
Why Are Learned Indexes So Effective but Sometimes Ineffective?

Qiyu Liu
∗†

Southwest University

qyliu.cs@gmail.com

Siyuan Han
∗

HKUST

shanaj@connect.ust.hk

Yanlin Qi

HIT Shenzhen

yanlinqi7@gmail.com

Jingshu Peng

ByteDance

jingshu.peng@bytedance.com

Jin Li

Harvard University

jinli@g.harvard.edu

Longlong Lin

Southwest University

longlonglin@swu.edu.cn

Lei Chen

HKUST & HKUST (GZ)

leichen@cse.ust.hk

ABSTRACT
Learned indexes have attracted significant research interest due to

their potential to offer better space-time trade-offs compared to B+-

tree variants. Among various learned indexes, the PGM-Index based

on error-bounded piecewise linear approximation is an elegant data

structure that has demonstrated provably superior performance

over conventional B+-tree indexes. However, despite numerous

efforts to optimize the design of the PGM-Index, few systemati-

cally study the root causes of performance mismatches observed

in practice. In this paper, we explore two key research questions.

Q1:Why are PGM-Indexes theoretically effective? and Q2:Why do
PGM-Indexes underperform in practice? For Q1, we show that for

a set of 𝑁 sorted keys, the PGM-Index can achieve a lookup time

of 𝑂 (log log𝑁) while using 𝑂 (𝑁) space. For Q2, we identify that

querying PGM-Indexes is highly memory-bound, where the inter-

nal index search operations often become the bottleneck. To fill

the performance gap, we propose PGM++, a simple yet effective
extension to the original PGM-Index that employs a mixture of

different search strategies, with hyper-parameters automatically

tuned through a cost model calibrated by theoretical findings. Ex-

tensive experiments show that, at comparable space costs, PGM++

speeds up index lookup queries by up to 2.31× and 1.56× when

compared to the original PGM-Index and SOTA baselines.

PVLDB Reference Format:
Qiyu Liu, Siyuan Han, Yanlin Qi, Jingshu Peng, Jin Li, Longlong Lin,

and Lei Chen. Why Are Learned Indexes So Effective but Sometimes

Ineffective?. PVLDB, 18(9): 2886 - 2898, 2025.

doi:10.14778/3746405.3746415

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/qyliu-hkust/bench_search.

1 INTRODUCTION
Indexes are fundamental components of DBMS and big data engines

to enable efficient query processing [31, 37]. An emerging research

∗
Both authors contributed equally to the paper.

†
Correspondence to Dr. Qiyu Liu.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.

doi:10.14778/3746405.3746415

tendency is to directly learn the storage layout of sorted data by

using simple machine learning (ML) models, leading to the concept

of Learned Index [8, 10, 16, 46, 51, 52]. Compared to traditional

indexes like B+-tree variants [5, 14, 17, 18, 46], learned indexes have

been shown to reduce the index memory footprint by 2–3 orders

of magnitude while achieving comparable lookup performance.

Similar to B+-trees or other binary search tree (BST) variants,

learned indexes address the classical problem of Sorted Dictionary
Indexing [6]. Given a sorted set of 𝑁 keys K = {𝑘1, · · · , 𝑘𝑁 }, the
goal of learned indexes is to find a compact projection function

(i.e., an ML model) 𝑓 : 𝑘 ↦→ N+ that maps an arbitrary query

key 𝑘 to its corresponding index in the sorted array K . However,
as ML models inherently produce prediction errors, learned in-

dexes usually employ error-bounded last-mile search (within the

maximum prediction error 𝜖) to ensure the correctness of query

result. To eliminate the prediction error, an exact “last-mile” search,

typically a standard binary search, is performed within the range

[𝑓 (𝑘) − 𝜖, 𝑓 (𝑘) + 𝜖] to eliminate the model prediction errors. To

balance model accuracy with complexity, existing learned indexes,

such as RMI [16], PGM-Index [10], ALEX [8], LIPP [46], NFL [47],

and DILI [18], opt to stack simple models, such as linear models or

polynomial splines, in a hierarchical structure.

Among the various published learned indexes [8, 10, 16, 18, 46,

51, 52], the PGM-Index [10] stands out as a simple yet elegant data

structure that has been proven to be theoreticallymore efficient than

B+-trees [9]. As illustrated in Figure 1, the PGM-Index is constructed

in a bottom-up fashion by recursively fitting the input keys using

error-bounded piecewise linear approximationmodels (𝜖-PLA) until

reaching a single line segment. For query processing, the PGM-

Index performs a top-down traversal from the root to the leaf levels.

At each level, an error-bounded search is invoked to identify either

the line segment used to predict the index for the subsequent level

or the exact location of the search key in the original sorted array.

Recent theoretical analyses [9] have demonstrated that, compared

to a B+-tree with fanout 𝐵, the PGM-Index can reduce memory

footprint by a factor of 𝐵 while preserving the same logarithmic

query complexity.

Intuitively, the PGM-Index is structured as a hierarchy of line

segments, where the index height is a key factor in determining the

query time complexity. Existing results [9, 10] claim that the height

of a PGM-Index grows logarithmically with respect to the data size

(i.e., 𝑂 (log𝑁)). However, our empirical investigations (Section 3.1)

reveal that PGM-Indexes are highly flat, with over 99% of the total

index space cost attributed to the segments at the bottom level. This

observation implies that the height of the PGM-Index grows much

2886

https://doi.org/10.14778/3746405.3746415
https://github.com/qyliu-hkust/bench_search
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746415
https://www.acm.org/publications/policies/artifact-review-and-badging-current

key

idx

segi

data point

line segment

Level-2
(Root Segment)

Level-1

Level-0
(Leaf Segments)

Sorted Keys

...

...

... ...

(a) PGM-Index (b) -PLA

Figure 1: A toy example of a 3-level PGM-Index with 𝜖𝑖 = 1 (i.e., internal search error range) and 𝜖ℓ = 4 (i.e., last-mile search
error range). Processing a lookup query on such PGM-Index involves in total three linear function evaluations, two internal
search operations in the range 2 · 𝜖𝑖 + 1, and one “last-mile” search operation on the sorted data array in the range 2 · 𝜖ℓ + 1.

more slowly than 𝑂 (log𝑁), potentially at a sub-logarithmic rate.
Motivated by this, we pose the first research question.

Q1: Why Are PGM-Indexes So Effective in Theory? To answer
this question, we establish new theoretical results for PGM-Indexes

based on a key finding: fitting PLA models becomes progressively

easier at higher levels of the hierarchy. Specifically, we show that,

with high probability (w.h.p.), the query time of the PGM-Index can

be bounded by 𝑂 (log
2
log𝐺 𝑁) = 𝑂 (log log𝑁) using linear space

of 𝑂 (𝑁 /𝐺), where 𝐺 is a constant determined by data distribu-

tion characteristics and the error constraint 𝜖 . To the best of our

knowledge, this work presents the tightest bound for learned index

structures compared to existing theoretical analyses [9, 50].

Interestingly, a BST can be viewed as a “materialized” version of

the binary search algorithm, whose time complexity is 𝑂 (log𝑁).
Similarly, the PGM-Index with piecewise linear approximation mod-

els can be regarded as a “materialized” version of the interpolation

search algorithm, whose time complexity is 𝑂 (log log𝑁) [29, 34],
aligning with our theoretical findings.

Despite its theoretical superiority, recent benchmarks [24, 45]

show that the PGM-Index falls short of practical performance expec-

tations, often underperforming compared to well-optimized RMI

variants [15, 16]. This mismatch between theoretical and practical

performance motivates our second research question.

Q2: Why Are PGM-Indexes Ineffective in Practice? Our in-
vestigation, supported by extensive benchmark results across var-

ious hardware platforms (Section 4), reveals that PGM-Indexes

are highly memory-bound. The internal error-bounded search op-

eration, typically implemented as a standard binary search (e.g.,

std::lower_bound in C++), becomes a bottleneck when process-

ing an index lookup query. According to our benchmark results,

fewer than 1% of the internal segments contribute to over 80% of

the total index lookup time.

To improve search efficiency, we adopt a hybrid internal search

strategy that combines the advantages of linear search and opti-

mized branchless binary search [36]. By carefully setting search

range thresholds, this approach accelerates the standard binary

search implementation by up to 1.6×, resulting in an overall im-

provement of up to 2.3× in total index lookup time.

Moreover, as illustrated in Figure 1, constructing a PGM-Index

requires two hyper-parameters: 𝜖𝑖 , the error thresholds for internal

index traversal, and 𝜖ℓ , the error thresholds for last-mile search on

the sorted array. Our empirical findings (Section 5.2) reveal that

𝜖ℓ primarily controls the overall index size, while both 𝜖𝑖 and 𝜖ℓ

affect the efficiency of index lookups. Building on these findings,

we develop a query cost model grounded in theoretical analysis

and calibrated through extensive benchmarking. Leveraging this

cost model, we further introduce an automatic hyper-parameter

tuning strategy to suggest configurations by minimizing the cost

model while adhering to a specified index size budget.

In summary, our technical contributions are as follows. ❶ New
Bound. We prove the sub-logarithmic index lookup time of the

PGM-Index (i.e., 𝑂 (log log𝑁)). This result not only tightens the

previously reported logarithmic bound but also reinforces the PGM-

Index’s theoretical superiority over conventional tree-based in-

dexes. ❷ Simple Methods. We introduce PGM++, a simple yet
effective improvement to the PGM-Index by replacing the costly

internal search operations. We further propose an automatic hyper-

parameter tuner for PGM++, guided by an accurate cost model.

❸ Empirical Superiority. Extensive experimental studies on

real-world and synthetic datasets demonstrate the effectiveness of

PGM++. For static workloads, PGM++ robustly outperforms the

original PGM-Index and optimized RMI variants [24, 51] by up to

2.31× and 1.56×, respectively. For dynamic workloads, while less

performant in read-heavy scenarios, PGM++ demonstrates robust

and superior performance on highly write-intensive workloads.

The remainder of this paper is organized as follows. Section 2

overviews the basis of learned indexes. Section 2.3 details the mi-

crobenchmark used throughout this paper. Section 3 presents our

core theoretical results showing the sub-logarithmic bound for

PGM-Index. Section 4 investigates the practical limitations of PGM-

Index. In Section 5, we introduce PGM++, an optimized variant of

PGM-Index, featuring hybrid error-bounded search and automatic

hyper-parameter tuning. Section 6 reports the experimental results.

Section 7 surveys and discusses related works, and finally, Section 8

concludes the paper and discusses future research directions.

2 PRELIMINARIES
2.1 Basis of the PGM-Index
Given a set of 𝑁 sorted keys K = {𝑘1, 𝑘2, · · · , 𝑘𝑁 }, the goal of

learned indexes is to find a mapping 𝑓 : 𝑘 ↦→ N+ such that 𝑓 can

project a search key 𝑘 ∈ K to its corresponding index rank(𝑘)
with controllable error. Intuitively, learning 𝑓 is equivalent to fit-

ting K’s cumulative distribution function (CDF) scaled by the data

size 𝑁 . The model selection considerations for 𝑓 are threefold: ❶

Model Complexity: The model 𝑓 should be compact to reduce

2887

memory footprint, and its inference should introduce minimal com-

putation overhead. ❷ Error-Boundness: The model 𝑓 should be

error-bounded, ensuring that an exact last-mile search can correct

prediction errors, i.e., |𝑓 (𝑘) − rank(𝑘) | ≤ 𝜖 holds for ∀𝑘 ∈ K ; ❸

Monotonicity: To ensure the correctness of queries for keys out-

sideK , the model 𝑓 must be strictly monotonic, i.e., 𝑓 (𝑘1) ≤ 𝑓 (𝑘2)
holds for any 𝑘1 ≤ 𝑘2.

Though achieving success in various domains, deep learning

(DL) models usually require a heavy runtime like PyTorch [32]

or TensorFlow [41] that are costly and less flexible. Instead, ex-

isting learned index designs favor stacking simple models, such

as linear functions [8, 10, 46], polynomial splines [16], and radix

splines [15]. Among these, the PGM-Index [10] employs the error-

bounded piecewise linear approximation (i.e., 𝜖-PLA) to strike a

balance between the model complexity and prediction accuracy.

Definition 2.1 (𝜖-PLA). Given a univariate set X = {𝑥1, · · · , 𝑥𝑁 },
a corresponding target set Y = {𝑦1, · · · , 𝑦𝑁 }, and an error con-

straint 𝜖 , an 𝜖-PLA of𝑚 line segments on the point set in Cartesian

space (X,Y) = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1,· · · ,𝑁 is defined as,

𝑓 (𝑥) =


𝑎1 · (𝑥 − 𝑠1) + 𝑏1 if 𝑠1 ≤ 𝑥 < 𝑠2

𝑎2 · (𝑥 − 𝑠2) + 𝑏2 if 𝑠2 ≤ 𝑥 < 𝑠3

· · · · · ·
𝑎𝑚 · (𝑥 − 𝑠𝑚) + 𝑏𝑚 if 𝑠𝑚 ≤ 𝑥 < +∞

(1)

such that for ∀𝑖 = 1, 2, · · · , 𝑁 , it always holds that |𝑓 (𝑥𝑖) − 𝑦𝑖 | ≤ 𝜖 .

Each segment in an 𝜖-PLA can be expressed by a tuple 𝑠𝑒𝑔𝑖 =

(𝑠𝑖 , 𝑎𝑖 , 𝑏𝑖) where 𝑠𝑖 is the segment’s starting point, 𝑎𝑖 is the slope,

and 𝑏𝑖 is the intercept. To ensure the monotonic requirement, the

segments in Eq. (1) should satisfy two conditions: (a) 𝑎𝑖 ≥ 0 for

𝑖 = 1, · · · ,𝑚, and (b) 𝑠𝑖 < 𝑠 𝑗 for ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑚. We then extend the

original PGM-Index definition [10] by introducing separate error

parameters for internal search and last-mile search.

Definition 2.2 ((𝜖𝑖 , 𝜖ℓ)-PGM-Index [10]). Given a sorted key set

K = {𝑘1, 𝑘2, · · · , 𝑘𝑁 } and error parameters 𝜖𝑖 and 𝜖ℓ (𝜖𝑖 , 𝜖ℓ ∈ N+),
an (𝜖𝑖 , 𝜖ℓ)-PGM-Index is a multi-level structure:

❶ Leaf Level: The 0-th level is an 𝜖ℓ -PLA constructed on the dataset

(K,I = {1, · · · , 𝑁 }), where I denotes the index set.

❷ Internal Levels: For the 𝑗-th level (𝑗 ≥ 1), let S𝑗−1 denote

the set of segments in the previous level (i.e., level 𝑗 − 1), and let

K𝑗−1 = {𝑠𝑒𝑔.𝑠 | 𝑠𝑒𝑔 ∈ S𝑗−1} and I𝑗−1 = {1, 2, · · · , |K𝑗−1 |}. Then,
the 𝑗-th level is an 𝜖𝑖 -PLA constructed on the dataset (K𝑗−1,I𝑗−1).
Specifically, the topmost level consists of a single line segment,

forming the root of the index structure.

We categorize the segments in the bottom level as leaf segments
and the remaining segments as internal segments. For an (𝜖𝑖 , 𝜖ℓ)-
PGM-Index, searching for a query key 𝑘 can be performed in a

top-down manner as follows:

❶ Internal Index Traversal: The search begins at the root level

and proceeds downward, finding the appropriate segment at each

level until reaching the leaf level (depicted by the red path in Fig-

ure 1). Specifically, let 𝑠𝑒𝑔 𝑗 = (𝑠 𝑗 , 𝑎 𝑗 , 𝑏 𝑗) denote the segment at the

𝑗-th level. The next segment to traverse at the (𝑗 − 1)-th level is

determined by searching for 𝑘 within 𝑎 𝑗 · (𝑘 − 𝑠 𝑗) + 𝑏 𝑗 ± 𝜖𝑖 .
❷ Last-Mile Search: After reaching the 0-th level, an exact search

is conducted on the raw sorted keys K within
�rank(𝑘) ± 𝜖ℓ , where

Results Base Model Lookup Time Space Cost

ICML’20 [9] Linear 𝑂 (log𝑁) 𝑂 (𝑁 /𝜖2)
ICML’23 [50] Constant 𝑂 (log log𝑁) 𝑂 (𝑁 log𝑁)

Ours Linear 𝑂 (log log𝑁) 𝑂 (𝑁 /𝐺)
Table 1: Summary of theoretical results for static learned
index. “Ours” refers to our tighter bounds for PGM-Index.�rank(𝑘) = 𝑎0 · (𝑘 − 𝑠0) + 𝑏0 is the predicted rank for 𝑘 , and

𝑠𝑒𝑔0 = (𝑠0, 𝑎0, 𝑏0) is the leaf segment found during the internal

index traversal.

Recall that the index construction introduced in Definition 2.2

ensures that the maximum errors for internal index traversal and

last-mile search are bounded by 𝜖𝑖 and 𝜖ℓ , respectively. Therefore,

the above search process guarantees to find the correct location

(i.e., rank(𝑘)) for an arbitrary query key 𝑘 .

2.2 Existing Theoretical Results
From Section 2.1, two key sub-problems need to be addressed to

determine the space and time complexities of the PGM-Index: ❶

Howmany line segments are required to satisfy the error constraint for
an 𝜖-PLA model? and ❷ What is the height (i.e., the number of layers)
of a PGM-Index? In this section, we review existing theoretical

studies [9, 50] regarding these two questions, with the major results

summarized in Table 1.

The original PGM-Index [10] first provides a straightforward

lower bound to determine the index height.

Theorem 2.3 (PGM-Index Lower Bound [10]). Given a consec-
utive chunk of 2𝜖 + 1 sorted keys {𝑘𝑖 , · · · , 𝑘𝑖+2𝜖 } ⊆ K , there always
exists a horizontal line segment ℓ (𝑥) = 𝑖 + 𝜖 such that |ℓ (𝑘 𝑗) − 𝑗 | ≤ 𝜖

for 𝑗 ∈ {𝑖, · · · , 𝑖 + 2𝜖}, implying that each line segment in an 𝜖-PLA
can cover at least 2𝜖 + 1 keys.

According to Theorem 2.3, w.l.o.g., for an (𝜖, 𝜖)-PGM-Index,

the height of the index is 𝑂 (log𝜖 𝑁) = 𝑂 (log𝑁). Thus, the in-

dex lookup takes time 𝑂 (log𝑁 · log
2
𝜖) = 𝑂 (log𝑁), as 𝜖 can be

treated as a pre-specified constant. Ferragina et al. [9] further refine

the results in Theorem 2.3 by using a statistical model. Suppose that

the key set to be indexed K = {𝑘1, 𝑘2, · · · , 𝑘𝑁 } is a realization of a

random process 𝑘𝑖 = 𝑘𝑖−1 +𝑔𝑖 for 𝑖 ≥ 2 where 𝑔𝑖 ’s are i.i.d. random

variables (r.v.) following some unknown distribution. We refer to

the r.v. 𝑔𝑖 as the “gap”, with 𝜇 = E[𝑔𝑖] and 𝜎2 = Var[𝑔𝑖] represent-
ing its mean and variance, respectively. With such statistical model,

the segment coverage can be further improved as follows.

Theorem 2.4 (Expected Line Segment Coverage [9]). Given
a set of sorted keys K = {𝑘1, 𝑘2, · · · , 𝑘𝑁 } and an error parameter 𝜖 ,
let the gap be 𝑔𝑖 = 𝑘𝑖 − 𝑘𝑖−1. If the condition 𝜖 ≫ 𝜎/𝜇 holds, with
high probability, the expected number of keys in K covered by a line
segment ℓ (𝑥) = 1

𝜇 · (𝑥 − 𝑘1) + 1 is given by:

E
[
min

{
𝑖 ∈ N+ | |ℓ (𝑘𝑖) − 𝑖 | > 𝜖

}]
= 𝜇2𝜖2/𝜎2, (2)

where ℓ (𝑘𝑖) = 𝜇 · (𝑘𝑖 − 𝑘1) + 1 is the predicted index for 𝑘𝑖 .
By constructing a special line segment with slope 1/𝜇, Theo-

rem 2.4 derives a tighter bound on segment coverage compared to

Theorem 2.3. For a set of 𝑁 sorted keys, the expected number of

segments
1
in a one-layer 𝜖-PLA can be derived as 𝑁𝜎2/𝜖2𝜇2. In the

1
This conclusion is not rigorous, as, in general, 1/E[𝑋] ≠ E[1/𝑋] for an arbitrary

random variable 𝑋 . A better proof of this result can be found in Theorem 4 of [9].

2888

Platform OS Compiler CPU Frequency Memory (Bandwidth) L1 L2 L3 (LLC)

X86-1 Ubuntu 20.04 g++ 11 Intel Core i7-13700K 5.30 GHz (P-core) 32 GB DDR4 (12.8 GB/s) 64 KB 256 KB 16 MB

X86-2 CentOS 9.4 g++ 11 AMD EPYC 7413 3.60 GHz 1 TB DDR4 (10.6 GB/s) 64 KB 1 MB 256 MB

ARM macOS 14.4.1 clang++ 15 Apple M3 4.05 GHz (P-core) 16 GB LPDDR5 (35.6 GB/s) 320 KB 16 MB N.A.

Table 2: Summary of three micro-benchmark platforms. For platforms X86-1 and ARM, which adopt the “big.LITTLE” architec-
ture [2], the hardware statistics of the performance cores are reported. The listed L1/L2/L3 sizes represent the actual cache size
accessible to a single physical core. Notably, for the Apple M3 chip, only L1 and L2 caches are available.

implementation, an optimal online 𝜖-PLA fitting algorithm [27] is

adopted to minimize the number of line segments while satisfying

the error constraint 𝜖 , which ensures to find fewer segments than

the special segment construction in Theorem 2.3. Therefore, the

expected number of segments is bounded by 𝑂 (𝑁 /𝜖2). Combining

Theorem 2.3 with Theorem 2.4, Ferragina et al. [9] claim that a

PGM-Index using 𝑂 (𝑁 /𝜖2) space can process lookup queries in

𝑂 (log𝑁) time with high probability. By setting 𝜖 = Θ(𝐵), a PGM-

Index achieves the same logarithmic index lookup complexity of a

B+-tree with fanout 𝐵, while reducing the space complexity from

B+-tree’s 𝑂 (𝑁 /𝐵) to 𝑂 (𝑁 /𝐵2).
Notably, the above results extend to any other optimal error-

bounded PLA fitting algorithms. Besides the online algorithm [27]

used by PGM-Index, other segment fitting methods include the

OptimalPLR and GreedyPLR [49] used in Bourbon [7] and Shrink-

ingCone employed in FITing-Tree [11]. In [49], the OptimalPLR

algorithm has been proven to be equivalent to [27], implying that

the bound in Theorem 2.4 also applies to OptimalPLR. However,

GreedyPLR and ShrinkingCone lack such optimality guarantees. In

practice, however, these sub-optimal methods achieve comparable

segment counts using only𝑂 (1) space and are easy to parallelize. As
linear function is a popular choice in learned index design, we leave

benchmarking the impact of different segment fitting algorithms

as an interesting topic for future study.

In addition to [9], a recent study [50] also explores the theoretical

aspects of learned indexes. They show that a Recursive Model

Index [16], using piece-wise constant functions as base models,

can achieve a sub-logarithmic lookup complexity of 𝑂 (log log𝑁).
However, this comes at the cost of super-linear space of𝑂 (𝑁 log𝑁).
Our Results. Inspired by the results of [50], we reasonably propose
that PGM-Indexes, adopting 𝜖-PLA as base models, can achieve the

same sub-logarithmic lookup time complexity with reduced space

overhead, given that a piecewise constant function can be regarded

as a special case of a piecewise linear function. As summarized

in Table 1, our analysis in Section 3 shows that the PGM-Index

can search a query key in 𝑂 (log log𝑁) time while requiring linear

space 𝑂 (𝑁 /𝐺), where 𝐺 is a constant that depends on the error

parameter 𝜖 and the gap distribution characteristics.

2.3 Microbenchmark Setting
To ensure consistency in presentation, we first detail themicrobench-

mark setups, including the hardware platforms and datasets for

evaluation. Throughout the remainder of this paper, we adopt this

microbenchmark to either motivate or validate the theoretical find-

ings and proposed methodologies.

Platforms.We conduct the experiments on three platforms with

different architectures: ❶ X86-1: an Ubuntu desktop equipped with

an Intel© Core™ i7-13700K CPU (5.30 GHz) and 64 GB of memory;

❷ X86-2: a CentOS server with 2 AMD© EPYC™ 7413 CPUs (3.60

Dataset #Keys Raw Size 𝑆𝑒𝑔 𝐶𝑜𝑣 ℎ𝐷

fb 200 M 1.6 GB 2.13 × 10
6

94 2.86 × 10
7

wiki 200 M 1.6 GB 2.28 × 10
5

877 1.29 × 10
3

books 800 M 6.4 GB 1.98 × 10
6

101 2.86

osm 800 M 6.4 GB 1.55 × 10
6

129 1.27 × 10
6

Table 3: Summary of datasets. 𝑆𝑒𝑔 is the number of segments
to fit an 𝜖-PLA with 𝜖 = 16. 𝐶𝑜𝑣 = 𝑁 /𝑆𝑒𝑔𝑠 is the average
segment coverage. ℎ𝐷 = 𝜎2/𝜇2 according to Theorem 2.4.

GHz) and 1 TB of memory; and ❸ ARM: a Macbook Air laptop with

an Apple Silicon M3 CPU (4.05 GHz) and 16 GB of unified memory,

which provides higher memory bandwidth compared to the X86
platforms. All the experiments are written in C++ and compiled

using g++ 11.4 on X86-1 and X86-2 and clang++ 15 on ARM. Table 2
summarizes the specifications of the benchmark platforms.

Benchmark Datasets.We adopt 4 real datasets from SOSD [24]

that have been widely used in previous studies [8, 15, 45, 46, 51, 52]:

❶ fb: a set of user IDs randomly sampled from Facebook [34];

❷ wiki: a set of edit timestamp IDs from Wikipedia [43]; ❸ books:
a dataset of book popularity from Amazon; ❹ osm: a set of cell

IDs from OpenStreetMap [26]. Additionally, we generate three

synthetic datasets by sampling from uniform, normal, and log-

normal distributions, following a process similar to [24, 52]. To

quantify the difficulty of indexing a given dataset, we adopt the

approach from [45] and compute the minimum number of segments

(obtained by building a one-layer PGM-Index) required to satisfy

the error constraint of an 𝜖-PLA (with 𝜖 = 16 by default). All keys

are represented as 64-bit unsigned integers (uint64_t in C++), and

Table 3 summarizes the dataset statistics.

3 WHY ARE PGM-INDEXES SO EFFECTIVE?
3.1 Motivation Experiments
We construct both PGM-Indexes and B+-trees using various config-

urations, with the index statistics summarized in Table 4. Intuitively,

a B+-tree with a fan-out of 𝐵 = 𝜖 can be considered analogous to a

PGM-Index with 𝜖𝑖 = 𝜖ℓ = 𝜖 , since a B+-tree index guarantees that

a search key will be located within a data block of size 𝐵.

As shown in Table 4, we first fix 𝐵 = 𝜖 = 16 while varying

the input data size from 10
3
to 10

9
using synthetic uniform keys.

As the data size 𝑁 increases, the height of the B+-tree index (𝐻𝐵)

follows a logarithmic growth pattern, adhering to the formula𝐻𝐵 =

⌈1 + log𝐵 𝑁+1
2
⌉. However, the PGM-Index height (𝐻𝑃𝐺𝑀) grows

at a much slower, sub-logarithmic rate. Moreover, when varying

𝜖 within {22, 23, · · · , 29} on dataset books, the results consistently
demonstrate that 𝐻𝑃𝐺𝑀 ≪ 𝐻𝐵 across all 𝜖 configurations, and

the decrease in 𝐻𝑃𝐺𝑀 is also notably slower than that of 𝐻𝐵 . In

addition to index height, Table 4 also reports the numbers of leaf

and internal segments. Unlike B+-trees or other BST variants, the

2889

𝑁
PGM
Height

Leaf
Segments

Internal
Segments

% over
Total

B+-tree
Height

10
3

2 2 2 50.0% 4

10
4

2 16 2 88.9% 6

10
5

2 140 2 98.6% 7

10
6

2 1,388 2 99.9% 8

10
7

3 13,918 12 99.9% 9

10
8

3 139,376 109 99.9% 10

10
9

4 1,394,003 1,049 99.9% 11

𝜖 (𝐵)
PGM
Height

Leaf
Segments

Internal
Segments

% over
Total

B+-tree
Height

8 4 16,859,902 46,572 99.7% 11

16 4 7,943,403 4,100 99.9% 9

32 3 2,464,229 272 99.99% 7

64 3 797,152 60 99.99% 6

128 3 267,966 25 99.99% 6

256 3 81,340 12 99.99% 5

512 3 22,684 7 99.99% 5

Table 4: Index statistics of PGM-Indexes (𝜖𝑖 = 𝜖ℓ = 𝜖) and
B+-trees (fan-out 𝐵 = 𝜖). 𝜖 is fixed to 8 while varying data
size 𝑁 (using synthetic uniform keys), and 𝑁 is fixed to 800M
while varying 𝜖 (using dataset books). The ratio in percentage
refers to the proportion of leaf segments contributing to the
total index memory footprint.

PGM-Index exhibits a highly flat structure, with up to 99.99% of

the line segments located at the bottom level, aligning with the

guess on the sub-logarithmic growth in index height.

3.2 Theoretical Analysis
In this section, we aim to provide a tighter bound that refines the

previous results with the following roadmap:

❶ Lemma 3.1 and Lemma 3.2 establish a lower bound for the ex-

pected segment coverage at each level of the PGM-Index;

❷ Theorem 3.3 derives the PGM-Index height as 𝑂 (log log𝑁),
demonstrating sub-logarithmic growth w.r.t. the data size 𝑁 ;

❸ Theorem 3.4 concludes the space and time complexities of the

PGM-Index, summarized in Table 1.

Notably, unless otherwise stated, the subsequent analyses adhere

to the core assumptions on gaps from Theorem 2.4 [9]. Specifically,

the gaps are i.i.d. random variables following an unknown distribu-

tion with expectation 𝜇 and variance 𝜎2. As discussed in [9], the

“i.i.d.” assumption can be further relaxed toweak correlationwithout
affecting the correctness of theoretical results.

Lemma 3.1 (Expected Coverage Recursion). Given a set of 𝑁
sorted keysK = {𝑘1, · · · , 𝑘𝑁 } and an error parameter 𝜖 , let a random
variable 𝐶𝑖 denote the number of keys in the (𝑖 − 1)-th level that a
segment in the 𝑖-th level can cover (i.e., satisfying the error constraint
𝜖). Specifically, 𝐶0 denotes the leaf segment coverage (i.e., level-0) for
the input key set K . Then, the following recursion holds for E[𝐶𝑖]:

E[𝐶𝑖] =
𝜇2 · 𝜖2
𝜎2

· E[𝐶0 · 𝐶1 · · ·𝐶𝑖−1] . (3)

Proof. According to the law of total expectation [4], we have,

E [𝐶𝑖] =
∫
· · ·

∫
E [𝐶𝑖 | 𝐶0 = 𝑐0, · · · ,𝐶𝑖−1 = 𝑐𝑖−1] ×

𝑓 (𝑐0, · · · , 𝑐𝑖−1) 𝑑𝑐0 · · ·𝑑𝑐𝑖−1,
(4)

New Gap in the
i-th Level

Gaps in the
(i-1)-th Level

Figure 2: Illustration of gaps for the next level. Suppose 𝐺
is the segment coverage at the 𝑖-th level. The new gap at the
𝑖-th level is given by 𝑔 (𝑖) =

∑𝑗+𝐺−1
𝑗 ′=𝑗+1 𝑔

(𝑖−1)
𝑗 ′ , where 𝑔 (𝑖−1)

𝑗 ′ is the
𝑗 ′-th gap at the (𝑖 − 1)-th level.
where 𝑓 (𝑐0, · · · , 𝑐𝑖−1) is the joint probability density function of

the random variables 𝐶0, · · · ,𝐶𝑖−1.
When fixing𝐶0, · · · ,𝐶𝑖−1 to values 𝑐0, · · · , 𝑐𝑖−1, as illustrated in

Figure 2, w.l.o.g., an arbitrary gap at the 𝑖-th level, denoted by 𝑔 (𝑖) ,
is the sum of 𝑐0 · 𝑐1 · · · 𝑐𝑖−1 consecutive gaps from the raw key set

K2
. Thus, according to Theorem 2.4, on a key set with gaps as 𝑔 (𝑖) ,

the expected segment coverage (conditioned on 𝐶0, · · · ,𝐶𝑖−1) at
the 𝑖-th level for an 𝜖-PLA is given by:

E[𝐶𝑖 |𝐶0 = 𝑐0, · · · ,𝐶𝑖−1 = 𝑐𝑖−1] =
E
[
𝑔 (𝑖)

]
2 · 𝜖2

Var
[
𝑔 (𝑖)

]
=

E
[∑𝑗+𝑐0 ·𝑐1 · · ·𝑐𝑖−1

𝑗 ′=𝑗 𝑔𝑗 ′
]
2

· 𝜖2

Var
[∑𝑗+𝑐0 ·𝑐1 · · ·𝑐𝑖−1

𝑗 ′=𝑗 𝑔𝑗 ′
]

= (𝑐0 · 𝑐1 · · · 𝑐𝑖−1) ·
𝜇2 · 𝜖2
𝜎2

,

(5)

where 𝜇 and𝜎2 are themean and variance of the gaps on the original
key set K . Taking Eq. (5) into the integral in Eq. (4), we have,

E[𝐶𝑖] =
𝜇2 · 𝜖2
𝜎2

∫
· · ·

∫ 𝑖−1∏
𝑗=0

𝑐 𝑗 · 𝑓 (𝑐0, · · · , 𝑐𝑖−1) 𝑑𝑐0 · · ·𝑑𝑐𝑖−1

=
𝜇2 · 𝜖2
𝜎2

· E[𝐶0 · 𝐶1 · · ·𝐶𝑖−1] .

(6)

Thus, we arrive at the statement in Lemma 3.1. □

Lemma 3.2 (Expected Coverage of Level-𝑖). The following
lower bound holds for E[𝐶𝑖]:

E [𝐶𝑖] ≥
(
𝜇2 · 𝜖2
𝜎2

)
2
𝑖

. (7)

Proof. We prove Lemma 3.2 using mathematical induction.

❶ Base Case (𝑖′ = 0): According to Theorem 2.4, E[𝐶0] = 𝜇2𝜖2/𝜎2,
satisfying the inequality in Eq. (7).

❷ Inductive Step: Assume that the lower bound in Eq. (7) holds

for 𝑖′ = 𝑖 − 1, i.e.,

E [𝐶𝑖−1] ≥
(
𝜇2 · 𝜖2
𝜎2

)
2
𝑖−1

. (8)

Then, for the case of 𝑖′ = 𝑖 , according to Lemma 3.1, we have,

E[𝐶𝑖] =
𝜇2 · 𝜖2
𝜎2

· E[𝐶0 · 𝐶1 · · ·𝐶𝑖−1]

≥ 𝜇2 · 𝜖2
𝜎2

· E[𝐶0 · 𝐶1 · · ·𝐶𝑖−2] · E[𝐶𝑖−1],
(9)

2
Here, we assume that all line segments within the same level exhibit equal coverage.

A more rigorous analysis can be established by using concentration bounds [4].

2890

Results Lookup Complexity Insertion Complexity

LIPP [46] 𝑂 (log𝑁) 𝑂 (log2 𝑁)
ALEX [8] 𝑂 (log𝑁) 𝑂 (log2 𝑁)

DPGM-Index [10] 𝑂 (log2 𝑁) 𝑂 (log𝑁)
Ours 𝑂 (log𝑁 log log𝑁) 𝑂 (log𝑁)

Table 5: Summary of existing theoretical results for dynamic
learned indexes. “Ours” refers to the improved complexity
results we establish for DPGM-Index.

considering that 𝐶𝑖−1 is positively correlated with 𝐶0 ·𝐶1 · · ·𝐶𝑖−2.
By the inductive hypothesis (i.e., Eq. (8)), we have,

E[𝐶𝑖] ≥ E[𝐶𝑖−1]2 ≥
(
𝜇2 · 𝜖2
𝜎2

)
2
𝑖

, (10)

which satisfies the lower bound for 𝑖′ = 𝑖 . Thus, by induction, we

conclude that Lemma 3.2 holds for all 𝑖 . □

Theorem 3.3 (PGM-Index Height). Given a set K of 𝑁 sorted
keys, denote the constant 𝐺 = 𝜇2𝜖2/𝜎2, w.h.p., the height of a PGM-
Index with error parameter 𝜖𝑖 = 𝜖ℓ = 𝜖 is bounded by

𝐻𝑃𝐺𝑀 = 𝑂 (log
2
log𝐺 𝑁) = 𝑂 (log log𝑁) . (11)

Proof. Due to page limits, we provide only an intuitive proof

sketch. A more rigorous proof can be derived using a technique

similar to that in Theorem 4 of [9]. According to Definition 2.2, the

construction of a PGM-Index terminates when the current level

consists of exactly one line segment (i.e., reaching the root level).

Intuitively, the index height 𝐻𝑃𝐺𝑀 can be solved by letting

𝑁∏𝐻𝑃𝐺𝑀 −1
𝑖=0

E[𝐶𝑖]
= 𝑂 (1) . (12)

According to Theorem 3.2, we have,

𝐻𝑃𝐺𝑀 −1∏
𝑖=0

E[𝐶𝑖] ≥
𝐻𝑃𝐺𝑀 −1∏

𝑖=0

𝐺2
𝑖 ≥ 𝐺

∑𝐻𝑃𝐺𝑀 −1
𝑖=0

2
𝑖
≥ 𝐺2

𝐻𝑃𝐺𝑀 −1
. (13)

Thus, Eq. (12) can be solved by 𝐻𝑃𝐺𝑀 = 𝑂 (log
2
log𝐺 𝑁). □

Theorem 3.4 (Space and Time Complexity). Given a set K of
𝑁 sorted keys, a PGM-Index with 𝜖𝑖 = 𝜖ℓ = 𝜖 can process an index
lookup query in 𝑂 (log log𝑁) time using 𝑂 (𝑁 /𝐺) space.

Proof. According to Definition 2.2, querying a PGM-Index re-

quires𝐻𝑃𝐺𝑀 times search operations, each within a range of 2 ·𝜖+1.
According to Theorem 3.3, the total index lookup time should be

𝑂 (𝐻𝑃𝐺𝑀 · log2 (2 · 𝜖 + 1)) = 𝑂 (log log𝑁).
We further analyze the space complexity of a PGM-Index, specif-

ically the total number of line segments required to satisfy the error

constraint 𝜖 . According to Definition 2.2 and Lemma 3.2, the ℎ-th

level contains at most 𝑁 /∏ℎ
𝑖=0𝐺

2
𝑖
line segments. Thus, the upper

bound on the total number of segments can be derived as,

𝐻𝑃𝐺𝑀 −1∑︁
ℎ=0

𝑁∏ℎ
𝑖=0𝐺

2
𝑖
≤

𝐻𝑃𝐺𝑀 −1∑︁
ℎ=0

𝑁

𝐺ℎ+1 ≤ 𝑁 ·
1 − 1

𝐺𝐻𝑃𝐺𝑀

𝐺 − 1

≤ 𝐺/(𝐺 − 1) = 𝑂 (𝑁 /𝐺) ,
(14)

considering that

∏ℎ
𝑖=0𝐺

2
𝑖 ≥ ∏ℎ

𝑖=0𝐺
2
0 ≥ 𝐺ℎ+1

. □

Note that the 𝑂 (𝑁 /𝐺) space complexity of the PGM-Index is

tight, as a one-layer PGM-Index requires 𝑂 (𝑁 /𝐺) segments ac-

cording to Theorem 2.4.

Key Range 𝜖 Height Segments Memory 𝐶𝑜𝑣

[0, 108]
𝜇 = 10

𝜎2 = 100.19

4 4 129,503 2,078 KB 77

8 3 37,732 604 KB 265

16 3 10,224 163 KB 978

[0, 109]
𝜇 = 100

𝜎2 = 10007.7

4 3 129,659 2,080 KB 77

8 3 37,601 602 KB 266

16 3 10,124 162 KB 988

[0, 1010]
𝜇 = 1000

𝜎2 = 999750

4 3 129,586 2,079 KB 77

8 3 37,597 602 KB 266

16 3 10,217 164 KB 979

Table 6: PGM-Index statistics on 10million synthetic uniform
keys with different ranges.

We then investigate the complexities of the PGM-Index under dy-
namic workloads. To support updates, the dynamic PGM-Index [9]

(DPGM-Index) employs an LSM-tree-like [28] approach, maintan-

ing a sequence of PGM-Indexes over key sets 𝑆0, · · · , 𝑆𝑏 of sizes

at most 2
0, · · · , 2𝑏 , where 𝑏 = Θ(log𝑁). To insert a new key 𝑘 ,

it finds the first empty set 𝑆𝑖 and builds a new PGM-Index over

a merged key set 𝑆0 ∪ · · · 𝑆𝑖−1 ∪ {𝑘}. After the construction, 𝑆𝑖
becomes the merged set and 𝑆0, · · · , 𝑆𝑖−1 are emptied. Deleting a

key 𝑘 is processed by inserting a special key called “tombstone” to

indicate the deletion. As there are at most Θ(log𝑁) PGM-Indexes,

the amortized complexity for inserting 𝑁 keys to a DPGM-Index

is 𝑂 (log𝑁). For index lookup, in the worst case, DPGM-Index re-

quires scanning Θ(log𝑁) sub-indexes, with a total complexity of

𝑂 (log𝑁 log log𝑁) according to Theorem 2.3. Table 5 summarizes

the complexity results of updatable learned indexes.

3.3 Case Study and Discussions
To further validate the correctness of our theoretical results, we

now provide a case study on uniformly distributed keys.
Given a key set K , assume that all keys 𝑘 ∈ K are i.i.d. samples

drawn from a uniform distribution U(𝛼, 𝛽). In this case, the 𝑖-th gap

on K can be defined as 𝑔𝑖 = 𝑘 (𝑖) − 𝑘 (𝑖−1) , where 𝑘 (𝑖) and 𝑘 (𝑖−1)
are the 𝑖-th and (𝑖 − 1)-th order statistics of K (i.e., the 𝑖-th and

(𝑖 − 1)-th smallest values inK). Then, for an arbitrary 𝑖 = 2, · · · , 𝑁 ,

it can be shown that 𝑔𝑖 follows a beta distribution, 𝑔𝑖 ∼ (𝛽 − 𝛼) ·
Beta(1, 𝑁), with the following mean E[𝑔𝑖] = (𝛽 − 𝛼)/(𝑁 + 1) and
variance Var[𝑔𝑖] ≈ (𝛽 − 𝛼)2/(𝑁 + 1)2. Thus, the constant 𝐺 =

𝜇2 · 𝜖2/𝜎2≈𝜖2, which is notably independent of the original key

distribution. By Theorem 2.3 and Theorem 3.4, this result implies

that, for uniform keys, a PGM-Index should have the same index
height and memory footprint as long as 𝑁 and 𝜖 are fixed. Table 6

reports the statistics of PGM-Indexes constructed on three synthetic

uniform key sets. The results further validate the correctness of the

aforementioned analysis, given that the index height and segment

count remain consistent across different data ranges, depending

solely on the error constraint 𝜖 .

4 WHY ARE PGM-INDEXES INEFFECTIVE?
The theoretical findings in Section 3 reveal that PGM-Indexes can

achieve the best space-time trade-off among existing learned in-

dexes. However, recent benchmarks [24, 39, 45] show that PGM-

Index cannot outperform learned indexes without rigorous theoret-

ical guarantees, such as RMI [33] and ALEX [8]. Such performance

2891

20 31 34 49 50 67 7210 85 88 9177

Query key

11 12 13 14 15 16 17 18 19 20 21 22... ...
Keys

Rank

L
ev

el
-0

L
ev

el
-1

L
ev

el
-2

Figure 3: Illustration of a 3-layer RMI [16]. 𝑓𝑖, 𝑗 denotes the
𝑗-th model in the 𝑖-th level. The path in red denotes the index
traversal from the root model 𝑓0,0 to leaf. Notably, the root
level is specified as level-0, opposite to the PGM-Index.
mismatch motivates us to answer the second question: Why do

PGM-Indexes underperform in practice?

A Simple Cost Model. We begin by introducing a simplified cost

model for an arbitrary (𝜖𝑖 , 𝜖ℓ)-PGM-Index. Recalling the PGM-Index

structure as shown in Figure 1, the total index lookup time for a

search key 𝑘 can be modeled as the summation of the internal

search cost with error constraint 𝜖𝑖 and the last-mile search cost

with error constraint 𝜖ℓ :

𝐶𝑜𝑠𝑡 = (𝐻𝑃𝐺𝑀 − 1) ·𝐶𝑆 (𝜖𝑖) +𝐶𝑆 (𝜖ℓ) + 𝐻𝑃𝐺𝑀 ·𝐶𝐿, (15)

where 𝐻𝑃𝐺𝑀 is the index height, 𝐶𝑆 (𝜖) represents the search cost

within the range of 2 · 𝜖 + 1, and 𝐶𝐿 is the overhead to evaluate a

linear function 𝑦 = 𝑎 · 𝑥 + 𝑏.
Bottleneck: Error-bounded Search. According to Theorem 2.3,

the index height 𝐻𝑃𝐺𝑀 = 𝑂 (log log𝑁), implying that very few

internal searches are required (generally fewer than 5 for 1 billion

keys). Moreover, our benchmark results across various datasets

and platforms indicate that evaluating a linear function typically

takes less than 10 ns. In contrast, performing a search with 𝜖 = 64

takes timemore than 200 ns by adopting a standard binary search
implementation (e.g., std::lower_bound). Based on this observa-

tion, the cost model in Eq. (15) can be simplified by neglecting the

segment evaluation overhead:

𝐶𝑜𝑠𝑡 ≈ (𝐻𝑃𝐺𝑀 − 1) ·𝐶𝑆 (𝜖𝑖) +𝐶𝑆 (𝜖ℓ) . (16)

The revised cost model in Eq. (16) indicates that searching a

PGM-Index is dominated by performing𝐻𝑃𝐺𝑀 times error-bounded

searches, which are generally known as memory-bound opera-

tions [44]. Specifically, an 𝜖-bounded binary search typically in-

volves ⌈log
2
(2 · 𝜖 + 1)⌉ comparisons and memory accesses. Each

comparison generally requires a few nanoseconds, whereas each

memory access, if both cache missed and TLB missed, can take

approximately 100 nanoseconds due to the asymmetric nature of

the memory hierarchy in computer systems [12].

Comparison to RMI. We then investigate why RMI practically

outperforms the PGM-Index. As shown in Figure 3, the major struc-

tural difference between RMI and PGM-Index lies in their internal

search mechanisms. In RMI, the model prediction 𝑓𝑖, 𝑗 (𝑘) directly de-
termines the model index for the next level (i.e., the (𝑖 + 1)-th level),

thereby bypassing the expensive internal error-bounded search

required by PGM-Index. To ensure correctness, the bottom-layer

models materialize themaximum search error to perform a last-mile

error-bounded search, similar to the PGM-Index. ALEX [8] employs

a similar model-based navigation approach to avoid intermediate

Data Index Size Max
Err.

Internal
Time

Last-mile
Time Total

fb
PGM 16.1 MB 32 675 ns 300 ns 975 ns

RMI 24.0 MB 568 185 ns 614 ns 799 ns

wiki
PGM 1.3 MB 32 606 ns 270 ns 876 ns

RMI 1.0 MB 63 95 ns 317 ns 412 ns

Table 7: Index and query processing details. We adopt CDF-
Shop [25] to find an optimized RMI configuration that
matches the space cost of a (16, 32)-PGM-Index.

Data Index Min/Max
Err.

Mean
Time

Max
Time Variance

books
PGM 32/32 694 ns 1720 ns 15802
RMI 41/627 573 ns 1985 ns 18743

osm
PGM 32/32 952 ns 1813 ns 17487
RMI 63/1765584 903 ns 14212 ns 534086

Table 8: Distribution of latencies on 1K uniform query keys.
The index configurations are consistent with Table 7.

search, while LIPP [46] takes a step further by eliminating both

internal and last-mile search errors to achieve better performance.

Table 7 presents a detailed breakdown of the overheads when

querying RMI and PGM-Index. Consistent with prior benchmark

results [24], RMI outperforms the PGM-Index in terms of total

index lookup time across all datasets. Specifically, for the PGM-

Index, the internal search time constitutes a significant 69%–81% of

the total index lookup overhead. In contrast, for RMI, this ratio is

considerably lower, at just 19%–27%, supporting our earlier claim.

Is RMI the Best Choice?While RMI generally outperforms the

PGM-Index, it suffers from a critical limitation: RMI cannot guaran-

tee a maximum error before index construction, making its perfor-

mance highly data-sensitive. For instance, as shown in Table 8, on

dataset osm, RMI’s prediction error varies significantly from 63 to
1.77 × 106, resulting in non-robust query latencies ranging from

440 ns to 14212 ns. In contrast, on dataset books, RMI’s last-mile

error is much narrower, leading to a much more stable query la-

tency between 380 ns and 1985 ns. Such performance variability

makes RMI’s query latency highly dependent on the specific query

key and complicates the precise cost estimation, which is critical

for DBMS query optimization [13].

5 PGM++: OPTIMIZATION TO PGM-INDEX
This section introduces PGM++, a simple yet effective optimization

to the PGM-Index by incorporating a hybrid error-bounded search

strategy (▷ Section 5.1) and an automatic parameter tuner guided

by well-calibrated cost models (▷ Section 5.2).

5.1 Search Strategy
PGM++ employs a hybrid search strategy to replace the standard

binary search. To start, we discuss the impact of branch misses in

standard binary search implementations.

Branch Prediction and Branch Miss.Modern CPUs rely on so-

phisticated branch predictors to enhance pipeline parallelism by

forecasting the outcomes of conditional jump instructions (e.g., JLE
and JAE on X86). These predictors are highly effective for simple,

2892

T* lower_bound(T *d, T k, size_t n) {
 size_t lo = 0, hi = n - 1;
 while (lo < hi) {
 size_t mid = (lo + hi) / 2;
 if (d[mid] >= k) lo = mid;
 else hi = mid + 1;
 }
 return d + lo;
} JAE/JLE Instruction

Fetch

Decode

Execute

Write Back

CPU Cycles

Stage

CPU Cycles

(a) Branchy search with branch missing. (b) Branchless search with CMOV instruction.

Re-build Pipeline

Fetch

Decode

Execute

Write Back

Stage
T* lower_bound_brl(T *d, T k, size_t n) {
 T *base = d; size_t l = n;
 while (l > 1) {
 size_t half = l / 2;
 base += (base[half-1] < k) * half;
 l -= half;
 }
 return base;
} CMOV Instruction

Pipeline Stall

Figure 4: Illustration of the CPU pipeline status when exe-
cuting: (a) standard binary search, and (b) branchless binary
search enabled by the CMOV instruction.

(a) Platform ARM. (b) Platform X86-1.
Figure 5: Latency w.r.t. data sizes for linear search, standard
binary search, and branchless binary search. We generate
keys of varying sizes (from 2

1 to 2
21) by uniformly sampling

from the wiki dataset and evaluate them using 10K of search
keys, also randomly sampled from wiki.

repetitive tasks, such as for loops or pointer chasing, where the exe-

cution patterns are straightforward [12]. However, standard binary

search implementations, like the widely used std::lower_bound,
branching patterns are quite random, leading to a high branch

miss rate of approximately 50% [35]. As illustrated in Figure 4(a), a

branchmiss stalls the entire CPU pipeline until the branch condition

is resolved (e.g., d[mid]>=k in line 5 of function lower_bound).
Branchless Search. A simple optimization [35] to the standard

binary search is to remove the branches by conditional move in-

structions (e.g., CMOV on X86 and MOVGE on ARM), which executes

both sides of a branch and keeps the valid one based on the evalu-

ated condition. As illustrated in Figure 4(b), eliminating branches

(function lower_bound_brl) improves CPU pipeline utilization,

thus reducing total search time.

Notably, CMOV is not a “silver bullet”. It disables the native branch
predictor and introduces additional overhead [35]. On large datasets

(>LLC size), the performance advantage of branchless searches

diminishes as memory access latency dominates the total overhead.

However, this extra cost is negligible particularly when the search

range fits within the L2 cache, making CMOV performance-worthy

for PGM-Index (usually 𝜖 ≤ 1024).

Benchmark Results. Figure 5 presents the benchmark results for

three search methods on synthetic uint64_t key sets of varying

sizes: branchy binary search (std::lower_bound), branchless bi-
nary search (similar to that in Figure 4(b)), and linear scan. The

results indicate that branchless search consistently demonstrates

superior performance across most data sizes, except for very small

datasets (e.g., 𝑁 ≤ 16), where the linear scan proves more efficient.

Dataset PGM++ PGM++ w/o ❶ PGM++ w/o ❷ PGM

fb 545 (1×) 782 (↑43%) 636 (↑17%) 911 (↑67%)
wiki 428 (1×) 685 (↑60%) 522 (↑22%) 828 (↑93%)
books 501 (1×) 757 (↑51%) 562 (↑12%) 857 (↑71%)
osm 696 (1×) 967 (↑39%) 807 (↑16%) 1078 (↑55%)

Table 9: Ablation study results for PGM++. Both PGM and
PGM++ use a fixed configuration where 𝜖𝑖 = 16 and 𝜖ℓ = 64.
The reported figures represent the average query latency (in
nanoseconds) measured over 1K random queries.

Compared to std::lower_bound, the branchless search achieves a

performance improvement of approximately 1.2× to 1.6×.
It is noteworthy that other search algorithms, such as k-ary

search and interpolation search [35], are not considered in this

work. This is because, the search range in the PGM-Index is typically

small (e.g., 𝜖 ≤ 1024), where more advanced search algorithms do

not consistently outperform a branchless binary search. Based on

the above discussions, PGM++ adopts two simple yet effective

optimizations to boost lookup query processing:

Optimization ❶: Hybrid Branchless Search. PGM++ adopts a

hybrid search strategy for both internal and last-mile searches: for

search ranges exceeding a pre-defined threshold 𝛿 , PGM++ em-

ploys the branchless binary search, while for smaller search ranges,

it switches to a simple linear scan. In contrast, the original PGM-

Index implementation [30] also adopts a hybrid approach, but com-

bines linear scan with the branchy binary search implemented via

std::lower_bound.
Optimization ❷: Layer Bypassing. Recall that PGM-Index ex-

hibits a highly flat hierarchical structure where the non-bottom
layers contain very few line segments. Thus, instead of recursively

searching from the root, PGM++ skips all layers until reaching the

first layer whose next layer is considered dense (segment count

> 𝛿). This strategy, named layer bypassing, effectively reduces

search overhead, particularly in a cold-cache environment.

Ablation Study. To further demonstrate the effectiveness of the

proposed optimizations, we conduct an ablation study by reporting

the query performance of PGM++ with either Optimization ❶

or ❷ disabled. As shown in Table 9, the results indicate that the

hybrid branchless search and the skipping of unnecessary layers

reduce index lookup costs by up to 60% and 22%, respectively,
compared to the original PGM-Index. Additionally, a more low-level

evaluation is provided by reporting CPU’s branch misses (measured

by Linux perf) for PGM++ with and without the aforementioned

hybrid branchless search (HBS) operator. As shown in Figure 6,

by employing HBS, the total branch misses can be reduced from

1.51×to 9.88×compared to the branchy baseline, strongly positively

correlated with the reduction in query latencies.

5.2 Calibrated Cost Model
To efficiently and effectively determine the error bounds for internal

search (𝜖𝑖) and last-mile search (𝜖ℓ), we first establish cost models

that estimate the space and time overheads without the need for

physically constructing the PGM-Index.

Space Cost Model. As discussed earlier in Section 3.1 and Table 4,

the space overhead of a PGM-Index is dominated by the number of

segments in the bottom layer (denoted by 𝐿(𝜖ℓ)), which accounts

2893

Figure 6: Branch misses of processing 1K lookup queries for
PGM++ with and without hybrid branchless search (HBS).
The error parameters are fixed to 𝜖𝑖 = 16 and 𝜖ℓ = 64.
for up to > 99.9% of the total space cost. Therefore, we focus solely
on the leaf segments and ignore the internal segments. The total

space cost of an (𝜖𝑖 , 𝜖ℓ)-PGM-Index is then given by 𝑀 = 𝐿(𝜖ℓ) ·
sizeof (𝑠𝑒𝑔), where sizeof (𝑠𝑒𝑔) is the number of bytes required to

encode a line segment 𝑠𝑒𝑔 = (𝑠, 𝑎, 𝑏). Typically, sizeof (𝑠𝑒𝑔) = 16 for

uint64_t keys and float slope and intercept.

Estimation of Leaf Segment Count. Theorem 2.4 implies a

straightforward estimation to 𝐿, which is 𝐿 ≈ 𝑁𝜎2/𝜖2
ℓ
𝜇2. However,

extreme gap values can easily influence the ratio of ℎ𝐷 = 𝜎2/𝜇2,
leading to an overestimation of the necessary segment count. For

example, according to Table 3, on dataset osm, ℎ𝐷 = 1.27 × 10
6
,

and according to Theorem 2.4, the segment count when 𝜖ℓ = 16

can be estimated as, 𝜇2 · 𝜖2/𝜎2 = 16
2/1.27 × 106 ≈ 0.0002, which

is far away from 129, the observed segment coverage. To mitigate

this, we clip the observed gaps at the 1%- and 99%-quantiles and

re-calculateℎ𝐷 based on the clipped gaps (as reported in columnℎ𝐷
of Table 3). After removing the extreme gaps, the revised ℎ𝐷 = 5.39

on dataset osm, and the corresponding estimated segment coverage

is 16
2/5.39 ≈ 71.3, which is much closer to the observed value.

However, this clipping-based estimation, which still relies on

the global picture of gap distribution, remains coarse for practical
datasets due to the inherent heterogeneity in gap distributions. To

offer a better estimation of 𝐿, we partition the gaps into a set of

consecutive and disjoint chunks P (such that

∑
𝑃∈P |𝑃 | = 𝑁) using

a kernel-based change-point detection (KCPD) algorithm [1]. The

refined estimator of 𝐿 then becomes:

𝐿 (𝜖ℓ) ≈
∑︁

𝑃 ∈P
𝑁𝑃𝜎

2

𝑃 /𝜖
2

ℓ 𝜇
2

𝑃 , (17)

where 𝑁𝑃 , 𝜇𝑃 , and 𝜎2
𝑃
represent the size, mean, and variance of

gaps within partition 𝑃 ∈ P, respectively. Notably, the original

dynamic programming-based KCPD algorithm [1] yields a com-

plexity of 𝑂 (𝑁 2), which is prohibitive for large key sets. Thus, in

implementation, we uniformly pre-sample a small portion (0.05%)

of each dataset, on which the KCPD algorithm is invoked.

TimeCostModel. As discussed in Section 4, the total index lookup
cost includes two parts: internal search cost and last-mile search.

As we adopt a hybrid search strategy, the simplified cost model

introduced in Eq. (16) can be refined as follows,

𝐶𝑜𝑠𝑡 (𝜖𝑖 , 𝜖ℓ) = 𝐶𝑜𝑠𝑡
internal

+𝐶𝑜𝑠𝑡
last-mile

(18a)

𝐶𝑜𝑠𝑡
last-mile

= ⌈log
2
(2 · 𝜖ℓ + 1) ⌉ · 𝐶miss (18b)

𝐶𝑜𝑠𝑡
internal

= max{ (𝐻𝑃𝐺𝑀 − 1), 1} · (𝐶𝑆 (𝜖𝑖) +𝐶segment) (18c)

𝐶𝑆 (𝜖𝑖) =
{
𝐶
linear

if 2 · 𝜖𝑖 + 1 ≤ 𝛿

⌈log
2
(2 · 𝜖𝑖 + 1) ⌉ · 𝐶hit

if 2 · 𝜖𝑖 + 1 > 𝛿
(18d)

𝐻𝑃𝐺𝑀 = ⌈log
2
log

𝜇2𝜖2
𝑖
/𝜎2 𝐿 (𝜖ℓ) ⌉ (18e)

Data: the input key set K , a space budget 𝐵
Result: the optimal configuration of 𝜖ℓ and 𝜖𝑖

/* Invoke KCPD on a sampled subset of K */

Step ❶ P ← KCPD(Sample(K , ratio=0.05%)) ;
/* Configure 𝜖ℓ to satisfy the index space budget 𝐵 */

Step ❷ 𝜖ℓ ←
√︃

sizeof (𝑠𝑒𝑔)
𝐵

∑
𝑃 ∈P 𝑁𝑃𝜎

2

𝑃
/𝜇2

𝑃
;

/* Configure 𝜖𝑖 to minimize the lookup cost model */

Step ❸ 𝜖𝑖 ← argmin𝜖𝑖 ∈E𝐶𝑜𝑠𝑡 (𝜖𝑖 , 𝜖ℓ) ;

Algorithm 1: PGM++ Parameter Tuning

where (a) 𝐶miss and 𝐶hit
are the memory access costs when miss-

ing or hitting L1/L2 cache; (b) 𝐶segment refers to the overhead of

evaluating a linear function; (c) 𝐶
linear

is the cost of performing a

linear search within the range of 2 · 𝜖𝑖 + 1; and (d) 𝐿(𝜖ℓ) is the leaf
segment count estimated by Eq. (17). All constants in the cost model

can be estimated by probe datasets for different platforms. Notably,

Eq. (18b) assumes a cold-cache environment, as the key set K is

large enough and the access to K is highly random for hardware

prefetchers. Conversely, Eq. (18d) assumes a hot-cache environment,

since the non-bottom layers contain very few segments, which are

highly likely to be cache-resident after processing a few queries.

PGM++ Parameter Tuning. With the space and time cost models,

the two error parameters 𝜖𝑖 and 𝜖ℓ can be automatically configured.

As detailed in Algorithm 1, the parameter tuning process minimizes

the estimated lookup cost while satisfying a pre-specified space

budget 𝐵. Specifically, Step ❶ partitions the input key set to provide

more fine-grained estimations of the gap mean and variance; based

on the space cost model 𝐿(𝜖ℓ), Step ❷ estimates 𝜖ℓ by solving the

equation 𝐿(𝜖ℓ) · sizeof (𝑠𝑒𝑔) = 𝐵; with a determined 𝜖ℓ , Step ❸

derives 𝜖𝑖 by minimizing the index lookup cost estimated by the

cost model in Eq. (18a).

Intuitively, to minimize Eq. (18a) in Step ❸, the value of 𝜖𝑖 should

neither be too large nor too small. A larger 𝜖𝑖 increases the overhead

of 𝐶𝑆 (𝜖𝑖) (i.e., Eq. (18d)), while a smaller 𝜖𝑖 results in more layers

to traverse (i.e., 𝐻𝑃𝐺𝑀 in Eq. (18e)). Unfortunately, deriving an an-

alytical solution for this optimization problem is impossible, as it is

non-convex and involves ceiling functions. We visualize the cost

(a) Lookup time cost model on wiki with 𝜖ℓ = 16 on X86-1. The red
line is a polynomial fitting to the cost model.

(b) Lookup cost on wiki. (c) Lookup cost on books.
Figure 7: Observed index lookup overhead (unit: ns) of PGM++
on X86-1 w.r.t. different combinations of (𝜖𝑖 , 𝜖ℓ).

2894

Figure 8: Space and time tradeoffs for seven datasets on three platforms (static workload).

model computed by Eq. (18a) on dataset wiki in Figure 7a, with con-
stants 𝐶miss,𝐶hit

,𝐶segment estimated on platform X86-1. Although
non-convex, from the whole picture, the overall cost model exhibits

an approximate “U”-shape, aligning with the true query latencies

observed in Figure 7bc. In practice, we simply enumerate all possi-

ble 𝜖𝑖 within a discrete candidate set E = {22, · · · , 210} to find the

near-optimal value, which is efficient as |E | is typically small. A

detailed evaluation of the accuracy and effectiveness of our cost

model is provided in Section 6.4.

Remarks. Our cost model for PGM++ can be easily extended to

any PGM-Index variants like [10, 52]. In contrast to existing cost

models for learned indexes (mostly based on RMI) like [51], our cost

model is workload-independent, relying solely on gap distribution

characteristics and platform-aware cost constants. These features

enhance the robustness of parameter tuning, as the cost is optimized

for all queries rather than being tailored to a specific workload.

6 EXPERIMENTAL STUDY
To answer the question of whether PGM++ can reverse the “inef-

fective” scenario of PGM-Indexes, we perform experimental studies

under the micro-benchmark detailed in Section 2.3.

6.1 Experiment Setups
Query Workloads. Following the settings of recent experimental

studies [39, 45], we evaluate learned indexes under query work-

loads with varying read-to-write ratios, including ❶ read-only
(0% writes), ❷ ready-heavy (20% writes), ❸ balanced (50% writes),

❹ write-heavy (80% writes), and ❺ write-only (100% writes). For

read-only workload (a.k.a. static workload), we bulk-load the en-

tire key set and issue 100M lookup queries. For workloads involving

writes, we first bulk-load 100M keys, then issue lookup and inser-

tion queries with varying ratios using the remaining keys.

ComparedMethods. For static workload, we evaluate three learned
indexes: ❶ RMI, the optimized recursive model index [16, 24] tuned

by CDFShop [25]; ❷ PGM, the original PGM-Index implementa-

tion [10]; and ❸ PGM++, our optimized PGM-Index variant. For

PGM, we construct 9× 9 PGM-Indexes with (𝜖𝑖 , 𝜖ℓ) ∈ E ×E, where
E = {22, · · · , 210}. Then, for each 𝜖ℓ ∈ E, the fastest PGM-Index is

reported. Similarly, for PGM++, we adopt the (𝜖𝑖 , 𝜖ℓ) configuration
tuned by our cost model (Section 5.2) for each 𝜖ℓ ∈ E.

For dynamic workloads, we evaluate four updatable learned in-

dexes: ❶ DPGM, the dynamic PGM-Index variant [10] by employ-

ing a LSM-tree-like structure; ❷ DPGM++, our optimized version

to DPGM by implementing hybrid branchless search and optimal

error configuration; ❸ ALEX [8], a learned index using gapped

array to handle updates; and ❹ LIPP [46], a learned index that

improves read efficiency by eliminating last-mile search errors. We

tune DPGM and DPGM++ in the same way as PGM and PGM++.
For ALEX, we tune index parameters to achieve a similar amount of

memory as LIPP. In addition to learned baselines, we also include

the popular STX B+-tree [38] in the experiments.

6.2 Results on Static Workloads
Overall Evaluation. Figure 8 presents the trade-offs between in-

dex lookup overhead and storage cost across all seven datasets and

three platforms on static workloads. The results show that, in terms

of index lookup time, PGM++ consistently outperforms PGM by

a factor of 1.2× ∼ 2.2× with the same index size (𝜖ℓ), supporting

our bottleneck analysis for PGM-Indexes (Section 4). Compared

to the optimized RMI, PGM++ delivers better or, in some cases,

comparable lookup efficiency, achieving speedups of up to 1.56×.
An outlier case is on dataset normal and lognormal, RMI outper-
forms PGM++ and PGM. The reason is that the optimized RMI
implementation adopts non-linear models (e.g., cubic spline inter-

polation [25]), which can fit normal and lognormal keys very well

(maximum error < 4). However, on real-world datasets, RMI fell
short in fitting the data with bounded error, leading to non-robust

latencies as reported in Table 8 and discussed in Section 4.

Space-time Trade-off. In most cases, PGM++ offers the best space-
time trade-off. However, interestingly, unlike RMI, whose perfor-
mance generally improves with increased index memory usage,

PGM++ exhibits an “irregular” pattern in its time-space relation-

ship. This is because we always report the performance of the

optimal index configuration for each 𝜖ℓ . When allocating more

memory budget by decreasing 𝜖ℓ , the number of leaf segments in-

creases, leading to a higher index height. While a smaller 𝜖𝑖 reduces

last-mile search costs, the increase in internal index traversal costs

2895

(a) Throughput on fb. (b) Throughput on wiki.

(c) Throughput on osm. (d) Throughput on books.
Figure 9: Query throughput (#Queries/s) across different
write ratios for dynamic workloads on X86-1.
may dominate, implying that the total query latency does not nec-

essarily improve with more space. An important takeaway here is

that our parameter tuner can find configurations to provide com-

petitive query efficiency, even under very limited space constraints.

For example, on dataset wiki, PGM++ uses 0.1 MB of memory to

outperform an RMI with over 100 MB space.

Influence of Architecture. From Figure 8, the comparison re-

sults vary across different platforms. For dataset osm, compared to

PGM, PGM++ achieves an average speedup ratio of 1.78× on x86-1
and arm. However, such a speedup decreases to 1.32× on platform

x86-2. This is because the memory access latency on x86-2 is much

higher than that on x86-1, which reduces the improvement brought

by adopting the hybrid search strategy.

6.3 Results on Dynamic Workloads
In Figure 9, we present experimental results on dynamic workloads

across varying write ratios.

ComparisonwithDPGM. For read-heavy workloads (20% writes),

DPGM++ improves the query throughput by up to 1.68× compared

to DPGM, demonstrating the effectiveness of our proposed opti-

mizations (hybrid branchless search and parameter tuner) on both

static and dynamic workloads. However, as the write ratio increases,

the performance improvement becomes less significant. This is be-

cause bothDPGM andDPGM++ employ an LSM-tree-like approach

to handle insertions, where the major overhead comes from the

compaction operation triggered when a sub-index is full.

Comparison with ALEX and LIPP. Except for write-heavy and

write-only workloads, ALEX always achieves the highest through-

put, consistent with recent benchmarks [45]. LIPP achieves the

second-highest throughput in read-heavy workloads, following

ALEX. DPGM and DPGM++ exhibit lower performance in read-

heavy scenarios due to the underlying LSM-like structure, where

each lookup must traverse multiple levels to locate the relevant sub-

index, incurring additional overhead. According to the theoretical

results in Table 5, DPGM++ has a lookup cost of𝑂 (log𝑁 ·log log𝑁),
while ALEX achieves 𝑂 (log𝑁). Although the additional log log𝑁

factor is asymptotically small, in an in-memory index setting,

where each lookup typically takes only a few hundred nanosec-

onds, even one additional cache miss caused by error-bounded

search (on the order of ∼100ns) can introduce noticeable latency.

(a) P95 latency on fb. (b) P95 latency on wiki.
Figure 10: Long-tail latency across different write ratios for
dynamic workloads on X86-1.

However, when the write ratio exceeds 50%, the throughput of

both ALEX and LIPP drops rapidly due to the high update overhead

on their internal structures. In contrast, DPGM++ excels in high-

write workloads, achieving up to 1.68× the throughput of ALEX,
thanks to the LSM-tree-like update strategy.

While DPGM++ is noticeably inferior to ALEX on read-heavy

workloads, the error-bounded design of PGM++ offers more ro-

bust performance across a variety of workload patterns. As shown

in Figure 10, we report the long-tail latency (P95) under differ-
ent write ratios for each index. While ALEX demonstrates higher

throughput in read-heavy scenarios, its P95 latency is worse than

that of DPGM++ across different write ratios. This characteristic

is particularly valuable in real-world DBMS environments, where

query optimizers rely on predictable and stable index access costs

for accurate plan selection.

6.4 Cost Model and Parameter Tuner
Space Cost Model. As discussed earlier, the leaf segment count

(𝐿) dominates the PGM-Index space cost. Here, we evaluate three

segment count estimators introduced in Section 5.2. (a) SIMPLE:
Directly apply Theorem 2.4 on the entire gap distribution. (b) CLIP:
Apply Theorem 2.4 while excluding extreme gap values (those out-

side the P1 and P99 quantiles). (c) ADAP: Partition gaps into disjoint

chunks and aggregate the segment count estimates from each chunk

(Eq. (17)). As shown in Figure 11, ADAP consistently achieves more

accurate estimations across all datasets, nearly overlapping the

ground truth (TRUE). SIMPLE performs the worst on real datasets,

validating our discussion in Section 2.3 that extreme gap values

significantly affect estimation accuracy. CLIP also delivers accu-

rate results on real datasets (especially fb), as the gaps are nearly
identically distributed after removing the extreme values.

Time Cost Model. For each pair of (𝜖𝑖 , 𝜖ℓ) ∈ E × E, where E =

{2𝑗 | 𝑗 = 2, · · · , 10}, we estimate the index lookup overhead using

our time cost model (Eq. (18a)–Eq. (18e)) and then measure the

actual lookup time by constructing the corresponding (𝜖𝑖 , 𝜖ℓ)-PGM-

Index. Figure 12 plots the true index lookup overhead against the

cost model’s estimation (both normalized). The closer the points

are to the line 𝑦 = 𝑥 , the more accurate the estimation. Our results

show that the cost model closely approximates the true lookup over-

head, particularly for synthetic datasets. This is because synthetic

datasets strictly follow i.i.d. gaps assumptions, leading to more

precise estimates of the index height (Eq. (18e)). Although the es-

timation on real-world datasets is less accurate than on synthetic

datasets, the overall trend remains reliable, making it sufficient for

subsequent parameter tuning.

Parameter Tuning Strategy.We finally evaluate the effectiveness

of PGM++’s parameter tuning strategy (Algorithm 1). For each 𝜖ℓ ,

2896

Figure 11: Evaluation of the space cost model (Eq. (17)). For
each 𝜖ℓ , we compare three leaf segment count estimators: (a)
SIMPLE, (b) CLIP, and (c) ADAP.

Figure 12: Evaluation of the time cost model (Eq. (18a)–
Eq. (18e)). We plot the true index lookup costs (normalized)
against the estimated costs (normalized) on x86-1, where
each point represents a unique (𝜖𝑖 , 𝜖ℓ) configuration.
we record the index lookup overhead for PGM-Indexes with differ-

ent 𝜖𝑖 configurations: (a) PGM++, where 𝜖𝑖 is tuned by Algorithm 1;

and (b) Random, where 𝜖𝑖 is randomly picked. Figure 13 reports

the relative index lookup overhead w.r.t. different 𝜖ℓ settings. From

the results, in 46% of cases, PGM++ successfully picks the optimal
𝜖𝑖 , and in 91% of cases, PGM++ finds a configuration that is only

< 10% worse than the optimal one in terms of actual index lookup

overhead. Moreover, our parameter tuner (<1 µs) is much more effi-

cient than CDFShop [25], which takes over 10 minutes to optimize

RMI (>10 minutes). This is because CDFShop requires physically

constructing the index, while our method only depends on gap

mean and variance, which can be pre-computed and re-used.

7 RELATEDWORK
Learned Indexes. Indexing one-dimensional sorted keys has been

extensively studied for decades. While tree-based indexes (e.g., B+-

tree [5], FAST [14], ART [3], Wormhole [48], HOT [3], etc.) remain

the backbone of modern DBMS, a new class of index structure,

known as learned index, has recently gained significant attention in

both academia and industry [7, 8, 10, 16, 18–23, 40, 42, 46, 47, 47, 51–

53]. Learned indexes directly fit the CDF of input keys with con-

trollable error to perform an exact last-mile search. By properly

organizing the model structure, learned indexes offer the poten-

tial for superior space-time trade-offs compared to conventional

tree-based indexes [24, 45]. In this work, we delve deeply into

the theoretical and empirical aspects of the popular PGM-Index,

demonstrating its potential to be practically embedded into real

DBMS.

Learned Index Theories. Unlike tree-based indexes supported

by well-established theoretical foundations, the effectiveness of

learned indexes has largely been demonstrated through empirical
results. Ferragina et al. [9, 10] first prove that the expected time

and space complexities of a PGM-Index with error constraint 𝜖 on

𝑁 keys should be 𝑂 (log𝑁) and 𝑂 (𝑁 /𝜖2), respectively. In parallel,

another recent work [50] focuses on an RMI variant with piece-wise
constant models, achieving an index lookup time of 𝑂 (log log𝑁)

Figure 13: Evaluation of PGM++ parameter tuner. The y-axis
is the relative difference compared to the optimal configura-
tion (i.e., 𝑡observed/𝑡opt − 1). The closer to 0, the better.
but using super-linear space of𝑂 (𝑁 log𝑁). In this work, we tighten
the results of [9], demonstrating that PGM-Indexes can achieve a

sub-logarithmic lookup time of 𝑂 (log log𝑁) while maintaining

linear space complexity of 𝑂 (𝑁 /𝜖2). To the best of our knowledge,

this is the tightest bound among all existing learned indexes.

Learned Index Cost Model.Modeling the space and time over-

heads of an index structure is crucial for both index parameter

configuration and DBMS query optimization. Existing learned in-

dexes mainly adopt a workload-based cost model, which assumes

prior knowledge of the query distribution [25, 51]. In contrast, by

extending the theoretical results, we establish a cost model for

PGM-like indexes without any assumptions on query workloads.

As our cost model is simple, parameter tuning based on it is much

more efficient than workload-driven approaches, making it more

feasible to be integrated into practical DBMS.

8 CONCLUSION AND FUTUREWORK
This work provides an in-depth theoretical and experimental revisit

to the PGM-Index. We establish a new bound for the PGM-Index by

showing the 𝑂 (log log𝑁) index lookup time while using 𝑂 (𝑁 /𝐺)
space. We further identify that costly internal error-bounded search

operations have become a bottleneck in practice. To address this,

we propose PGM++, a simple yet effective variant of the PGM-

Index, which optimizes the internal search operator and optimally

configures index parameters using an accurate cost model. Exten-

sive experimental results demonstrate that PGM++ significantly

enhances the original PGM-Index across both static and dynamic

workloads, making it a promising index for practical DBMS.

ACKNOWLEDGMENTS
Dr. Qiyu Liu is supported by the Fundamental Research Funds for the Cen-

tral Universities (No. 5330501376). Lei Chen’s work is partially supported

by National Key Research and Development Program of China Grant No.

2023YFF0725100, National Science Foundation of China (NSFC) under Grant

No. U22B2060, Guangdong-Hong Kong Technology Innovation Joint Fund-

ing Scheme Project No. 2024A0505040012, the Hong Kong RGC GRF Project

16213620, RIF Project R6020-19, AOE Project AoE/E-603/18, Theme-based

project TRS T41-603/20R, CRF Project C2004-21G, Key Areas Special Project

of Guangdong Provincial Universities 2024ZDZX1006, Guangdong Province

Science and Technology Plan Project 2023A0505030011, Guangzhou munici-

pality big data intelligence key lab, 2023A03J0012, Hong Kong ITC ITF grants

MHX/078/21 and PRP/004/22FX, Zhujiang scholar program 2021JC02X170,

Microsoft Research Asia Collaborative Research Grant, HKUST-Webank

joint research lab and 2023 HKUST Shenzhen-Hong Kong Collaborative

Innovation Institute Green Sustainability Special Fund, from Shui On Xin-

tiandi and the InnoSpace GBA.

2897

REFERENCES
[1] Sylvain Arlot, Alain Celisse, and Zaïd Harchaoui. 2019. A Kernel Multiple

Change-point Algorithm via Model Selection. J. Mach. Learn. Res. 20 (2019),

162:1–162:56.

[2] biglittle [n.d.]. big.LITTLE: Balancing Power Efficiency and Performance. https:

//www.arm.com/en/technologies/big-little. Accessed: 2024-06-12.

[3] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. 2018.

HOT: A Height Optimized Trie Index for Main-Memory Database Systems. In

SIGMOD Conference. ACM, 521–534.

[4] Kai Lai Chung. 2000. A course in probability theory. Elsevier.
[5] Douglas Comer. 1979. The Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (1979),

121–137.

[6] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

2022. Introduction to algorithms. MIT press.

[7] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2020. From WiscKey

to Bourbon: A Learned Index for Log-Structured Merge Trees. In OSDI. USENIX
Association, 155–171.

[8] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

David B. Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned

Index. In SIGMOD Conference. ACM, 969–984.

[9] Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. 2020. Why Are Learned

Indexes So Effective?. In ICML (Proceedings of Machine Learning Research),
Vol. 119. PMLR, 3123–3132.

[10] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic

compressed learned index with provable worst-case bounds. Proc. VLDB Endow.
13, 8 (2020), 1162–1175.

[11] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim

Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In SIGMOD Conference.
ACM, 1189–1206.

[12] John L Hennessy and David A Patterson. 2011. Computer architecture: a quanti-
tative approach. Elsevier.

[13] Matthias Jarke and Jürgen Koch. 1984. Query Optimization in Database Systems.

ACM Comput. Surv. 16, 2 (1984), 111–152.
[14] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D.

Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey.

2010. FAST: fast architecture sensitive tree search on modern CPUs and GPUs.

In SIGMOD Conference. ACM, 339–350.

[15] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned

index. In aiDM@SIGMOD. ACM, 5:1–5:5.

[16] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In SIGMOD Conference. ACM, 489–504.

[17] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:

A B-tree for new hardware platforms. In ICDE. IEEE Computer Society, 302–313.

[18] Pengfei Li, Hua Lu, Rong Zhu, Bolin Ding, Long Yang, and Gang Pan. 2023. DILI:

A Distribution-Driven Learned Index. Proc. VLDB Endow. 16, 9 (2023), 2212–2224.
[19] Qiyu Liu, Maocheng Li, Yuxiang Zeng, Yanyan Shen, and Lei Chen. 2025. How

good are multi-dimensional learned indexes? An experimental survey. The VLDB
Journal 34, 2 (2025), 1–29.

[20] Qiyu Liu, Yuxin Luo, Mengke Cui, Siyuan Han, Jingshu Peng, Jin Li, and Lei

Chen. 2025. BitTuner: A Toolbox for Automatically Configuring Learned Data

Compressors. In 2025 IEEE 41st International Conference on Data Engineering
(ICDE). IEEE Computer Society, 4548–4551.

[21] Qiyu Liu, Yanyan Shen, and Lei Chen. 2021. LHist: Towards Learning Multi-

dimensional Histogram for Massive Spatial Data. In ICDE. IEEE, 1188–1199.
[22] Qiyu Liu, Yanyan Shen, and Lei Chen. 2022. HAP: An Efficient Hamming Space

Index Based on Augmented Pigeonhole Principle. In SIGMOD Conference. ACM,

917–930.

[23] Qiyu Liu, Libin Zheng, Yanyan Shen, and Lei Chen. 2020. Stable Learned Bloom

Filters for Data Streams. Proc. VLDB Endow. 13, 11 (2020), 2355–2367.
[24] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,

Alfons Kemper, Thomas Neumann, and TimKraska. 2020. Benchmarking Learned

Indexes. Proc. VLDB Endow. 14, 1 (2020), 1–13.
[25] Ryan Marcus, Emily Zhang, and Tim Kraska. 2020. CDFShop: Exploring and

Optimizing Learned Index Structures. In SIGMOD Conference. ACM, 2789–2792.

[26] openstreetmap [n.d.]. OpenStreetMap. https://www.openstreetmap.org/. Ac-

cessed: 2024-06-12.

[27] Joseph O’Rourke. 1981. An On-Line Algorithm for Fitting Straight Lines Between

Data Ranges. Commun. ACM 24, 9 (1981), 574–578.

[28] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The

log-structured merge-tree (LSM-tree). Acta Informatica 33 (1996), 351–385.
[29] Yehoshua Perl, Alon Itai, and Haim Avni. 1978. Interpolation Search - A Log Log

N Search. Commun. ACM 21, 7 (1978), 550–553.

[30] pgm [n.d.]. PGM-Index. https://github.com/gvinciguerra/PGM-index. Accessed:

2024-06-12.

[31] postgresql [n.d.]. PostgreSQL. https://www.postgresql.org/docs/current/indexes.

html. Accessed: 2024-06-12.

[32] pytorch [n.d.]. PyTorch. https://pytorch.org/. Accessed: 2024-06-12.

[33] rmi [n.d.]. rmi. https://github.com/learnedsystems/RMI/. Accessed: 2024-06-12.

[34] Peter Van Sandt, Yannis Chronis, and JigneshM. Patel. 2019. Efficiently Searching

In-Memory Sorted Arrays: Revenge of the Interpolation Search?. In SIGMOD
Conference. ACM, 36–53.

[35] Lars-Christian Schulz, David Broneske, and Gunter Saake. 2018. An Eight-

Dimensional Systematic Evaluation of Optimized Search Algorithms on Modern

Processors. Proc. VLDB Endow. 11, 11 (2018), 1550–1562.
[36] Lars-Christian Schulz, David Broneske, and Gunter Saake. 2018. An eight-

dimensional systematic evaluation of optimized search algorithms on modern

processors. Proceedings of the VLDB Endowment 11, 11 (2018), 1550–1562.
[37] sparksql [n.d.]. Spark SQL. https://spark.apache.org/sql/. Accessed: 2024-06-12.

[38] stx [n.d.]. STX B+-tree. https://panthema.net/2007/stx-btree/. Accessed: 2024-

06-12.

[39] Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. 2023. Learned index: A com-

prehensive experimental evaluation. Proceedings of the VLDB Endowment 16, 8
(2023), 1992–2004.

[40] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie

Wang, and Haibo Chen. 2020. XIndex: a scalable learned index for multicore

data storage. In PPoPP. ACM, 308–320.

[41] tensorflow [n.d.]. TensorFlow. https://www.tensorflow.org/. Accessed: 2024-06-

12.

[42] Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang.

2022. The Concurrent Learned Indexes for Multicore Data Storage. ACM Trans.
Storage 18, 1 (2022), 8:1–8:35.

[43] wikidata [n.d.]. Wikidata. https://www.wikidata.org/wiki/Wikidata:Main_Page.

Accessed: 2024-06-12.

[44] Samuel Williams, Andrew Waterman, and David A. Patterson. 2009. Roofline:

an insightful visual performance model for multicore architectures. Commun.
ACM 52, 4 (2009), 65–76.

[45] Chaichon Wongkham, Baotong Lu, Chris Liu, Zhicong Zhong, Eric Lo, and

Tianzheng Wang. 2022. Are Updatable Learned Indexes Ready? Proc. VLDB
Endow. 15, 11 (2022), 3004–3017.

[46] Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, and Chunxiao Xing.

2021. Updatable Learned Index with Precise Positions. Proc. VLDB Endow. 14, 8
(2021), 1276–1288.

[47] Shangyu Wu, Yufei Cui, Jinghuan Yu, Xuan Sun, Tei-Wei Kuo, and Chun Jason

Xue. 2022. NFL: Robust Learned Index via Distribution Transformation. Proc.
VLDB Endow. 15, 10 (2022), 2188–2200.

[48] Xingbo Wu, Fan Ni, and Song Jiang. 2019. Wormhole: A Fast Ordered Index for

In-memory Data Management. In EuroSys. ACM, 18:1–18:16.

[49] Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang Zhang, and Ke Deng. 2014.

Maximum error-bounded Piecewise Linear Representation for online stream

approximation. VLDB J. 23, 6 (2014), 915–937.
[50] Sepanta Zeighami and Cyrus Shahabi. 2023. On Distribution Dependent Sub-

Logarithmic Query Time of Learned Indexing. In ICML (Proceedings of Machine
Learning Research), Vol. 202. PMLR, 40669–40680.

[51] Jiaoyi Zhang and Yihan Gao. 2022. CARMI: A Cache-Aware Learned Index with a

Cost-based Construction Algorithm. Proc. VLDB Endow. 15, 11 (2022), 2679–2691.
[52] Jiaoyi Zhang, Kai Su, and Huanchen Zhang. 2024. Making In-Memory Learned

Indexes Efficient on Disk. Proceedings of the ACM on Management of Data 2, 3
(2024), 1–26.

[53] Zhou Zhang, Zhaole Chu, Peiquan Jin, Yongping Luo, Xike Xie, Shouhong Wan,

Yun Luo, Xufei Wu, Peng Zou, Chunyang Zheng, Guoan Wu, and Andy Rudoff.

2022. PLIN: A Persistent Learned Index for Non-Volatile Memory with High

Performance and Instant Recovery. Proc. VLDB Endow. 16, 2 (2022), 243–255.

2898

https://www.arm.com/en/technologies/big-little
https://www.arm.com/en/technologies/big-little
https://www.openstreetmap.org/
https://github.com/gvinciguerra/PGM-index
https://www.postgresql.org/docs/current/indexes.html
https://www.postgresql.org/docs/current/indexes.html
https://pytorch.org/
https://github.com/learnedsystems/RMI/
https://spark.apache.org/sql/
https://panthema.net/2007/stx-btree/
https://www.tensorflow.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basis of the PGM-Index
	2.2 Existing Theoretical Results
	2.3 Microbenchmark Setting

	3 Why Are PGM-Indexes So Effective?
	3.1 Motivation Experiments
	3.2 Theoretical Analysis
	3.3 Case Study and Discussions

	4 Why Are PGM-Indexes Ineffective?
	5 PGM++: Optimization to PGM-Index
	5.1 Search Strategy
	5.2 Calibrated Cost Model

	6 Experimental Study
	6.1 Experiment Setups
	6.2 Results on Static Workloads
	6.3 Results on Dynamic Workloads
	6.4 Cost Model and Parameter Tuner

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

