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ABSTRACT
Data missingness is a practical challenge of sustained interest to the

scientific community. In this paper, we present Shades-of-Null,
an evaluation suite for responsible missing value imputation. Our

work is novel in two ways (i) we model realistic and socially-salient

missingness scenarios that go beyond Rubin’s classic Missing Com-

pletely at Random (MCAR), Missing At Random (MAR) and Missing

Not At Random (MNAR) settings, to include multi-mechanism miss-

ingness (when different missingness patterns co-exist in the data)

and missingness shift (when the missingness mechanism changes

between training and test) (ii) we evaluate imputers holistically,

based on imputation quality and imputation fairness, as well as on

the predictive performance, fairness and stability of the models that

are trained and tested on the data post-imputation.

We use Shades-of-Null to conduct a large-scale empirical study

involving 29,736 experimental pipelines, and find that while there is

no single best-performing imputation approach for all missingness

types, interesting trade-offs arise between predictive performance,

fairness and stability, based on the combination of missingness sce-

nario, imputer choice, and the architecture of the predictive model.

We make Shades-of-Null publicly available, to enable researchers
to rigorously evaluate missing value imputation methods on a wide

range of metrics in plausible and socially meaningful scenarios.
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1 INTRODUCTION
As AI becomes more widely deployed into society, data — most

importantly, openly accessible high quality AI-ready data — be-

comes a precious shared commodity. Among the factors affect-

ing data quality is data missingness, a prevailing practical chal-

lenge of sustained interest to the data management, statistics and

data science communities, and to the scientific community writ

large [32, 37, 39, 55, 58, 69, 74, 79, 84, 97, 102].

Debates on handling missing values in data management date

back to the field’s inception, with classic discussions such as Date

[15]. At the operational level, missing values are typically denoted

by null, but hidden missing values can exist (e.g., ‘AL’ being se-

lected by default in a job application). At the semantic level, null
can have multiple meanings—unknown, inapplicable, or intention-

ally withheld. This paper does not engage in the semantic debate or

consider hidden missing values [76]. Instead, we focus on a specific

case: a dataset 𝑋 (a single relation) where some features are miss-

ing, marked by null, indicating that the feature has a real-world
value but is unobserved in 𝑋 . Our goal is to use 𝑋 in a machine

learning (ML) setting, either for model training or inference. Since

ML models cannot handle null directly, missing values must be

imputed as part of data preprocessing.

As our starting point, we will use Rubin’s missingness frame-

work [79] that, nearly 50 years since it was proposed, still remains

the most popular approach to modeling missing data. Consider

a dataset 𝑋 of 𝑛 samples, each with 𝑝 features, and an indicator

𝑅 such that 𝑅𝑖, 𝑗 = 1 when the value of the 𝑗 ’s feature of 𝑋𝑖 is

missing: 𝑋𝑖, 𝑗 is null, and 𝑅𝑖, 𝑗 = 0 when that the value is observed:

𝑋𝑖, 𝑗 is not null. Rubin identified three data missingness scenarios:

Missing Completely at Random (MCAR). In a job applicant dataset

with salary and years of experience, MCAR holds if salary is missing

due to administrative errors, unrelated to the salary itself or work

experience. That is: 𝑃 (𝑅 |𝑋 ) = 𝑃 (𝑅).

Missing at Random (MAR). If job applicants with fewer years of

experience are more likely to withhold their salary, and this can be

explained by observed covariates (i.e., years of experience), then

MAR holds. Here, missingness depends only on observed features,

not the missing values themselves: 𝑃 (𝑅 |𝑋 ) = 𝑃 (𝑅 |𝑋
obs

).

Missing Not at Random (MNAR). Consider a job applicant whose
salary depends on geographic location and skills test results—neither

2899

https://doi.org/10.14778/3746405.3746416
https://github.com/FalaahArifKhan/data-cleaning-stability
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746416
https://www.acm.org/publications/policies/artifact-review-and-badging-current


captured in the data—rather than years of experience. Suppose ap-

plicants with lower salaries are more likely to withhold this infor-

mation, hoping for a higher offer. In this case, MNAR holds because
missingness is correlated with the missing value itself and can-
not be explained by observed covariates (i.e., years of experience):

𝑃 (𝑅 |𝑋 ) ≠ 𝑃 (𝑅 |𝑋
obs

).

Missing value imputation (MVI). Rubin’s framework has shaped

a vast body of work on missing value imputation, extensively re-

viewed in several comprehensive surveys [2, 4, 20, 30, 35, 39, 44,

56, 57, 65, 73–75, 102]. MVI methods fall into three main categories:

(1) Statistical methods, such as median or mode imputation [81];

(2) Learning-based impute-then-classify, which iteratively impute

missing values using k-nearest neighbors [6], clustering [28], deci-

sion trees [90], or ensembles [87]; (3) Joint data cleaning and model
training, integrating imputation with model learning [47, 51, 52],

based on Rubin’s multiple imputation framework [80].

Beyond Rubin’s framework: Mixing scenarios and dealing with
missingness shift. Rubin’s framework, while analytically clean, does

not fully capture real-world missingness. First,MCAR assumptions

rarely hold, and real-world data often falls on a continuum between

MAR andMNAR, depending on collection methods [32]. Second,

missingness mechanisms frequently co-exist within a dataset (af-
fecting different features or tuples), leading to multi-mechanism
missingness [102]. For instance, Mitra et al. [69] introduce the data
missingness life cycle, showing how data integration from diverse

sources creates structured missingness beyond Rubin’s model. Third,

in data-centric AI, missingness assumptions valid during training

may shift post-deployment, a phenomenon termedmissingness shift,
analogous to data distribution shift [101].

Missingness as a form of bias. Consider the job applicant screen-
ing example with gender and age as features. Female applicants

who suspect wage discrimination may withhold salary information

more often than men, hoping to narrow the gender pay gap. This

leads to more missing salary values for women, where missing-

ness depends on the observed covariate (gender), aligning with MAR.
This reflects pre-existing bias, where data encodes historical soci-
etal discrimination [26]. For another example, suppose disability

status is included as a feature. Applicants with disabilities may be

more likely to omit this information. If disability status is uncor-

related with other features, this scenario aligns with MNAR, with
missingness itself acting as a proxy for disadvantage.

When handling missing values, data scientists must also ad-

dress technical bias [26], where incorrect technical choices create
disparities in predictive accuracy, often amplifying pre-existing

bias. A key example is imputing missing values under incorrect

assumptions, which can worsen disparities in classifier perfor-

mance [34, 82, 83, 89]. For instance, if job applicant salaries are

missing under MAR or MNAR (e.g., older women withhold salaries

due to perceived discrimination), imputing them under MCAR could

further depress salary estimates, reinforcing the gender wage gap

and ageism, and leading to discriminatory outcomes.

Missing value imputation can impact model arbitrariness. Miss-

ingness is an indication of uncertainty in the data. MVI methods

“resolve” this uncertainty at the tuple level, but they may induce a

change in the data distribution in ways that impacts the stability

of predictions of a model trained on this data. In some cases, the

resulting models produce vastly different — and even arbitrary —

predictions under small perturbations in the input [12, 13, 77, 78].

For example, if a job applicant’s salary is imputed in vastly different

ways upon two consecutive applications for the same position, and

this, in turn, impacts the hiring decision, then the decision-making

process violates the principle of process fairness (e.g., [1, 91]). Im-

portantly, instability and accuracy are orthogonal: models can be

accurate in expectation while still being unstable [61].

Research gap. Despite numerous MVI techniques being proposed

each year, there has been limited systematic progress in assess-

ing them across key performance aspects, including imputation

correctness, predictive accuracy, and fairness—measured as dispar-

ities in imputation quality or model performance across groups.

Moreover, while missingness signals uncertainty, there has been

no comprehensive evaluation of the stability of models trained on

cleaned data. Crucially, realistic modeling of missingness, identi-

fying bias sources, and selecting appropriate stakeholder groups

and fairness metrics must be grounded in the specific context of

use [27, 53, 68, 72]. For instance, age-based discrimination is rele-

vant in both hiring and lending, yet older applicants face disadvan-

tages (and legal protections) in hiring, while younger applicants are

disadvantaged in lending. Thus, MVI techniques must be evaluated

in societally meaningful scenarios.

Summary of contributions. We implemented an experimental

benchmark called Shades-of-Null to rigorously and comprehen-

sively evaluate state-of-the-art MVI techniques on a variety of realis-
ticmissingness scenarios (including single- andmultiple-mechanism

missingness and missingness shift), on a suite of evaluation met-

rics (including fairness and stability), in the context of data pre-

processing in a machine learning pipeline.

Our work is (1) novel: to the best of our knowledge, the settings of
multi-mechanismmissingness and missingness shifts have not been

empirically studied before; (2) comprehensive: we evaluate a suite
of 15 MVI techniques on 7 benchmark datasets using 6 model types,

running a total of 29,736 pipelines, and is the first study of such

scale in the missing data domain, to the best of our knowledge; (3)

normatively grounded: we focus on decision-making contexts such

as lending, hiring, and healthcare, where missingness is socially

salient. Mitigating social harm such as algorithmic discrimination is

a leading concern in these domains [5], and we evaluate the impact

of MVI approaches on downstream model fairness and stability

(which have been understudied in the context of missing data),

in addition to classically studied imputation quality and model

correctness metrics.

While developing the Shades-of-Null evaluation suite, we found
and fixed several bugs in existing MVI implementations, including

data leakage and omitted hyperparameter tuning. See full version

of the paper for details [48]. We make Shades-of-Null publicly

available and hope to enable researchers to comprehensively evalu-

ate new MVI methods on a wide range of evaluation metrics, under

plausible and socially meaningful missingness scenarios.
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2 RELATED WORK
Missing value imputation techniques. Learning-based approaches

have become increasingly popular, and include k-nearest neigh-

bors, decision trees, support vector machines, clustering, and en-

sembles [6, 35, 57]. Zhou et al. [102] and Liu et al. [60] review deep

learning-based approaches (variational auto-encoders and gener-

ative adversarial networks) and representation learning (graph

neural networks and diffusion-based methods). Multiple imputa-

tion [81, 102] and expectationmaximization [74, 92] are also influen-

tial, but too computationally expensive to be popular in practice [4].

MNAR-specific techniques, like not-MIWAE [40] and GINA [62],

tackle the challenge of MNAR data by employing identifiable genera-

tive models that effectively account for complex missingness mech-

anisms. Recent methods, including NOMI [93] and TDM [100], in-

troduce advancements like uncertainty-driven networks and trans-

formed distribution matching, which enhance both imputation

accuracy and computational efficiency.

Beyond impute-then-classify, the data management commu-

nity has proposed holistic methods like CPClean [47] and Active-

Clean [52], that jointly perform data cleaning and model training,

deriving from the multiple imputation framework [80]. These meth-

ods detect and repair a variety of errors including outliers, mislabels,

duplicates, andmissing values, and hence are less directly optimized

to model missingness, instead focusing on improving data qual-

ity holistically. BoostClean [51] aims to reduce the human effort

in error repair by learning efficiently from a few gold standard

annotations (from a human oracle).

Evaluating MVI techniques. We are aware of several surveys of

MVI techniques, all conducted with a strong empirical focus [4, 21,

57, 67, 85]. Miao et al. [67] compare 19 MVI methods on 15 datasets,

and while our results corroborate their findings (see Section 5.1),

their evaluation is limited to imputation quality and overall accu-

racy (but not fairness or stability). Other empirical studies have

been primarily focused on medical datasets, and only evaluate miss-

ingness under MCAR [4, 21, 57, 85]. Further, most proposed meth-

ods only evaluate imputation quality, using metrics such as MAE,

MSE, RMSE, and AUC [35, 44], although some also evaluate overall

predictor accuracy [57]. Additionally, the performance of MVI tech-

niques under multi-mechanism missingness [102] and missingness

shifts [101] remains unexplored in prior work, despite these con-

ditions being more likely to occur in practice due to distribution

shifts in production deployments [32].

Notably, overwhelming evidence in the literature indicates that

there is no single “best-performing” MVI approach on accuracy [21,

30, 35, 57, 84], and that model performance (narrowly measured

based on ‘correctness’ thus far) depends on dataset characteristics

such as size and correlation between variables [4] and missingness

rates in the train and test sets [57, 84].

Fairness and missingness. There has been some recent interest

in studying the social harm that can come from poorly chosen

MVI techniques [10, 25, 42, 63, 94, 97–99]. Most empirical stud-

ies [10, 43, 94, 98, 99] have worked with the COMPAS [54] and

Adult [18] datasets, the latter of which has been “retired” from

community use due to issues with provenance [16]. Further, these

experimental studies employ randomly-generated missingness: usu-

ally by randomly sampling or using a fixed set of columns, and

randomly picking rows in which to replace values with null. We

critique this approach, since detecting and mitigating unfairness

requires broader socio-technical thinking, such as having higher

rates of missingness for minority groups and in features that are

highly correlated with sensitive attributes (called proxy variables

in the fairness literature) [10].

A notable exception is Martínez-Plumed et al. [63], who map

social mechanisms such as prejudicial access and self-reporting

bias to missingness categories like missing-by-design and item non-

response. They also analyze feature correlations to study the effects

of different missingness types. We adopt a similar methodology to

simulate realistic missingness in this work but identify conceptual

limitations in their fairness framing. The authors state: “The sur-

prising result was to find that, [...] the examples with missing values

seem to be fairer than the rest.” However, asserting that some
rows of data are more or less fair is misguided, as fairness is
not a property of individual samples (e.g., job applicants) but of the

model (e.g., in hiring decisions), which determines fairness through

inclusion or exclusion in positive outcomes. We reinterpret their

findings to suggest that excluding samples with missing values can

increase model unfairness, reinforcing the case against deletion as

a missing data strategy.

Zhang and Long [98] evaluate MVI methods on imputation fair-
ness, defined as the difference in imputation accuracy between

privileged and disadvantaged groups. They find that imputation un-

fairness increases with higher missingness disparity, higher overall

missingness rates, and greater data imbalance across groups. Fur-

ther, they find that varying missingness mechanisms for the same

imputation method impacts prediction fairness. Their analysis is

limited to randomly generated null values in COMPAS. We ex-

tend their work to additional datasets, missingness scenarios, and

alternative imputation fairness definitions.

In a follow-up work, Zhang and Long [99] introduce imputation
fairness risk and provide bounds for “correctly specified” imputa-

tion methods. While this is a commendable theoretical contribution

in a largely unexplored area, we question its broader implications:

imputation quality metrics do not fully capture downstream model

performance [97]. In other words, a classifier can perform well de-

spite poor imputation quality [84]. This raises a key question: Does

minimizing imputation unfairness reduce model unfairness? Our

empirical findings suggest it does not, as discussed in Section 4.4.

Finally, Jeong et al. [43] propose a decision tree-based method

that integrates fairness into model training while handling missing

values. Their approach splits only on observed values to mitigate

disparities introduced by imputation. Their evaluation is limited to

MCAR scenarios (with more missingness for disadvantaged groups).

In contrast, we assess more advanced MVI techniques under diverse

missingness scenarios (MCAR, MAR, MNAR, andmissingness shift) with-

out applying fairness interventions. Nonetheless, we share their

broader motivation of assessing and mitigating unfairness holis-

tically throughout the data lifecycle. Future work could explore

different combinations of MVI and fairness interventions.

Missingness and stability. We are not aware of any work investi-

gating the effect of missing value imputation on model stability.
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3 BENCHMARK OVERVIEW
3.1 Methodology for Simulating Missingness
We start with datasets in which there are no null values, and

then simulate missingness. We make this choice because we are

interested in comparing MVI performance under single-mechanism

versus multi-mechanism missingness, and under missingness shifts,

and, to the best of our knowledge, there are no datasets with

naturally-occurring documented missingness of this form.

Our methodology for simulating missingness is based on eval-
uation scenarios, defined by the missingness mechanism during

training and testing, shown in Table 1: (1) single-mechanism miss-

ingness, injected similarly into train and test sets (S1 - S3); (2)

single-mechanism missingness, injected differently into train and

test sets (missingness shift) (S4 - S9); and (3) missingness is mixed, to

include all three missingness mechanisms, and is injected similarly

into train and test sets (S10).

For each dataset in our study (see Section 3.5), we designed

socially-salient missingness scenarios corresponding to the three

missingness mechanisms (MCAR, MAR, MNAR). Following [44, 63], we

identified features for missing value injection, denoted by F𝑚
,

based on their Spearman correlation with the target variable and

feature importance scores computed using scikit-learn. These se-

lected features were chosen to reflect plausible missingness pat-

terns. For instance, in the diabetes dataset, while features like

blood pressure or cholesterol levels are expected to be consistently

observed, others, such as family history or physical activity, might

be omitted or withheld due to privacy concerns or reporting biases.

The remaining features, denoted by F 𝑐
, were considered complete,

with no missing values.

The three missing mechanisms share the same set of selected

features (F𝑚
), but differ in their injection strategies. For MCAR,

the missing values are randomly injected on F𝑚
. In contrast, the

missingness of MAR is based on sensitive attributes within F 𝑐
to

simulate pre-existing bias, as described in Section 1. Specifically,

higher rates of missingness were injected to disadvantaged groups

wherever possible (in some cases there were too few samples from

disadvantaged groups), reflecting realistic disparities caused by

unequal access, distrust, or procedural injustice [3]. Finally, for MNAR,
the missingness is determined by missing values themselves, and

the likelihood of missing values depends on the missing features.

Table 3 presents the selected columns (F𝑚
) and injection condi-

tions for the diabetes dataset, based on the correlation coefficients

and feature importance values in Figure 2. Additional information

on other datasets is available in full version [48].

3.2 Missing Value Imputation (MVI) Techniques
As discussed in Section 2, many competitive MVI techniques have
been proposed. We selected 15 of them, from 8 broad categories

based on taxonomies presented in [20, 41, 67, 93], namely: (1)

deletion; (2) statistical: median-mode and median-dummy; (3) ma-

chine learning-based: miss-forest [88] and clustering [28]; (4)
discriminative deep learning-based: datawig [7] and auto-ml [41];
(5) generative deep learning-based: gain [96] and hi-vae [71];

(6) MNAR-specific: not-miwae [40] and mnar-pvae [62]; (7) multi-

ple imputation: boostclean [51]; and (8) other recent: nomi [93],
tdm [100], and edit-gain [66]. See full version [48] for details.

Table 1: Evaluation Scenarios

Train Test

Scenario MCAR MAR MNAR MCAR MAR MNAR

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

3.3 Evaluation Metrics
Following [35, 57], we evaluate MVI techniques in two ways: di-

rectly using imputation quality metrics and indirectly based on

downstream model performance.

3.3.1 Imputation Quality. Shadbahr et al. [84] report that distribu-
tional metrics capture downstream model performance better than

classically-used discrepancymetrics. To confirm or refute this claim,

we use a mix of both. To assess agreement with true values, we

compute Root Mean Square Error (RMSE) for numerical features and

F1 score for categorical features. To assess distributional alignment,

we compute KL-divergence (i.e., the Shannon entropy) between the

true and the predicted feature distributions, for both numerical and

categorical features, measured for the imputed columns only as

well as for the full dataset. For categorical features, we obtain the

probability distributions using the value_countsmethod with nor-

malization from pandas. For numerical features, we use Gaussian

kernel density estimation from scipy, with 1000 samples. Finally, to

assess imputation fairness [98, 99], we compute F1 score difference,
RMSE difference, and KL divergence difference between privileged

(priv) and disadvantaged (dis) groups.

3.3.2 Model Performance. To assess the impact of MVI techniques

on model correctness, we report the F1 score because it is a more

reliable metric than accuracy for imbalanced data.

For evaluating model stability, we report average Label Sta-
bility [14, 49] over the full test set (closely related to the self-

consistency metric from Cooper et al. [11]), computed per-sample

for binary classification as Label Stability =
|𝐵+−𝐵− |

𝐵
, where 𝐵+ is

the number of times the sample is classified into the positive class

and 𝐵− is the number of times the sample is classified into the neg-

ative class, and 𝐵 = 𝐵+ + 𝐵− models are trained by bootstrapping

over the train set. We set 𝐵 = 50 in all our experiments.

Lastly, we report model fairness based on group-specific error

rates, namely True Positive Rate Difference (TPRD), True Negative
Rate Difference (TNRD), Selection Rate Difference (SRD), and Dis-
parate Impact (DI). (Note that DI computes the ratio of selection

rates, but we refer to it as DI as is standard in the literature [23].)

Fairnessmetrics based on error rates alignwith formal equality of

opportunity, while those based on selection rates (SRD, DI) reflect

substantive equality [50]. The choice of metric depends on the

2902



Figure 1: Shades-of-Null architecture

domain and stakeholder [70]. SRD captures absolute disparities

(e.g., fixed quotas in college admissions), while DI measures relative

disparities (e.g., the 4/5th rule in U.S. hiring). From the individual’s

perspective, TPRD suits opportunity allocation (e.g., hiring, loans),

ensuring access to positive outcomes, whereas TNRD applies to

exclusion decisions (e.g., medical diagnoses), emphasizing fairness

in avoiding false negatives.

3.4 Shades-of-Null Architecture
The architecture of Shades-of-Null is shown in Figure 1. Its core

component, the benchmark controller, executes user-specified miss-

ingness scenarios by applying error injectors to input datasets. It

then imputes missing values using selected MVI technique(s) and
preprocesses data via standard scaling (numerical) and one-hot en-

coding (categorical), and then trains ML models with hyperparame-

ter tuning. The evaluation module assesses imputation quality and

model performance. For comprehensive profiling, it uses Virny [36],

a Python library that computes accuracy, stability, and fairness met-

rics across multiple sensitive attributes and their intersections.

Shades-of-Null incorporates two optimizations to enhance

experimental efficiency. First, it decouples missing value imputation

from model training, allowing imputed datasets to be stored and

reused in subsequent training and evaluation stages. Second, it

supports simultaneous evaluation on multiple test sets (e.g., with

varying missingness rates or types), significantly reducing running

time, and so executing a pipeline with one training set and multiple

test sets takes about the same time as with a single test set.

3.5 Datasets and Tasks
As noted in Section 1, we focus on socially salient missingness.

With this in mind, we selected seven datasets from diverse social

Table 2: Dataset Information

name domain # tuples # attrs sensitive attrs

diabetes healthcare 952 17 sex

german finance 1,000 21 sex, age

folk-income finance 15,000 10 sex, race

law-school education 20,798 11 sex, race

bank marketing 40,004 13 age

heart healthcare 70,000 11 sex

folk-employment hiring 302,640 16 sex, race

decision-making contexts, including lending, hiring, marketing,

admissions, and healthcare, summarized in Table 2. Each dataset in-

volves a binary classification task, where a positive label represents

access to a desirable social good (e.g., education, employment, or

healthcare). We chose these datasets to ensure broad coverage of (i)

social domains, (ii) dataset sizes, and (iii) numerical-to-categorical

column ratios.

3.6 Model Types
We evaluate predictive performance of 6 ML models: (i) decision

tree (dt_clf) with a tuned maximum tree depth, minimum samples

at a leaf node, number of features used to decide the best split,

and criteria to measure the quality of a split; (ii) logistic regression

(lr_clf) with tuned regularization penalty, regularization strength,

and optimization algorithm; (iii) gradient boosted trees (lgbm_clf)
with tuned number of boosted trees, maximum tree depth, maxi-

mum tree leaves, and minimum number of samples in a leaf; (iv)

random forest (rf_clf) with a tuned number of trees, maximum

tree depth, minimum samples required to split a node, and mini-

mum samples at a leaf node (v) neural network, historically called

the multi-layer perceptron (mlp_clf) with two hidden layers, each

with 100 neurons, and a tuned activation function, optimization al-

gorithm, and learning rate; (vi) a deep table-learning method called

GANDALF [46] (gandalf_clf)with a tuned learning rate, number

of layers in the feature abstraction layer, dropout rate for the feature

abstraction layer, and initial percentage of features to be selected

in each Gated Feature Learning Unit (GFLU) stage. Search grids of

hyperparameters for all models are defined in our codebase.

4 SINGLE AND MULTI-MECHANISM
MISSINGNESS

To simulate single-mechanism missingness (S1-S3 in Table 1) we

inject 30% of each training and test sets with nulls, according

to the missingness scenarios described in Section 3.1. For multi-

mechanism or mixed missingness, when MCAR, MAR and MNAR co-

exist (S10 in Table 1), we inject 10% of nulls for each of the three

mechanism into both training and test sets, for a total of 30% nulls.

To evaluate model correctness, we report results for F1, see

full version [48] for accuracy results. For fairness, we use binary

group definitions. For datasets with two sensitive attributes, we

define the doubly-disadvantaged group as disadvantaged (dis) and
everyone else as privileged (priv). For example: on the law-school,
folk-income and folk-employment datasets, non-White women

are the dis group, and White women, non-White men and White

men are the priv group. We report results for TPRD, see results

for other fairness metrics in the full version of the paper [48]. For

stability, we used a bootstrap of 50 estimators, each seeing a random

80% of the training set [19]. Higher values of F1 and label stability

are better, and values of TPRD close to zero are better.

Different models are the best-performing on different datasets.

In Figures 3, 4 and 5, we report on the best-performing models (ac-

cording to F1) for five most representative datasets per experiment,

and compare performance against a model trained on clean data.

Complete results are available in the full version [48].
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Table 3: Missingness scenarios for an error rate of 30% for diabetes. SoundSleep is a numerical column; Family_Diabetes,
PhysicallyActive and RegularMedicine are categorical columns.

Mechanism Missing Column (F𝑚 ) Conditional Column (𝐼 ) Pr(F𝑚 | 𝐼 is dis) Pr(F𝑚 | 𝐼 is priv)

MCAR SoundSleep, Family_Diabetes,

PhysicallyActive, RegularMedicine

N/A 0.3 0.3

MAR Family_Diabetes, RegularMedicine Sex 0.2 (female) 0.1 (male)

PhysicallyActive, SoundSleep Age 0.2 (≥ 40) 0.1 (< 40)

MNAR Family_Diabetes Family_Diabetes 0.25 (yes) 0.05 (no)

RegularMedicine RegularMedicine 0.2 (yes) 0.1 (no)

PhysicallyActive PhysicallyActive 0.25 (none, < 1

2
hour) 0.05 (> 1

2
hour, > 1 hour)

SoundSleep SoundSleep 0.2 (< 5) 0.1 (≥ 5)

(a) Correlation with label (b) Feature importance

Figure 2: EDA for designing missingness scenarios in diabetes.

4.1 Correctness of the Predictive Model
Figure 3 shows the F1 of models trained with different MVI tech-

niques. We find interesting trends in MVI performance based on

characteristics of the dataset and missingness type. All techniques

are competitive for all missingness mechanisms, including mixed

missingness, on heart and law-school. boostclean, which uses

multiple imputation (MI), is otherwise only competitive on small

datasets (diabetes and german), and only under MCAR and mixed

missingness on german. None of the MVI techniques are able to

match the F1 of themodel trained on clean data on folk-employment,
and this effect is strongest under MNAR (notably, stronger than under
mixed missingness). boostclean shows particularly poor perfor-

mance on folk-income, with a 0.08 decrease in F1 compared to

other methods, for all missingness types. We discuss this unex-

pected performance of MI further in Section 7.

auto-ml, datawig and miss-forest are generally the best per-

forming MVI techniques, with nomi a close second, offering an

optimal balance between imputation accuracy and training time

(see the full paper [48] for training time analysis). However, simpler

statistical techniques (e.g., median-mode under MAR) are also com-

petitive. This underscores the need to evaluate novel DL-based and

ML-based methods holistically (e.g., on a variety of missingness sce-

narios) to ensure that they justify the additional training overhead

and complexity they introduce compared to simple methods.

Interestingly, not-miwae and mnar-pvae do not demonstrate

superior performance compared to other methods in our socially

salient MNAR scenario. Instead, their performance aligns closely

with other leading MVI approaches under MNAR conditions. This

finding is further discussed in Section 7.

In line with conventional wisdom [44, 58, 59, 63], we find that

deletion worsens predictive performance. This effect is strongest

for small datasets like diabetes, with F1 decreasing as much as 0.1

under MNAR, compared to the model trained on clean data. This is

due to deletion discarding useful information, whereas retaining

rows with nulls can still provide valuable signal for model training.

The F1 score on the bank dataset is low (0.32), due to severe

class imbalance (base rate 0.117, see full version of the paper [48]).

Interestingly, models trained on imputed data can sometimes out-

perform those trained on clean data, as seen for german and heart
under MCAR. We hypothesize this occurs when models trained on

cleaned data learns spurious correlations (e.g., from noisy or er-

roneous values), while MVI methods may impute more accurate

values, mitigating such artifacts and improving performance.

4.2 Fairness of the Predictive Model
Figure 4 shows the effect of MVI on fairness, according to TPRD.Wang

and Singh [94] posit that models will exhibit more unfairness under

MAR and MNAR compared to MCAR, but we only find weak empirical

evidence towards this, even for deletion. A nuance here is that

we designed missingness scenarios, described in Section 3.1, to be

realistic — including MAR scenarios where people from disadvan-

taged groups withhold information that could hurt their chances

of getting the desired outcome. Hence, dropping these rows can in

fact improve fairness under MAR and MNAR, as observed on bank.
In contrast to Wang and Singh [94], we find that the effect of

MVI on fairness is strongly correlated with fairness of the model

trained on clean data, corroborating the findings of Guha et al. [34].

Fairness depends on two things: dataset characteristics and model
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(c) Missing Not At Random (MNAR)
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(d) Mixed missingness (MCAR & MAR & MNAR)

Figure 3: F1 of best performing models (shown in figure) for
different imputation strategies (colors in the legend), datasets
(x-axis), and missingness mechanisms (subplots). Datasets
are in increasing order by size. Blue line shows median per-
formance of the model trained on clean data.

type. All MVI techniques except for boostclean have the same

model type as the model trained on clean data (because they are

impute-then-classify approaches) and generally preserve fairness

of that model, under all missingness mechanisms. Notably, this

is agnostic to whether the TPRD of the model trained on clean

data is low (close to 0.01 on heart and folk-employment, and 0 on
german) or high (close to -0.1 on folk-income and 0.2 on bank).

On the other hand, boostclean, is a joint data cleaning and

model training approach and thereby constitutes it own model

type, and shows fairness trends that deviate from the model trained

on clean data. boostclean significantly improves fairness on

folk-income (TPRD close to 0, compared to -0.1 for the clean

model) and bank (TPRD close to 0.1, compared to 0.2 for the clean

model), but marginally worsens fairness on law-school (TPRD

-0.1 compared to -0.08 for the clean model) and heart (TPRD -0.02

compared to 0.01 for the clean model), for all missingness types.

4.3 Stability of the Predictive Model
Figure 5 shows label stability of models trained with different MVI
techniques. In linewith conventional wisdom [17], stability depends

primarily on dataset characteristics (especially size) and model

type. Impute-then-classify methods like miss-forest, auto-ml,
and datawig, which perform best on F1, also match the stability of

models trained on clean data across missingness types and dataset

sizes. nomi, which performs best on accuracy and training time,

shows comparable stability to these top methods across datasets.

clustering, which performed poorly on F1, is likewise unstable

on small datasets (diabetes and german, with 905 and 1k samples,

respectively). A notable exception is german under mixed missing-

ness, where clustering is competitive despite underperforming

on MCAR, MAR, or MNAR individually. This may be because imputa-

tion accuracy affects data uncertainty, which in turn drives model

uncertainty [29].

Deletion worsens stability compared to the model trained on

clean data for all missingness types on diabetes, but, notably,
only under MNAR on german. boostclean, which constitutes its

own model type, shows a deviation from the stability of the model

trained on clean data on all datasets except bank: worsening sta-

bility compared to the clean model on folk-income, law-school
and folk-employment (except under MCAR), but, surprisingly, im-

proving it on heart, even under mixed missingness.
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Figure 4: True Positive Rate Difference (unfairness) of best
performing models (shown in figure) for different imputa-
tion strategies (colors in the legend), datasets (𝑥-axis), and
missingness mechanisms (subplots). Values close to 0 are
desirable. Datasets are in increasing order by size. Blue line
shows median TPRD of the model trained on clean data.
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(b) Missing At Random (MAR)
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(c) Missing Not At Random (MNAR)
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(d) Mixed missingness (MCAR & MAR & MNAR)

Figure 5: Label Stability of best performing models for differ-
ent imputation strategies (colors in the legend), datasets (x-
axis), and missingness mechanisms (subplots). Values close
to 1 are desirable. Blue line shows median performance of
the model trained on clean data.

4.4 Imputation Quality and Fairness
In Figure 6, we report the imputation quality of 10 most accurate

MVI techniques per category according to F1 score (for categori-

cal columns), RMSE (for numerical columns), and KL divergence

(for both numerical and categorical columns, computed over the

columns with nulls only) and compare it with the F1 of the down-

stream model. See full version [48] for an extended comparison of

training times and accuracy across all MVI techniques.

Imputation Quality. MVI techniques with widely varying imputa-

tion quality can yield models with similar F1, suggesting that impu-

tation correctness is not a reliable predictor of downstream perfor-

mance [97]. For instance, in Figure 6a on diabetes, median-dummy
has imputation F1 near 0; auto-ml, miss-forest, and nomi are

near 1; others fall between 0.5–0.6, yet all produce models with F1

close to 1. This pattern holds across datasets, missingness types,

and for numerical columns (Figure 6b). Similar trends are observed

for KL divergence (Figure 6c), reinforcing that neither discrepancy-

based nor distributional metrics reliably predict downstream model

performance, contradicting Shadbahr et al. [84]’s claim.

Imputation Fairness. In Figure 7, we report the imputation fair-

ness of different MVI techniques, according to F1 score difference

(for categorical columns), RMSE difference (for numerical columns),

and KL divergence difference (for both numerical and categorical

columns, computed over the columns with nulls only) and compare

it with the fairness of the downstream model, according to TPRD.

We find that, while model fairness is generally agnostic to miss-

ingness type (as discussed in Section 4.2), imputation fairness is
highly sensitive to missingness mechanism. For example, in

Figure 7c, miss-forest has good imputation fairness on german
under MAR (KL difference of -0.4) but significant imputation unfair-

ness under MCAR (KL difference of 2.25), MNAR (KL difference of 1.1)

and mixed missingness (KL difference of 1.4).

Further, imputation fairness is insufficiently predictive of
model fairness. For example, on german under mixed missing-

ness, median-dummy has KL difference close to 0, datawig and

miss-forest have KL difference between 1 and 1.5, clustering
and median-mode have KL difference between -1 and -1.5, but the

models trained using all five of these techniques have a TPRD close

to -0.02. Conversely, on diabetes under MAR, auto-ml, clustering,
miss-forest, and median-dummy all have near perfect imputation

fairness (KL difference close to 0), but different model fairness

(TPRD between 0.04 and 0.12). We see similar trends for other im-

putation fairness metrics such as F1 score difference (Figure 7a) and

RMSE difference (Figure 7b).

5 MISSINGNESS SHIFT
Next, we evaluate the correctness, fairness, and stability of 10 most

effective MVI techniques from various categories under missingness
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(b) RMSE (imputation) vs F1 (model)
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(c) KL divergence (imputation) vs F1 (model)

Figure 6: Imputation quality vs. model performance: imputa-
tion correctness (F1, RMSE and KL divergence) may not be
indicative of model correctness (F1).
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shift. We simulate missingness shift in two ways: (i) by varying the

missingness mechanism between training and test (S4-9 in Table 1);

and (ii) by varying the missingness rates between training and test.

First, we hold the fraction of nulls in the test set constant (at 30%)

and vary the fraction of nulls in the training set (10%, 30% and 50%).

Then, we hold the fraction of nulls in the training set constant (at

30%) and vary the fraction of nulls in the test set (10%, 20%, 30%, 40%

and 50%). Note that we have fewer settings for training missingness

rates because varying the test set is less computationally demanding

(as discussed in Section 3.4). We discuss results on diabetes, and
defer results on other datasets, with fixed and variable training and

test missingness rates, to the full version of the paper [48].

5.1 Correctness of the Predictive Model
Training set missingness. Figure 8 shows the F1 of the Random Forest

model on diabetes as a function of training missingness rate. Of all

MVI techniques, deletion is most strongly affected by missingness:

F1 degrades with increasing missingness rate, and this effect is

strongest under MNAR. This includes when MNAR is encountered

both during training (the bottom row in Figure 8 shows the steepest

decline in F1 compared to other rows—training missingness) and
during testing (the right-most column in Figure 8 has the lowest F1

compared to other columns —test missingness).

All other MVI techniques, including boostclean, are generally
robust to higher training missingness rates, and only show a 5%

decrease in F1 (compared to 10% decrease with deletion), even
at rates as high as 50%. This is because even imperfect imputation
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(a) F1 score difference (imputation) vs TPRD (model)
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Figure 7: Imputation fairness vs. model fairness: imputation
fairness (F1 difference, RMSE difference and KL divergence
difference) may not be indicative of model fairness (TPRD).

0.1 0.3 0.5
Train Error Rate

0.70

0.75

0.80

0.85

0.90

F1

MCAR train & MCAR test

0.1 0.3 0.5
Train Error Rate

0.70

0.75

0.80

0.85

0.90

F1

MCAR train & MAR test

0.1 0.3 0.5
Train Error Rate

0.70

0.75

0.80

0.85

0.90

F1

MCAR train & MNAR test

0.1 0.3 0.5
Train Error Rate

0.70

0.75

0.80

0.85

0.90

F1

MAR train & MCAR test

0.1 0.3 0.5
Train Error Rate

0.70

0.75

0.80

0.85

0.90

F1

MAR train & MAR test

0.1 0.3 0.5
Train Error Rate

0.70

0.75

0.80

0.85

0.90

F1

MAR train & MNAR test

0.1 0.3 0.5
Train Error Rate

0.70

0.75

0.80

0.85

0.90

F1

MNAR train & MCAR test

0.1 0.3 0.5
Train Error Rate

0.70

0.75

0.80

0.85

0.90

F1

MNAR train & MAR test

0.1 0.3 0.5
Train Error Rate

0.70

0.75

0.80

0.85

0.90

F1

MNAR train & MNAR test

deletion median-mode median-dummy miss_forest
k_means_clustering datawig automl nomi
mnar_pvae boost_clean

Figure 8: F1 of the Random Forest model on diabetes, as a
function of training set missingness rate. Dashed line shows
performance of the model trained on clean data.

provides valuable insights for the model, making deletion a less

favorable choice. A notable exception is clustering, which, sur-
prisingly and somewhat counter-intuitively, has higher F1 at higher

training missingness rates, and is actually better under MNAR than
under MAR and MCAR, for all missingness rates and scenarios.

Test set missingness. We find that F1 generally decreases with an

increase in test missingness, corroborating the findings of Shadbahr

et al. [84] and Miao et al. [67]. A notable exception is miss-forest,
which is robust to both forms of missingness shift such as changing

missingness rates (as observed in [67]) and missingness mecha-

nisms. As for training set missingness, F1 decreases with an in-

crease in test missingness most steeply under MNAR (both during

training and test), further supporting the findings of Miao et al.

[67]. And, once again, clustering is an exception to this trend,

instead showing invariance to test missingness rates under MNAR
train (irrespective of test missingness) but not under MCAR and MAR
train. See full version of the paper [48] for complete results.

5.2 Fairness of the Predictive Model
Training set missingness. Figure 9 shows TPRD of Random Forest

on diabetes as a function of training set missingness rate. While

we previously found that fairness is generally agnostic to missing-

ness type when it is the same between training and test sets (see

Section 4.2), we find thatmodel fairness is highly sensitive to
missingness shift — in terms of both different missingness rates

and different missingness mechanisms between training and test.

Worryingly, there is no consistent trend across MVI technique,
missingness type and training test missingness rate. For example,

consider miss-forest, which was the most robust to missingness
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Figure 9: True Positive Rate Difference of Random Forest on
diabetes, as a function of training missingness rate. Dashed
line shows performance of the model trained on clean data.

shift according to F1. Under MCAR training, miss-forest preserves

fairness of the model trained on clean data (shown with a dashed

grey line) when training and test missingness rates match (at 30%

training error rate, fixed at 30% for this experiment), but worsens

fairness (higher TPRD) when they are different (at 10% and 50%

training error rates). Under MAR training, however, we see the oppo-
site behavior, with miss-forest preserving clean model fairness at

10% and 50% train missingness rates, but worsening fairness when

training and test missingness rates are equal (at 30%). Under MNAR
training, TPRD increases with an increase in training missingness

rate under MCAR and MAR test, and remains constant when there is

no shift in missingness mechanism (under MNAR test).

Test set missingness. We measured the impact of test missing-

ness rate on fairness and found that fairness is highly sensitive to

such shifts. For boostclean, datawig, and mnar-pvae, TPRD gen-

erally increases (fairness worsens) as test error rate rises, though

not always monotonically. miss-forest, auto-ml, and nomi are

robust to increases in test missingness rate under all scenarios. Sim-

pler methods such as deletion, clustering, median-mode and

median-dummy show no consistent trend, even when missingness

types remain the same and only missingness rates change between

train and test. For example, with deletion and clustering, TPRD
increases with test missingness in scenarios S1 (MCAR train, MCAR
test) and S3 (MNAR train, MNAR test), but decreases in S2 (MAR train,
MAR test). See full version for details [48].

In summary, our results corroborate the findings of Guha et al.
[34], and are a cause for concern as they indicate that the MVI
techniques that perform best during development may not preserve

fairness post-deployment, where shifts are likely to occur.
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Figure 10: Label Stability of Random Forest on diabetes, as a
function of training set missingness rate. Dashed line shows
performance of the model trained on clean data.

5.3 Stability of the Predictive Model
Training set missingness. Figure 10 shows Label Stability of the Ran-

dom Forest model on diabetes as a function of training set miss-

ingness rate. Under MCAR and MARmissingness, most MVI techniques
with the exception of boostclean, deletion, and clustering
show good stability (comparable to the model trained on clean

data), and are generally insensitive to missingness rates. deletion
and clustering are the least stable methods and show a mono-

tonic decrease in stability with increase in missingness rate, with

strongest effect under MNAR. miss-forest, auto-ml, and nomi are

the most robust MVI techniques and preserve stability of the clean

model under all missingness settings and error rates. This further

highlights how imputation quality directly influences data uncer-

tainty, ultimately impacting the overall uncertainty of the final

model, as discussed in Section 4.3.

Test set missingness. We find that test missingness rate has lit-

tle effect on model stability under all settings except clustering,
which shows lower label stability at higher missingness rates, most

pronounced in scenario S7 (MAR train, MNAR test). See full version of

the paper [48] for complete results.

6 RUNNING TIME
Table 4 presents the training time of MVI techniques for each dataset,
averaged across all unique training scenarios (single- and multi-

mechanism S1-S3, S10). Our time efficiency analysis approach aligns

with prior work [66, 93], who also focused on training time as

inference times are comparably fast across all techniques.
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Table 4: Training time (in seconds) of MVI techniques averaged across single- and multi-mechanism scenarios (S1-3, S10).
Imputers are sorted by running time on the folk_emp dataset, and datasets are ordered by the number of rows. Dataset shapes
reflect training sets with 30% rows with nulls. Values represent mean running times across seeds, with standard deviations.

Imputer diabetes
(633, 17)

german
(700, 21)

folk_inc
(12000, 10)

law_school
(16638, 11)

bank
(32003, 13)

heart
(56000, 11)

folk_emp
(242112, 16)

median-dummy 0.013 ± 0.000 0.014 ± 0.001 0.021 ± 0.001 0.024 ± 0.001 0.027 ± 0.000 0.053 ± 0.001 0.773 ± 0.024

median-mode 0.012 ± 0.000 0.014 ± 0.001 0.023 ± 0.001 0.025 ± 0.001 0.031 ± 0.001 0.067 ± 0.003 0.933 ± 0.019

deletion 0.013 ± 0.000 0.013 ± 0.001 0.024 ± 0.001 0.025 ± 0.000 0.046 ± 0.001 0.087 ± 0.004 1 ± 0.049

mnar_pvae 8 ± 0.705 14 ± 11 14 ± 1 22 ± 11 55 ± 30 42 ± 6 206 ± 7

edit_gain 2 ± 0.119 2 ± 0.141 13 ± 0.221 21 ± 2 30 ± 1 62 ± 7 215 ± 4

nomi 11 ± 3 14 ± 7 22 ± 2 22 ± 2 29 ± 1 38 ± 2 356 ± 20

tdm 932 ± 74 1023 ± 11 1297 ± 22 1172 ± 92 1412 ± 34 1310 ± 42 1449 ± 31

notmiwae 161 ± 101 217 ± 82 555 ± 2 804 ± 8 665 ± 284 1393 ± 535 2944 ± 725

gain 261 ± 12 298 ± 5 1115 ± 38 1484 ± 30 1964 ± 36 2892 ± 48 6148 ± 178

hivae 68 ± 0.784 95 ± 1 745 ± 15 1073 ± 11 2450 ± 130 3794 ± 129 7163 ± 317

k_means_clustering 10 ± 0.402 13 ± 0.442 27 ± 0.640 323 ± 7 998 ± 49 1037 ± 64 7427 ± 778

miss_forest 111 ± 17 244 ± 86 1758 ± 526 2530 ± 851 4307 ± 1310 6337 ± 1601 20358 ± 4934

datawig 596 ± 185 277 ± 59 604 ± 46 2361 ± 492 5089 ± 651 7592 ± 854 31060 ± 3743

automl 1953 ± 195 1805 ± 212 5559 ± 581 6803 ± 565 13893 ± 1687 19055 ± 2710 104476 ± 14743

Our results reveal that statistical imputers deletion, median-mode,
and median-dummy are the fastest, while still delivering competitive

accuracy for larger datasets like heart and folk_emp. In contrast,

miss-forest, datawig, and auto-ml exhibit the longest training
times, with at least one of these methods achieving the highest

imputation accuracy in most cases. Interestingly, auto-ml requires

three times more training time than datawig, the second most

computationally intensive technique. This difference is due to the

auto-ML nature of auto-ml, which involves extensive hyperparam-

eter and network architecture tuning.

Among non-statistical techniques, mnar-pvae, edit-gain, and
nomi are the most efficient. Notably, nomi delivers accuracy on par

with miss-forest, datawig, and auto-ml, successfully balancing

imputation accuracy and training time. A key comparison is be-

tween gain and edit-gain. As explained in the full version of

the paper [48], edit-gain achieves a 28x speedup on folk_emp,
with even greater improvements for smaller datasets, as shown in

Table 4, while maintaining comparable accuracy to gain.

7 SUMMARY OF EXPERIMENTAL FINDINGS
Do not drop your nulls! Building on prior evidence [44, 58, 59, 63],

we confirm that deletion is the least effective strategy for model

accuracy, fairness, and stability—especially when each row holds

valuable information. While deletion leads to data loss by design,

its suitability depends more on data quality than quantity. If rows

are duplicates or contain errors, deletion may be warranted.

Multiple imputation shows mixed results. There is conflicting evi-

dence on the performance of multiple imputation (MI) [45], and our

empirical findings are similarly mixed and somewhat unexpected.

Feng [24] and Le Morvan et al. [55] argue that MI outperforms

impute-then-classify approaches in predictive performance, while

Graham [32] and McNeish [64] find MI effective even with limited

data and small error rates. In contrast, we find that MI (specifically,

boostclean) is only competitive on small datasets and is less stable

than simpler MVI techniques. This likely stems from the complexity-

stability trade-off [9, 17]: MI employs a more complex model class

that minimizes empirical loss but exhibits greater prediction vari-

ance under small training set perturbations.

Fairness is highly missingness-specific. We find that no MVI tech-

nique is consistently fairness-preserving, corroborating the findings

of Zhang and Long [98] and Guha et al. [34]. Further, we find that

fairness is highly sensitive to changes in missingness rates and

missingness mechanisms between training and test sets, which are

likely to occur in practice, and therefore a cause for ethical concern.

Imputation quality and fairness metrics often fail to predict the
correctness or fairness of downstream models. Shadbahr et al. [84]
argue that distributional imputation quality metrics better predict

model performance than discrepancy metrics. However, we find

that neither reliably predicts downstream performance, as strong

learners can compensate for poor imputations. Moreover, imputa-

tion fairness does not predict model fairness: fair imputers can still

yield unfair models, while models trained with fairness-poor MVI
techniques can achieve good downstream fairness.

Model stability depends more on the dataset size and MVI technique
than on the missingness scenario.We find that for large datasets even

simple statistical imputers can preserve stability. In contrast, for

small datasets, only a few MVI techniques do so, while deletion, sta-

tistical imputation and complex ML-based MVI all worsen stability.

Sensitivity to train and test missingness rates.Model performance

(F1) is more affected by test missingness than training missingness.

Fairness, however, is highly sensitive to both. Model stability is

largely unaffected by test missingness, but most MVI techniques

become more unstable with higher training missingness.

Existing MNAR-specific methods are insufficient. MNAR is theo-

retically the hardest setting to model. MVI techniques, including

MNAR-specific not-miwae and mnar-pvae, perform poorly under

MNAR. For example, F1 and stability are more sensitive to missing-

ness rates under MNAR than under MCAR or MAR. This performance

gap stems from unrealistic assumptions and limited evaluations,
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Figure 11: Spearman correlation (𝜌) between MVI technique, model type, and performance metrics (F1, fairness and stability) for
different train missingness mechanisms (subplots). TPRD and TNRD values close to 0 are ideal (fair), so we compute correlations
using 𝑇𝑃𝑅𝐷_𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑑 = 1 − |𝑇𝑃𝑅𝐷 | and 𝑇𝑁𝑅𝐷_𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑑 = 1 − |𝑇𝑁𝑅𝐷 |. Supplementary plots are in the full version [48].

typically on large datasets and a single scenario, lacking the diver-

sity of our benchmark. Advancing MNAR-specific MVI methods and

building comprehensive benchmarks are key future directions.

Deep learning outperforms tree-based models on large datasets.
Interest in deep learning for tabular data has surged [8, 22, 31, 38, 95].

Recall that Figures 3, 4, and 5 show only the best-performingmodels

(by F1) for clarity. Tree-based methods like random forests and

gradient-boosted trees outperform deep table-learning models like

GANDALF [46] on small datasets (diabetes, german), aligning
with prior findings [33, 86]. However, GANDALF excels on larger

datasets (heart, folk-employment), highlighting the increasing

effectiveness of deep learning across diverse data modalities.

Best-performing approaches under single- and multi-mechanism
missingness can differ. A key contribution of our study is the evalua-

tion under mixed (multi-mechanism) missingness — a complex pat-

tern likely to arise in practice.We find that performance trends differ

between single- and multi-mechanism settings. Figure 11 shows

that model types like gandalf_clf and lgbm_clf are uncorrelated
with performance metrics under single-mechanism missingness,

but become correlated under mixed missingness: F1 correlations

are 𝜌 = −0.24 for gandalf_clf and 𝜌 = −0.37 for lgbm_clf, while
fairness (TPRD) correlations are 𝜌 = 0.55 and 𝜌 = −0.4, respectively.

It’s complicated! Prior studies [30, 35, 44, 57, 84] have found no

universally best missing value imputation technique for predic-

tive performance. Our findings reinforce this, revealing trade-offs

between F1, fairness, and stability that depend on the predictive

model’s architecture. For instance, under multi-mechanismmissing-

ness (Figure 11), logistic regression (lr_clf) correlates positively
with F1 (𝜌=0.23) and stability (𝜌=0.38) but negatively with fair-

ness (TPRD, 𝜌=-0.23). Random forest (rf_clf) shows weak positive
correlations with fairness (TPRD, 𝜌=0.16) and F1 (𝜌=0.25) but a

negative correlation with stability (𝜌=-0.24). Deep table-learning

(gandalf_clf) is strongly correlated with fairness (TPRD, 𝜌=0.55),

weakly with stability (𝜌=0.12), and negatively with F1 (𝜌=-0.24).

This is not bad news, but a recognition of the complexity of learning

from incomplete data, and of the need for rigorous, holistic evalua-

tion protocols, like those used here, to identify the best imputation

method and model architecture for a given task.

8 CONCLUSIONS, LIMITATIONS AND FUTURE
WORK

Conclusions.We introduced Shades-of-Null, an evaluation suite

for responsible missing value imputation. A key contribution is

evaluating fairness and stability alongside predictive performance.

Additionally, we model realistic missingness scenarios beyond Ru-

bin’s MCAR, MAR, and MNAR, incorporating multi-mechanism missing-

ness and missingness shift. Through 29,736 experimental pipelines,

we assessed various MVImethods under realistic missingness condi-

tions, revealing key trends and trade-offs across evaluation metrics.

Limitations. We began with clean datasets, designed meaningful

missingness scenarios, and simulated them using error injectors.

A key limitation is that we evaluate performance on synthetically

generated—rather than naturally occurring—missingness. This is

common in the field: clean ground truth is rarely available, so we

assume that injecting synthetic errors only worsens the effects of

existing (unknown) ones. Under this assumption, any observed per-

formance degradation likely underestimates the true degradation

relative to an ideal ground truth.

Future work. Creating research datasets with naturally occurring
missingness shifts is a promising direction. While predictive per-

formance, fairness, and stability are often treated as orthogonal, we

uncover trade-offs driven by missingness, imputation choice, and,

in some cases, model architecture. The absence of a universally best

imputation method highlights the need for holistic metrics, eval-

uation procedures, and techniques grounded in the data lifecycle.

Missing value imputation remains a critical aspect of responsible

data engineering, to which our work makes a contribution.
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