
The LAW theorem: Local Reads and Linearizable Asynchronous Replication

Antonios Katsarakis
∗⋆

Vasilis Gavrielatos
∗

Huawei Research
�rst.last@huawei.com

Emmanouil Giortamis
⋆

Pramod Bhatotia
TU Munich

�rst.last@tum.de

Aleksandar Dragojevic
OpenAI

aleksandar.dragojevic@gmail.com

Boris Grot
University of Edinburgh
boris.grot@ed.ac.uk

Vijay Nagarajan
University of Utah
vijay@cs.utah.edu

Panagiota Fatourou
FORTH ICS and University of Crete

faturu@csd.uoc.gr

ABSTRACT

Distributed datastores underpin highly concurrent, read-intensive

applications, ensuring consistency, availability, and performance.

They use crash-tolerant protocols to replicate data and endure

replica server crashes. To ensure safety and meet the performance

demands, replication must support high-throughput, strongly con-

sistent (i.e., linearizable) reads without assuming any synchrony.

However, existing protocols either 1 relax consistency, or pro-

vide linearizable reads that are 2 fully asynchronous but remote

(involving multiple replicas), or 3 local but require synchrony.

This work explores the tradeo�s between consistency, asyn-

chrony, and performance in crash-tolerant protocols, and proves

that in linearizable asynchronous read/write registers tolerating a

single crash, no reads can be local. Building on this, we introduce

almost-local reads (ALRs), a new abstraction that ensures crash

tolerance and linearizability under asynchrony. While ALRs have

slightly higher latency than local reads, they remain lightweight,

with computation and network costs close to single-node reads.

We present two simple yet e�ective ALR schemes that enhance

protocols across all three categories. For protocols with local reads,

ALRs address consistency or synchrony issueswithminimal through-

put loss. In asynchronous linearizable protocols, they improve per-

formance without compromises. Our evaluation shows that ALR-

enhanced ZAB and Hermes achieve within 2% and 5% of their

original throughput in 95% reads while ensuring linearizability un-

der asynchrony. On Raft, ALRs deliver over 2.5× higher throughput

without compromising consistency or asynchrony.

PVLDB Reference Format:

Antonios Katsarakis, Emmanouil Giortamis, Vasilis Gavrielatos, Pramod

Bhatotia, Aleksandar Dragojevic, Boris Grot, Vijay Nagarajan, and Panagiota

Fatourou. The LAW theorem: Local Reads and Linearizable Asynchronous

Replication. PVLDB, 18(9): 2831-2845, 2025. doi:10.14778/3746405.3746411

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://law-theorem.com/.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.
doi:10.14778/3746405.3746411

Figure 1: Three-way tradeo� of crash-tolerant protocols.

1 INTRODUCTION

Today’s online services and cloud applications rely on in-memory

high-performance datastores
1
, such as key-value stores, for storing

and accessing their data. These applications are characterized by

read-dominant access patterns and concurrent requests [10, 32, 114].

Thus, datastores must provide high throughput to meet the perfor-

mance demands of modern applications and o�er high availability,

as they are deployed on fault-prone commodity hardware [17].

Data replication is a core feature of high-performance and re-

silient datastores. Data must be replicated across multiple nodes

(i.e., servers) to increase throughput because a single node often

cannot keep up with the load [24]. Replication is also necessary to

guarantee that a node crash does not render the dataset inaccessible.

Maintaining the replicas consistent, to ensure that the services

running on the datastore operate correctly, is a challenge, especially

in the presence of crashes. A crash-tolerant replication protocol is

responsible for keeping the replicas of a datastore consistent – even

when crashes occur – by determining the necessary actions to

execute reads and writes. Several crash-tolerant protocols favor

performance by relaxing consistency (RC protocols). As such, their

reads may return stale values, leading to nasty surprises for both

clients and developers [89, 124]. There exist however, protocols that
⋆
The two authors contributed equally to this work.

∗
This work started when the authors were at the University of Edinburgh.

1
We use the term datastore to encompass in-memory storage systems within a local
area network with an API that includes reads and writes to objects.

2831

https://doi.org/10.14778/3746405.3746411
https://law-theorem.com/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746411
https://www.acm.org/publications/policies/artifact-review-and-badging-current

A. Katsarakis and E. Giortamis et al.

o�er strongly-consistent (i.e., linearizable) reads, which are more

desirable for correctness and programmability.

Crash-tolerant protocols can be synchronous or asynchronous,

based on the timing model they rely on to ensure consistency. Syn-

chronous protocols, which depend on bounded processing and

communication delays, are easier to design. However, in the real

world, distributed datastores are deployed over complex software

stacks and virtualization layers [18, 84]. Consequently, the net-

work and compute nodes of a distributed datastore experience

asynchrony and other timing anomalies, which may lead to timing

violations and compromise the safety of synchronous protocols. To

tolerate such timing violations, safer protocols adopt the asynchro-

nous model where there are no timing assumptions, implying that

processing and communication delays can be arbitrary.

Existing crash-tolerant replication protocols that a�ord lineariz-

able reads fall in two categories; Local-Synchronous (LS), and Remote-

Asynchronous (RA). Protocols in the LS category o�er cheap lin-

earizable reads that complete locally on a replica (i.e., without inter-

replica communication), as in Hermes [66], but these protocols

assume a synchronous model [42] (e.g., exploiting lease mecha-

nisms). In contrast, protocols that fall into the RA category such as

Raft [100], Paxos [75], and ABD [11, 91] are safe under asynchrony

but each and every read mandates expensive inter-replica communi-

cation and processing costs on multiple replicas. As Schwarzmann

and Hadjistasi explain [54, 55], it is important to study the feasi-

bility of crash-tolerant implementations that support linearizable

local (zero-delay in their terminology) reads under asynchrony.

There exist fundamental theoretical results related to asynchro-

nous replication, including the seminal FLP result [45] and the CAP

theorem [22, 50], but neither su�ce to answer the above as both fall

short in examining the performance of reads. We detail these and

other relevant results in § 7. To address the existing gap in under-

standing, this work explores the fundamental three-way tradeo�

of crash-tolerant protocols, revealing a tension between consis-

tency, performance, and the time assumptions of the setting (also

depicted in Figure 1). In particular, we prove that in any linearizable

asynchronous read/write register implementation that tolerates even

a single crash (without blocking reads or writes), no reads are local.

We also observe that the performance aspect of this tradeo�

a�ects the latency but not necessarily the throughput of reads.

Thus, asynchronous linearizable reads need not be as costly as

in existing (RA) protocols, where each read incurs network and

computation costs to remote replicas.

Capitalizing on this insight and the high volume of concurrent re-

quests in modern read-intensive applications, we introduce almost-

local reads (ALRs), a technique that a�ords low-cost reads in a

linearizable and crash-tolerant manner under asynchrony. In short,

ALRs batch read requests with a twist. Unlike traditional batching,

all reads in an ALR-batch are executed against the local replica of a

server, and only a lightweight sync operation per batch involves

remote replicas. The sync incurs only a small network and compu-

tation cost, regardless of the batch size. Moreover, it can sometimes

be elided as existing writes can act as implicit syncs(§ 4.3). As a

result, ALRs incur little or no extra network and processing costs to

remote replicas, thus achieving the performance of local reads while

o�ering linearizability under asynchrony.We detail two simple ALR

schemes; an eager and a lazy one. Despite their simplicity, these

schemes can bene�t a variety of protocols by eliminating either

consistency or asynchrony relaxations, or by boosting performance.

In short, the contributions of this work are as follows:

• We classify crash-tolerant replication protocols based on three

features: linearizability, read locality, and asynchrony, highlight-

ing the tradeo� between consistency, performance, and time

models. (§ 2). We then show that in any asynchronous lineariz-

able register implementation that tolerates even a single crash

without blocking reads or writes, no reads are local. Finally, we

examine the boundaries of this result, showing its tightness. (§ 3)

• We introduce two almost-local read (ALR) schemes, an eager and a

lazy one, which allow reads with computation and network over-

head close to that of local reads. These schemes can be applied

to a wide range of crash-tolerant protocols for high throughput

reads without sacri�cing asynchrony or linearizability. (§ 4)

• We implement ALR-enhanced variants of three state-of-the-art

protocols, one per class (RC, LS, RA) and evaluate their perfor-

mance over RDMA. ALRs increase up to 2.6× the throughput

of Raft (RA) in read-intensive workloads without compromises.

The ALR-enhanced ZAB (RC) and Hermes (LS) protocols on 95%

reads show only marginal throughput reduction of 2% and 5%

and minimal latency increase, but are also providing linearizabil-

ity under asynchrony. Notably, these bene�ts are over baselines

that already heavily batch requests to boost throughput. (§ 6)

2 BACKGROUND

2.1 Datastores and workload characteristics

Modern distributed datastores keep the data inmemory and serve as

the backbone for many of today’s data-intensive services, including

e-commerce and social networks. These workloads are character-

ized by a high volume of concurrent requests and read-dominant

accesses [10, 24, 115]. To satisfy the demands, datastores must of-

fer high throughput – especially on reads. This work focuses on

datastores deployed within a local area network (e.g., a datacenter).

2.2 Replication and consistency

Datastores partition data into shards and replicate shards to ensure

crash tolerance. A crash-tolerant replication protocol maintains

consistency across a shard’s replicas. The replication degree (number

of replicas) balances cost and fault tolerance: higher degrees im-

prove resilience but increase deployment costs. A replication degree

of 3 to 7 is considered a good balance for safety and cost [58].

When data are replicated, consistency must be enforced. While

weak consistency can be leveraged to boost performance [82, 86,

112], it can also lead to nasty surprises when developers or clients

attempt to reason about the system’s behavior [124]. For this rea-

son, we mainly focus on sequential consistency and linearizability.

Sequential consistency mandates that reads and writes from each

client appear to take e�ect in some total order consistent with

the order in which they were issued [73]. In addition to sequen-

tial consistency’s constraints, linearizability mandates that each

request appears to take e�ect instantaneously at some point be-

tween its invocation and response [56]. In practice, linearizability

is preferable to sequential consistency because it is compositional:

when all shards enforce linearizability, then the datastore enforces

linearizability. This does not hold for sequential consistency.

2832

The LAW theorem: Local Reads and Linearizable Asynchronous Replication

2.3 Synchrony and asynchrony

In distributed datastores, a synchronousmodel [42] assumes bounded

processing and communication delays. These assumptions allow

protocols to handle unresponsive replicas via end-to-end timeouts.

However, modern datastores cannot always meet end-to-end time

properties due to their complex software stacks (e.g., network proto-

cols, garbage collection, and virtualization layers), each with unpre-

dictable time behavior [15, 84]. Although such systems may have

predictable timing in the typical case, load spikes can easily trans-

late into delays that violate the model’s timing assumptions [4].

Because the synchronous model fails to represent real-world

distributed datastores, even protocols correct under the model can

violate consistency in practice. For instance, consider a synchronous

protocol that relies on leases for safety; if the timing assumptions

cease to hold, a server might falsely believe it still holds a lease that

has expired from the view of other participants. Consequently, it

can subtly compromise the protocol’s safety.

Many replication protocols adopt the asynchronous model to

resolve the safety issues in the synchronous model. In the asyn-

chronous model, there are no timing guarantees—processing and

communication delays are arbitrary. This ensures high safety be-

cause if a system is safe with arbitrary communication delays, it is

also safe with shorter delays.

However, dropping time assumptions makes the design of high-

performance protocols challenging. Concepts exploited for perfor-

mance that are related to time (e.g., leases or global clocks) across

distributed nodes cannot be utilized in asynchronous protocols.

Finally, as the FLP result [45] indicates, asynchrony also renders

some problems impossible to solve.

2.4 Crash-tolerant replication protocols

We classify replication protocols able to deal with node replica

crashes into the following three categories.

1 Local Reads under Relaxed Consistency (RC). Replication

protocols of this class o�er local reads and tolerate crashes under

asynchrony but relax linearizability [33, 48, 59, 61, 68, 72, 103, 110,

122], thus a�ecting the correctness and programmability. We say

these protocols fall into the Relaxed Consistency (RC) category of

crash-tolerant replication protocols. While there exist a plethora of

protocols that relax consistency, including protocols that o�er very

weak models such as eventual consistency [25], in this work, we pri-

marily focus on those relaxing linearizability the least by providing

sequential consistency (e.g., as in ZAB [61] and Derecho [59]).

2 Linearizable Local Reads under Synchrony (LS). In this

class, crash-tolerant linearizable protocols relax asynchrony to pri-

oritize read performance. Typically, this is achieved by mandating

some global timing assumptions to implement leases [51]. This

approach enables e�cient local reads (i.e., reads returning the lo-

cal value of a replica without the replica delivering a message

within the read’s invocation and response), which guarantees lin-

earizability despite the absence of replica coordination. Leases are

used in either majority- or membership-based protocols [66] to

temporarily maintain a con�guration. In majority-based protocols,

leases protect a stable leader con�guration allowing the leader to

serve local reads while the lease has not expired [27, 30, 128]. In

membership-based protocols, leases protect the membership con�g-

uration, which speci�es all live nodes, enabling local reads on one

(e.g., as in Primary-backup [7]) or on all replicas of the con�guration

(e.g., as in Hermes [66] or CRAQ [117]).

In both approaches, leases temporarily "lock" the con�guration,

enabling linearizable local reads that greatly improve performance.

However, leases require strong synchrony assumptions. The sys-

tem’s clocks, process speeds, and message delays must always op-

erate within, and not diverge from, certain bounds (i.e., adhere at

least to the partially-synchronous model [42]).

3 LinearizableRemote reads underAsynchrony (RA). There

exist several protocols that ensure linearizability and can tolerate

crashes in the asynchronous setting – i.e., where clocks, processors,

and messages can all operate at arbitrary speeds. Note that this

class of protocols also includes indulgent protocols [52], which are

safe under asynchrony but may not always guarantee progress. Pro-

tocols in this class either directly implement an atomic register (e.g.,

as in the seminal ABD [11]) or they leverage a consensus protocol

to implement the state machine replication [109] (SMR) approach

to serve reads and writes (e.g., as in Raft [100] and Paxos [75]).

Existing protocols in this class either constrain reads to be ex-

ecuted only by a designated leader replica [100] or require costly

coordination for each linearizable read [12, 61, 75]. In the latter case,

most protocols treat reads as expensive as writes or require one or

more round-trips to a majority of replicas, incurring network and

processing costs for all participating replicas on every read.

3 THE L
2
AW IMPOSSIBILITY

Ideally, a crash-tolerant system i.e., a replication protocol, should

o�er strongly-consistent (linearizable) local reads from all replicas

in the asynchronous setting, while being able to tolerate the crash

of any minority of replicas (without inde�nitely blocking reads or

writes). However, we prove the Ĉ
2
ýē impossibility, which states

that in any Linearizable Asynchronous read/write register implemen-

tation that tolerates even a single crash (Without blocking reads or

writes), no reads are Local.

Intuitively, in an asynchronous system, a replica cannot reliably

determine whether another replica has crashed or is simply slow.

To maintain linearizability, a read operation must re�ect the latest

writes, which often requires coordination between replicas. How-

ever, only allowing a replica to perform a local read means it might

miss updates from other replicas, leading to inconsistent or stale

results. This inherent uncertainty and the need for coordination

make it impossible to guarantee both crash tolerance and even

a single strongly consistent local read simultaneously. Next, we

proceed with the model speci�cation and the L
2
AW impossibility.

3.1 Model and de�nitions
System model. We model a distributed system that consists of

a set of Ċ server nodes, each hosting a replica process (from now

on replicas). The replicas communicate over an asynchronous net-

work by sending and receiving messages. A set of client processes

(clients) issue requests to server processes (servers) that store data

replicas. Replicas are modeled as deterministic state machines: in

every computation step, they may perform some deterministic local

computation, and in every communication step, they may deliver a

2833

A. Katsarakis and E. Giortamis et al.

message or send a message to another replica, atomically. An event

is de�ned as a computation or communication step performed by

any replica. The replicas fully replicate a binary register and execute

reads and writes over the register when serving client requests.

Clients. Client processes (from now on clients) issue read and

write requests that replicas serve. We do not make any assumptions

regarding their location; clients could be either co-located with one

(but any) of the replicas as in the ABD algorithm and state-of-the-art

datastores [38, 63], or live on separate nodes as in Chain Replication

[123]. As in several recent systems and protocols, in our model,

clients maintain up to one connection with one replica at a time,

i.e., clients do not multicast to servers [28, 38, 61, 66, 100]. Note

that reducing client-server connections is critical for the scalability

of replicated datastores [99]. For the remainder of this work, we do

not consider clients as part of the algorithm; they are o�-path for

any operations mentioned, and we omit them for simplicity.

Con�guration. We represent the system con�guration ÿ , as a

vector: ÿ = (ĩ1, ..., ĩĊ , Ā), where ĩ1, ..., ĩĊ are the states of Ċ repli-

cas {Ď1, ..., ĎĊ } and Ā is the register’s value. We de�ne an execution

fragment as sequence of the form {āġ ,ÿġ , āġ+1,ÿġ+1, ...} where

each ÿġ is a con�guration and each āġ is an event. An execution is

an execution fragment starting from an initial con�guration ÿ0.

Linearizable register. We consider a typical linearizable (i.e.,

atomic [74]) binarymulti-writer multi-reader (MWMR) register [106]

that is fully replicated acrossĊ replicas. Note that our result trivially

holds in a single reader (writer) setting, which cannot tolerate the

crash of sole reader (writer) and ensure progress on reads (writes).

Operations. The execution interval of a read/write operation ĥĦ

in an execution ě starts with the invocation event of ĥĦ (by a replica

Ď) and ends with the response of ĥĦ (by Ď). If the response does not

exist, we say that ĥĦ (and Ď) is ėęĪğĬě in ě , and the execution interval

is de�ned by the su�x of ě starting with ĥĦ’s invocation. Each

replica may have one active operation at a time. Two operations are

ęĥĤęīĨĨěĤĪ if the invocation event of one of them occurs between

the invocation and the response events of the other. An operation

runs ĩĥĢĥ if it is not concurrent with any other operations.

Asynchronous reliable network. The replicas communicate

via a fully-connected, bidirectional, point-to-point, and reliable net-

work (i.e., without message losses or network partitions). A reliable

network makes our result also valid for an unreliable network, thus

stronger. The network is asynchronous [45], so there are no bounds

in transmission delays, but the messages are eventually delivered.

Single crash. We say a replica Ď performs a crash event ę in an

execution ě , if it stops executing computation and communication

steps after ę . We call replicas that do not crash in ě as correct. An

execution without a crash is crash-free. For a stronger result, we

assume that up to one (but any) replica Ď may crash and do not

consider recovery or Byzantine faults [90, 104].

Liveness. A read or a write invoked by a correct replica should

eventually terminate
2
(despite asynchrony or one possible crash).

Linearizable read. Consider any linearizable execution ě . Let Ĉ

be the set of read operations in ě , Ĩ a read operation in Ĉ, andĭ a

write operation whose linearization point is the last preceding Ĩ ’s

2
Throughout the paper we use complete and terminate interchangeably.

linearization point in the linearizable order of ě . In this setting, Ĩ is

linearizable if Ĩ returns the value written byĭ .

Local read. We de�ne a local read as a read returning the local

value of a replica Ď, when no messages are delivered or sent by Ď,

between the read’s invocation and response.

3.2 The proof of the impossibility
Sketch and proof. We make two key observations that hold

in the speci�ed model and lead to the proof of L
2
AW. Informally,

the �rst states that, to tolerate faults under asynchrony, a replica

performing an operation ĥĦ must not rely on a speci�c replica to

complete the ĥĦ . The second states that a local read executed by

a replica may appear to run solo and not re�ect the e�ects of a

previously terminated write issued from another replica.

Building on both insights, we prove the L
2
AW impossibility by

way of contradiction using indistinguishable executions. In partic-

ular, we assume that there is a linearizable implementation ą of a

binary MWMR register in the speci�ed model that produces one or

more linearizable local reads. We then show that for each execution

produced by ą , and for each linearizable local read Ĩ contained in

it, we can construct an indistinguishable execution from the per-

spective of the node executing Ĩ where Ĩ is not linearizable – hence

violating the speci�cation of ą and leading into a contradiction.

The intuition behind our �rst Lemma derives from the fact that

a crashed replica is indistinguishable from an arbitrarily slow one

in the asynchronous message-passing setting [45]. Thus, a read or

write operation ĥĦ invoked by a replica Ď does not have to wait for

a message sent by a speci�c replica Ď
′
to terminate, since Ď

′
may

have crashed and never respond.

Lemma 1

Fix any �nite crash-free execution ě produced by ą , and let ÿ

be the �nal con�guration of ě . Assume that some replica Ď is

inactive in ÿ (i.e., it does not have any active operation at ÿ).

Let ď be the set of all active operations at ÿ . Then, in every

long-enough extension ě
′
of ě that does not contain any step

from Ď, the following claims hold:

(a) Every operation ĥĦ ∈ ď invoked by a correct replica,

ĥĦ terminates in ě
′
.

(b) If ÿ is idle (ď = ∅), then each operation ĥĦ invoked by

a correct replica Ď
′
≠ Ď starting from ÿ terminates in ě

′
.

Proof. We add a failure event ę for replica Ď at the end of ě

(which is �nite and crash-free) and letÿ
′
be the resulting con�gura-

tion. Fix any replica Ď
′′
≠ Ď. If Ď

′′
is active in ď , let ĥĦ be the active

operation of Ď
′′
at ÿ (and ÿ

′
). Otherwise, let ĥĦ be a new operation

initiated by Ď
′′
started from ÿ

′
. In an extension ě

′
of ě , in which all

replicas other than Ď (including Ď
′′
) take enough steps, the liveness

condition implies that ĥĦ will terminate. This is true for every Ď
′′
.

The above implies that the claims of the lemma hold. (In an execu-

tion that is exactly the same as ě
′
but Ď does not crash and simply

takes no steps, all operations in ď would again terminate.) □

2834

The LAW theorem: Local Reads and Linearizable Asynchronous Replication

Lemma 2

Let ě be any execution produced by a linearizable implementa-

tion ą and let Ĩ be any local read, executed by some replica Ď.

There is a crash-free execution ě
′
in which:

(a) Ĩ is not concurrent with any operation, and

(b) Ĩ has the same response in both ě and ě
′
.

Proof. We construct ě
′
by using the pre�x ÿ of ě up until the

point ÿ just before Ĩ is invoked.

Assume �rst that ÿ is not crash-free. Let ę be the crash event it

contains, and let Ď
′
be the replica that has crashed. Since Ď invokes

Ĩ after ÿ , it follows that Ď
′
≠ Ď. To construct ě

′
, we remove ę from

ÿ and let Ď
′
receive and process all messages that have been sent

to it in ÿ and have not yet been processed. Let ÿ be this execution.

If ÿ is crash-free then let ÿ = ÿ .

Let ď be the set of active operations at ÿ . Let ĥĦ be any operation

in ď . By Lemma 1(a) (applied on ÿ), ĥĦ must terminate even without

Ď. The same holds for all operations in ď . Starting from the con�g-

uration after the execution of ÿ , we let all replicas other than Ď to

take steps until all active operations in ď terminate. Let ĉ be the

set of messages that are sent to Ď during this execution fragment.

We temporarily delay the delivery of these messages inĉ . Then,

we let Ď to take steps solo until Ĩ terminates without invoking any

new operation during Ĩ ’s execution. Let ě
′′
be this execution. Note

that ě
′′
is indistinguishable to Ď from ÿ . Finally, we deliver to Ď the

messages contained inĉ , and let Ď and all the other replicas take

steps until no message is in transit and no operation is active. Let

ě
′
be this execution. Thus, Ď returns the same value for Ĩ in ÿ (and

thus also in ě) and in ě
′′
(and thus also in ě

′
). □

Theorem: L
2
AW impossibility

Consider any linearizable implementation ą of a read/write

register in an asynchronous network that tolerates a single

replica crash. There exists no execution produced by ą which

contains a local read.

Proof. Fix an execution ě produced by ą . Let Ĩ be any local read

in ě executed by a replica Ď e.g., as in Figure 2. Let ě
′
be the crash-

free execution advocating Lemma 2 and let ÿ be the con�guration

just before the invocation of Ĩ in ě
′
. By Lemma 2, for each replica

Ď
′
≠ Ď, Ď

′
does not have an active operation at ÿ (i.e., Ď

′
is inactive

at ÿ). Let Ď
′
be any such replica. Let Į be the value that Ĩ returns

in ě
′
. We construct an execution ě

′′
, where Ď

′
invokes a write(Į

′
)

operationē atÿ , where Į
′
is a value other than Į returned by Ĩ in ě

′
.

Replicas other than Ď
′
do not invoke any new operation in ě

′′
. Then,

all replicas besides Ď (including Ď
′
) take steps untilē terminates.

Lemma 1(b), implies that the execution ofē will terminate–even

if Ď takes no steps. Let ÿ
′
be the con�guration at whichē has

terminated. Next, Ď takes steps from ÿ
′
, invokes Ĩ and runs solo

until Ĩ terminates. Finally, all replicas take steps to receive all in

transit messages. Let ÿ be the pre�x of ě
′′
up until the point that the

execution of Ĩ terminates. By construction, ÿ is indistinguishable

from ě
′
to Ď. Thus, Ď returns the same value for Ĩ in both executions.

Recall that Ĩ returns Į in ě
′
. Sinceē is the last terminated write

prior the invocation of Ĩ in ě
′′
and no other operation is active while

Figure 2: Example of indistinguishable executions for replica R used in

the proof of the L
2
AW impossibility. Dotted lines denote con�gurations

and execution pre�xes. Dashed arrows indicate messages in transit.

ē and Ĩ are executed, Ĩ must return Į
′
in ě

′′
. Since Į was chosen

to be di�erent from Į
′
, this is a contradiction. □

3.3 L
2
AW tightness

We indirectly prove the tightness of the L
2
AW impossibility result

by showing that there exist crash-tolerant protocols (that have been

shown correct) with every combination of two out of the three main

properties and by indicating that all three properties are feasible in

the absence of crashes. We use the abbreviations Li, Lo, A, andW

for Linearizability, Local reads, Asynchrony, and crash-tolerance

(Without blocking reads or writes), respectively.

{ Lo+A+W (Relaxed consistency): Our proof hints that protocols

that relax the real-time guarantees from the consistency model

(e.g., by degrading linearizability to sequential consistency) could

be crash-tolerant and a�ord local reads under asynchrony (e.g., as

in ZAB and Derecho [59]).

{ Li+A+W (Remote reads): As detailed in § 2, there are protocols

that tolerate crashes under asynchrony and support linearizable

but costly remote reads (e.g., Raft and ABD [91]).

{ Li+Lo+W (Synchrony): Some crash-tolerant protocols consider a

partially-synchronousmodel, relaxing asynchrony to o�er local and

linearizable reads via time-based leases (e.g., Hermes and CHT [28]).

{ Li+Lo+A (Non-crash-tolerant): Without crash tolerance, there ex-

ist local reads that are linearizable even under network asynchrony.

For instance, the ccKVS protocol [46] cannot tolerate crashes but it

does not assume any synchrony for its local linearizable reads.

3.4 Extending the L
2
AW boundaries

In this section, we scrutinize all key properties of the L
2
AW impos-

sibility and provide further insights.

Inspecting Li: RA-Linearizability. Lev-Ari et al. [80] de�ne a

consistency model in-between linearizability and sequential con-

sistency. This model is practical. Although it is weaker than lin-

earizability, it is compositional, unlike sequential consistency. We

name a variant of that model Read-Asynchronous Linearizability

(RA-Linearizability). RA-Linearizability is the same as Lineariz-

ability only that the invocation of a read operation (and thus its

2835

A. Katsarakis and E. Giortamis et al.

linearization point) can be extended up to the point right after

the linearization point of the exact previous operation in the pro-

gram sequence – i� that previous operation was issued to the same

replica. Such reads, which can be linearized in the past, can be

served locally while tolerating crashes in an asynchronous setting.

However, every such locally completing read may return stale data.

InspectingA: partial-synchrony and failure detectors. We be-

lieve that works considering a partially-synchronous model [28, 66]

have already reached the practical limit of relaxing asynchrony

without any other L
2
AW properties in a typical environment. Nev-

ertheless, it is worth exploring a more abstract concept that makes

fewer synchrony assumptions than the above works by de�ning a

new failure detector class [29]. We leave this for future work.

Inspecting W : 1) �nal value. If a crash-tolerant register has an

identi�able �nal value, and that value is observed during a local

read to a replica, then the replica may return that value and o�er

linearizability without consequences. Simply, there is no risk of

blocking the system from completing future writes to the register

as there will be none. This scenario applies to special register types

(e.g., write-once [44]) and it does not invalidate our impossibility.

InspectingW : 2) single writer. Several atomic register protocols

provide linearizability under asynchronoy by assuming a single

prede�ned writer replica (also called SWMR protocols). For such

protocols, if the stable writer is also a reader it can trivially provide

linearizable local reads under asynchrony [96]. Nevertheless, it is

apparent that once that single writer crashes the system cannot

complete any further writes (i.e., is not live by our de�nition). Also,

note that our proof su�ces to show that other readers in such

protocols can never guarantee linearizable local reads.

Inspecting Lo: almost-local reads. Modern read-intensive ap-

plications with numerous concurrent requests would highly bene�t

if we could accelerate reads while tolerating crashes without relax-

ing consistency or asynchrony. Thus, the remainder of this work

examines the following key question.

Key Question

Can crash-tolerant protocols o�er reads almost as cheap as

local without sacri�cing linearizability under asynchrony?

4 ALMOST-LOCAL READS (ALRS)

The L
2
AW theorem asserts that in a crash-tolerant algorithm, no

reads can ever be local under linearizability and asynchrony. Plainly,

reads must pay the latency of reaching one or more remote replica

servers. However, unlike writes, reads need not alter the state of

remote replicas; hence, should be more e�cient throughput-wise.

Based on this observation we propose almost-local reads (ALRs),

an amortization strategy wherein, only one lightweight remote sync

operation is used to complete a batch of otherwise locally executed

read operations. Crucially, the cost of the sync is independent of the

size and the contents of the batch. There are two types of sync. The

�rst validates if reads executed eagerly (before the sync) on the local

replica are linearizable. The second ensures that reads executed

lazily (after the sync) on the local replica will be linearizable.

As shown in Figure 3, ALRs approximate the performance of

local reads, while o�ering linearizability under asynchrony. When

applied to any of the three protocol categories (RA, RC, LS), ALRs

Figure 3: Operational cost and features for protocols falling in RC,

LS, and RA; and when enhanced with ALRs.

add themissing piece: 1 they improve throughput for RA protocols

(e.g., Raft) 2 ensure linearizability for RC protocols (e.g., ZAB) and

3 allow LS protocols (e.g., Hermes) to operate under asynchrony.

ALRs can be applied to a broad set of protocols (e.g., Raft, ZAB,

Hermes, Paxos, Chain Replication), but not all of them. Below we

detail how we implement ALRs in di�erent protocols and which

protocols are amenable to this technique.We start with LS protocols.

4.1 Eager-ALRs for Local-Synchronous (LS)

In this section, we exploit ALRs to allow LS protocols operate safely

under asynchrony without sacri�cing throughput.

Most LS protocols establish a stable replica con�guration for a

time period. A replica is a member of the con�guration if it holds

a time-based lease. A write cannot complete unless it reaches all

leaseholders (i.e., all con�guration members). In return, leasehold-

ers exploit this to perform reads locally. However, leases require

synchrony to establish a period during which the con�guration is

stable. Without synchrony, a replica can falsely believe that its lease

has not expired and read a stale local value, violating linearizability.

Eager-ALRs. The observation is that we can avoid time-based

leases, and thus synchrony, as long as a replica checks that it is

still in the con�guration after executing a batch of local reads. We

call such reads Eager-ALRs because they �rst read the local storage

optimistically, and then they perform a sync, to ensure the reads

were correct. In this case, the sync validates that the con�guration

during the execution of reads is valid (i.e., is the most recent one).

Speci�cally, a replica Ď executes a batch of Eager-ALRs as follows:

(1) Ď forms a batch of reads and records its local con�guration.

To construct a batch, a protocol includes pending reads from

one or more clients (respecting the request arrival order

if necessary). If its con�guration permits, it executes the

reads against its local replica and bu�ers the read values.

(2) Then, Ď sends a sync message to remote replicas contain-

ing the con�guration prior to the read execution. Upon re-

ceiving this message, remote replicas check if the received

con�guration agrees with their local (i.e., most recent) con-

�guration, and reply with an Ack or Nack message.

(3) Upon receiving Ack messages from a su�cient quorum of

replicas (e.g., a majority guarding the con�guration)
3
, Ď

completes the reads, responding with the bu�ered values.
3
For simplicity, we assume that the con�guration algorithm is handled by replica
servers (as in [66]) and not by external servers.

2836

The LAW theorem: Local Reads and Linearizable Asynchronous Replication

(4) If Ď receives a quorum of Nacks, the con�guration used to

execute its reads locally is not the most recent. Thus, to

avoid inconsistencies, Ď falls back to the original protocol

and initiates its recovery (e.g., to renew its con�guration).

Correctness. After reading the locally stored values, the replica

validates that it is still a member of the con�guration, and is thus

guaranteed to have received all completed writes. Thus, reads ob-

serve completed writes, upholding linearizability but without need-

ing time-based leases or synchrony.

Performance. Adding the sync message to the read algorithm

results in a negligible throughput cost, as it is amortized among all

reads in the batch. This is corroborated by our evaluation in § 6.

However, Eager-ALRs have higher latency than local reads, due to

the network exchange on their critical path. This is the fundamental

cost of linearizability under asynchrony. In § 4.3, we discuss how

we mitigate this latency, and in § 6, we show that the extra latency

is just a few microseconds (in a modern local area deployment).

Applicability. Eager-ALRs are applicable to any protocol that

keeps a stable con�guration and exploits time-based leases to read

locally while o�ering linearizability. This includes Hermes, Chain

Replication, CRAQ, and Primary-backup.

Summary. Eager-ALRs allow LS protocols to o�er linearizability

under asynchrony. Inevitably, according to L
2
AW, they incur a small

latency overhead but ensure high throughput.

4.2 Lazy-ALRs for Relaxed-Consistency (RC)
and Remote-Asynchronous (RA)

A key class of protocols creates a global order of writes and man-

dates that all replicas must apply the writes in order. This is called

State Machine Replication (SMR) [109]. SMR protocols span both

the RC and RA classes. We will apply the second variant of ALRs,

dubbed Lazy-ALRs, to all SMR protocols.

RC SMR protocols, such as ZAB, Derecho, and AllConcur [103],

downgrade their consistency guarantees to sequential consistency

to read locally under asynchrony. Conversely, in RA protocols such

as Raft or Paxos, reads are linearizable but remote and costly, as

explained in § 2.4. For instance, in Raft, all follower replicas must

send each and every read to the leader, which replies back to them.

Lazy-ALRs. In SMR protocols, all writes across all objects are

applied in the same order in all replicas. In other words, a replica

can only apply a write if it has applied all preceding writes. Lazy-

ALRs leverage this observation by implementing the sync as a “fake”

write that does not alter any state, but executes the write algorithm.

When this “fake” write can be applied locally, then the replica

knows that it has also applied all writes preceding the invocation

of the reads in its batch, and thus can execute those reads locally.

Speci�cally, any replica Ď executes a batch of Lazy-ALRs as follows:

(1) Ď forms a batch of read requests and bu�ers them locally

without executing them.

(2) Ď executes a sync using the write algorithm of the protocol.

Unlike a normal write, the sync does not refer to any object,

nor does it carry any new value.

(3) Ď waits until the sync reaches the point where it would be

applied locally, if it were a true write. At that time, Ď locally

executes all reads of the batch and responds to the client(s).

R

R'

R''

1) batching & exec

r(x1),...,r(xn) v1,...,vn

2) sync

Ack/Nack

Ack/Nack

3) response 4) recoveryquorum

Acks
Nacks

R

R'

R''

1) batching

r(x1),...,r(xn)

2) sync

Ack

Ack

3) exec & responsequorum

Eager ALRs

Lazy ALRs

v1,...,vn

Figure 4: Eager-ALRs (top) and Lazy-ALRs (bottom) work�ow.

Ĩ(Į1), ..., Ĩ(ĮĤ) and Ĭ1, ..., ĬĤ denote the read operations and the val-

ues returned, respectively. The key di�erence is that in Eager-ALRs,

reads are executed before the sync, while in Lazy-ALRs, after the sync.

Correctness. A linearizable read must return a result at least as

recent as the last completed write prior the read’s invocation. As all

writes are applied in the same order to all replicas in SMR. By issuing

and completing the sync after forming the read batch we ensure

that all writes preceding the sync in global order are completed and

applied locally. Thus, reading after the sync completion, guarantees

that the Lazy-ALRs return a linearizable (non-stale) value.

Performance. The sync has a negligible impact on throughput as

1) its cost is amortized among the reads of a batch and 2) it is a “fake”

write, hence has no value to be sent over the network, copied, or

applied to storage. Lazy-ALRs allow SMR protocols in the RC class

to upgrade their consistency to linearizability, without sacri�cing

throughput, but at the cost of higher latency for reads. Meanwhile,

for SMR protocols in the RA class, Lazy-ALRs can signi�cantly

improve throughput. We corroborate these claims in § 6.

Applicability. RA and RC protocols that o�er SMR (including ZAB,

Raft, Paxos and more) can bene�t from Lazy-ALRs.

Summary. Lazy-ALRs add the missing piece for SMR protocols

in both RA and RC classes. They allow RA protocols to o�er high

throughput reads and RC protocols to o�er linearizability under

asynchrony without sacri�cing throughput.

4.3 Performance optimizations

In this section, we brief two optimizations, one for latency and one

for throughput, applicable to both ALR variants.

Latency: Opportunistic ALRbatching. To amortize the network

and compute cost on remote replicas, ALRs work on read batches.

Crucially, these batches are formed opportunistically: a replica does

not wait to form a batch of a speci�c size; instead, it forms the batch

from all currently queued reads. Thus, batching does not a�ect the

latency of a request. If such a batch cannot be formed, this hints

that the system is lightly loaded; hence, amortization is not critical.

Conversely, when the system is heavily loaded and there is a need

for high throughput, there will also be a larger opportunity to form

big batches and achieve high amortization.

2837

A. Katsarakis and E. Giortamis et al.

Throughput: Timely writes for zero-cost sync. In both eager

and lazy ALRs, the reading algorithm contains a sync operation.

If the replica is also about to issue a write, we can leverage the

write as a sync proxy. Speci�cally, in the Eager-ALR algorithm, the

sync queries remote replicas to check whether the reading replica

is still in the con�guration. If the reading replica happens to also

be issuing a write at the same time (i.e., is timely), then instead of

issuing the sync we can simply use the write as a sync proxy: if a

su�cient quorum of remote replicas acknowledges the write, that

implies the replica is still on the most recent con�guration.

In Lazy-ALRs the sync follows the write algorithm. Similarly, if a

write is timely, we can use that as a sync proxy. This brings the extra

network and computational cost of an ALR-batch on remote replicas

to zero. Simply, with timely writes, an ALR-enhanced protocol

incurs no extra actions to those executed by the normal writes.

4.4 Real-world use-cases of ALRs

We next present possible real-world use-cases where ALRs can

improve throughput, ensure consistency, and tolerate asynchrony.

The RA and RC classes of protocols–such as Raft (e.g., Cock-

roachDB [116], TiKV [57], etcd [2]) and ZAB (e.g., ZooKeeper [58])–

are integral to systems demanding strong consistency and high per-

formance. However, RA protocols, typically funnel all reads through

a leader, creating a bottleneck. Lazy ALRs address this by enabling

follower replicas to serve consistent reads through lightweight

syncs, thereby reducing leader load, preserving linearizability, and

ensuring that each read incurs minimal or zero network or compu-

tation costs to remote replicas. Meanwhile, RC protocols improve

performance by allowing local reads but risk stale data under asyn-

chrony; Lazy ALRs remedy these inconsistencies while maintaining

as high throughput. Services such as Consul [1], which manages

Kubernetes state under heavy autoscaling, and Chubby [27], which

handles frequent lock status checks, can bene�t from ALR-enabled

low-cost load-balanced reads. When Lazy ALRs are applied in RA

and RC classes could also bene�t large-scale cloud services such

as that of Google [16, 35, 114], Meta [5, 89], and Microsoft [21, 62],

which mandate on high-throughput on read-dominant workloads

and bene�t from stronger consistency.

Eager ALRs broaden the application scope of LS protocols—such

as Hermes [66]—to asynchronous conditions that frequently en-

countered in edge or cloud deployments [15, 84]. As these protocols

rely on synchrony for correctness, transient delays or congestion

can limit their applicability. Eager ALRs address this limitation via

a lightweight read validation that has a zero or minimal cost to

remote replicas, allowing for high throughput and strong consis-

tency even under asynchrony. Unlike leases, which require tuning

to avoid false positives and are unsafe under asynchrony, Eager

ALRs ensure safety without sacri�cing throughput. This extends the

reach of the faster LS protocols e.g., Hermes [47] to real-world en-

vironments, reducing reliance on slower protocols—such as Paxos

or ABD variants [11, 21, 26, 97, 108].

5 EXPERIMENTAL METHODOLOGY
In this section, we describe the protocols we evaluate and the in-

frastructure we used to run our experiments.

5.1 Evaluated protocols
We select one protocol from each category and enhance it with

ALRs. Speci�cally, we evaluate:

• Remote-Asynchronous (RA): Raft (and Raft-ALR)

• Relaxed-Consistency (RC): ZAB (and ZAB-ALR)

• Local-Synchronous (LS): Hermes (and Hermes-ALR)

For Hermes, we extend its codebase [65]. For ZAB and Raft, we

extend the implementations of the Odyssey framework [47]. We

deliberately chose these repositories due to their support of RDMA

networking and more importantly, to facilitate the fairest possible

comparison, as they provide state-of-the-art protocol implementa-

tions that already heavily exploit batching for performance.

We next discuss the three protocols and the respective ALR variants.

Raft (RA). Raft is a leader-based SMR protocol where followers

send their reads to the elected leader, who executes them using

its local storage. For linearizability, the leader must also collect

"heartbeats" from a replica quorum to ensure it is still the leader

prior sending the read responses to clients. Raft’s leader-only reads

are "almost-local" resembling Eager-ALRs. Problematically, Raft

limits almost-local reads to the leader node. To get the upper bound

performance of Raft, our implementation completes reads locally

at the leader (i.e., it omits heartbeats and relaxes linearizability).

{ Raft-ALR: Despite Raft’s leader-only reads resembling Eager-

ALRs, we enhance Raft with Lazy-ALRs as it is an SMR protocol. This

enables ALRs from all replicas. A hybrid of Eager-ALRs and Lazy-

ALRs is possible, but we opt solely for Lazy-ALRs for simplicity.

ZAB (RC). ZAB is the leader-based SMR protocol at the heart of

Zookeeper [58]. Contrary to Raft, in ZAB, all replicas read locally

without any inter-replica communication. This comes at the cost of

consistency, as ZAB o�ers sequential consistency, which is weaker.

{ ZAB-ALR: As Raft and most crash-tolerant protocols, ZAB is an

SMR protocol. We enhance ZAB with Lazy-ALRs, which upgrade

its consistency guarantees to linearizability.

Hermes (LS). Hermes is a state-of-the-art crash-tolerant member-

ship-based replication protocol that provides linearizability under

(partial-)synchrony, while executing reads locally in all replicas. For

its linearizable local reads, each replica holds a time-based lease on

the membership and writes must invalidate all lease-holders before

completion. However, time-based leases require timing assumptions

which, when cease to hold, can lead to linearizability violations.

{ Hermes-ALR: We replace Hermes’ local reads with our Eager-

ALRs, removing the time-based leases. This allows Hermes-ALR to

o�er linearizability under asynchrony.

5.2 Testbed
Infrastructure. To evaluate the performance of ALRs, we con-

duct an experimental study using R320 servers from Cloudlab [40].

Most of our experiments are conducted on a cluster of 5 servers

(replicas) interconnected via a Mellanox switch (SX6036G), while

we also evaluate 3 and 7 replicas to study scalability – which are

typical for this context [61, 66]. Each machine runs Ubuntu 18.04,

has an Intel E5-2630 CPU (8 cores, 2.1Ghz), 16 GB memory, and a

double-port 56Gb Mellanox NIC (CX3 PCIe3x8) of which we only use

one port. The CPU has 20 MB of L3 cache and two hardware threads

per core. We disable turbo-boost and pin threads to cores.

2838

The LAW theorem: Local Reads and Linearizable Asynchronous Replication

Figure 5: Raft vs. Raft-ALR throughput. [5

replicas, varying write ratio]

Figure 6: Raft vs. Raft-ALR latency. [5 repli-

cas, 2% writes, varying load]
Figure 7: Raft vs. Raft-ALR scalability. [2%

and 10% writes, varying replicas]

Workload and sensitivity studies. By default, the key-value

store (KVS) uses 2MBpages and consists of one million key-value

pairs, replicated in all nodes. We use keys and values of 8 and 32

bytes, respectively, which are accessed uniformly. For all evaluated

protocols, we use 8 threads (i.e., no hyper-threading) to run the

client and protocol logic. The maximum number of reads batched

in a single ALR-batch is 128. In § 6.4, we also perform a series of

sensitivity studies on larger workload datasets, larger record sizes

as well as skewed data accesses based on the YCSB benchmark.

Evaluation fairness. We evaluate the fastest implementations

of three state-of-the-art protocols (one per category) and compare

them with their ALR-enhanced variants on the same workload

and hardware. All three chosen protocol baselines already heavily

exploit traditional batching to improve their throughput on reads.

Raft and Raft-ALR are evaluated under the exact assumptions (asyn-

chrony and linearizability). We are also not unfair to Hermes or

ZAB as our Hermes-ALR and ZAB-ALR are evaluated under strictly

more challenging assumptions (never the other way around).

Code availability. The code and the appropriate CloudLab pro-

�les to reproduce our experiments are publicly available. Detailed

instructions can be found at: https://law-theorem.com/artifact.pdf.

6 EVALUATION

In § 4, we argued that 1) for RA protocols that cannot read locally,

ALRs would signi�cantly increase throughput and 2) for RC and LS

protocols which already read locally, ALRs would enhance them

with linearizability under asynchrony while resulting in a negligible

throughput decrease and just a small latency increase (in the local

area network that we target).

We next corroborate our hypotheses by evaluating a representa-

tive protocol for each of the classes along with its ALR variant. To

do so, we perform a throughput and latency study for each protocol.

Another aspect of local reads is that due to their constant overhead,

they enable performance scaling with more replicas in read-mostly

workloads. We expect that ALRs will maintain this property and

perform a scalability study for each protocol to prove it.

Summary of results. As expected, among the three protocols

evaluated, only Raft-ALR demonstrates performance gains, achiev-

ing signi�cantly higher throughput while preserving linearizability

under asynchrony. Both ZAB-ALR and Hermes-ALR maintain simi-

lar throughput with a modest latency increase. Notably, unlike their

original protocol variants, ZAB-ALR also ensures linearizability,

while Hermes-ALR safely operates under asynchrony.

6.1 Remote-Asynchronous (RA): Raft(-ALR)

Raft steers all reads to the leader. Instead, Raft-ALR o�ers almost-

local reads in all replicas. Our hypothesis is that Raft-ALR achieves

higher throughput, similar latency and better scalability than Raft.

Throughput while varying write ratio. Figure 5 shows the

throughput of Raft and Raft-ALR in million requests per second

(M. reqs/s), while varying the writes. Raft-ALR achieves higher

throughput than Raft, especially at low write ratios. At 2% writes,

Raft-ALR achieves 2.6× higher throughput, 1.8× at 5% writes. This

is because in Raft, all reads must be executed by the leader, while in

Raft-ALR, all replicas read locally, as long as they wait for a light-

weight sync per batch of reads. The bene�t of Raft-ALR naturally

declines beyond 20% writes, as remote writes at higher write rates

involving all replicas dominate the cost. Notably, the throughput

bene�t comes while also o�ering linearizability under asynchrony.

Latency while varying load. Figure 6 shows the average and

99th% latency for Raft and Raft-ALR at 2% write ratio, while varying

the load. At same load (both at 55 M. reqs/s) the average and tail

latencies of Raft (8Ćĩ and 25Ćĩ) and Raft-ALR (15Ćĩ and 33Ćĩ) are

very close. As the load increases, Raft’s leader gets overwhelmed,

reaching a tail latency of 47Ćĩ at its maximum throughput. At the

same load Raft-ALR provides lower tail latency. Speci�cally, Raft-

ALR achieves more than 2× the throughput (156 M. reqs/s) for

about the same tail latency, but higher (yet low overall) average

latency. This is expected as Raft-ALR is able to load balance its

reads across all replicas, alleviating the load on the leader.

Scalability study. Figure 7 shows the throughput of Raft(-ALR) at

2% and 10% writes, when deploying 3, 5, and 7 replicas. This �gure

validates our hypothesis that almost-local reads allow Raft-ALR

to scale its throughput with more replicas better than Raft, which

steers all reads to the leader. Naturally, as the replicas increase, the

work required to execute a write increases linearly with them, since

the write must be applied to all replicas. Conversely, reads should

scale gracefully with more replicas. However, Raft cannot scale

its throughput with more replicas even at 2% writes. Under more

writes (e.g., 10%), the throughput degrades when adding replicas.

Conversely, Raft-ALR scales its throughput with more replicas at

lowwrite ratios (e.g., 2%). At 10% writes, Raft-ALR slightly increases

performance (5 replicas) and keeps the same performance (7 repli-

cas) compared to 3 replicas while o�ering greater fault tolerance.

Summary. Enhancing Raft with ALRs yields signi�cant through-

put gains and better scalability, while achieving similar latency

without forfeiting linearizability or asynchrony.

2839

https://law-theorem.com/artifact.pdf

A. Katsarakis and E. Giortamis et al.

Figure 8: ZAB vs. ZAB-ALR throughput. [5

replicas, varying write ratio]

Figure 9: ZAB vs. ZAB-ALR latency. [5 repli-

cas, 2% writes, varying load]
Figure 10: ZAB vs. ZAB-ALR scalability. [2%

and 10% writes, varying replicas]

6.2 Relaxed-Consistency (RC): ZAB(-ALR)

ZAB executes reads locally but o�ers weaker consistency. ZAB-

ALR o�ers linearizability under asynchrony via almost-local reads.

Our hypothesis is that ZAB-ALR matches ZAB’s throughput and

scalability, but has higher read latency.

Throughput while varying writes. Figure 8 shows the through-

put of ZAB and ZAB-ALR, while varying writes. The throughput

of ZAB-ALR is within 4% of ZAB for 1% writes and within 2% at 5%

writes. This small gap closes as the writes increase and more read

batches in ZAB-ALR exploit timely writes. Because ALRs leverage

timely writes, the batch size shrinks with the write ratio. For exam-

ple, with 10% and 25% writes, 9 and 3 reads are ALR-batched (on

average) per write. At 50% writes, both protocols o�er the same

throughput (24 M. reqs/s). This indicates that the throughput of

almost-local reads approaches that of pure local reads.

Latency while varying load. Figure 9 shows the average and

99th% latency for ZAB(-ALR) at 2% write ratio. As expected, ZAB-

ALR has higher latencies. This is because the linearizable almost-

local reads inevitably include network communication, unlike ZAB’s

relaxed local reads. Still, ZAB-ALR’s average and tail latencies are

tight and low. In practice, the average and tail latency are below 27Ćĩ

and 50Ćĩ , respectively, even under high load (e.g., 150 M. reqs/s).

Scalability study. Figure 10 shows the throughput of ZAB and

ZAB-ALR at 2% and 10% writes, when scaling replicas. The premise

was that almost-local reads a�ord the same scalability as local reads.

Here, ZAB-ALR scales its throughput similarly to ZAB. Speci�cally,

ZAB and ZAB-ALR scale as the number of replicas increase at 2%

writes. At 10%writes, both provide a minimal performance improve-

ment when scaling from 3 to 5 replicas and a small performance

degradation when scaling to 7 replicas.

Summary. The above experiments showed that ZAB-ALR incurs

slightly higher latency compared to ZAB, but matches its through-

put and scalability while o�ering linearizability.

6.3 Local-Synchronous (LS): Hermes(-ALR)

Hermes o�ers linearizable local reads from all replicas, but under

synchrony. Hermes-ALR enables linearizable almost-local reads

under asynchrony. Our hypothesis is that Hermes-ALR matches

Hermes’ throughput and scalability, but has higher latency, due to

the round-trip in almost-local reads.

Throughput while varyingwrites. Figure 11 shows the through-

put of Hermes(-ALR), while varying the write ratio. Hermes-ALR

comes within 11% of Hermes throughput for 1% writes and within

5% at 5% writes. As the write ratio (and timely writes) increase, the

gap closes. At 50% write ratio they both o�er the same throughput

(39.5 M. reqs/s). This con�rms our hypothesis that almost-local

reads introduce a minimal throughput cost over pure local reads.

Latency while varying load. Figure 12 shows the average and

99th% latency for Hermes and Hermes-ALR under varying loads

(throughput) with a 2%write ratio. As expected, Hermes has the low-

est average and tail latencies across all protocols (below 25Ćĩ even

at maximum load) since Hermes follows a load-balanced design

that avoids hotspots, ensuring that no single replica gets overloaded

and causes latency spikes. As expected, Hermes-ALR has higher

latencies due to the additional steps needed to verify the consis-

tency of the replica con�guration after performing local reads. Still,

Hermes-ALR maintains low average and tail latencies: 24Ćĩ and

53Ćĩ for 166 M. reqs/s and below 100Ćĩ even under maximum load.

Scalability study. Figure 13 shows the throughput of Hermes and

Hermes-ALR at 2% and 10% writes, when scaling the replication

degree. Hermes-ALR matches the scalability of Hermes, showing

that almost-local reads a�ord similar throughput scaling to local

reads. Speci�cally, Hermes and Hermes-ALR scale as the number

of replicas increases for both 2% and 10% write ratio. As expected,

scaling provides higher performance bene�t in lower write ratios.

Summary. The above studies demonstrated that Hermes-ALR

incurs a small latency cost compared to Hermes but matches its

throughput and scalability, while being safe under asynchrony.

6.4 Sensitivity analysis using Hermes(-ALR)

We selected Hermes—the protocol where ALRs exhibit the highest

overhead—for a series of sensitivity studies. These studies evaluate

performance with a larger dataset (up to 64 million records, the

maximum supported by Hermes’ underlying datastore) and assess

the overhead of ALRs across varying record sizes (32B, 256B, and

1KB). Finally, we analyze the impact of skewed data accesses using

Zip�an workload (with exponent a=0.99) modeled after real-world

scenarios as de�ned in the YCSB benchmark [34].

Dataset size. Figure 14 demonstrates that Hermes-ALR incurs low

overhead compared to Hermes at 1–10% write ratios, particularly

with larger datasets. This suggests that at lower write rates and

larger datasets, which result in more memory accesses, the cost

of ALRs is further reduced. For write ratios exceeding 20%, the

write cost dominates, and the throughput between Hermes-ALR

and Hermes matches for both dataset sizes.

2840

The LAW theorem: Local Reads and Linearizable Asynchronous Replication

Figure 11: Hermes vs. Hermes-ALR through-

put. [5 replicas, varying writes]

Figure 12: Hermes vs. Hermes-ALR latency.

[5 replicas, 2% writes, varying load]
Figure 13: Hermes vs. Hermes-ALR scalabil-

ity. [2% and 10% writes, varying replicas]

Value size. Figure 15 shows that the throughput gap of Hermes

and Hermes-ALR is small for smaller record sizes (32B) and becomes

even smaller as the record size increases (256B and 1KB). This shows

that the relative cost of ALRs diminishes with larger records, as

data transfer and processing outweighs the amortized sync cost.

Uniform vs. skewed (YCSB). Figure 16 shows that under both

uniform and skewed access patterns (as de�ned by the YCSB bench-

mark), the throughput gap between Hermes and Hermes-ALR is

small at low write ratios (<10%) and narrows further as the writes

increase, closing beyond 10%. This suggests that the coordination

overhead of ALRs remains minimal and is not signi�cantly in�u-

enced by workloads following real-world skewed accesses. Notably,

the throughput under skew is higher than the uniform because

Hermes(-ALR) coalesce requests to the popular keys [66].

Summary. The studies show that even for protocols like Hermes,

where ALRs exhibit relatively higher overhead, the performance

impact remains minimal. Across varying dataset sizes, record sizes,

and access patterns, Hermes-ALR maintains similar trends and high

throughput, with the gap closing at around 10% write ratios.

7 RELATED WORK
We �rst focus on practice by elaborating on existing protocols and

systems that can be improved via our exposed three-way trade-

o� and ALRs. Subsequently, we detail existing theoretical results

relevant to the L
2
AW impossibility before discussing ALRs.

7.1 Practice: Protocols and systems

Some crash-tolerant systems relax one or more L
2
AW properties

and their design can be improved by applying our ALR techniques to

provide linearizability, asynchrony, and almost-local reads. Notably,

this work focuses solely on the performance of reads; optimizing

writes is out of scope and is left as future work.

Local-Synchronous (LS). Most protocols here use leases to en-

able local reads without sacri�cing linearizability. Leases typically

protect either the elected leader [27, 30, 85, 128] or the whole replica

con�guration [16, 19, 28, 35, 39, 66–68, 95]. The Eager-ALR scheme

can be applied to these protocols to eliminate the need for syn-

chrony and ensure safety when time bounds no longer hold.

Alternatively, failure detectors [29], such as those used in Chain

Replication [123] and Quema et al.[53], could enable linearizable

local reads. However, even weaker failure detectors cannot be im-

plemented in asynchrony[105]. We believe these protocols could

replace their fault detectors with the Eager-ALR scheme, possi-

bly combining it with con�guration-based algorithms like Vertical

Paxos [79], Virtual Synchrony [20], or Alistarh et al.’s proposal [6].

Further exploration of this approach is left for future work.

Relaxed-Consistency (RC). Some crash-tolerant protocols that

allow for local reads under asynchrony are not L
2
AW-optimal,

as they o�er weaker consistency – e.g., eventual or read-your-

writes [24, 33, 110, 111, 113, 118, 122]. We focus on those providing

more intuitive guarantees. Most SMR and atomic broadcast protocols

o�er sequential consistency while executing local reads [21, 59, 103,

107]. These protocols can apply Lazy-ALRs to ensure linearizability

under asynchrony. As shown in our evaluation, this enhancement

over ZAB comes at a small cost in latency while delivering almost

the same throughput and the strongest consistency.

Remote-Asynchronous (RA). To the best of our knowledge,

besides protocols enhanced with our ALR schemes, there are no

asynchronous crash-tolerant protocols o�ering linearizable almost-

local reads from all replicas. There exist numerous crash-tolerant

protocols that o�er linearizable but costly remote reads from one or

more replicas [9, 11, 20, 26, 31, 36, 43, 69, 70, 75–78, 83, 92–94, 100,

102, 108, 126], thus incurring a signi�cant penalty on read-dominant

workloads. Most of these protocols follow the SMR scheme and can

use Lazy-ALRs to boost their performance without compromises.

7.2 Theory: Relevant impossibility results

Transactions. Several recent works explored the performance

limits of read-only transactions [8, 37, 71, 87, 88, 120]. L
2
AW studies

the limits of reads over a simple register; thus, it is a stronger im-

possibility in that respect. Although ALRscould be used to improve

read-only transactions, that is outside of the scope of this work.

Atomic registers. Several works involve (a)synchrony and read

performance in atomic (linearizable) read/write registers. Attiya

& Welch [12] showed that in synchronous, non-crash-tolerant reg-

isters, some reads cannot be local, establishing a lower bound for

the worst-case read. In this context, coherence protocols o�er lin-

earizable local reads, boosting multiprocessor performance [98]. In

§ 3.3, we discuss other distributed protocols, such as ccKVS [46].

The closest results to ours are that of asynchronous crash-tolerant

atomic registers. Dutta et al.[41] showed that it is impossible to con-

struct a crash-tolerant atomic register where both reads and writes

complete in one round-trip. Schwarzmann et al.[49] extended this,

showing that it’s also impossible for each read to complete fast.

These results imply that all asynchronous implementations need

more than one round-trip for some reads to multiple replicas, setting

a worst-case bound on reads. However, they don’t reveal how fast

2841

A. Katsarakis and E. Giortamis et al.

Figure 14: Hermes vs. Hermes-ALR - small

(1M) and large (64M) dataset. [5 replicas]
Figure 15: Hermes vs. Hermes-ALR through-

put varying record size. [5 replicas]

Figure 16: Hermes vs. Hermes-ALR uniform

and YCSB skewed (zip�an a=0.99) accesses.

any reads can be, nor whether a replica can serve any linearizable

read locally. Recently, Schwarzmann et al. [55] emphasized the need

for studying e�cient implementations with some linearizable local

reads. The L
2
AW proves that such implementations are impossible.

FLP. The FLP impossibility [45] concerns the problem of consensus.

It asserts that a crash-tolerant asynchronous implementation cannot

always attain agreement (i.e., all nodes must decide the same value)

and termination (i.e., all non-crashed nodes eventually decide). In

short, the FLP presents a tradeo� between safety and liveness on

consensus under crashes and asynchrony. The L
2
AW theorem as-

sumes a similar context, where up to one crash might occur under

asynchrony. However, the L
2
AW focuses on a tradeo� between the

safety and performance (i.e., read locality) of a read/write register.

CAP. As in L
2
AW, the CAP theorem [23, 50] identi�es a three-way

tradeo� for read/write registers under asynchrony, stating that no

implementation can always achieve all three: (1) linearizability, (2)

availability, and (3) partition tolerance. In partitioned networks,

systems must sacri�ce either linearizability or read/write progress.

The CAP does not address read locality. In its crash-free context,

protocols like a crash-free variant of Raft can o�er linearizable local

reads and writes during partition-free execution and even continue

serving local reads in a sub-partition if the leader remains connected.

In contrast, L
2
AW proves that under asynchrony, no crash-tolerant

protocol can provide a single linearizable local read—even without

partitions or crashes—highlighting a stricter impossibility than CAP,

which only forfeits safety or progress during network partitions.

Abadi [3] extended CAP informally, suggesting a consistency-

latency tradeo� without fault tolerance. Yet, systems exist that

support linearizable local reads in non-fault-tolerant settings (§ 3.3).

L
2
AW better captures this tradeo�, showing that crash-tolerant al-

gorithms cannot achieve linearizable local reads under asynchrony.

7.3 Related work and discussion on ALRs

ALRs vs. traditional batching. Traditional batching improves

read throughput, albeit imposes network and remote replica com-

pute cost linear to the batch size. The key idea of ALR-batching is

that each batch’s network and remote replica compute cost is small

(or zero – with timely writes) and independent of the reads batched.

Thus, ALRs nearly match the throughput and scalability of local

reads. Note that our evaluation shows ALRs o�ering bene�ts on

top of protocols that already heavily exploit traditional batching.

ALRs vs. alternatives to async. linearizability. Syncs in ALRs

may resemble write-back rounds, which ensure linearizable reads

in atomic register protocols like ABD [12, 91]. Contrary to ALRs,

write-backs incur substantial network and processing costs on every

replica for each read – even if traditional batching is applied.

In contrast to ZAB, where each client must issue an individual

empty write to ensure its subsequent read is linearizable, a process

that degrades programmability and performance, ALR-batches con-

solidate reads from all clients. Moreover, ALRs piggyback those

batches with local (timely) writes to achieve linearizability at zero

extra network or remote replica computation costs, and without re-

quiring programmer intervention. Our evaluation shows that ALRs

nearly match the throughput and scalability of ZAB’s local, sequen-

tially consistent reads without requiring empty writes. ALRs also

apply to other protocols (e.g., lease-based protocols like Hermes).

Coordination avoidance. Several works in distributed trans-

actional systems target to reduce coordination among nodes (e.g.,

via locks, leaders, or leases) while preserving transactional guar-

antees [13, 14, 35, 60, 64, 81, 101, 119, 121, 125, 127]. These works

either relax consistency, or asynchrony, or fail to perform (almost-

)local reads. None of these works o�ers linearizable (almost-)local

reads under asynchrony. In contrast, ALRs minimize the coordina-

tion cost via almost-local reads without compromising consistency

or asynchrony (but do not support transactions).

(Non-)applicability of ALRs. ALRs apply to leased-based and

SMR protocols, as explained in § 4. However, they are not applicable

to (decentralized majority-based non-SMR) protocols like ABD. We

have explored lowering the read cost in such protocols, but we

could not make it zero-cost or batch-size-independent as in ALRs.

8 CONCLUSION
We demonstrated the fundamental tradeo� between the consis-

tency, asynchrony, and performance of crash-tolerant protocols.

Guided by this result, we introduced almost-local reads which en-

able linearizable, asynchronous reads that are nearly as performant

as local reads. We evaluated eager and lazy schemes of ALRs on a

broad range of crash-tolerant protocols, demonstrating high perfor-

mance without compromising asynchrony or consistency. We hope

that our result will guide future system and protocol designers and

that ALRs will help accelerate existing and new replicated systems

while delivering strong consistency under asynchrony.

ACKNOWLEDGMENTS
Among others, we thank A. Miller, M. Kleppmann, and A. Petrov

for their feedback. This work is supported by the Greek Ministry of

Education & Religious A�airs via the HARSH project (project no.

ΥΠ3ΤΑ-0560901) that is carried out within the National Recovery-

Resilience Plan "Greece 2.0" with funding from NextGenerationEU.

2842

The LAW theorem: Local Reads and Linearizable Asynchronous Replication

REFERENCES
[1] Consul con�guration store. https://www.consul.io/. (Accessed on 09/06/2025).
[2] etcd Key-Value storage system. https://etcd.io/. (Accessed on 09/06/2025).
[3] Daniel Abadi. Consistency tradeo�s in modern distributed database system

design: Cap is only part of the story. Computer, 45(2):37–42, feb 2012.
[4] Marcos K. Aguilera andMichaelWal�sh. No time for asynchrony. In Proceedings

of the 12th Conference on Hot Topics in Operating Systems, HotOS’09, page 3,
USA, 2009. USENIX Association.

[5] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and Kaushik
Veeraraghavan. Challenges to Adopting Stronger Consistency at Scale. In
Proceedings of the 15th USENIX Conference on Hot Topics in Operating Systems,
HOTOS’15, pages 13–13, Berkeley, CA, USA, 2015. USENIX Association.

[6] Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and Corentin Travers. Generating
Fast Indulgent Algorithms. Theory of Computing Systems, 51(4):404–424, 2012.

[7] Peter Alsberg and John Day. A principle for resilient sharing of distributed
resources. In Proceedings of the 2nd International Conference on Software Engi-
neering, ICSE ’76, pages 562–570, USA, 1976. IEEE.

[8] Karolos Antoniadis, Diego Didona, Rachid Guerraoui, and Willy Zwaenepoel.
The impossibility of fast transactions. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 1143–1154, 2020.

[9] Vaibhav Arora, Tanuj Mittal, Divyakant Agrawal, Amr El Abbadi, Xun Xue,
Zhiyanan Zhiyanan, and Zhujianfeng Zhujianfeng. Leader or majority: Why
have one when you can have both? improving read scalability in raft-like
consensus protocols. In Proceedings of the 9th USENIX Conference on Hot Topics
in Cloud Computing, HotCloud’17, page 14, USA, 2017. USENIX Association.

[10] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
Workload Analysis of a Large-scale Key-value Store. SIGMETRICS Perform. Eval.
Rev., 40(1):53–64, June 2012.

[11] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing Memory Robustly in
Message-passing Systems. J. ACM, 42(1):124–142, 1995.

[12] Hagit Attiya and Jennifer Welch. Sequential consistency versus linearizability.
ACM Trans. Comput. Syst., 12(2):91–122, May 1994.

[13] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. Coordination avoidance in database systems. Proc. VLDB Endow.,
8(3):185–196, November 2014.

[14] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica.
Scalable atomic visibility with ramp transactions. ACM Trans. Database Syst.,
41(3), July 2016.

[15] Peter Bailis and Kyle Kingsbury. The network is reliable: An informal survey
of real-world communications failures. Queue, 12(7):20–32, jul 2014.

[16] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
Megastore: Providing scalable, highly available storage for interactive services.
In Proceedings of the Conference on Innovative Data system Research (CIDR),
pages 223–234, Asilomar, CA, 2011. .

[17] Luis Andre Barroso, Jimmy Clidaras, and Urs Hoelzle. The Datacenter as a
Computer:An Introduction to the Design of Warehouse-Scale Machines. Morgan
& Claypool, 2013.

[18] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
Attack of the killer microseconds. Commun. ACM, 60(4):48–54, 2017.

[19] Changyu Bi, Vassos Hadzilacos, and Sam Toueg. Parameterized algorithm for
replicated objects with local reads. 2022.

[20] Ken Birman and Thomas Joseph. Exploiting virtual synchrony in distributed
systems. In Proceedings of the Eleventh ACM Symposium on Operating Systems
Principles, SOSP ’87, pages 123–138, USA, 1987. ACM.

[21] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters,
and Peng Li. Paxos Replicated State Machines As the Basis of a High-
performance Data Store. In Proceedings of the 8th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’11, pages 141–154, USA, 2011.
USENIX Association.

[22] Eric Brewer. Towards robust distributed systems. In Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed Computing, PODC ’00,
pages 7–, USA, 2000. ACM.

[23] Eric Brewer. CAP twelve years later: How the" rules" have changed. Computer,
45(2):23–29, 2012.

[24] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkatara-
mani. TAO: Facebook’s Distributed Data Store for the Social Graph. In Pro-
ceedings of the 2013 Conference on Annual Technical Conference, ATC’13, pages
49–60, Berkeley, 2013. USENIX.

[25] Sebastian Burckhardt. Principles of Eventual Consistency. Found. Trends
Program. Lang., 1(1-2):1–150, October 2014.

[26] Matthew Burke, Audrey Cheng, and Wyatt Lloyd. Gry�: Unifying consensus
and shared registers. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 591–617, Santa Clara, CA, February 2020.

USENIX Association.
[27] Mike Burrows. The Chubby Lock Service for Loosely-coupled Distributed Sys-

tems. In Proceedings of the 7th USENIX Symposium on Operating Systems Design
and Implementation - Volume 7, OSDI ’06, pages 24–24, USA, 2006. USENIX
Association.

[28] Tushar Chandra, Vassos Hadzilacos, and SamToueg. An algorithm for replicated
objects with e�cient reads. In Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, PODC ’16, pages 325–334, New York, NY,
USA, 2016. ACM.

[29] Tushar Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225–267, 1996.

[30] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos Made Live:
An Engineering Perspective. In Proceedings of the Twenty-sixth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’07, pages 398–407,
USA, 2007. ACM.

[31] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. Linearizable quo-
rum reads in paxos. In Proceedings of the 11th USENIX Conference on Hot Topics in
Storage and File Systems, HotStorage’19, page 8, USA, 2019. USENIX Association.

[32] Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa Lawande, Hamza Qadeer, Ja-
son Chan, Harrison Tin, Ryan Zhao, Peter Bailis, Mahesh Balakrishnan, Nathan
Bronson, Natacha Crooks, and Ion Stoica. Taobench: An end-to-end benchmark
for social network workloads. Proc. VLDB Endow., 15(9):1965–1977, may 2022.

[33] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB Endow.,
1(2):1277–1288, aug 2008.

[34] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154, New
York, NY, USA, 2010. ACM.

[35] James Corbett, Je�rey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Tay-
lor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally distributed
database. ACM Trans. Comput. Syst., 31(3):22, 2013.

[36] Huynh Tu Dang, Pietro Bressana, HanWang, Ki Suh Lee, Noa Zilberman, Hakim
Weatherspoon, Marco Canini, Fernando Pedone, and Robert Soulé. P4xos:
Consensus as a network service. IEEE/ACM Trans. Netw., 28(4):1726–1738, aug
2020.

[37] Diego Didona, Panagiota Fatourou, Rachid Guerraoui, Jingjing Wang, andWilly
Zwaenepoel. Distributed transactional systems cannot be fast. In The 31st
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’19, page
369–380, New York, NY, USA, 2019. Association for Computing Machinery.

[38] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hod-
son. FaRM: Fast Remote Memory. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), pages 401–414, Seattle, WA, 2014.
USENIX Association.

[39] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale,
Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No
Compromises: Distributed Transactions with Consistency, Availability, and
Performance. In Proceedings of the Symposium on Operating Systems Principles,
SOSP ’15, pages 54–70, New York, 2015. ACM.

[40] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, KuangchingWang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference, ATC ’19, pages 1–14, July 2019.

[41] Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Arindam Chakraborty. How
fast can a distributed atomic read be? In Proceedings of the Twenty-Third An-
nual ACM Symposium on Principles of Distributed Computing, PODC ’04, page
236–245, New York, NY, USA, 2004. Association for Computing Machinery.

[42] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the pres-
ence of partial synchrony. J. ACM, 35(2):288–323, April 1988.

[43] Niklas Ekström and Seif Haridi. A Fault-Tolerant Sequentially Consistent DSM
With a Compositional Correctness Proof, 2016.

[44] A. Fiat and A. Shamir. Generalized ’write-once’ memories. IEEE Trans. Inf.
Theor., 30(3):470–480, September 2006.

[45] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
Distributed Consensus with One Faulty Process. J. ACM, 32(2):374–382, April
1985.

[46] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald, Boris
Grot, and Vijay Nagarajan. Scale-out ccNUMA: Exploiting Skew with Strongly
Consistent Caching. In Proceedings of the EuroSys Conference, EuroSys ’18,
pages 21:1–21:15, USA, 2018. ACM.

2843

https://www.consul.io/
https://etcd.io/

A. Katsarakis and E. Giortamis et al.

[47] Vasilis Gavrielatos, Antonios Katsarakis, and Vijay Nagarajan. Odyssey: The
impact of modern hardware on strongly-consistent replication protocols. In Pro-
ceedings of the Sixteenth European Conference on Computer Systems, EuroSys ’21,
page 245–260, New York, NY, USA, 2021. Association for Computing Machinery.

[48] Vasilis Gavrielatos, Antonios Katsarakis, Vijay Nagarajan, Boris Grot, and Arpit
Joshi. Kite: E�cient and available release consistency for the datacenter. In
Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’20, page 1–16, New York, NY, USA, 2020.
Association for Computing Machinery.

[49] Chryssis Georgiou, Nicolas Nicolaou, and Alexander A. Shvartsman. On the
robustness of (semi) fast quorum-based implementations of atomic shared mem-
ory. In Proceedings of the Twenty-Seventh ACM Symposium on Principles of
Distributed Computing, PODC ’08, page 425, New York, NY, USA, 2008. Associa-
tion for Computing Machinery.

[50] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. Acm Sigact News, 33(2):51–
59, 2002.

[51] C. Gray and D. Cheriton. Leases: An e�cient fault-tolerant mechanism for
distributed �le cache consistency. In Proceedings of the Twelfth ACM Symposium
on Operating Systems Principles, SOSP ’89, pages 202–210, New York, NY, USA,
1989. ACM.

[52] Rachid Guerraoui. Indulgent algorithms (preliminary version). In Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’00, page 289–297, New York, NY, USA, 2000. Association for Computing
Machinery.

[53] Rachid Guerraoui, Dejan Kostic, Ron R. Levy, and Vivien Quema. A High
Throughput Atomic Storage Algorithm. In Proceedings of the 27th Interna-
tional Conference on Distributed Computing Systems, ICDCS ’07, pages 19–,
Washington, DC, USA, 2007. IEEE Computer Society.

[54] Theophanis Hadjistasi. Memory access e�ciency in distributed atomic object
implementations. 2019.

[55] Theophanis Hadjistasi and Alexander A Schwarzmann. Consistent distributed
memory services: Resilience and e�ciency. In 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[56] Maurice Herlihy and Jeannette Wing. Linearizability: A Correctness Condition
for Concurrent Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July
1990.

[57] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. Tidb: a raft-based htap database.
Proceedings of the VLDB Endowment, 13(12):3072–3084, 2020.

[58] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceed-
ings of the USENIX Annual Technical Conference, USENIX ATC’10, pages 11–11,
Berkeley, CA, USA, 2010. USENIX Association.

[59] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano, Weijia Song,
Edward Tremel, Robbert Van Renesse, Sydney Zink, and Kenneth P. Birman.
Derecho: Fast state machine replication for cloud services. Trans. Comput. Syst.,
36(2):4:1–4:49, 2019.

[60] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. NetChain: Scale-Free Sub-RTT coordination.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), pages 35–49, Renton, WA, April 2018. USENIX Association.

[61] Flavio P. Junqueira, Benjamin C. Reed, and Marco Sera�ni. Zab: High-
performance broadcast for primary-backup systems. In Proceedings of the
IEEE 41st International Conference on Dependable Systems&Networks, DSN ’11,
pages 245–256, USA, 2011. IEEE.

[62] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan, Todd P�eiger,
Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell, Vipul Modi, Mansoor
Mohsin, Ray Kong, Anmol Ahuja, Oana Platon, Alex Wun, Matthew Snider,
Chacko Daniel, Dan Mastrian, Yang Li, Aprameya Rao, Vaishnav Kidambi,
RandyWang, Abhishek Ram, Sumukh Shivaprakash, Rajeet Nair, AlanWarwick,
Bharat S. Narasimman, Meng Lin, Je�rey Chen, Abhay Balkrishna Mhatre,
Preetha Subbarayalu, Mert Coskun, and Indranil Gupta. Service Fabric: A
Distributed Platform for Building Microservices in the Cloud. In Proceedings of
the EuroSys Conference, EuroSys ’18, pages 1–15, USA, 2018. ACM.

[63] Anuj Kalia, Michael Kaminsky, and David Andersen. Design Guidelines for High
Performance RDMA Systems. In Proceedings of the 2016 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC ’16, pages 437–450, Berkeley,
CA, USA, 2016. USENIX Association.

[64] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast, scalable
and simple distributed transactions with Two-Sided (RDMA) datagram RPCs.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 185–201, Savannah, GA, November 2016. USENIX Association.

[65] Antonios Katsarakis. Hermes protocol. https://github.com/ease-lab/Hermes,
2020. (Accessed on 09/06/2025).

[66] Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash Katebzadeh, Arpit Joshi,
Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan. Hermes: A fast, fault-
tolerant and linearizable replication protocol. ASPLOS ’20, page 201–217, New

York, NY, USA, 2020. Association for Computing Machinery.
[67] Antonios Katsarakis, Yijun Ma, Zhaowei Tan, Andrew Bainbridge, Matthew

Balkwill, Aleksandar Dragojevic, Boris Grot, Bozidar Radunovic, and Yongguang
Zhang. Zeus: Locality-aware distributed transactions. In Proceedings of the
Sixteenth European Conference on Computer Systems, EuroSys ’21, page 145–161,
New York, NY, USA, 2021. Association for Computing Machinery.

[68] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent: Postgres-r, a
new way to implement database replication. In VLDB, pages 134–143. Citeseer,
2000.

[69] Gyuyeong Kim and Wonjun Lee. In-network leaderless replication for dis-
tributed data stores. Proc. VLDB Endow., 15(7):1337–1349, 2022.

[70] Marios Kogias and Edouard Bugnion. Hovercraft: Achieving scalability and
fault-tolerance for microsecond-scale datacenter services. In Proceedings of the
Fifteenth European Conference on Computer Systems, EuroSys ’20, New York,
NY, USA, 2020. Association for Computing Machinery.

[71] Kishori M. Konwar, Wyatt Lloyd, Haonan Lu, and Nancy Lynch. Snow revisited:
Understanding when ideal read transactions are possible. In 2021 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages 922–931,
2021.

[72] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing
high availability using lazy replication. ACM Trans. Comput. Syst., 10(4):360–391,
nov 1992.

[73] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

[74] Leslie Lamport. On interprocess communication. Distributed computing, 1(2):86–
101, 1986.

[75] Leslie Lamport. The part-time parliament. ACM Transactions on Computer
Systems (TOCS), 16(2):133–169, 1998.

[76] Leslie Lamport. Generalized consensus and Paxos, 2005.
[77] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.
[78] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.
[79] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical paxos and primary-

backup replication. In Proceedings of the Symposium on Principles of Distributed
Computing, PODC ’09, pages 312–313, USA, 2009. ACM.

[80] K�r Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer. Modular
Composition of Coordination Services. In USENIX Annual Technical Conference,
2016.

[81] Cheng Li, Joao Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and
Viktor Vafeiadis. Automating the choice of consistency levels in replicated
systems. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages
281–292, Philadelphia, PA, June 2014. USENIX Association.

[82] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and
Rodrigo Rodrigues. Making geo-replicated systems fast as possible, consistent
when necessary. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages 265–278, Berkeley, CA,
USA, 2012. USENIX Association.

[83] Jialin Li, EllisMichael, Naveen Kr. Sharma, Adriana Szekeres, andDan R. K. Ports.
Just Say No to Paxos Overhead: Replacing Consensus with Network Ordering.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, pages 467–483, USA, 2016. USENIX Association.

[84] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. Tales of the
tail: Hardware, os, and application-level sources of tail latency. In Proceedings
of the ACM Symposium on Cloud Computing, SOCC ’14, page 1–14, New York,
NY, USA, 2014. Association for Computing Machinery.

[85] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba Shrira,
and Michael Williams. Replication in the harp �le system. In Proceedings of
the Thirteenth ACM Symposium on Operating Systems Principles, SOSP ’91, page
226–238, New York, NY, USA, 1991. Association for Computing Machinery.

[86] Wyatt Lloyd, Michael Freedman, Michael Kaminsky, and David Andersen. Don’t
settle for eventual: Scalable causal consistency for wide-area storage with cops.
In Proceedings of the 23rd Symposium on Operating Systems Principles, SOSP ’11,
pages 401–416, USA, 2011. ACM.

[87] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt Lloyd.
The snow theorem and latency-optimal read-only transactions. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, page 135–150, USA, 2016. USENIX Association.

[88] Haonan Lu, Siddhartha Sen, and Wyatt Lloyd. Performance-optimal read-only
transactions. In Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation, OSDI’20, USA, 2020. USENIX Association.

[89] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun Song,
Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd. Existential consistency:
Measuring and understanding consistency at facebook. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, page 295–310, New
York, NY, USA, 2015. Association for Computing Machinery.

[90] Aldelir Fernando Luiz, Lau Cheuk Lung, and Miguel Correia. Mitra: byzantine
fault-tolerant middleware for transaction processing on replicated databases.
SIGMOD Rec., 43(1):32–38, May 2014.

2844

https://github.com/ease-lab/Hermes

The LAW theorem: Local Reads and Linearizable Asynchronous Replication

[91] Nancy Lynch and Alexander Shvartsman. Robust emulation of shared memory
using dynamic quorum-acknowledged broadcasts, 1997.

[92] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building E�-
cient Replicated State Machines for WANs. In Proceedings of the 8th Conference
on Operating Systems Design and Implementation, OSDI’08, pages 369–384,
Berkeley, CA, USA, 2008. USENIX.

[93] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. High performance
state-machine replication. In Proceedings of the 41st International Conference
on Dependable Systems&Networks, DSN ’11, pages 454–465, USA, 2011. IEEE
Computer Society.

[94] Iulian Moraru, David Andersen, and Michael Kaminsky. There is More Con-
sensus in Egalitarian Parliaments. In Proceedings of the 24th Symposium on
Operating Systems Principles, SOSP ’13, pages 358–372, USA, 2013. ACM.

[95] Iulian Moraru, David Andersen, and Michael Kaminsky. Paxos quorum leases:
Fast reads without sacri�cing writes. In Proceedings of the Symposium on Cloud
Computing, SOCC ’14, pages 1–13, USA, 2014. ACM.

[96] Achour Mostéfaoui, Michel Raynal, andMatthieu Roy. Time-e�cient read/write
register in crash-prone asynchronous message-passing systems. Computing,
101(1):3–17, January 2019.

[97] Antoine Murat, Clément Burgelin, Athanasios Xygkis, Igor Zablotchi, Mar-
cos Kawazoe Aguilera, and Rachid Guerraoui. Swarm: Replicating shared
disaggregated-memory data in no time. In Proceedings of the ACM SIGOPS 30th
Symposium on Operating Systems Principles, SOSP ’24, page 24–45, New York,
NY, USA, 2024. Association for Computing Machinery.

[98] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, David A. Wood, and Natalie En-
right Jerger. A Primer on Memory Consistency and Cache Coherence. Morgan &
Claypool Publishers, 2nd edition, 2020.

[99] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David
Sta�ord, Tony Tung, and Venkateshwaran Venkataramani. Scaling Memcache
at Facebook. In Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation, nsdi’13, pages 385–398, Berkeley, CA, USA, 2013.
USENIX Association.

[100] Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus
Algorithm. In Proceedings of the USENIX Annual Technical Conference, USENIX
ATC’14, pages 305–320, USA, 2014. USENIX.

[101] Daniel Peng and Frank Dabek. Large-scale incremental processing using dis-
tributed transactions and noti�cations. In 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 10), 2010.

[102] Marius Poke and Torsten Hoe�er. DARE: High-Performance State Machine
Replication on RDMA Networks. In Proceedings of the 24th International Sympo-
sium on High-Performance Parallel and Distributed Computing, HPDC ’15, pages
107–118, USA, 2015. ACM.

[103] Marius Poke, Torsten Hoe�er, and Colin W. Glass. AllConcur: Leaderless Con-
current Atomic Broadcast. In Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’17, pages 205–218,
USA, 2017. ACM.

[104] Xiaodong Qi, Zhihao Chen, Zhao Zhang, Cheqing Jin, Aoying Zhou, Haizhen
Zhuo, and Quangqing Xu. A byzantine fault tolerant storage for permissioned
blockchain. In Proceedings of the 2021 International Conference on Management
of Data, SIGMOD ’21, page 2770–2774, New York, NY, USA, 2021. Association
for Computing Machinery.

[105] Michel Raynal. Eventual Leader Service in Unreliable Asynchronous Systems:
Why? How? Research Report PI 1847, 2007.

[106] Michel Raynal. Concurrent programming: algorithms, principles, and foundations.
Springer Science & Business Media, 2012.

[107] Benjamin Reed and Flavio P. Junqueira. A Simple Totally Ordered Broadcast
Protocol. In Proceedings of the 2nd Workshop on Large-Scale Distributed Systems
and Middleware, LADIS ’08, pages 2:1–2:6, USA, 2008. ACM.

[108] Yasushi Saito, Svend Frølund, Alistair Veitch, Arif Merchant, and Susan Spence.
Fab: Building distributed enterprise disk arrays from commodity components.
In Proceedings of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XI, page 48–58, New
York, NY, USA, 2004. Association for Computing Machinery.

[109] Fred B Schneider. The fail-stop processor approach. Concurency control and
reliability in distributed systems, Chapitre, 13:370–394, 1987.

[110] William Schultz, Tess Avitabile, and Alyson Cabral. Tunable consistency in
mongodb. Proc. VLDB Endow., 12(12):2071–2081, 2019.

[111] Russell Sears, Mark Callaghan, and Eric Brewer. Rose: Compressed, log-
structured replication. Proceedings of the VLDB Endowment, 1(1):526–537, 2008.

[112] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Con�ict-
free replicated data types. In Proceedings of the 13th International Conference on
Stabilization, Safety, and Security of Distributed Systems, SSS’11, page 386–400,
Berlin, Heidelberg, 2011. Springer-Verlag.

[113] Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han, Dmitri Petrov, Jim Carrig, John
Hugg, and Nathan Bronson. FlightTracker: Consistency across Read-Optimized
Online Stores at Facebook. USENIX Association, USA, 2020.

[114] Je� Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric Rollins, Bart Samwel,
Radek Vingralek, Chad Whipkey, Xin Chen, Beat Jegerlehner, Kyle Little�eld,
and Phoenix Tong. F1: the fault-tolerant distributed rdbms supporting google’s
ad business. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’12, page 777–778, New York, NY, USA, 2012.
Association for Computing Machinery.

[115] Je� Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric
Rollins, Mircea Oancea, Kyle Little�eld, David Menestrina, Stephan Ellner, John
Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte. F1: A distributed sql
database that scales. Proc. VLDB Endow., 6(11):1068–1079, aug 2013.

[116] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, AndyWoods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Ja�ray, Lucy Zhang, and
Peter Mattis. Cockroachdb: The resilient geo-distributed sql database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’20, page 1493–1509, New York, NY, USA, 2020. Association
for Computing Machinery.

[117] Je� Terrace and Michael J. Freedman. Object Storage on CRAQ: High-
throughput Chain Replication for Read-mostly Workloads. In Proceedings
of the 2009 Conference on USENIX Annual Technical Conference, USENIX’09,
pages 11–11, Berkeley, CA, USA, 2009. USENIX Association.

[118] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrish-
nan, Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service
level agreements for cloud storage. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, page 309–324, New York,
NY, USA, 2013. Association for Computing Machinery.

[119] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J. Abadi. Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’12, page 1–12, New York, NY, USA,
2012. Association for Computing Machinery.

[120] Alejandro Z. Tomsic, Manuel Bravo, andMarc Shapiro. Distributed transactional
reads: The strong, the quick, the fresh & the impossible. In Proceedings of
the 19th International Middleware Conference, Middleware ’18, page 120–133,
New York, NY, USA, 2018. Association for Computing Machinery.

[121] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy transactions in multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, page
18–32, New York, NY, USA, 2013. Association for Computing Machinery.

[122] Albert van der Linde, João Leitão, and Nuno M. Preguiça. Practical client-side
replication: Weak consistency semantics for insecure settings. Proc. VLDB
Endow., 13(11):2590–2605, 2020.

[123] Robbert van Renesse and Fred B. Schneider. Chain Replication for Supporting
High Throughput and Availability. In Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation, OSDI’04, pages 7–7,
Berkeley, CA, USA, 2004. USENIX.

[124] Werner Vogels. Eventually Consistent. Commun. ACM, 52(1):40–44, 2009.
[125] Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein. Anna:

A kvs for any scale. IEEE Transactions on Knowledge and Data Engineering,
33(2):344–358, 2021.

[126] HamidReza Zare, Viveck R. Cadambe, Bhuvan Urgaonkar, Nader Alfares, Pra-
neet Soni, Chetan Sharma, and Arif Merchant. Legostore: A linearizable geo-
distributed store combining replication and erasure coding. Proc. VLDB Endow.,
15(10):2201–2215, 2022.

[127] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and
Dan R. K. Ports. Building consistent transactions with inconsistent replication.
ACM Trans. Comput. Syst., 35(4):12:1–12:37, December 2018.

[128] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica, and
Xin Jin. Harmonia: Near-linear scalability for replicated storage with in-network
con�ict detection. Proc. VLDB Endow., 13(3):376–389, November 2019.

2845

	Abstract
	1 Introduction
	2 Background
	2.1 Datastores and workload characteristics
	2.2 Replication and consistency
	2.3 Synchrony and asynchrony
	2.4 Crash-tolerant replication protocols

	3 The L.72AW impossibility
	3.1 Model and definitions
	3.2 The proof of the impossibility
	3.3 L.72AW tightness
	3.4 Extending the L.72AW boundaries

	4 Almost-Local Reads (ALRs)
	4.1 Eager-ALRs for Local-Synchronous (LS)
	4.2 Lazy-ALRs for Relaxed-Consistency (RC) and Remote-Asynchronous (RA)
	4.3 Performance optimizations
	4.4 Real-world use-cases of ALRs

	5 Experimental methodology
	5.1 Evaluated protocols
	5.2 Testbed

	6 Evaluation
	6.1 Remote-Asynchronous (RA): Raft(-ALR)
	6.2 Relaxed-Consistency (RC): ZAB(-ALR)
	6.3 Local-Synchronous (LS): Hermes(-ALR)
	6.4 Sensitivity analysis using Hermes(-ALR)

	7 Related Work
	7.1 Practice: Protocols and systems
	7.2 Theory: Relevant impossibility results
	7.3 Related work and discussion on ALRs

	8 Conclusion
	Acknowledgments
	References

