility and robustness in capturing different relationship types,

outperforming both specialized and general-purpose baselines. We

attribute the superior performance to three key factors:

(1) Joint Probability Modeling: MRF effectively models the joint

probability over random variables, especially with strong priors

given by fine-tuned LLMs, enabling more accurate predictions.

(2) Preservation of Transitivity: By incorporating potential func-

tions for ternary cliques, OpenForge ensures that invalid as-

signments violating relationship transitivity are avoided.

(3) Dependency Learning: Fine-tuning hyperparameters of MRF

modeling and inference on a validation dataset with a class

distribution similar to the test set allowsOpenForge to capture

relationship dependencies more effectively.

We discuss some highlighted results on each dataset below.

6.2.1 SOTAB dataset. OpenForge achieves a perfect F1 score of

1.0 even though the prior beliefs used as inputs to MRF model-

ing are far from perfect. We report a detailed comparison of prior

models and OpenForge (prior beliefs + MRF-based modeling) in

Section 5.1. These results provide strong evidence for the advantage

of modeling relationship transitivity and dependencies using MRFs.

Among the baselines, GPT-4 is the second-most effective method

but trails OpenForge by 25 F1 points. COMA employing multiple

matching strategies exhibits decent F1 score of 0.59 while another

traditional method ADA using only the Earth Mover’s Distance as

the similarity measure appears to be the least effective. Unicorn, the

SOTA for data matching tasks, performs less competitively on this

dataset. The suboptimal performance suggests that Unicorn, despite

leveraging multi-task learning, finds it challenging to generalize to

the metadata integration tasks and datasets. This is most likely due

to two reasons: (1) the SOTAB dataset is not seen in pretraining of

Unicorn, and (2) equivalent pairs in Unicorn datasets often share

common parts whereas column values associated with equivalent

types in SOTAB are heterogeneous and may have no overlap.
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6.2.2 Walmart-Amazon dataset. OpenForge achieves an F1 score

of 0.91, outperforming Unicorn, the second-best method, by 4 F1

points. The performance gap is smaller on this dataset as Unicorn

was pre-trained on multiple entity matching datasets including the

Walmart-Amazon dataset, making it a strong baseline. Additionally,

the sparsity characteristic of this dataset (i.e., many entities appear

only once in the test set and the predictions of many entity pairs are

independent of others) diminishes the advantage of explicitly mod-

eling relationship transitivity and dependencies. Ditto, the SOTA

task-specific approach for entity matching, performs comparably

to Unicorn due to its use of supervised learning. Among other base-

lines, GPT-4 falls behind OpenForge by 7 F1 points, while GPT-3.5

lags even further, trailing by 24 F1 points.

6.2.3 ICPSR-Detection and ICPSR-Direction datasets. OpenForge

outperforms GPT-4 by 12 F1 points and GPT-3.5 by 33 F1 points

on the ICPSR-Detection dataset, and by 36 F1 points and 40 F1

points, respectively, on ICPSR-Direction. The specialized approach,

Chain-of-Layer, performs poorly in both tasks due to its assump-

tion that all concepts belong to the same domain and fit within a

single structured hierarchy, which does not hold for these datasets.

The pattern-based approach, HypernymySuite, performs the worst

on ICPSR-Detection, as many concepts in the dataset are absent

from the corpus it relies on for pattern extraction and it has limited

capability in handling out-of-vocabulary concepts. While Hyper-

nymySuite obtains a moderate score on ICPSR-Direction, it still

falls behind due to its reliance on extracted patterns, which struggle

with directionality inference, particularly for unseen concepts.

6.3 Prior Models

RQ2: Can MRF modeling improve on various prior beliefs

and by how much? Figure 6 illustrates the impact of prior mod-

els on the result quality of OpenForge for the SOTAB, Walmart-

Amazon, and ICPSR datasets. To save space, we present results for

up to five prior models: the Ridge classifier (the top-performing

ML model among three tested), gemma-2, qwen2.5, and their LoRA

fine-tuned classifier variants, i.e., gemma-2-lora and qwen2.5-lora.

On all datasets, our MRF modeling significantly improves the re-

sults quality over the prior models, with gains ranging from 2 to 70

F1 points. These results demonstrate the effectiveness of MRF mod-

eling in enhancing prior predictions and correcting mispredictions

that violate relationship transitivity.

We observe that overall LoRA fine-tuned LLMs outperform

vanilla LLMs with few-shot learning by a large margin. For in-

stance, the LoRA fine-tuned gemma-2 model achieves an F1 im-

provement of 52 points over the vanilla gemma-2 model, while the

corresponding improvement on the Walmart-Amazon dataset is

45 F1 points. This highlights the potential of fine-tuning vanilla

LLMs to obtain strong performance for classification tasks. Notably,

on the Walmart-Amazon dataset, MRF modeling does not provide

additional improvements for the gemma-2-lora and qwen2.5-lora

models. This can be attributed to two factors: (1) the dataset’s

sparsity, where many entity pairs in the test set are independent,

reducing the occurrence of relationship transitivity violations; and

(2) fine-tuned LLMs serving as strong priors, with manual checks

confirming that none of their mispredictions violate relationship

transitivity. Nevertheless, applying MRF modeling does not de-

grade the quality of the results, preserving the performance of

these strong prior models. On the ICPSR-Direction dataset, the reg-

ularization effect of MRF modeling is diminished. This is because

the ternary factor table has 27 configurations, only four of which

violate transitivity, whereas in the binary classification setting, two

out of eight configurations are invalid.

Guide for Practitioners. When sufficient training data (e.g.,

thousands of examples) are available, fine-tuning LLMs using pa-

rameter efficient fine-tuning techniques for domain-specific tasks

yields very strong results and is highly recommended. In cases

where training data are lacking, prompting a LLM to obtain prior

beliefs offers a viable alternative.

6.4 Efficiency of MRF Modeling

RQ3: How efficient are MRF construction and inference?

Figure 7 shows the MRF construction and inference time of dif-

ferent inference algorithms (i.e., pgmpy-MPLP, PGMax-CPU-LBP,

and PGMax-GPU-LBP) on four datasets. All runtime numbers are

reported using either a single CPU or GPU. We exclude the Shafer-

Shenoy algorithm (implemented in pyAgrum) and Gibbs sampling

(implemented in pgmpy) from the comparison as they do not com-

plete execution within an hour on our smallest dataset.

The three algorithms under consideration exhibit efficient factor

graph construction, with completion time of a few seconds across

all datasets. The primary distinction between these algorithms lie

in their inference time. GPU-accelerated LBP (i.e., PGMax-GPU-

LBP) is overall the most efficient, achieving more than 2x speedup

compared to CPU-based LBP (i.e., PGMax-CPU-LBP) and over two

orders of magnitude speedup compared to pgmpy-MPLP on CPU.

The speedup is particularly significant on ICPSR datasets, which

have over a thousand of random variables and more than twenty

thousands of factors in the constructed graph. On ICPSR-Detection,

pgmpy-MPLP does not complete running within two and a half

hours. In contrast, PGMax-GPU-LBP finishes the inference in just

33.4 seconds and PGMax-CPU-LBP completes in 72.1 seconds. The

superior performance of PGMax-GPU-LBP can be attributed to

their flat array-based implementation of LBP in JAX [7] which

leverages just-in-time compilation and parallelized array operations

to optimize performance on hardware accelerators. However, for

smaller graphs, such as the local MRFs in the Walmart-Amazon

dataset, each of which has tens of random variables due to the

dataset’s sparsity, pgmpy-MPLP appears to be more efficient while

PGMax-GPU-LBP remains 1.3x faster than PGMax-CPU-LBP.

Although PGMax-LBP inference is slower on a single CPU com-

pared to GPU, we can batch process independent local MRFs in the

Walmart-Amazon dataset across multiple CPUs. When we use all

16 CPUs on the computing node, the runtime of PGMax-CPU-LBP

can be reduced from nearly 1000 seconds to under 70 seconds.

6.5 Scalability

RQ4: How does MRF inference scale as MRF grows in size

with a fixed amount of memory? Given that MRF inference

is often the most time- and memory-intensive component of the

solution, we evaluate its scalability under fixed resources: a single

GPU (NVIDIA A40, 40 GB) and 256 GB of RAM. We synthesize
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Figure 6: Comparison of F1 score between priormodels andOpenForge on (a) SOTAB, (b)Walmart-Amazon, (c) ICPSR-Detection

and (d) ICPSR-Direction datasets. We omit gemma-2-lora and qwen2.5-lora on SOTAB due to insufficient training data.

Figure 7: MRF construction and inference time of three infer-

ence algorithms using a single CPU or GPU. WA, I-Det, and

I-Dir are shorthands for Walmart-Amazon, ICPSR-Detection,

and ICPSR-Direction datasets, respectively.

Figure 8: Scalability of MRF inference w.r.t. the number of

concepts and connectivity 𝑘 . 𝑘 = 12 scales up to 4000 concepts

(nearly 8 millions of random variables) and 𝑘 = 16 scales up

to 3000 concepts (about 4.5 millions of random variables).

sparse factor graphs with varying numbers of concepts (up to 5,000,

translating to over 12 million random variables) and connectivity

levels 𝑘 (up to 16) as discussed in Section 4.2. These factor graphs

consist of binary random variables with fixed prior probabilities

and ternary factors with predefined potential values. We execute

the PGMax-GPU-LBP algorithm using its default hyperparameters

for 200 iterations.

Figure 8 illustrates the relationship between inference time and

the number of concepts for varying connectivity levels. As expected,

the inference time grows with both the number of concepts and the

connectivity k. The inference times for all completed runs remain

within 40 minutes. For connectivity levels 𝑘 = 4 and 𝑘 = 8, the

algorithm completes inference on graphs with 5,000 concepts in

under 30 minutes. At higher connectivity levels (𝑘 = 12 and 𝑘 = 16),

the algorithm can handle graphs with up to 4,000 and 3,000 concepts,

respectively, before exceeding the memory limits. Notably, a graph

with 3,000 concepts corresponds to approximately 4.5 million pairs

of concepts or random variables for predictionÐsignificantly larger

than the test set size of any existing public dataset for data matching

or taxonomy induction. Hence, we consider the inference algorithm

good enough for handling many use cases.

7 DISCUSSION

More Types of Relationships. While OpenForge currently fo-

cuses on equivalence and parent-child relationships, its probabilistic

framework can be extended to handle more diverse relationship

types. For instance, directional relationships including part-whole

and causal dependencies can be modeled similarly to parent-child

relationships, with adjustments to the configurations of ternary

factors to capture their unique properties.

Beyond Transitivity.WhileOpenForge primarily enforces transi-

tivity in relationship inference, we acknowledge that some semantic

correlations between concept pairs exist independently of transi-

tivity. In Section 4.2, we leverage embedding similarities to identify

semantically related concept pairs when constructing local MRFs,

indirectly capturing such dependencies. Nevertheless, these seman-

tic correlations are not explicitly modeled within the MRF model,

which could further refine relationship assignments.

Future work could extend the model by incorporating pairwise

semantic factors directly into the MRF to formally represent such

dependencies. This would enable OpenForge to capture richer

relational patterns beyond transitivity, further enhancing its ex-

pressiveness and robustness in complex metadata integration tasks.

Meanwhile, it may introduce additional computational complexity,

particularly for large datasets. Balancing model expressiveness with

inference efficiency will be a key challenge to tackle in future work.

8 RELATED WORK

We discuss data matching, from the data management community,

and taxonomy induction, from the semantic web community, which
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are the most relevant to our work. Moreover, we review applications

of probabilistic models in the broader area of data integration and

summarize the role of metadata in dataset discovery.

Data Matching. Research efforts in generalizing matching tech-

niques have primarily focused on solutions that generalize across

domains [53] or tasks [58]. To the best of our knowledge, Uni-

corn, a multi-tasking model for data matching [58], represents the

SOTA in generalization across tasks. It supports matching tasks for

data integration, such as entity matching and schema matching,

by primarily focusing on equivalence relationships. For (meta)data

integration,OpenForge not only goes beyond equivalence relation-

ships to discover and resolve parent-child relationships, but also

our experiments show that, despite Unicorn adopting a multi-task

learning approach, it is still challenging for Unicorn to generalize to

the new matching tasks and datasets of metadata integration. Paral-

lel to multi-task learning, we demonstrate the promising potential

of transfer learning using large language models with fewer than

10 billion parameters for various tasks. With parameter-efficient

fine-tuning techniques such as LoRA [24], multiple tasks can share

the same base model by incorporating lightweight adapters. These

adapters are significantly smaller than the base model in size yet

effectively enhance result quality across downstream tasks, making

this approach highly efficient and scalable.

Taxonomy Induction. The taxonomy induction literature has

extensively studied the problem of extracting parent-child rela-

tionships from text documents [23, 49, 52]. Various traditional

frameworks have posed the taxonomy induction problem with

a probabilistic formulation [4, 54]. For example, Snow et al. define

the objective as finding a parent-child graph that maximizes the

probability of observed evidence [54]. Their formulation relies on

two additional independence assumptions to decompose the joint

probability so that they can solve the problem with a heuristic

search algorithm. This inspired us to design a simpler and more

intuitive joint probability formulation, i.e., finding the most proba-

ble relationship graph given the existing evidence. This alternative

formulation has two advantages. First, it allows us to incorporate

various powerful priors, such as LLMs. Second, it allows us to cast

our problem to MRF to incorporate relationship properties, such

as transitivity, to refine the results. Bansal et al. also propose an

MRF formulation for taxonomy induction [4]. OpenForge not only

extends this formulation with an additional relationship type, it

also explores different ways of obtaining prior beliefs and learning

parameters for the MRF formulation. Chain-of-Layer [62], SOTA in

the literature, iteratively prompts a LLM to construct the taxonomy

while employing a smaller language model to reduce hallucinations

of the LLM. However, our experiments reveal that Chain-of-Layer

struggles to construct taxonomies effectively when working with a

diverse set of metadata concepts from the social science domain.

The deficiencies are mainly attributed to the prompts tailored for

taxonomies with simple structures (e.g., country-state hierarchies)

and the smaller language model’s inability to generalize effectively

to entities within the social science domain.

Probabilistic Modeling. Due to the prevalence of uncertain and

noisy data in modern applications, probabilistic models have been

extensively studied for probabilistic databases [50], information

extraction [59], and data integration [1]. Sen and Deshpande [50]

introduce graphical models to represent and query correlated tuples

(e.g., independence and implication relationships) efficiently, fram-

ing query evaluation as an inference problem over probabilistic

graphical models. However, their approach relies on exact inference,

limiting their scalability to smaller graphs with tens of thousands

of random variables as opposed to millions of variables in our

case. Wang et al. [59] integrate Conditional Random Fields (CRFs)

into relational query processing, demonstrating how probabilis-

tic inference improves both the accuracy and efficiency of query-

ing uncertain information extracted from unstructured sources.

Their approach focuses on tasks such as named entity recognition

and sequence labeling, where the linear structure of input text

sequences makes linear-chain CRFs a natural fit. In contrast, our

integration problem requires a more general graph structure to

model the transitivity of ternary concept groups. Consequently,

their CRF-based techniques and optimizations, designed for linear

sequences, do not directly apply to our setting. Agrawal et al. [1]

establish the theoretical foundations for uncertain data integration

within the Local-As-View framework, introducing novel contain-

ment notionsÐequality-containment and superset-containmentÐto

model how uncertain data from diverse sources can be consistently

merged. While their theoretical framework is sound, the paper

leaves the development of efficient query processing techniques

and real-world applications as open areas for future work.

Metadata and Dataset Discovery.Metadata has been extensively

used in facilitating downstream tasks such as data discovery and

data sharing. Google dataset search indexes themetadata of datasets

(published by users in schema.org format) [8]. Auctus, a domain-

specific and open-source dataset search engine, supports spatial and

temporal data augmentation through indexing the data summaries

describing dataset contents (e.g. grid size for spatial data) [10]. Raw

metadata (e.g., column names and tags) [5, 41], concept annota-

tions [37], and concept hierarchies [27] have been used as data

summaries to be indexed for table union and join search. Besides

data cataloging, the hierarchies inferred by OpenForge can further

enhance the results quality of downstream data discovery tasks, par-

ticularly for domain-specific data repositories. For instance, datasets

tagged with metadata of varying granularity could better align with

user queries, improving retrieval accuracy [41, 45]. Exploring these

applications represents a promising direction for future work.

9 CONCLUSION

We introduce the metadata integration problem and propose

OpenForge, a data-driven solution that unifies metadata concepts

for a given relationship. By combining advanced prior models with

probabilistic modeling and inference using Markov Random Fields,

OpenForge effectively resolves relationships between metadata

concepts while enforcing essential relationship properties such as

transitivity. Our approach also demonstrates both efficiency and

scalability across various datasets. A promising direction for future

work is leveraging integrated metadata vocabularies to facilitate

the discovery of siloed datasets.
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