
Locality-Aware Cache Replacement Policy for Graph Traversals
Zeynep Korkmaz

University of Waterloo

Waterloo, ON, Canada

zkorkmaz@uwaterloo.ca

M. Tamer Özsu

University of Waterloo

Waterloo, ON, Canada

tamer.ozsu@uwaterloo.ca

Khuzaima Daudjee

University of Waterloo

Waterloo, ON, Canada

khuzaima.daudjee@uwaterloo.ca

ABSTRACT
Many graph processing applications consist of read-only work-

loads that need to perform low-latency traversals over large graphs.

These traversals are inherently expensive, and storage and pro-

cessing systems need to be optimized for them. The performance

of secondary storage-based systems can be improved by caching

locality-driven data in memory. Exploring the data reuse of graph

objects in applications is important to decrease the page faults in

the cache. However, graph applications can suffer from poor ac-

cess locality, making caching of graph data challenging. Locality

can be imposed through graph ordering algorithms that can be

exploited by cache replacement algorithms. We propose a graph

locality-aware cache replacement policy called LAC that exploits

the serialization layout obtained by graph ordering techniques. We

show that the spatial locality that is captured on disk pages offers

temporal locality for subsequent accesses of cache pages, and this

information can be used to make improved cache replacement deci-

sions. We evaluate LAC against the popular GCLOCK algorithm for

input graphs with different structural properties while running var-

ious query types. Our evaluation shows that LAC can outperform

GCLOCK through page fault improvements by reducing latency

up to 1.42× in simulation studies and up to 1.23× with integration

into the Neo4j system.

PVLDB Reference Format:
Zeynep Korkmaz, M. Tamer Özsu, and Khuzaima Daudjee. Locality-Aware

Cache Replacement Policy for Graph Traversals. PVLDB, 18(9): 2859 - 2871,

2025.

doi:10.14778/3746405.3746413

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/zeynepsaka/graphs-LAC.

1 INTRODUCTION
Graphs are popularly used to represent and model many real-world

relationships among data items [25]. Vertices in these graphs repre-

sent entities (e.g., people, processes, assets, devices), and the edges

represent the relationships among these entities. The volume of

graph-structured data as well as the sizes of these graphs continue

to grow, tracking the enormous growth in general data volume [14].

Many graph processing applications consist of read-only workloads

that require traversals over large graphs. To support low-latency

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.

doi:10.14778/3746405.3746413

0 500 1,000 1,500 2,000 2,500 3,000

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Access Timestamp

P
a
g
e
I
D

miss

hit

Figure 1: Temporal data accesses of disk pages in the cache
when the graph is serialized without structure awareness.

traversals, there is a need for graph storage and processing systems

that can support these traversals efficiently [33]. In this vein, graph

DBMSs (GDBMS) have been an active area of research and devel-

opment, although their performance and scalability continue to be

a major source of concern for users [25, 26]. The growth of graph

data sizes can outstrip memory capacities, requiring this data to be

stored on secondary storage.

Data caching plays an important role in the performance of these

disk-based
1
systems. Caches facilitate retaining frequently and/or

recently accessed data in memory, lowering data access latencies

by enhancing data locality. Satisfying application data requests

through the cache reduces the number of page faults required to

fetch data from the disk. Since the operating system is agnostic to

graph data access patterns, cache management policies that can

leverage graph data access patterns can improve cache performance,

and therefore system performance. However, the absence of access

locality in graph applications is a challenge [18, 32].

Figure 1 is a plot of temporal data accesses (hits and misses) of

disk pages in the cache that contain the vertices of the input graph

serialized on disk by using the storage layout of one of the popular

GDBMSs [1]
2
when running single pair shortest path queries on

social network graph data. The scattered access pattern of pages

in the cache shows a divergence of the physical data order on disk

from the traversal access pattern. This is due to serialization on disk

without considering the graph’s topology. In this experiment the

well-known and widely-used cache replacement policy, GCLOCK

[27] is deployed; GCLOCK considers recency and frequency of page

accesses in making its decisions. This scattered access problem can

be addressed by improving data locality through algorithms that

serialize data on disk such that accesses to these data correlate with

query traversals.

1
In this paper, we simply use the term “disk-based” to refer to any persistent secondary

storage.

2
The storage engine stores edges and vertices of the input graph separately both on

disk and in cache pages.

2859

https://doi.org/10.14778/3746405.3746413
https://github.com/zeynepsaka/graphs-LAC
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746413
https://www.acm.org/publications/policies/artifact-review-and-badging-current

0 500 1,000 1,500 2,000 2,500 3,000

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Access Timestamp

P
a
g
e
I
D

miss

hit

Figure 2: Temporal data accesses of disk pages in the cache
when the graph is serialized with structure awareness.

Figure 2 shows a plot of the same graph data and query as in

Figure 1 but with a changed data layout that correlates with the

graph topology, e.g., adjacent vertices and neighbourhoods in the

graph are stored on the same page or on adjacent pages on disk by

using a topology-aware serialization approach [29]. The resulting

improved locality of data accesses generates more cache hits as

well as more clustered and consecutive misses.

The clustered and consecutive misses in the plot show that data

reuse in graph applications is complex and generic cache replace-

ment techniques that are currently deployed in GDBMSs do not fit

the access patterns in graphs. This motivates the need for caching

techniques that can support this topology-based locality to improve

query performance. Although it has been shown that serialization

that takes into account graph topology can improve intra-page

spatial locality [15, 31], effective graph data cache management

that can exploit this serialization to improve hit rates is an open

research problem.

In this paper, we propose a new cache replacement policy for

disk-based GDBMSs. Our proposal, called Locality Aware Caching
(LAC), leverages the graph structure to estimate the most beneficial

pages to keep in the cache, thus minimizing the number of page

faults by improving graph data locality. For a series of read requests,

LAC’s objective is the same as in any cache management technique:

to fetch disk pages on demand into the cache and evict pages from

the cache such that the number of cache misses is minimized. LAC’s

approach leverages graph access patterns: read operations on graphs
tend to explore local neighborhoods of a vertex first and then expand
the neighbourhoods in multiple hops through repeated access patterns.
Therefore, the spatial locality that is captured in disk pages also

offers temporal locality for the subsequent accesses of cached pages.

LAC exploits this property in deciding which pages to retain in the

cache when making eviction decisions.

The contributions of this paper are the following:

• We address the challenges in identifying correlations be-

tween data accesses and the topology of graphs to increase

the access locality.

• We propose LAC, Locality-Aware Cache Replacement Pol-

icy that increases cache utilization by retaining pages in

the cache that are likely to be accessed together.

• We evaluate LAC against the well-known and widely used

cache replacement policy GCLOCK on input graphs with

different structural properties while running various query

types using both simulations and a real system integra-

tion, and show that LAC achieves improvements by up to

1.42× in simulations and 1.23× in the real system for query

execution time.

• We evaluate LAC against a graph topology-aware cache

hit promotion policy, GRASP, on the vertex pages of input

graphs while running various query types using simula-

tions. We show that LAC can outperform GRASP in most

cases in page fault and latency.

2 BACKGROUND AND RELATEDWORK
We split this section into two parts. First, we introduce background

information about topology-aware graph layout generation algo-

rithms and their impact on improving the performance of cache

management. Second, we highlight studies in the literature and prac-

tical solutions in commercial systems that employ various cache

management techniques while running graph applications.

2.1 Background
It is beneficial to reduce the number of disk page accesses to answer

a query by exploiting data access locality. In graph traversals, these

accesses are correlated with graph topology. Thus, if data are stored

in a page layout that is correlated with the graph topology, then

the number of pages that are accessed during traversals would

be reduced. If data in this layout are also retained in data caches,

this would improve the cache hit rate and thereby minimize page

faults required to access data on disk. Given that cache space is

limited, there is a need for cache replacement policies that are

aware of graph data access patterns so that the cache hit rate can

be improved, thereby improving performance.

A number of techniques have been proposed to optimize the

locality of accesses in storage layers [7, 9, 15, 29, 30, 34]. Some of

these techniques use expensive graph partitioning and community

extraction approaches for determining the serialization layout [17,

23]. There are also studies that order the graph vertices according

to their structural properties by relabelling the vertex identifiers

and serializing the input graphs. The reordering approaches are

based on the fact that most GDBMSs ingest input files with a given

vertex order and load them into disk pages. Hence, ordering vertices

based on topology ensures that vertices that are likely to be accessed

close to each other are placed on the same or on consecutive pages.
3

Some of the ordering approaches exploit the skewed distribution of

vertex degrees – a well-known structural property – that appears in

most of the real-world graphs [9, 34]. Placing higher degree vertices

together on the same page increases the reuse likelihood of those

pages and helps in making better replacement decisions.

Graph topology-aware ordering and layout generation on disk

can help caching in three ways:

(1) It exploits intra-page spatial locality. Increased locality re-

duces page accesses. The application requires fewer distinct

pages to answer a query which results in less IO and there-

fore, fewer page faults.

3
Some of the example graphs that are available in public repositories are already

ordered this way, but not all of them are. Consequently, we have observed that they

have highly variable performance based on the assignment of vertex identifiers in the

input files.

2860

𝑣1

𝑣0

𝑣2

𝑣9

𝑣8

𝑣3

𝑣7

𝑣10

𝑣6

𝑣5

𝑣15

𝑣14

𝑣4

𝑣11

𝑣12

𝑣13

(a) Topology of an example input graph.
Order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑣𝑖 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 𝑣15

Page 1 Page 2 Page 3 Page 4

(b) Vertices are laid out in pages according to their identifiers
given in the default input file.
Order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑣𝑖 𝑣6 𝑣3 𝑣9 𝑣8 𝑣7 𝑣2 𝑣0 𝑣1 𝑣10 𝑣5 𝑣4 𝑣11 𝑣12 𝑣13 𝑣14 𝑣15

Page 1 Page 2 Page 3 Page 4

(c) Vertices are laid out in pages according to their identifiers
given by a topology-aware graph ordering approach [29].

Figure 3: Different disk layouts for input graph vertex pages.

(2) It exploits inter-page spatial locality. Increased locality en-

ables cache replacement policies to make better decisions

by following the successive access likelihood of pages.

(3) It gathers hub graph vertices/edges in the same pages and

therefore increases the reuse likelihood of those pages

whose access likelihood follows the skewed degree dis-

tribution of vertices.

Figure 3a shows an example undirected input graph with as-

signed identifiers. Figure 3b shows vertex pages on disk (edge pages

are excluded to simplify the example) when the vertices are laid out

sorted by their identifiers and the page capacity is four. When the

graph application explores immediate neighbourhood (common

in BFS-based algorithms) of vertex 𝑣7 that has four neighbouring

vertices (𝑣0, 𝑣6, 𝑣8, 𝑣9), it requires access to three distinct pages to

execute the query: {𝑝1, 𝑝2, 𝑝3}.
Figure 3c shows an alternative layout for the vertex pages of

the same input graph which is ordered by a topology-aware graph

ordering algorithm [29]. When the immediate neighbourhood of

vertex 𝑣7 are explored in this case, we see that the application

accesses only two distinct pages, {𝑝1, 𝑝2}. When we run the same

query for all vertices, we observe that the layout in Figure 3c reduces

the number of page accesses by 14%. We also observe the increased

reuse likelihood of some pages with hub graph vertices. When

the immediate neighbourhood query is run for all vertices, the

application on the layout in Figure 3c performs 40% of its page

accesses on a single page, which is 35% of the accesses in the default

layout in Figure 3b. On real large graphs, the improvement is higher.

The layout in Figure 3c is obtained by the state-of-the-art graph

ordering approach, Gorder [29]. Gorder determines the access lo-

cality of vertex pairs by explicitly defining a score function (𝑔𝑠𝑐𝑜𝑟𝑒)

that considers the immediate neighbourhood of each vertex and the

number of common friends between two vertices. It serializes to

maximize 𝑔𝑠𝑐𝑜𝑟𝑒 within a window of a predefined length𝑤 which

slides over the vertices in the default order of the graph in the input

file. The score function is defined on every pair (𝑢, 𝑣) of vertices
within the window as follows: 𝑔𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑣) = 𝑎𝑢𝑣 + |𝑁 (𝑢) ∩ 𝑁 (𝑣) |,
where 𝑎𝑢𝑣 = 1 if there is an edge between vertices 𝑢 and 𝑣 (as-

sume an undirected graph) and 0 otherwise, and 𝑁 (𝑢) (𝑁 (𝑣)) is the
number of immediate neighbour vertices of 𝑢 (𝑣). 𝑔𝑠𝑐𝑜𝑟𝑒 represents

how well the serialization captures immediate neighbourhood of

vertices and neighbourhood overlap within a page.

Gorder is designed for in-memory graph processing, and there-

fore targets improving the performance of CPU caches and sets the

default window size 𝑤 to be the size of a CPU cache line. In our

work, we have adapted Gorder to work on secondary storage seri-

alization and to use improved locality on disk pages in designing

our replacement policy.

2.2 Cache Management
As in all disk-based systems, GDBMSs rely on memory cache layers

for performance improvements. These systems mostly use replace-

ment policies based on recency and frequency without taking into

consideration the graph topology. Most GDBMSs typically use exist-

ing replacement policies based on spatial and/or temporal locality.

Some use the graph ordering approaches discussed above.

Among general-purpose cache replacement approaches, Least

Recently Used (LRU) is perhaps the most popular [6, 13, 20]. LRU

relies on the observation that recently used pages are more likely to

be re-accessed in the near future. Every time a page is accessed, LRU

replacement policy updates its recency by placing it in the most

recent position. When there is a need for page replacement, LRU

evicts the page that is in the least recent position. LRU’s reordering

in cache is costly, which has led to other approaches that approx-

imate it. One popular alternative is CLOCK, which avoids costly

reordering and captures the recency of accesses by arranging cache

pages in a circular list and keeping a reference bit on each page.

The reference bit is set every time a page is accessed. When a page

needs to be evicted, CLOCK replacement policy scans the pages

in the circular list and checks their reference bit. If the reference

bit on a page is set, CLOCK unsets it and moves to the next page.

The first page with an unset bit is replaced. There are recently pub-

lished and well-performing graph database engines [11, 12, 28] that

use CLOCK as a page replacement policy. However, neither LRU

nor CLOCK consider access frequency. Therefore, other GDBMSs

such as Neo4j [1] instead use the Generalized CLOCK (GCLOCK)

page replacement algorithm [27]. GCLOCK is an approximation of

LRU-K policy [21], which evicts the page whose K-th most recent

access is furthest in the past, therefore it considers both recency

and frequency of accesses. GCLOCK maintains a reference counter

(instead of a reference bit) on each page that is incremented by 1

at each access up to a user-defined upper bound. GCLOCK scans

a circular list, decreases the reference count of scanned pages by

1, and evicts a page if its reference count reaches 0. These popular

replacement policies are designed to predict future data accesses

that consider the spatial and/or temporal locality that exists in the

physical data order in cache hierarchies.

There are proposals for cache management techniques that ex-

ploit the graph ordering approaches discussed in the previous

2861

subsection. CAGRA [34] targets in-memory graph processing sys-

tems and assumes that the graph is serialized in memory by using

frequency-based clustering [34]. It maintains the cache content by

partitioning the data in the cache to reduce random memory ac-

cesses. It introduces CSR-segmenting which splits the set of vertices

into cache-line size segments, and creates subgraphs in each seg-

ment by placing destination vertices and edges to those destination

vertices. GRASP [10] introduces cache insertion and hit-promotion

cache policies for in-memory graph processing systems to increase

the reuse likelihood of last-level-cache blocks. GRASP assumes that

the graph is serialized by using DBG [9] vertex ordering algorithm

which is designed to exploit vertex degree distribution of graphs

and partition vertices into a small number of groups based on their

degree. Cache pages are grouped according to their usage levels:

high, moderate, and low. Pages are fetched on demand, but if they

are in the high-reuse group, they are inserted at the most recently

used position in the cache. Moderate and low-reuse groups are

inserted near or at the least recently used position to make them

immediate candidates for eviction decisions. GRASP also introduces

immediate or gradual hit promotions for different reuse groups to

maintain their residence in the cache. GRASP designs the position

of pages in the cache and uses RRIP [16] for replacement decisions.

Zhou et al [37] propose a batch replacement policy to avoid ran-

dom IO accesses in buffer managers of update-intensive GDBMSs.

It relies on continuous serialization of neighbouring communities

on disk and search the longest continuous sequence of pages to

find the eviction candidate pages as a batch. It does not use ac-

cess frequency in replacement decisions. Clock-based graph-aware

caching (CBGA) [2] proposes a graph topology-aware replacement

policy to evict graph objects from a cache layer that is located

between distributed graph storage and processing node. Once a

graph object is fetched into the cache, it is assigned a cost value

that considers network latency to fetch it and its hop distance to

the vertex that is being queried. When the cache is full, a similar

approach to GCLOCK policy is used, and graph objects whose cost

value reaches zero are evicted.

In this work, we show that when the locality of access is im-

proved in the storage layer, instead of using generic replacement

policies based only on recency and frequency information, a re-

placement policy that takes into account graph topology in addition

to recency and frequency improves the performance of memory

cache layers in disk-based graph processing environments.

3 GRAPH TOPOLOGY-AWARE CACHE
MANAGEMENT

The absence of locality in graph applications makes cache replace-

ment decisions challenging. Figure 2 shows that locality can be

imposed through serialization on disk induced by graph topology-

aware ordering algorithms. The improved locality on disk enables

better cache replacement policies with awareness of graph data

access patterns.

In this section, we propose a locality-aware cache replacement

policy called LAC. LAC is sensitive to graph topology in reducing

the number of page faults while servicing user requests. LAC’s ap-

proach considers that the spatial locality that is captured in properly

serialized disk pages also offers temporal locality for the subsequent

accesses of cache pages.

3.1 LAC Overview
A graph 𝐺 = (𝑉 , 𝐸) consists of set of vertices 𝑉 and edges 𝐸 =

{(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑉 }. The number of edges linked to a given vertex 𝑣 is

its degree, 𝑑 (𝑣). The on-disk serialization of a graph𝐺 (denoted𝐺𝐷)

consists of a set of 𝑘 pages: 𝐺𝐷 = {𝑝0, 𝑝1, ..., 𝑝𝑘−1}, where 𝑖 is the
identifier assigned to page 𝑝𝑖 during serialization, and𝑘 = ⌈ |𝑉 |+|𝐸 ||𝑝𝑖 | ⌉
is the number of disk pages. We formulate a cache, 𝐺𝐶 ⊆ 𝐺𝐷
consisting of 𝑠 pages (𝑠 ≤ 𝑘) that are currently in the cache.

When an application accesses page 𝑝𝑖𝑛 , LAC checks if 𝑝𝑖𝑛 is

already in the cache. If it is, then a cache hit occurs, and LAC does

not need to do anything (returns null). Otherwise, a cache miss

occurs. If 𝐺𝐶 is already full, LAC’s page eviction procedure finds

the page to be evicted from the cache, 𝑝𝑜𝑢𝑡 , and 𝑝𝑖𝑛 is fetched into

𝐺𝐶 from𝐺𝐷 . This is common to all cache management algorithms;

where LAC differs is in its page eviction procedure.

LAC’s page eviction solves an optimization problem that mini-

mizes LAC’s cost functions to maintain the cache content in terms

of graph-aware spatial and temporal locality of cache pages. The

procedure finds the page to be evicted, 𝑝𝑜𝑢𝑡 , by capturing the reuse

likelihood of pages and considering the access locality of pages that

are laid out on disk by using a locality-aware ordering algorithm.

Sections 3.2 to 3.4 explain these in detail.

3.2 LAC’s Cost Functions
As pages are brought into the cache on demand and the cache

space is managed, the objective is to make sure that the cache is

as beneficial as possible in minimizing page faults. In LAC’s case,

this means that pages that represent communities in the graph are

retained in the cache, paying attention to their expectation of being

accessed in the near future.

When a topology-aware graph ordering algorithm serializes a

graph on disk pages, its aim is to place neighbouring communities

in the graph on the same page and, if needed, on consecutive pages.

Therefore, vertices and edges that are located, for example, on pages

𝑝𝑖 and 𝑝𝑖+1 have stronger neighbourhood connection than those

on pages 𝑝𝑖 and 𝑝𝑖+10. The ordering techniques, as discussed, differ
in how they identify communities. LAC exploits this property by

computing neighbourhood distances using page identifiers.

Let us assume, for simplicity, that the cache𝐺𝐶 contains the first

𝑠 pages 𝑝0, . . . , 𝑝𝑠−1 where the subscript indicates the page identifier.
Then𝐺𝐶 [1] = 𝑝0, . . . ,𝐺𝐶 [𝑠] = 𝑝𝑠−1 where𝐺𝐶 [𝑖] indicates the 𝑖−th
position in cache. For each page 𝑝𝑖 in 𝐺𝐶 , its prev and next pages
are defined; these are kept in a cache metadata structure:

𝑝𝑟𝑒𝑣 (𝐺𝐶 [𝑖]) = 𝑝 𝑗 such that 𝑎𝑟𝑔𝑚𝑖𝑛 𝑗 (𝑖 − 𝑗) > 0,∀𝑝 𝑗 ∈ 𝐺𝐶
𝑛𝑒𝑥𝑡 (𝐺𝐶 [𝑖]) = 𝑝 𝑗 such that 𝑎𝑟𝑔𝑚𝑎𝑥 𝑗 (𝑖 − 𝑗) < 0,∀𝑝 𝑗 ∈ 𝐺𝐶 .

(1)

The edge conditions are 𝑝𝑟𝑒𝑣 (𝐺𝐶 [0]) = 𝑛𝑒𝑥𝑡 (𝐺𝐶 [𝑠]) = 𝑝∞.
In the remainder, for simplicity, we will abuse notation and

use 𝑝𝑟𝑒𝑣 (𝑝𝑖) to mean "the identifier of the page that is located

immediately before 𝑝𝑖 on disk which is also fetched into the cache"

(similarly for 𝑛𝑒𝑥𝑡 (𝑝𝑖)).
Consequently, the graph topology-aware serialization of the

vertices on disk pages represent their likelihood of being accessed

2862

together. We define 𝑑𝑖𝑠𝑡 (𝑝𝑖 , 𝑝 𝑗) = |𝑖 − 𝑗 |. Then the Distance Cost
Function (DCF) for page 𝑝𝑖 is defined as:

𝐷𝐶𝐹 (𝑝𝑖) = min{𝑑𝑖𝑠𝑡 (𝑝𝑖 , 𝑝𝑟𝑒𝑣 (𝑝𝑖)), 𝑑𝑖𝑠𝑡 (𝑝𝑖 , 𝑛𝑒𝑥𝑡 (𝑝𝑖))}. (2)

𝐷𝐶𝐹 (𝑝𝑖) calculates the page in the cache that is closest to 𝑝𝑖
to capture affinity between vertices on two pages. For example, if

𝑑𝑖𝑠𝑡 (𝑝𝑖 , 𝑝𝑟𝑒𝑣 (𝑝𝑖)) = 1 but 𝑑𝑖𝑠𝑡 (𝑝𝑖 , 𝑛𝑒𝑥𝑡 (𝑝𝑖)) = 1000, it is likely that

𝑛𝑒𝑥𝑡 (𝑝𝑖) contains vertices that belong to another community, but

there are still vertices in 𝑝𝑟𝑒𝑣 (𝑝𝑖) with which vertices in 𝑝𝑖 have

an affinity.

We aggregate these to define DCF for the entire cache, 𝐺𝐶 :

𝐷𝐶𝐹 (𝐺𝐶) =
∑︂
𝑝𝑖 ∈𝐺𝐶

𝐷𝐶𝐹 (𝑝𝑖) (3)

𝐷𝐶𝐹 (𝐺𝐶) provides a measure of the spatial locality of the ver-

tices as serialized on pages. One objective of LAC, when it is making

decisions regarding cache page replacements, is to find a cache page

allocation that minimizes 𝐷𝐶𝐹 (𝐺𝐶). When a page is fetched into

or hit in the cache, its neighbouring disk pages are likely to be ac-

cessed in the subsequent requests as a result of the traversal access

pattern in graphs. Therefore, minimizing 𝐷𝐶𝐹 (𝐺𝐶) exploits spatial
locality in the cache that is captured on disk.

Temporal locality is another important aspect to increase the

reuse likelihood of cached data. While the replacement policy main-

tains the closeness of pages residing in the cache, it should also

make room for recently accessed pages that can be requested as a re-

sult of accessing a new community in the graph (as a consequence of

the application’s working set). However, the recency of references

cannot capture page access frequency. Therefore, it is important to

consider infrequent page references during the eviction decision.

In graph applications, immediate neighbourhood exploration of

a vertex usually happens once. However, due to common skewed

degree distributions, hub vertices and their immediate neighbour-

hoods are likely to be frequently accessed since they are usually

involved in multiple neighbourhoods. Therefore, it is common for

data pages to suddenly become sufficiently popular to keep in the

cache or sufficiently unpopular to be evicted from the cache.

Frequency of page accesses with a notion of aging is widely

used in popular cache replacement policies such as LRU-K [21] and

GCLOCK [27]. LAC uses this same notion and takes into account

access history by considering the time of the last 𝐾 references of

each page 𝑝𝑖 in 𝐺𝐶 , 𝑅𝑝𝑖 , where 𝐾 ≥ 1: 𝑅𝑝𝑖 = {𝑅1𝑝𝑖 , 𝑅
2

𝑝𝑖
, ..., 𝑅𝐾𝑝𝑖 }.

LAC maintains for each page a Reference Time Cost Function,
RCF(𝑝𝑖) that considers the 𝐾

𝑡ℎ
most recent reference of a page

to adapt the cache content to recent and frequent access pattern

changes during traversals. When a page 𝑝𝑖 is first fetched into the

cache or gets a hit in the cache, 𝑅𝑝𝑖 is updated. Given a value 𝑅𝑝𝑖
known up to the current clock value 𝑡𝑛𝑜𝑤 , the reference time cost

of 𝑝𝑖 is defined as 𝑅𝐶𝐹 (𝑝𝑖) = 𝑡𝑛𝑜𝑤 − 𝑅𝐾𝑝𝑖 .
Accordingly, a Reference Time Cost Function of the entire cache,

𝑅𝐶𝐹 (𝐺𝐶) at time 𝑡𝑛𝑜𝑤 , is defined as follows:

𝑅𝐶𝐹 (𝐺𝐶) =
∑︂
𝑝𝑖 ∈𝐺𝐶

𝑅𝐶𝐹 (𝑝𝑖). (4)

Relying on the reuse likelihood of recently and frequently ac-

cessed cached data, minimizing RCF(𝐺𝐶) exploits the temporal

Rank 𝒑𝒊 DCF(𝑝𝑖)
1 𝑝1 𝑑1

2 𝑝7 𝑑7

3 𝑝2 𝑑2

4 𝑝3 𝑑3

5 𝑝6 𝑑6

6 𝑝4 𝑑4

7 𝑝5 𝑑5

Rank 𝒑𝒊 RCF(𝑝𝑖)
1 𝑝6 𝑑6

2 𝑝2 𝑑2

3 𝑝5 𝑑5

4 𝑝1 𝑑1

5 𝑝7 𝑑7

6 𝑝3 𝑑3

7 𝑝4 𝑑4

𝐺𝐶 (𝐷𝐶𝐹) 𝐺𝐶 (𝑅𝐶𝐹)

D
EC

R
EM

EN
TIN

G

Figure 4: Rank-based Pareto filtering approach.

locality that is also offered by the spatial locality in disk pages

captured by an ordering algorithm.

3.3 Cache Optimization Formulation and
Possible Solutions

We formulate LAC’s page eviction decision as a bi-objective opti-

mization problem that minimizes 𝐷𝐶𝐹 and 𝑅𝐶𝐹 of the cache. The

constraints of the optimization problem bound the values of 𝐷𝐶𝐹

and 𝑅𝐶𝐹 .
min (𝐷𝐶𝐹 (𝐺𝐶), 𝑅𝐶𝐹 (𝐺𝐶))
𝑠 .𝑡 .

𝑠 + 1 ≤ 𝐷𝐶𝐹 (𝐺𝐶) ≤ 𝑘
0 ≤ 𝑅𝐶𝐹 (𝐺𝐶)

(5)

𝐷𝐶𝐹 (𝑝𝑖) values range from 1 to 𝑘−1, where 𝑘 is the total number

of disk pages; thus 𝐷𝐶𝐹 (𝐺𝐶) ranges from 𝑠 + 1 to 𝑘 where 𝑠 is the

cache size in the number of pages. However, there is no natural

upper-bound for 𝑅𝐶𝐹 ; its lower bound is 0.

The bi-objective optimization can be scalarized to a single objec-

tive formulation. The simplest case is weighted sum scalarization.

Applying this technique to our case requires normalization of DCF

and RCF to ensure that their contributions are properly accounted

for and to avoid introducing extreme bias toward either objective.

However, as noted, RCF has no natural upper bound, making nor-

malization infeasible. An alternative would be to use a rank-based

Pareto filtering method [5] to find one solution.

The Pareto filtering method can be implemented using a rank-

based skyline operator [5] in order to filter out the non-dominated

pages from replacement consideration. The algorithm would main-

tain two sorted lists of the pages in the cache (in𝐺𝐶):𝐺
𝐷𝐶𝐹
𝐶

that is

sorted in descending order of 𝐷𝐶𝐹 and 𝐺𝑅𝐶𝐹
𝐶

sorted in descending

order of 𝑅𝐶𝐹 as shown in Figure 4.

When a page 𝑝𝑖𝑛 is fetched and the cache is full, requiring a page

to be evicted, these lists are used in the following manner. Page

𝑝𝑖𝑛 is inserted in both lists in its appropriate place. Then the first

common page that appears in both 𝐺𝐶 (𝐷𝐶𝐹) and 𝐺𝐶 (𝑅𝐶𝐹) lists is
selected (𝑝𝑜𝑢𝑡) as one of the Pareto solutions for eviction. In Figure

4, 𝑝2 is the candidate page for eviction.

This method would be reasonably efficient, since it would not

find the entire Pareto front and stops when it finds the first can-

didate as this would be sufficient for our purpose. However, the

algorithm is still linear to the cache size and it requires maintaining

two sorted lists. Furthermore, the scan time of pages to find the

first common page can be costly, especially during the traversal

2863

from one graph community to another. These drawbacks make this

solution expensive as also shown in our experiments in Section 5.2.

Therefore, we introduce LAC as a lightweight heuristic that solves

the overhead and normalization problems in the online solution.

We describe LAC next.

3.4 A Lightweight Heuristic for Page Eviction
LAC is a lightweight heuristic algorithm for solving this optimiza-

tion problem based on GCLOCK [27], which is a widely-used cache

replacement algorithm that takes access history into account. As a

quick recap, GCLOCK maintains a circular list for the pages in the

cache and each page is associated with a reference counter, 𝑅𝐶𝑝𝑖
which is updated as explained in Section 2. GCLOCK can be used to

keep track of the access history of cache pages in order to minimize

𝑅𝐶𝐹 defined in LAC’s cost functions.

Algorithms 1 and 2 show the main steps of LAC in maintaining

page fetches and evictions in the cache.

Algorithm 1 LAC: Locality-Aware Cache Replacement

Input: 𝑝𝑖𝑛 : page to be fetched from 𝐺𝐷
Output: 𝑝𝑜𝑢𝑡 : page to be evicted from 𝐺𝐶

1: 𝐺𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟
𝐶

: a circular list for cache pages

2: if 𝑝𝑖𝑛 ∈ 𝐺𝐶 then ⊲ A cache hit occurs

3: IncrementRC(𝑝𝑖𝑛) ⊲ Increment reference counter of 𝑝𝑖
4: 𝑝𝑜𝑢𝑡 ← 𝑁𝐼𝐿

5: else ⊲ A cache miss occurs

6: if |𝐺𝐶 | > 𝑠 then
7: 𝑝𝑜𝑢𝑡 ← PageEviction-Lac(𝐺𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟

𝐶
)

8: 𝐺𝐶 ← 𝐺𝐶 \ {𝑝𝑜𝑢𝑡 }
9: end if
10: IncrementRC(𝑝𝑖𝑛)

11: 𝐺𝐶 ← 𝐺𝐶 ∪ 𝑝𝑖𝑛
12: end if

Algorithm 2 PageEviction-Lac

Input: 𝐺𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟
𝐶

: a circular list for cache pages

Output: 𝑝𝑜𝑢𝑡 : page to be evicted

1: 𝑐𝑙𝑜𝑐𝑘 ← 0

2: do
3: 𝑝𝑐 ← 𝐺𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟

𝐶
[𝑐𝑙𝑜𝑐𝑘]

4: if 𝑅𝐶𝑝𝑐 is 0 then
5: 𝑝𝑜𝑢𝑡 ← 𝑝𝑐
6: else
7: 𝑅𝐶𝑝𝑐 ← DecrementRC(𝑝𝑐)

8: end if
9: clock += 1

10: while 𝑝𝑜𝑢𝑡 not found

LAC considers 𝐷𝐶𝐹 to exploit spatial locality among the graph

objects during traversals. Therefore, modifications are needed in

the handling of the promotions (demotions) of cache pages.

LAC keeps track of a counter set-value for each 𝑝𝑖 , (𝑆𝐸𝑇𝑝𝑖) that

is based on the current state of 𝑝𝑖 , 𝑆𝐸𝑇𝑝𝑖 = 𝐷𝐶𝐹 (𝑝𝑖) ÷ 𝑀𝑎𝑥𝐷𝑖𝑠𝑡 ,
where𝑀𝑎𝑥𝐷𝑖𝑠𝑡 = 𝑘−𝑠 is an upperbound for𝐷𝐶𝐹 (𝑝𝑖𝑛) derived from

Equation 2. Therefore, each 𝑝𝑖 is promoted or demoted according

to the strength of its connection to its neighbouring community

residing in the cache. Since 𝐷𝐶𝐹 (𝐺𝐶) is to be minimized, a page

𝑝𝑖 ’s contribution to 𝑅𝐶𝑝𝑖 needs to be large, if 𝐷𝐶𝐹 (𝑝𝑖) is small.

Therefore, 𝑅𝐶𝑝𝑖 can prevent 𝑝𝑖 from early evictions. For that reason,

normalization by𝑀𝑎𝑥𝐷𝑖𝑠𝑡 is performed, and once 𝑝𝑖 is fetched or

hit in the cache, promotion is done by (1 − 𝑆𝐸𝑇𝑝𝑖) until it reaches
the value of user-defined parameter 𝐾 . Algorithm 3 shows the

promotion of a page that is recently fetched into or hit in the cache.

Algorithm 3 IncrementRC

Input: 𝑝𝑖𝑛 : page to be hit or fetched

Input: 𝐾 : farthest last reference of a page to keep track of

Output: 𝑅𝐶𝑝𝑖𝑛 : reference counter of 𝑝𝑖𝑛
1: if 𝑅𝐶𝑝𝑖𝑛 + (1 − 𝑆𝐸𝑇𝑝𝑖𝑛) ≤ 𝐾 then
2: 𝑅𝐶𝑝𝑖𝑛 ← 𝑅𝐶𝑝𝑖𝑛 + (1 − 𝑆𝐸𝑇𝑝𝑖𝑛)
3: end if

On the other hand, a page 𝑝𝑖 ’s demotion reflected in 𝑅𝐶𝑝𝑖 needs

to be small if 𝐷𝐶𝐹 (𝑝𝑖) is small, and large if 𝐷𝐶𝐹 (𝑝𝑖) is large. This
is because if 𝐷𝐶𝐹 (𝑝𝑖) is large, it means that its strength of its

connection to its neighbouring community in the cache is weak.

Therefore, it is a good candidate for eviction, and demotion needs

to consider this. Algorithm 4 shows the demotion of a page pointed

by clock during the replacement decision.

Algorithm 4 DecrementRC

Input: 𝑝𝑐 : page to be pointed by clock

Output: 𝑅𝐶𝑝𝑐 : reference counter of 𝑝𝑐
1: 𝑅𝐶𝑝𝑖𝑛 ← 𝑅𝐶𝑝𝑖𝑛 − 𝑆𝐸𝑇𝑝𝑖𝑛

Calculating 𝑆𝐸𝑇𝑝𝑖 can be achieved in constant time and the im-

plementation details are presented in Section 4.2. Therefore, the

worst-case time complexity of LAC is linear to the cache size. How-

ever, as shown for GCLOCK [19], the iteration over the pages in the

cache for finding the one with zero reference count can converge

quicker in practice depending on the workload access pattern.

This paper focuses on read-only workloads. LAC uses distance

computations to update the reference counters associated with

cache pages. To perform this task efficiently, it maintains an in-

memory data structure that captures the layout and number of disk

pages with other metadata (Section 3.2). If graph updates were to be

supported, then this metadata would require updating to maintain

accuracy, and its maintenance can be done incrementally.

4 EXPERIMENTAL SETUP
We evaluate LAC both in a simulated setup and embedded in a

real GDBMS. We present our setup, experiments and results in

subsequent sections.

4.1 Simulated Setup
The simulated setup used in the evaluation is depicted in Figure 5.

We simulate direct IO to fetch pages to in-memory cache from the

disk. The simulated setup gives us full control of the environment

to isolate our tests.

2864

Application

queries

In-memory Page Cache

Graph

topology-aware

layout on disk

1

2

3

4

· · ·

Vertex pages

· · ·

Edge pages

Figure 5: Simulated three-layer system architecture where
an input graph laid out on disk.

0

𝑑 (𝑣
0
)

𝑑 (𝑣
0
) +𝑑 (𝑣

1
)

.

.

.

|𝐸 |

CSR Offsets

𝑒
0

𝑒
1

. . .

𝑒𝑖 (𝑣0, 𝑣1)

𝑒𝑖+1 (𝑣0, 𝑣𝑖)

. . .

𝑒
2𝑖−1 (𝑣0, 𝑣|𝑉 |)

𝑒
2𝑖

. . .

.

.

.

. . .

Edges

𝑝0

𝑝1

𝑝...

𝑝𝑒

𝑣
0

𝑣
1

. . .

𝑣𝑖

. . .

. . .

. . .

𝑣|𝑉 |

Vertices (Properties)

𝑝𝑒+1

𝑝𝑘

𝑝...

Figure 6: Input graphs’ serialization layout on disk.

The in-memory cache stores both vertex and edge pages. The

workflow is typical: 1 applications access data pages in the cache;

2 if a page is in the cache, it is returned and this counts as a cache

hit; 3,4 if the page is not in the cache, it is fetched from secondary

storage and counts as a cache miss. LAC manages the in-memory

cache.

Input graphs are ordered using the Gorder algorithm.
4
The graph

datasets are serialized into disk pages using Compact Sparse Row

(CSR) format as shown in Figure 6. CSR Offsets array has |𝑉 | entries
and each entry determines the alignment of the corresponding

vertex’s neighbourhood in the Edges array which is split into edge

pages. Vertices and their properties are stored in the Vertices array

which is split into vertex pages. When a query starts with a source

vertex, its neighbouring vertices are found by following the offsets

in the Edges array, and depending on the application, destination

vertices’ properties are visited in the Vertices array. We follow the

data layout in [22] where each vertex page can store 512 vertices

and each edge page can store 1024 edges.

In order to determine the IO latency in the simulation, page size

is set to 4KB.
5
A database file is created on disk aligned with the

page size, and pages are laid out in the file following the topology-

aware layout generation obtained by Gorder. The average latency

for each page IO is measured as 150 microseconds on a system

that has 400 GB Intel S3700 SSD and this is the value used in the

experiments to calculate query latency.

4.2 Real System Integration
LAC can be implemented in GDBMSs that have a page cachemodule

[1], or in a file IO interface [35], and can be used in out-of-core

graph processing systems [36]. In this work, we integrate LAC into

4
We set the window parameter in Gorder as 512 since each vertex page consists of 512

vertices in our simulation.

5
This is a tunable parameter in the simulation.

Neo4j GDBMS [1] to evaluate its applicability and efficiency in a

real system.

Neo4j treats vertices, edges and properties separately. Instances

of each are stored as disk records organized into separate files,

i.e., node files, relationship files. Records of each file type have

identical sizes, but they differ among different file types. Records of

a given file type have unique identifiers. Neo4j uses a shared page

cache for all record types. The page cache is managed by GCLOCK

replacement policy. Each cache page mapped to a disk page has a

reference counter to be incremented or decremented when there is

a hit or miss in the cache, respectively, as discussed previously.

Using Neo4j’s GCLOCK implementation as a starting point, we

implement Algorithms 4 and 3 and update the reference counters

of cached pages according to LAC’s methodology. Neo4j has other

record types for auxiliary data beyond the vertex, edge and proper-

ties and these are also cached. LAC manages and maintains only

the vertex, edge, and property pages within the page cache. The re-

maining store types are left to Neo4j to manage. This design choice

is necessitated by the fact that LAC accounts for the topology-

awareness of the disk layout, which can only be effectively ensured

for edges and vertices by the graph ordering.

The calculation of 𝑆𝐸𝑇𝑝𝑖 for each page is triggered either upon a

hit on the page or when the clock arm traverses the cached pages in

search of an eviction candidate. To satisfy the constraints of Equa-

tion 1, it is necessary to maintain sorted metadata for the identifiers

of cached pages. However, as sorting operations are computation-

ally expensive for updates, a trade-off is made by utilizing a small

amount of additional memory (0.05% per 1 GB of disk data) to store

float arrays. These arrays, sized according to the number of pages

on disk per file type, record information about pages currently in

the cache along with their reference counters and are updated using

LAC’s methodology. Using these arrays, the value of 𝐷𝐶𝐹 (𝑝𝑖) can
be determined by a lookup that identifies the nearest preceding

and succeeding pages in the cache. This lookup requires at most

𝑀𝑎𝑥𝐷𝑖𝑠𝑡 iterations on either side, as described in Section 3.4, where

𝐷𝐶𝐹 (𝑝𝑖) is normalized. Furthermore, Section 4.6 establishes that

𝑀𝑎𝑥𝐷𝑖𝑠𝑡 has a practical upper bound, which is a constant (typi-

cally around 5). Consequently, the update operation for reference

counters achieves O(1) complexity.

We evaluate the performance of LAC in comparison to GCLOCK

using an embedded Neo4j database. The Java Traversal API was

utilized to implement the queries, enabling direct control over the

traversal logic and allowing customization tailored to specific graph

structures. We import databases into Neo4j by setting id-type
as ACTUAL and using the default aligned record format. We set

direct-io to true in Neo4j to ensure that pages are fetched from

disk directly into Neo4j’s page cache. We also disable the back-

ground eviction thread in the page cache to control the insertion

and eviction of pages as we do in our simulated setup.

4.3 Datasets
The premise of LAC is that after proper serialization to provide

locality, a page is likely to be successively accessed if it contains

neighbouring vertices or edges that are reachable within a couple

of hops. This is due to the neighbourhood expansion access pattern

of vertices. However, structural properties of different graphs, such

2865

Table 1: Input graphs for performance evaluation of GAL

Graphs |𝑉 | |𝐸 | Diameter

AMAZON 0.4M 3.3M 7.6

PATENT-CIT 3.7M 16.5M 9.4

FLICKR 2.3M 33.1M 6.8

SOC-LJ 4.8M 68.4M 6.1

TWITTER 41.6M 1.4B 3.9

as degree, change the reuse likelihood of pages and affect the per-

formance of any replacement policy. Therefore, the experiments

are performed over a set of input graphs with different properties

as shown in Table 1

SOC-LJ
6
, FLICKR

7
AND TWITTER

8
are mid- and large-size on-

line social networks where vertices and edges represent the friends

and friendship relations, respectively. Online social networks are

dense graphs with small diameters, meaning that vertices are reach-

able within a small number of hops. PATENT-CIT
9
and AMAZON

10

are web graphs whose vertices and edges represent web pages and

hyperlinks between them, respectively. The average degree of web

graphs is slightly smaller than online social networks, however

their diameters are larger.

4.4 Workload
In this study, we primarily focus on different types of traversal

queries where only some parts of the input graphs are traversed

starting from user-defined vertex/vertices. Query set in the work-

load is influenced by widely-used LDBC Social Network Benchmark

(SNB) [8]. The LDBC SNB query workload is designed to work on

heterogeneous (synthetic) graphs, but the input graphs used in this

study (Table 1) have homogeneous vertices and edges. Therefore,

we modify the SNB queries to work on homogeneous (real) graphs.

4.4.1 Immediate Friends. Accessing the immediate neighbourhood

is a common workload in most graph applications from different

domains. It is the building block of path finding, reachability and

even point queries whose complexities are sublinear to the dataset

size and are widely used in social network benchmarks [8]. FR-ALL
accepts a vertex 𝑢 and traverses its immediate edges and vertices.

Accessing immediate neighbourhood can be accompanied by differ-

ent filters. Many examples can be found in LDBC SNB benchmark,

such as friends, posts or comments with different properties within

the 1-hop distance of a given start vertex. In this workload, we use

the degree property of vertices to filter FR-ALL which is used to

represent the hotness of vertices in graphs, meaning that a vertex

with higher number of immediate neighbours has a higher degree.

FR-HOT query accepts a vertex𝑢 along with a threshold parameter

𝑑 and traverses the immediate edges and vertices whose degree is

greater than or equal to 𝑑 .

4.4.2 Reachability. Exploring beyond the immediate neighbour-

hood is another important access behaviour of graph applications,

e.g., to find friends with mutual interest or explore the reachability

paths among the graph objects. These applications usually require

6
http://konect.cc/networks/soc-LiveJournal1/

7
http://konect.cc/networks/flickr-growth/

8
http://konect.cc/networks/twitter/

9
http://konect.cc/networks/patentcite/

10
http://konect.cc/networks/amazon0505/

breadth-first traversal access pattern within a maximum depth.

Reachability queries can explore different parts of the input graphs

at the same time. Therefore, the page accesses can be more scat-

tered than the immediate neighbourhood explorations. We choose

to evaluate a single pair shortest path query (SPSP) which finds the

shortest path between two vertices 𝑢 and 𝑣 . In this study, we use a

version of this workload that restricts the (hop) distance between

two vertices to 𝑟 ; if they are further apart, the query result is empty

(path is not found). We implement SPSP query by performing a

bi-directional search [24].

4.4.3 Random Walk. Random Walk (RW) is a widely used path

finding query among many different graph applications. In contrast

to immediate neighbourhood, it explores the connections along

various communities in a graph. RW does this exploration by per-

forming a number of walks (𝑁𝑊) starting from a vertex and a

number of steps (𝑁𝑆) to hop between the neighbourhoods. There-

fore, a RW query accepts a vertex 𝑢 and 𝑁𝑆 and performs 𝑁𝑊

random walks that start at 𝑢, and returns the vertices and edges

that are accessed along the traversed paths.

4.4.4 Mixed Workload. Finally, we design a mixed workload (MIX)
to evaluate LAC’s adaptability to changes in the access patterns.

This workload runs a mixture of query types with different traver-

sal patterns and depths. For each query execution, a query type

is uniformly randomly selected along with the necessary input

parameters while guaranteeing that corresponding experimental

set-ups have the same random set of query types and parameters.

4.5 Cache Replacement Policies
In previous work [19], it has been shown that GCLOCK performs

better than LRU in terms of page hits under certain conditions. It

also has lower computational overhead relative to LRU. GCLOCK

is also employed in the page cache layer for edge and vertex pages

of modern GDBMSs such as Neo4j [1]. Therefore, we compare

LAC against GCLOCK in both simulated setup and real system

integration.

As mentioned in Section 2, GRASP is a graph structure-aware hit

and fetch promotion policy used in CPU caches of in-memory graph

processing systems while running analytical queries. Its policies are

designed to reduce the random memory accesses on vertex (prop-

erty) arrays. GRASP is also layout-sensitive and assumes that the

input graph is ordered by using Degree-based Grouping (DBG) algo-

rithm. DBG creates multiple bins for vertices and places them into

these bins according to their hotness level, which is again defined

based on their degrees. Vertices in each bin are ordered according

to their order in the input file. We implement GRASP’s promotion

policies and use GCLOCK for replacement decisions, and compare

it with LAC on vertex pages in simulated setup.

4.6 Evaluation Metrics
In this paper, we primarily focus on query latency as the metric.

Query latency comprises IO time (affected by page faults) and

replacement policy execution time (policy overhead). The IO time

is affected by the number of page faults and IO latency. We

also focus on comparative values, i.e., LAC’s performance against

GCLOCK and native Neo4j rather than absolute values.

2866

In the simulation study, we examined the page faults of each

algorithm. We refer to these experiments when necessary, however,

we do not explicitly report them due to space considerations. In the

simulation study we compute IO time by multiplying the number

of page faults with IO latency per page. Our measurements show

that LAC’s policy overhead is negligible compared to IO time. Thus,

query latency correlates well with the IO time.

In Neo4j integration, we measure the time it takes to execute a

set of queries including the actual IO time by performing direct IO.

5 EXPERIMENT RESULTS
This section presents the experimental evaluation of LAC in latency

improvements over existing replacement (GCLOCK) and hit/fetch

promotion (GRASP) policies. We first explain the parameter settings

for the workload design and algorithm initializations. Then, we

show and discuss the experimental results both in the simulated

setup and the real system.

5.1 Parameter Settings
5.1.1 Query Initialization Parameters. The workload size for FR-

ALL, FR-HOT and RW is set to 50,000. It is set to 5,000 for SPSP. In

Neo4j experiments, due to the size and skewness of large graphs,

we set the workload size to 2,000 for SPSP query. For SPSP queries,

𝑟 is set to three for social networks [3] following the degree of

separation between two vertices. On the other hand, 𝑟 is set to the

effective diameter of web graphs. Similarly, for RW queries, 𝑁𝑊 is

set to the average degree and 𝑁𝑆 is set to the effective diameter of

the input graph.

5.1.2 LAC Initialization Parameters. Recall from Section 3 that LAC

uses two parameters. One parameter is 𝐾 , which represents the

farthest last reference of a page (Section 3.4). 𝐾 is also the only

parameter for GCLOCK. Setting𝐾 = 4 by default is considered to be

performant in Neo4j [1]. Our experiments also confirm this value

and we set 𝐾 = 4 for both LAC and GCLOCK. GRASP has different

levels for grouping vertices based on their degree to promote vertex

pages. We determine four different levels and the maximum value

to promote pages is set to 4.

The second LAC parameter is 𝑀𝑎𝑥𝐷𝑖𝑠𝑡 , which is the upper-

bound value for 𝐷𝐶𝐹 (𝑝𝑖). Although 𝑀𝑎𝑥𝐷𝑖𝑠𝑡 has a theoretical

upperbound based on the cache size (Section 3.4), our experiments

show a tighter practical bound for this parameter. To determine the

practical bound, we run the following experiment. We use SOC-LJ

as the input graph and consider SPSP queries on a warm cache

whose size is set to 10% of the input graph. We manage the cache

using GCLOCK and examine 𝐷𝐶𝐹 (𝑝𝑖) for each 𝑝𝑖 in𝐺𝐶 . Although
for this case, the theoretical upperbound of 𝑀𝑎𝑥𝐷𝑖𝑠𝑡 is 180,000,

in practice the maximum 𝐷𝐶𝐹 (𝑝𝑖) is 438, and 95% of cache pages

have 𝐷𝐶𝐹 (𝑝) values less than 15 as a result of the consecutive page

access pattern of queries.

This is important for LAC’s performance. Consider pages 𝑝𝑖 and

𝑝 𝑗 with 𝐷𝐶𝐹 (𝑝𝑖) = 200 and 𝐷𝐶𝐹 (𝑝 𝑗) = 2000, respectively. Since

queries in the workload access mostly consecutive pages (as a result

of topology-aware serialization on disk), these two pages need to

be considered as having similar eviction probabilities. However,

if 𝐷𝐶𝐹 (𝑝𝑖) = 1 and 𝐷𝐶𝐹 (𝑝 𝑗) = 5, 𝑝𝑖 is more likely to stay in the

cache than 𝑝 𝑗 . Therefore,𝑀𝑎𝑥𝐷𝑖𝑠𝑡 parameter is set to (|𝐺𝐶 | × 𝑝)𝑡ℎ

Table 2: LAC’s Heuristic Approximation

Cache Size
5% 10% 20% 30%

LAC’s page fault approximation 0.90 0.78 0.83 0.89

LAC’s policy latency speedup 2.00 2.62 4.38 7.02

𝐷𝐶𝐹 value in 𝐺𝐷𝐶𝐹
𝐶

, where 0.85 ≤ 𝑝 ≤ 0.9 in order to eliminate

the exponential distribution of 𝐷𝐶𝐹 (𝑝𝑖) and taking the log (base

10) of𝑀𝑎𝑥𝐷𝑖𝑠𝑡 satisfies this property.

5.2 LAC’s Heuristic Approximation
As presented in Section 3.4, LAC is a heuristic solution to the opti-

mization problem in Section 3.3 because the online solution (Section

3.3) is too expensive to implement. In this section, we show how

closely LAC’s heuristic tracks the online algorithm on SOC-LJ when

running SPSP queries and 𝐾 is 1.

Table 2 shows that LAC’s lightweight heuristic closely approxi-

mates the online solution in the number of page faults. As expected,

its policy runtime speedup is up to 7× better, especially when the

cache size is large.

We evaluate the page fault performance of the proposed LAC

policy in comparison to the optimal cache replacement policy (OPT)

[4], using the FR-ALL query workload on the SOC-LJ dataset. In

the smallest 5% cache size, LAC achieves a better proximity of

approximately 38.72% to OPT compared to GCLOCK that exhibits

a proximity of approximately -1.74%. For the largest 30% cache size,

both LAC and GCLOCK achieve proximity of approximately 92.75%

to OPT.
11

5.3 LAC’s Performance in Simulated Setup
Our primary comparison metric is the latency improvements that

LAC provides vis a vis GCLOCK and GRASP, which we discuss

in this section. We have also evaluated, in detail, the page fault

improvements, which is a primary reason we have simulated exper-

iments. We summarize our findings regarding page faults briefly,

but primarily focus on latency. The reason is the following.

As noted in Section 4.6, two factors contribute to latency: IO

latency and policy runtime overhead. As also noted in Section 4.2,

LAC’s policy runtime overhead is similar to GCLOCK. Therefore,

the latency improvements we discuss are primarily driven by IO

latency. This latency is linearly proportional to the page fault im-

provements. Overall, LAC’s page fault improvements are up to

1.42× better than GCLOCK. For denser graphs, the improvement is

highest when the query accesses vertices in the immediate neigh-

borhood. Conversely, for sparser graphs with larger diameters, the

improvement decreases when the query reaches all vertices in the

neighborhood beyond the second hop.

5.3.1 Latency Improvements over GCLOCK. Figure 7 shows LAC’s
latency improvement over GCLOCK in the simulated setup across

different cache sizes for the workload over different graphs. Since

the cache size is proportional to the graph size, when the cache is

11
We set a smaller number of workload size than the main experiments and this reduces

the impact of differences between the replacement strategies, allowing both policies

to exhibit similar performance under larger cache conditions.

2867

   





































(a) FR-ALL

   





































(b) FR-HOT

   





































(c) SPSP

   





































(d) RW

   





































(e) MIX

Figure 7: LAC’s latency improvement over GCLOCK in the
simulated setup.

large, queries fit into the cache for dense graphs. High skew in de-

gree distribution results in accessing the same pages consecutively.

Especially immediate neighbourhood queries do not cause any

page faults when the cache is warm. Therefore, no improvement is

reported for those cases.

Figure 7a and 7b show that LAC performs better than GCLOCK

in all cases. LAC’s distance cost function (𝐷𝐶𝐹) captures the consec-

utive access pattern of page accesses within and beyond one-hop

traversals better than GCLOCK.

As noted, web graphs have relatively lower average degree than

social networks. Therefore, most of the vertices have their imme-

diate neighbouring vertices and edges within at most a few con-

secutively ordered pages. When the cache size is larger, there can

be many distinct communities in the cache, and LAC can better

identify and keep them in the cache together. Therefore, as the

cache size increases, LAC’s improvement over GCLOCK increases

in web graphs. LAC outperforms GCLOCK, albeit at a slightly lower

level, in FR-HOT queries, especially for social networks. Since social

network graphs are highly skewed, frequency has more impact in

identifying hot vertices. Since GCLOCK predominantly considers

frequency, its performance improves in FR-HOT relative to FR-ALL

2.5% 5% 10% 20% 30%

0

5

10

15

20

Cache Size

A
v
g
D
i
s
t
(
𝐺
𝐶

)

GCLOCK

LAC

(a) 𝐴𝑣𝑔𝐷𝑖𝑠𝑡 (𝐺𝐶)

2.5% 5% 10% 20% 30%

0

1

2

3

4

Cache Size

A
v
g
F
r
e
q
(
𝐺
𝐶

)

GCLOCK

LAC

(b) 𝐴𝑣𝑔𝐹𝑟𝑒𝑞 (𝐺𝐶)

Figure 8: LAC vs GCLOCK: Average Distance and Frequency
of pages in the cache

queries. Therefore, LAC’s improvement over GCLOCK is lower for

this query type.

Traversing beyond the first hop is another important access

pattern in graph applications. Figure 7c and 7d show that LAC

outperforms GCLOCK in all cases when the query goes beyond

the one-hop neighbourhood in SPSP and RW queries. In social

networks, especially denser and highly skewed ones with many

closed triangles and vertices with very large degree properties (such

as FLICKR and SOC-LJ), it is not trivial to capture access likelihood

of pages in large cache sizes, as a single query may span most of

the pages. LAC still outperforms GCLOCK, but its improvement is

lower compared to FR-ALL and FR-HOT queries.

SPSP queries access most of the disk pages for input graphs with

large diameter and/or relatively more skew. Due to the large diame-

ter of web graphs, a single query usually traverses more than 3-hop

neighbourhood. The number of pages accessed within the same

communities at this depth is usually limited in web graphs when

the average degree is small. Therefore, a bidirectional shortest path

query reaches distinct communities from both ends. LAC utilizes

these properties better if it has enough information to make the

decision based on 𝐷𝐶𝐹 . Since these graphs are small, the number of

pages in smaller cache sizes is also small; thus, the distinct number

of pages from the same community is not sufficient for LAC to make

a better decision based on the difference between page identifiers.

As discussed above, frequency is more important in social net-

work graphs. High degree vertices and their corresponding pages

are more likely to be accessed frequently. Also, because of their high

degree, their immediate neighbourhoods span many pages, and the

cache usually contains a few distinct communities with smaller

𝐷𝐶𝐹 values between pages that belong to different communities.

This is challenging for LAC’s replacement policy, especially as the

cache size gets larger, because more pages can reside in the cache,

and therefore, their 𝐷𝐶𝐹 values shrink. In this case, the perfor-

mance difference between LAC and GCLOCK is reduced, but LAC’s

performance is still better. To explain this better, we define aver-

age distance, 𝐴𝑣𝑔𝐷𝑖𝑠𝑡 (𝐺𝐶) =
∑︁
∀𝑝𝑖 ∈𝐺𝐶

𝐷𝐶𝐹 (𝑝𝑖)/|𝐺𝐶 | and average
frequency, 𝐴𝑣𝑔𝐹𝑟𝑒𝑞(𝐺𝐶) =

∑︁
∀𝑝𝑖 ∈𝐺𝐶

𝑅𝐶 (𝑝𝑖)/|𝐺𝐶 | of pages.
Figure 8 shows𝐴𝑣𝑔𝐷𝑖𝑠𝑡 (𝐺𝐶) and𝐴𝑣𝑔𝐹𝑟𝑒𝑞(𝐺𝐶) changes for LAC

and GCLOCK according to the cache size while running SPSP

queries in SOC-LJ. Note that although GCLOCK does not consider

distances in replacement decision, we can easily compute 𝐷𝐶𝐹 for

pages in a cache whose content is maintained by GCLOCK.

2868

Figure 8a shows that LAC successfully achieves its objective to

minimize 𝐷𝐶𝐹 and keeps more neighbouring pages in the cache.

However, the gap closes as cache size increases, and therefore,

frequency starts to matter more. As Figure 8b shows, although

GCLOCK keeps more frequent pages in the cache, LAC keeps up

and maintains 𝐴𝑣𝑔𝐹𝑟𝑒𝑞(𝐺𝐶) close to GCLOCK, while improving

the neighbourhood collocation better than GCLOCK.

In contrast to other query types, RW traverses communities

along the path until it reaches a depth that is the effective diameter

of the input graph. Therefore, it does not access all neighbouring

vertices at a depth, but visits only one and continues onto the

next hop. LAC’s improvement is smaller than other query types,

especially on dense and skewed graphs (e.g., FLICKR), because these

graphs have many closed triangles and a random walk from a start

vertex mostly moves around those triangles. Therefore, GCLOCK

captures triangles that are frequently traversed along the paths.

Recall that the main focus of MIX workload is to evaluate LAC’s

adaptability as the system switches from one query type to another

– our interest is to see if LAC continues to perform similar to the

case where only one type of query is running. The query types in

MIX workload ensure that the access pattern in the cache changes

over time as a result of breadth- and depth-first traversals. Since

LAC can adapt to access pattern changes, the performance does

not degrade in running the MIX workload.

5.3.2 Latency Improvements over GRASP. In this experiment, we

look at how LAC performs on vertex pages in comparison to GRASP.

We focus on vertex pages because GRASP works only on vertex

pages. Furthermore, vertex pages have special importance and it is

important to study how LAC does on those pages. This is because

many property graphs have attributes (properties) on vertices and

there may be traversal queries with predicates on vertex attributes.

Additionally, in topological traversal queries (i.e., those without

predicates on attributes), edges are used to guide the traversal to

vertex pages from which other edges are followed.

As mentioned earlier, GRASP requires DBG graph serialization

algorithm. A key requirement of DBG is that the vertices in the

input file are already ordered in a structure-aware manner. This as-

sumption holds for some input graphs, but not all. To test GRASP’s

sentivity to ordering, we also ran a test where we shuffle the vertex

order to lose locality-awareness if it already exists in the input file.

We then run SPSP queries and measure the number of disk page

accesses. We observe that when the graph’s default order already

preserves its topology, further serialization using Gorder does not

improve page access behaviour. However, the number of disk page

accesses more than doubles when the vertex order does not exist in

the input file (shuffled case). This is also true in those graphs whose

default order does not reflect topology. For these graphs, ordering

using Gorder halves the number of disk page accesses.

Consequently, GRASP has highly variable performance based

on whether or not the input files are organized to reflect graph

topology. DBG ordering does not help in caching with GRASP,

when the input graph does not provide any locality in the input

file order. Therefore, we first order the graphs using Gorder and

then apply DBG ordering, and use GRASP as the hit/promotion

policy. Our approach to use the pipeline Gorder→ DBG→ GRASP

Table 3: LAC’s latency improvement over GRASP-GO on ver-
tex (property) pages.

Input Graph Query Type Cache Size
5% 10% 20% 30%

FR-HOT 1.05 1.03 1.00 0.97

CIT-PATENT SPSP 1.16 1.17 1.18 1.20

RW 1.28 1.32 1.38 1.43

FR-HOT 1.07 0.98 0.80 0.70

SOC-LJ SPSP 1.11 1.06 0.96 0.92

RW 1.18 1.16 1.13 1.13

Table 4: LAC’s latency improvement over GCLOCK when the
graph is serialized on disk by [7]

Input Graph Query Type Cache Size
5% 10% 20% 30%

FR-HOT 1.07 1.15 1.20 1.19

CIT-PATENT SPSP 1.08 1.18 1.29 1.31

RW 1.09 1.12 1.14 1.15

FR-HOT 1.38 1.35 1.29 1.23

SOC-LJ SPSP 1.28 1.25 1.13 1.12

RW 1.12 1.11 1.04 1.02

enhances GRASP’s methodology. We call this setting as GRASP-
GO. Our experiments show that LAC outperforms GRASP-GO in

most cases, however, due to space limitations, we pick a subset of

the datasets, and run FR-HOT, SPSP, and RW queries on them to

present the results. Table 3 shows LAC’s latency improvements
12

over GRASP-GO on vertex pages.

FR-HOT query only accesses vertices in the immediate neigh-

bourhood whose degree is greater than the average degree of the

input graph, and GRASP’s policies can easily maintain those ver-

tices and their corresponding pages in the cache when there is

enough room. In addition, as explained in Figure 8a, DCF values

shrink for social networks when the cache can accommodate a large

number of pages. Therefore, when the cache is larger and/or the

query is FR-HOT, GRASP-GO outperforms LAC, especially if the

input graph is skewed, such as SOC-LJ. Therefore, when DBG or-

dering algorithm groups those vertices in the same pages and when

the cache size is large, GRASP-GO outperforms LAC as expected.

LAC does a better job than GRASP-GO in RW when the query

reaches beyond the immediate neighbourhood and does not follow

the breadth-first neighbourhood expansion pattern. Random walks

bias their exploration towards the degree distribution of the input

graphs. Therefore, high-degree vertices are more frequently visited

in skewed graphs. Although this behaviour is in favor of GRASP-

GO, LAC successfully captures the sudden changes in the access

pattern along the path better as random walks can reach distinct

communities in the graph.

5.3.3 LAC’s adaptability to ordering algorithms. In this section we

address the question of how LAC would perform if an ordering

algorithm other than Gorder is used. For this experiment, we order

SOC-LJ and CIT-PATENT by a new graph ordering heuristic pro-

posed in [7]. We then compare LAC performance for 3 query types:

FR-HOT, SPSP, RW.

Table 4 shows that ordering is a dominant factor in the per-

formance. However, LAC nicely exploits the underlying locality

improvements and outperforms GCLOCK. The new graph ordering

12
LAC’s page fault improvements highly correlate with latency improvements.

2869

   





































(a) FR-ALL

   





































(b) FR-HOT

   





































(c) SPSP

   





































(d) RW

Figure 9: LAC’s latency improvement over GCLOCK in Neo4j.

approach is shown to outperform Gorder in [7]. While comparing

the improvements in Figure 7 and Table 4, our results show that

improved locality increases LAC’s performance.

5.4 LAC Performance in native Neo4j
implementation

In this section, we present the effectiveness of LAC in Neo4j. We

again focus on latency comparisons. LAC’s performance vis a vis

native Neo4j cache replacement policy (which is GCLOCK) for all

graph and query types is given in Figure 9.

The results show that LAC’s performance improvements inNeo4j

track those of the simulation experiments. LAC outperforms native

Neo4j by up to 1.23× for almost all cases. Although the trends are

similar to the simulation results, the improvements are lower in

the Neo4j implementation. These can be explained as follows:

1 As noted in Section 4.2, Neo4j shares the page cache with all

store types including auxiliary data while in our simulated setup,

the cache space is occupied by only vertex and edge pages. Conse-

quently, the cache utilization for vertex and edge page accesses is

lower in Neo4j than in the simulation.

2 Our simulated setup follows GDBMS storage design as de-

scribed in Section 4.1. Neo4j has a unique storage design where each

edge page holds approximately one-fourth the number of edges of

the simulation. Therefore, the number of disk pages in Neo4j is four

times greater for the same dataset. When there are more edge pages,

the cache contains, at any given time, more consecutive edge pages.

Fetching more consecutive edge pages into the cache results in

more pages whose 𝐷𝐶𝐹 values become 1. As we explain in Section

5.3.1, this situation results in reducing the impact of 𝐷𝐶𝐹 in LAC’s

calculations because these pages’ increment and decrement values

(𝑆𝐸𝑇𝑝𝑖) become the same and LAC and GCLOCK behaviours start

to converge.

1-hop query types are the most affected by this situation. In

these query types, the number of edge traversals is at most equal

to the degree of the start vertex. Since Neo4j keeps far more edge

pages in the cache and shares it with auxiliary data pages, the num-

ber of vertex pages it can cache is lower. This negatively impacts

neighbourhood detection in LAC. The RW query type is a good

example to explain the situation – it is the least affected by this or-

ganization. That is because it requires traversing to the next hop at

each step and this increases the number of distinct page accesses.
Consequently, page density becomes less significant.

Due to the edge page capacity of Neo4j, the edge store contains

hundreds of thousands of edge pages for large graph. Since the

cache size is set as a percentage of the data size, even with small

cache percentages, cache is large and numerous consecutive edge

pages are fetched into it, resulting in their 𝐷𝐶𝐹 values becoming 1.

As explained earlier, this scenario causes LAC to perform similarly

to GCLOCK when promoting pages. For demotions, however, this

situation creates a worst-case scenario for LAC. Because LAC de-

motes pages with 𝐷𝐶𝐹 values of 1 as minimally as possible, when

there are many such pages, it requires more than one sweep of the

circular list to locate an eviction candidate with an 𝑅𝐶 value below

1. This adds runtime overhead to the policy. Although LAC still

outperforms in terms of reducing the number of page faults, its

latency increases and its relative advantage is slightly lower.

6 CONCLUSIONS
In this paper, we show that data reuse in graph applications is

complex and the well-known and widely used cache replacement

policy, GCLOCK, is insufficient in many cases.

Since topology-aware ordering of graph data enables intelligent

caching approaches that would further improve the cache hit rates,

we use the data layouts obtained by a graph ordering scheme and

propose LAC as a graph locality-aware cache replacement policy.

LAC utilizes the cache by maintaining the residency of pages in

it that are likely to be accessed and reused together based on the

structural properties of input graphs. We show that the spatial

locality that is captured in disk pages offers temporal locality for

the subsequent accesses of cache pages, and this information can

be used in better replacement decisions.

We evaluate LAC against its competitors for the input graphs

with different structural properties while running various query

types on the underlying simulated system where different cache

sizes are set. We show that LAC outperforms its competitor in most

cases both in the simulated setup and in the real system. Currently,

LAC is applicable to read-only workloads. We have future work

plans to use LAC’s methodology in prefetching where updates

can also be handled and to enhance the implementation of LAC

within Neo4j. This includes exploring the integration of background

eviction mechanisms to further optimize cache management.

ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC) under grants RGPIN-2024-

03993 and RGPIN-2024-04657. We thank Lori Paniak for supporting

the computing infrastructure used for this work.

2870

REFERENCES
[1] [n. d.]. Graph Data Platform | Graph Database Management System | Neo4j.

https://neo4j.com/

[2] Hidayet Aksu, Mustafa Canim, Yuan-Chi Chang, Ibrahim Korpeoglu, and Ozgur

Ulusoy. 2015. Graph Aware Caching Policy for Distributed Graph Stores. In IEEE
Int. Conf on Cloud Engineering. 6–15.

[3] Reza Bakhshandeh, Mehdi Samadi, Zohreh Azimifar, and Jonathan Schaeffer.

2011. Degrees of Separation in Social Networks. Proceedings of the 4th Annual
Symposium on Combinatorial Search.

[4] L. A. Belady. 1966. A study of replacement algorithms for a virtual-storage

computer. IBM Systems Journal 5, 2 (1966), 78–101. https://doi.org/10.1147/sj.52.

0078

[5] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The Skyline

operator. Proceedings 17th International Conference on Data Engineering (2001),

421–430. https://api.semanticscholar.org/CorpusID:5812098

[6] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,

Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark

Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkatara-

mani. 2013. TAO: Facebook’s distributed data store for the social graph. In Proc.
USENIX 2013 Annual Technical Conf. 49–60.

[7] Pengjie Cui, Haotian Liu, Bo Tang, and Ye Yuan. 2024. CGgraph: An Ultra-fast

Graph Processing System on Modern Commodity CPU-GPU Co-processor. Proc.
VLDB Endowment 17, 6 (2024), 1405–1417. https://doi.org/10.14778/3648160.

3648179

[8] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,

Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC Social Net-

work Benchmark: Interactive Workload. In Proc. ACM SIGMOD Int. Conf. on
Management of Data. 619–630. https://doi.org/10.1145/2723372.2742786

[9] Priyank Faldu, Jeff DIamond, and Boris Grot. 2020. A closer look at lightweight

graph reordering. Proc. Int. Symp. on on Workload Characterization (2020), 1–13.

https://doi.org/10.48550/arxiv.2001.08448

[10] Priyank Faldu, Jeff Diamond, and Boris Grot. 2020. Domain-specialized cache

management for graph analytics. Proc. IEEE Int. Symp. on High-Performance
Comp. Architecture (2020), 234–248.

[11] Xiyang Feng, Guodong Jin, Ziyi Chen, Chang Liu, and Semih Salihoğlu. 2022.

Kùzu Database Management System Source Code. https://github.com/kuzudb/

kuzu

[12] Xiyang Feng, Guodong Jin, Ziyi Chen, Chang Liu, and Semih Salihoğlu. 2023.

Kùzu Graph Database Management System. In Proc. 13th Biennial Conf. on Inno-
vative Data Systems Research.

[13] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,

Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: a fast parallel graph engine

handling billion-scale graphs in a single PC. In Proc. 19th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining. 77–85. https://doi.org/10.1145/

2487575.2487581

[14] Nicolaus Henke, Jacques Bughin, Michael Chui, J. Manyika, Tamim Saleh, and

Bill Wiseman. 2016. The Age of Analytics: Competing in a data-driven world.

https://api.semanticscholar.org/CorpusID:196173558

[15] Imranul Hoque and Indranil Gupta. 2012. Disk Layout Techniques for Online

Social Network Data. IEEE Internet Comput. 16, 3 (2012), 24–36.
[16] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. 2010. High

performance cache replacement using re-reference interval prediction (RRIP).

In Proc. 37th Annual Symp. on Computer Architecture. 60–71. https://doi.org/10.

1145/1815961.1815971

[17] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel

scheme for partitioning irregular graphs. SIAM J. on Scientific Comput. 20 (1998),
359–392.

[18] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: large-scale

graph computation on just a PC. In Proc. 10th USENIX Symp. on Operating System
Design and Implementation. 31–46.

[19] Victor F. Nicola, Asit Dan, and Daniel M. Dias. 1992. Analysis of the generalized

clock buffer replacement scheme for database transaction processing. Proc. 1992
ACM SIGMETRICS Int. Conf. on Measurement and Modeling of Computer Systems

20, 1 (1992), 35–46. https://doi.org/10.1145/149439.133084

[20] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,

Harry C. Li, RyanMcElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,

Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at

Facebook. In Proc. 10th USENIX Symp. on Networked Systems Design & Implemen-
tation. 385–398.

[21] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-K

page replacement algorithm for database disk buffering. ACM SIGMOD Rec.
(1993).

[22] Tarikul Islam Papon, Taishan Chen, Shuo Zhang, and Manos Athanassoulis. 2024.

CAVE: Concurrency-Aware Graph Processing on SSDs. Proc. ACM Manag. Data
2, 3, Article 125 (2024). https://doi.org/10.1145/3654928

[23] Jordi Petit. 2004. Experiments on the minimum linear arrangement problem.

ACM J. Exp. Algorithmics 8, Article 2.3 (2004).
[24] Ira Pohl. 1969. Bi-directional and heuristic search in path problems. https:

//api.semanticscholar.org/CorpusID:61081057

[25] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer

Özsu. 2017. The ubiquity of large graphs and surprising challenges of graph

processing. Proc. VLDB Endowment 11, 4 (2017), 420–431. https://doi.org/10.

1145/3186728.3164139

[26] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer

Özsu. 2019. The ubiquity of large graphs and surprising challenges of graph

processing: extended survey. VLDB J. 29, 2–3 (2019), 595–618. https://doi.org/

10.1007/s00778-019-00548-x

[27] Alan Jay Smith. 1978. Sequentiality and prefetching in database systems. ACM
Trans. Database Syst. 3 (1978), 223–247.

[28] Domagoj Vrgoc, Carlos Rojas, Renzo Angles, Marcelo Arenas, Vicente Cal-

isto, Benjamín Farías, Sebastián Ferrada, Tristan Heuer, Aidan Hogan, Gon-

zalo Navarro, Alexander Pinto, Juan Reutter, Henry Rosales, and Etienne Tou-

ssiant. 2024. MillenniumDB: A Multi-modal, Multi-model Graph Database.

In Companion of ACM SIGMOD Int. Conf. on Management of Data. 496–499.
https://doi.org/10.1145/3626246.3654757

[29] HaoWei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. SpeedupGraph Processing

by Graph Ordering. In Proc. ACM SIGMOD Int. Conf. on Management of Data.
1813–1828. https://doi.org/10.1145/2882903.2915220

[30] Wenlei Xie, Guozhang Wang, David Bindel, Alan Demers, and Johannes Gehrke.

2013. Fast iterative graph computation with block updates. Proc. VLDB Endow-
ment 6, 14 (2013), 2014–2025.

[31] Abdurrahman Yaşar, Buğra Gedik, and Hakan Ferhatosmanoğlu. 2017. Dis-

tributed block formation and layout for disk-based management of large-scale

graphs. Distrib. Parall. Databases 35, 1 (2017), 23–53. https://doi.org/10.1007/

s10619-017-7191-3

[32] Ji-Tae Yun, Su-Kyung Yoon, Jeong-Geun Kim, and Shin-Dug Kim. 2020. Access

pattern-based high-performance main memory system for graph processing on

single machines. Future Generation Comput. Syst. 108 (2020), 560–573. https:

//doi.org/10.1016/j.future.2020.03.015

[33] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. 2017. Caching at the

web scale. Proc. VLDB Endowment 10, 12 (2017), 2002–2005.
[34] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, and

Matei Zaharia. 2017. Making caches work for graph analytics. In Proc. 2017 IEEE
Int. Conf. on Big Data. 293–302. https://doi.org/10.1109/BigData.2017.8257937

[35] Da Zheng, Randal Burns, and Alexander S. Szalay. 2013. Toward millions of

file system IOPS on low-cost, commodity hardware. In Proc. 2013 ACM/IEEE
Conf. on High Performance Computing, Networking, Storage and Analysis. 1–12.
https://doi.org/10.1145/2503210.2503225

[36] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E. Priebe,

and Alexander S. Szalay. 2015. FlashGraph: Processing Billion-Node Graphs on

an Array of Commodity SSDs. In Proc. 13th USENIX Conf. on File and Storage
Technologies. USENIX Association, 45–58.

[37] Ningnan Zhou, Xuan Zhou, Xiao Zhang, Shan Wang, and Ling Liu. 2016. An I/O-

Efficient Buffer Batch Replacement Policy for Update-Intensive Graph Databases.

In Proc. 21st Int. Conf. on Database Systems for Advanced Applications. Springer-
Verlag, 234–248. https://doi.org/10.1007/978-3-319-32049-6_15

.

2871

https://neo4j.com/
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1147/sj.52.0078
https://api.semanticscholar.org/CorpusID:5812098
https://doi.org/10.14778/3648160.3648179
https://doi.org/10.14778/3648160.3648179
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.48550/arxiv.2001.08448
https://github.com/kuzudb/kuzu
https://github.com/kuzudb/kuzu
https://doi.org/10.1145/2487575.2487581
https://doi.org/10.1145/2487575.2487581
https://api.semanticscholar.org/CorpusID:196173558
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/149439.133084
https://doi.org/10.1145/3654928
https://api.semanticscholar.org/CorpusID:61081057
https://api.semanticscholar.org/CorpusID:61081057
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1007/s00778-019-00548-x
https://doi.org/10.1007/s00778-019-00548-x
https://doi.org/10.1145/3626246.3654757
https://doi.org/10.1145/2882903.2915220
https://doi.org/10.1007/s10619-017-7191-3
https://doi.org/10.1007/s10619-017-7191-3
https://doi.org/10.1016/j.future.2020.03.015
https://doi.org/10.1016/j.future.2020.03.015
https://doi.org/10.1109/BigData.2017.8257937
https://doi.org/10.1145/2503210.2503225
https://doi.org/10.1007/978-3-319-32049-6_15

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Cache Management

	3 Graph Topology-Aware Cache Management
	3.1 LAC Overview
	3.2 LAC's Cost Functions
	3.3 Cache Optimization Formulation and Possible Solutions
	3.4 A Lightweight Heuristic for Page Eviction

	4 Experimental Setup
	4.1 Simulated Setup
	4.2 Real System Integration
	4.3 Datasets
	4.4 Workload
	4.5 Cache Replacement Policies
	4.6 Evaluation Metrics

	5 Experiment Results
	5.1 Parameter Settings
	5.2 LAC's Heuristic Approximation
	5.3 LAC's Performance in Simulated Setup
	5.4 LAC Performance in native Neo4j implementation

	6 Conclusions
	Acknowledgments
	References

