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ABSTRACT
Link prediction (LP) is crucial for Knowledge Graphs (KG) com-
pletion but commonly suffers from interpretability issues. While
several methods have been proposed to explain embedding-based
LP models, they are generally limited to local explanations on KG
and are deficient in providing human interpretable semantics. Based
on real-world observations of the characteristics of KGs from mul-
tiple domains, we propose to explain LP models in KG with path-
based explanations. An integrated framework, namely eXpath, is
introduced which incorporates the concept of relation path with
ontological closed path rules to enhance both the efficiency and
effectiveness of LP interpretation. Notably, the eXpath explana-
tions can be fused with other single-link explanation approaches
to achieve a better overall solution. Extensive experiments across
benchmark datasets and LP models demonstrate that introducing
eXpath can boost the quality of resulting explanations by about
20% on two key metrics and reduce the required explanation time
by 61.4%, in comparison to the best existing method. Case studies
further highlight eXpath’s ability to provide more semantically
meaningful explanations through path-based evidence.
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1 INTRODUCTION
Knowledge graphs (KGs) [1, 5, 21] commonly suffer from incom-
pleteness, such that link prediction (LP) becomes a crucial task for
KG completion, aiming to predict potential missing relationships
between entities within a KG. In the deep learning era, advanced
KG embedding models (KGE) such as ComplEx [33], TransE [34],
and ConvE [10] have been applied to perform the LP task success-
fully. Yet, due to the inherent black-box nature of deep learning,
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Figure 1: An example of material KG for synthesis route
inference. To explain the predicted link 〈material: BEMHUX,
hasSolvent, solvent: DCM〉 (the dotted red link on the top),
two key KG paths (blue links on the middle/bottom) are
detected by our method: BEMHUX and DCM share the same
sub-structure; BEMHUX, appearing in the same paper with
BEMHIL, is aslo synthesized using theDCM solvent. Classical
LP explanations (e.g., Kelpie) will select only the single-hop
links as explanations (thickened blue links).

how to interpret these LP models remains a daunting issue for KG
applications. For example, in financial KGs used to make high-stake
decisions such as fraud or credit card risk detection, interpretability
is required not only for customer engagement purpose [25], but
also by the latest law enforcement [9].

Various methods have been developed to interpret the behaviour
of LP models, e.g., to explain graph neural network (GNN) based
predictive tasks [6, 35, 39], embedding-based models [3, 37], and
providing subgraph-based explanations [36, 38, 41]. On KG, the
recently proposed adversarial attack methods [3, 28, 31] become a
major class of approaches for explaining LP results. The adversarial
method captures a minimal modification to KG as an optimal expla-
nation if only a maximal negative impact is detected on the target
prediction. In particular, Kelpie [31, 32] introduces entity mimic and
post-training techniques to quantify the model’s sensitivity to link
removal and addition. Despite the success of LP explanation models
on KG, they have key limitations in at least two aspects. First, in
most methods, only local explanations related to the head or tail
entity of the predicted link are considered without exploring the
full KG. Second, the explanations generally focus on maximizing
computation-level explainability, e.g., the perturbation to predic-
tive power when adding/removing the potential explanation link.

2818

https://doi.org/10.14778/3746405.3746410
https://github.com/cs-anonymous/eXpath
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746410
https://www.acm.org/publications/policies/artifact-review-and-badging-current


They mostly lack semantic-level explainability, which is extremely
important for human understanding.

In this work, we are motivated by the real-world observations
that corresponds to the limitation of existing LP explanation meth-
ods. For instance, in material KGs, experts may prefer path-based
explanations—such as shared sub-structures or co-occurrence in the
same research paper—over single-hop links, as they capture richer
semantics such as causal relationships. Meanwhile, classical meth-
ods (e.g., Kelpie) focus on local, entity-centric explanations (e.g.,
material properties), missing the opportunity to detect multi-hop
path explanation. To overcome this limitation, we propose eXpath,
a path-based explanation framework that not only suggests mini-
mal KG modifications but also highlights semantically meaningful
paths justifying each prediction.

Note that the idea of path-based explanation has also been stud-
ied in the recent work of Power-Link [6] and PaGE-Link [39]. How-
ever, these works focus on explaining GNN-based embedding mod-
els and leveraging graph masks to produce a single explanation
capable of assessing numerous KG paths at the same time. In com-
parison, we consider the explanation by the adversarial attack of
factorization-based embedding models, which evaluates only one
or a few KG modifications at a time. When generating adversar-
ial explanation, selecting the optimal path from a thousands of
candidates poses significant computational challenges. Moreover,
another pragmatic challenge lies in the evaluation of path expla-
nation. While the adversarial method works well in quantifying
the effectiveness of a single-link explanation, adding/deleting an
entire path can lead to substantial KG changes that are difficult to
evaluate by the same adversarial method. The contribution of this
work is to address the above challenges as summarized below:

• Based on the attributed characteristics of KG, we introduce
the concept of relation path, which aggregates paths by
their relation types. The explanation analysis then works
on the level of relation paths, greatly reducing the computa-
tional cost while augmenting the semantics of explanations;

• On the evaluation of path-based explanations, we propose
to borrow ontology theory, particularly the closed path rule
and property transition rule, which not only reassures the
path-based semantics but also guarantees high-occurrence
explanations within the whole KG dataset;

• Through extensive experiments across multiple KG datasets
and embedding models, we demonstrate the effectiveness
of our method, which significantly outperforms existing LP
explanation models. Case study also reveals the consistency
of path-based explanations with ground-truth semantics.

2 RELATEDWORK
2.1 The Explanation of Knowledge Graph Link

Prediction (KGLP)
Explainability in Knowledge Graph Link Prediction (KGLP) is a crit-
ical research area due to the increasing complexity of models used
in link prediction tasks. General-purpose explainability techniques
are widely used to understand the input features most responsi-
ble for a prediction. LIME [29] creates local, interpretable models
by perturbing input features and fitting regression models, while

SHAP [19] assigns feature importance scores using Shapley val-
ues from game theory. ANCHOR [30] identifies consistent feature
sets that ensure reliable predictions across samples. These frame-
works have been widely adopted in various domains, including
adaptations for graph-based tasks.

GNN-based LP explanation primarily focuses on interpreting
the internal workings of graph neural networks for link prediction.
Techniques like GNNExplainer [35] and PGExplainer [20] identify
influential subgraphs through mutual information, providing in-
sights into node and graph-level predictions, although they are not
directly applicable to link prediction tasks. Other methods, such as
SubgraphX [36] and GStarX [38], use game theory values to select
subgraphs relevant to link prediction. Additionally, PaGE-Link [39]
and Power-Link [6] argues that paths are more interpretable than
subgraphs and extends the explanation task to the link prediction
problem with graph-powering technique. However, these methods
aim to identify subsets of the graph (e.g., via weighted masks) that
explain predictions in the context of GNN-based models, different
from adversarial attack-based explanations.

2.2 Adversarial Attacks on KGE
Adversarial attacks on KGEmodels have gained attention for assess-
ing and improving their robustness. These attacks focus primarily
on providing local, instance-level explanations. The goal is to intro-
duce minimal modifications to a knowledge graph that maximizes
the impact on the prediction. Existing approaches fall into two main
categories: model-dependent and model-agnostic methods.

Model-dependent methods propose algorithms that approximate
the impact of graph modifications on specific predictions and iden-
tify crucial changes. Criage [28] applies first-order Taylor approxi-
mations for estimating the impact of removing facts on prediction
scores. Data Poisoning [3, 37] manipulates embeddings by perturb-
ing entity vectors to degrade themodel’s scoring function, highlight-
ing pivotal facts during training. ExamplE [16] introduce ExamplE
heuristics, which generate disconnected triplets as influential ex-
amples in latent space. KE-X [41] leverages information entropy
to quantify the importance of explanation candidates and explains
KGE-based models by extracting valuable subgraphs. While these
methods offer valuable insights, they typically necessitate complete
access to the internal mechanics of the model and require extensive
theoretical derivations tailored to each architecture.

Recent research has also focused on model-agnostic adversarial
attacks, which do not require knowledge of the underlying model
architecture and can be applied across architectures. LinkLogic [17]
generates path-based explanations by perturbing query triples and
using a Lasso regression surrogate model to rank paths based on
their contributions. KGEAttack [2] uses rule learning and abductive
reasoning to identify critical triples influencing predictions, yet it
employs simpler rules and does not consider multiple long rules
supporting the facts. Kelpie [31] explains KGE-based predictions
by identifying influential training facts, utilizing mimic and post-
training techniques to sense the underlying embedding mechanism
without relying on model structure. However, these methods are
limited to fact-based explanations that focus only on local connec-
tions to the head entity (Figure 1’s thickened blue links) without
capturing the multi-relational context.
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2.3 Ontological Rules for Knowledge Graph
Ontological rules for knowledge graphs [11, 12] have been a promi-
nent area of research, as they provide symbolic and interpretable
reasoning over knowledge graph data. AMIE [13, 14] and Any-
BURL [23, 24] extract rules from large RDF knowledge bases and
employ efficient pruning techniques to generate high-quality rules,
which are then used to infer missing facts in knowledge graphs.
Path-based rule learning has also been explored to improve link pre-
diction explainability. Bhowmik [4] proposes a framework empha-
sizing reasoning paths to improve link prediction interpretability in
evolving knowledge graphs. RLvLR [26, 27] combines embedding
techniques with efficient sampling to optimize rule learning for
large-scale and streaming KGs. While these methods excel in struc-
tural reasoning, they are limited in directly explaining predictions
made by embedding-based models.

Recent works have explored the combination of symbolic rea-
soning with KGE models. For instance, Guo et al.[15] introduced
rules as background knowledge to enhance the training of em-
bedding models, while Zhang et al.[40] proposed an alternating
training scheme that incorporates symbolic rules. Chudasama et
al.[8] enhance explainability by leveraging semantics and causal
relationships, improving trust and reliability. Meilicke et al. [22]
demonstrated that symbolic and sub-symbolic models share com-
monalities, suggesting that KGE models may be explained using
rule-based approaches. However, these methods have not been
directly applied to explain predictions made by KGE models.

3 BACKGROUND AND PROBLEM DEFINITION
3.1 KGLP Explanation
Knowledge Graphs (KGs), denoted as 𝐾𝐺 = (E,R,G), are struc-
tured representations of real-world facts, where entities from E
are connected by directed edges in G, each representing semantic
relations from R. These edges G ⊆ E × R × E, represent facts of
the form 𝑓 = ⟨ℎ, 𝑟, 𝑡⟩, where ℎ is the head entity, 𝑟 is the relation,
and 𝑡 is the tail entity. Link Prediction (LP) aims to predict missing
relations between entities in a KG. The standard approach to LP
is embedding-based, where entities and relations are embedded
into continuous vector spaces, and a scoring function, 𝑓𝑟 (ℎ, 𝑡), is
used to measure the plausibility of a fact. Evaluation of LP mod-
els is typically performed using metrics such as mean reciprocal
rank (MRR), which measures how well the model ranks the correct
entities when predicting missing heads or tails in the test set G𝑡𝑒𝑠𝑡 .

𝑀𝑅𝑅 =
1

2|G𝑡𝑒𝑠𝑡 |
∑︂

𝑓 ∈G𝑡𝑒𝑠𝑡

(︃
1

rkℎ (𝑓 )
+ 1
rk𝑡 (𝑓 )

)︃
(1)

where rk𝑡 (𝑓 ) and rkℎ (𝑓 ) represents the rank of the target candidate
𝑡 in the query ⟨ℎ, 𝑟, ?⟩ and ⟨?, 𝑟 , 𝑡⟩ respectively.

Understanding the reasoning behind these predictions is essen-
tial for model transparency and trust. To address this, explanation
methods for embedding-based LP focus on providing instance-level
insights into predictions, revealing underlying features like prox-
imity, shared neighbors, or similar latent factors. Since directly
perturbing the model’s architecture or embeddings is challenging,
explanation methods often rely on adversarial perturbations within

the training data, such as modifications to the neighborhood of the
target triple, to assess the robustness of KGE models.

3.2 Adversarial Attack Problem
Adversarial attacks in the context of KGLP explanations are de-
signed to assess a model’s vulnerability to small changes and eval-
uate the stability of LP models by intentionally degrading their
performance through targeted perturbations in the training data.
These attacks provide instance-level modifications as adversarial
explanations. Given a prediction ⟨ℎ, 𝑟, 𝑡⟩, an explanation is defined
as the smallest set of training facts that enabled the model to predict
either the tail 𝑡 in ⟨ℎ, 𝑟, ?⟩ or the headℎ in ⟨?, 𝑟 , 𝑡⟩. For example, to ex-
plain why the top-ranked tail for ⟨𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎,𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, ?⟩
is ’USA’, we identify the smallest set of facts whose removal from
the training set Gtrain would cause the model to change its predic-
tion for ⟨ℎ, 𝑟, ?⟩ from ’USA’ to any entity 𝑒 ≠ 𝑡 , and for ⟨?, 𝑟 , 𝑡⟩ from
ℎ to any entity 𝑒′ ≠ ℎ. These facts involve the head and tail entities,
as they are crucial to the prediction.

We evaluate the impact of the adversarial attack by comparing
standard metrics, such as MRR, before and after the attack. Specifi-
cally, we train the model on the original training set and select a
small subset of the test set 𝑇 ⊂ G𝑒 as target triples for which the
model achieves good predictive performance. After removing the
attack set from the training set, we retrain the model and measure
the degradation in performance on the target set.

Since we focus on small perturbations, the attack is restricted to
deleting a small set of triples. To make this process computationally
feasible, we adopt a batch mode where the deletion of one target
triple may affect others. However, if the triples contain disjoint
entities, dependencies between triples are rare and can typically be
neglected. The explanatory capability of the attack is measured by
the degradation in MRR, defined as: 𝛿𝑀𝑅𝑅(𝑇 ) = 1 − 𝑀𝑅𝑅new (𝑇 )

𝑀𝑅𝑅original (𝑇 ) .

3.3 Path-Based Adversarial Explanation
In this work, we focus on path-based adversarial explanations,
which integrate rule-based reasoning into adversarial attacks to
enhance the interpretability of instance-level modifications. While
adversarial attacks identify critical facts by minimally modifying
the knowledge graph (KG) to degrade prediction scores, they often
lack a clear rationale for why specific facts are deemed critical. We
observe that certain KGs, as illustrated in Fig. 1, exhibit semantically
meaningful paths that can notably boost the clarity of explanations
for individual predictions.

Given a prediction ⟨ℎ, 𝑟, 𝑡⟩, our explanation framework provides
the smallest set of training facts that support the prediction, along
with a path-based rationale justifying the inclusion of these facts.
This rationale is formalized using Closed Path (CP) rules and Prop-
erty Transition (PT) rules in logical reasoning, which generalize
relational patterns from the KG into symbolic, human-interpretable
structures. For instance, CP rules (e.g., 𝑟 ← 𝑟1, 𝑟2) capture multi-hop
dependencies, such as inferring a material’s solvent usage through
shared substructures (Fig. 1). These rules encapsulate causal seman-
tics, grounding adversarial explanations in meaningful relational
patterns rather than purely computational perturbations.

Our approach differs significantly from prior path-based expla-
nation methods such as Power-Link [6] and PaGE-Link [39], which
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Figure 2: Pipeline of eXpath. (a) Path Aggregation: Identifies paths between ℎ and 𝑡 using bidirectional BFS and aggregate
them into relation paths. (b) Path-based Rule Mining: Prunes relevant relation paths with local optimization and selects
high-confidence closed path (CP) and property transition (PT) rules. (c) Critical Fact Selection: Scores candidate facts based on
rule weight and confidence, selecting the highest-scoring facts for the final explanation.

focus on learning graph masks as explanations and generating
influential paths from these masks. In contrast, adversarial explana-
tion aims to identify minimal modifications to the training set (e.g.,
removing specific facts) that maximally degrade the model’s pre-
diction score, making large-scale dataset modifications infeasible.
Moreover, previous path-based explanation method [6, 39] directly
utilize original paths, which can yield numerous candidates for
each explanation. Exhaustively exploring this vast solution space is
computationally challenging. Therefore, eXpath does not directly
use paths as explanations. Instead, it enhances the existing adversar-
ial explanation by incorporating path-based rationales to provide
semantically meaningful justifications for the modifications.

Our framework caters to two main user categories: domain ex-
perts (such as materials scientists, financial analysts) in need of
actionable insights consistent with domain-specific reasoning pat-
terns, and data scientists interested in understanding embedding-
based models more clearly. Domain experts benefit from path-based
explanations (like shared substructures in materials science) that
confirm predictions by revealing causal relationships. Data scien-
tists can improve model debugging and trust in predictions by
incorporating rules into embedding-based models, thereby connect-
ing symbolic logic with vector-space embeddings.

4 EXPATH METHOD
The eXpath method is designed to explain any given prediction
⟨ℎ, 𝑟, 𝑡⟩ by identifying a small yet effective set of triples whose re-
moval significantly impacts the model’s predicted ranking of ℎ and
𝑡 . Additionally, eXpath provides the rationale for its explanations
by presenting the critical paths associated with each selected fact.

The eXpath method follows a three-stage pipeline: path aggrega-
tion, path-based rule mining, and critical fact selection. In the path
aggregation stage (Figure 2(a)), bidirectional breadth-first search
(BFS) is applied to the training facts (G𝑡𝑟𝑎𝑖𝑛) to discover paths from
ℎ to 𝑡 , limiting the maximum path length to 3 to ensure interpretabil-
ity. These paths are then compressed into relation paths (P𝑟 ) by

removing intermediate entities, reducing the candidate paths while
preserving essential semantic structure. In the path-based rule min-
ing stage (Figure 2(b)), we prune the candidate relation paths to
retain only the highly relevant ones (P𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑟 ) using a local opti-
mization technique based on head and tail relevance. These relevant
paths form the body of candidate closed path (CP) rules, evaluated
with a matrix-based approach to compute their confidence. Simulta-
neously, we construct Property Transition (PT) rules from the facts
linked to the head and tail entities in Fℎ

𝑡𝑟𝑎𝑖𝑛
and F 𝑡

𝑡𝑟𝑎𝑖𝑛
, retaining

high-confidence CP and PT rules for fact selection. Finally, in the
critical fact selection stage (Figure 2(a)), we score the candidate
facts based on the number and confidence of rules they belong to,
selecting the highest-scoring facts to form the final explanation.

Notably, while our method efficiently extracts path-based ex-
planations, experiments (Section 5) show that not all KGLP ex-
planations require path-based semantics. In sparser KGs, simple
one-hop links can score higher in evaluations. To leverage both
approaches, we propose a fusion model that combines eXpath’s
explanations with those from non-path methods (e.g., Kelpie). By
evaluating explanations from both methods, the highest-scoring
ones are selected as the final explanation. This fusion model high-
lights the complementary strengths of different explanation types
and demonstrates its potential as a superior overall solution.

4.1 Relation Path and Ontological Rules
When providing path-based explanations for a prediction 𝑓 =

⟨ℎ, 𝑟, 𝑡⟩, the number of simple paths from ℎ to 𝑡 grows exponentially
with the path length, making even 3-hop paths computationally
prohibitive. To mitigate this issue, we focus not on the specific
entities traversed by a path but rather on the sequence of relations
along the path. This abstraction, referred to as a “relation path,” [26]
drastically reduces the number of candidate paths while preserving
their semantic meaning. By aggregating multiple simple paths into
relation paths, we significantly reduce path count while retaining
the interpretability crucial for explanations.
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Figure 3: Principles and instances of ontological rules used
in our framework. closed path (CP) rules describe the rela-
tionship between entities 𝑋 and 𝑌 through alternative paths,
while Property Transition (PT) rules capture transitions be-
tween different attributes of the same entity. These onto-
logical rules are not predefined but are generalized patterns
mined from the knowledge graph, supported by substruc-
tures that conform to the specified patterns.

In this study, we introduce two types of rules: Close-Path (CP)
rule and Property Transition (PT) rules (illustrated in Figure 3),
inspired by the concepts of binary and unary rules with an atom
ending in a constant in AnyBurl [23, 24]. Although PT rules can
be converted into CP rules by establishing connections between
constants and substituting constants with variables, they remain
essential in cases where there is a strong association between two
constant entities (e.g., male and female) that cannot be captured
through direct paths. These interpretable rules provide valuable
insights into link predictions, laying a robust foundation for gener-
ating explanations. Formally, we define two types of rules:

CP : 𝑟 (𝐴0, 𝐴𝑛) ←
𝑛⋀︂
𝑖=1

𝑟𝑖 (𝐴𝑖−1, 𝐴𝑖 )

PT : 𝑟 (𝑋, 𝑐) ← 𝑟0
(︁
𝑋, 𝑐′

)︁
or 𝑟 (𝑐, 𝑌 ) ← 𝑟0

(︁
𝑐′, 𝑌

)︁ (2)

where 𝑟 and 𝑟𝑖 denote relations (binary predicates), 𝐴0, 𝐴𝑖 , 𝐴𝑛, 𝑋,𝑌
are variables, and 𝑐, 𝑐′ are constants (entities). We use 𝜙 to denote
a rule, where the atoms on the left (ℎ) form the head of the rule
(ℎ𝑒𝑎𝑑 (𝜙)), and the atoms on the right (𝑟 ) form the body of the
rule (𝑏𝑜𝑑𝑦 (𝜙)). To simplify the notation, we use 𝑟 ← 𝑟1, 𝑟2, ..., 𝑟𝑛 to
symbolize CP rules, and relations can be reversed to capture inverse

semantics (noted with a single quote, 𝑟 ′). For example, the relation
hypernym(X, Y) can also be expressed as hypernym’ (Y, X).

CP rules are termed “closed paths” because the sequence of re-
lations in the rule body forms a path that directly connects the
subject and object arguments of the head relation. This characteris-
tic establishes a strong connection between CP rules and relation
paths. Both concepts focus on capturing the structured relation-
ships between entities in a knowledge graph, and their forms are
inherently aligned. This alignment allows relation paths to serve as
direct candidates for CP rule bodies. In fact, every CP rule can be
viewed as a formalized and generalized representation of a relation
path, enriched with additional confidence and support.

Moreover, the structured nature of CP and PT rules makes them
well-suited for explaining embedding-based predictions, as embedding-
based LP models inherently capture the relational graph patterns
encoded in CP and PT rules. The alignment between graph pat-
terns and embedding-based models is grounded in their mathe-
matical design. CP rules (e.g., 𝑟 ← 𝑟1, 𝑟2) in TransE utilize ad-
ditive operations (h + r1 + r2 ≈ t) to reflect path composition,
while ComplEx employs matrix multiplications (h · R1 · R2 ≈
t) to capture hierarchical dependencies. Similarly, PT rules (e.g.,
country(𝑋, Japan) ← language(𝑋, Japanese)) are based on geo-
metric co-occurrence. These operations ensure that models im-
plicitly learn relational multi-hop chains encoded in CP rules and
co-occurrence in PT rules.

To assess the quality of rules, we recall measures used in some
major approaches to rule learning [7, 13]. Let 𝜙 be a CP rule of the
form 2. A pair of entities 𝑟 (𝑒, 𝑒′) satisfies the head of 𝜙 and there ex-
ist entities 𝑒1, . . . , 𝑒𝑛−1 in the KG such that ⟨𝑒, 𝑟1, 𝑒1⟩, . . . , ⟨𝑒𝑛−1, 𝑟𝑛, 𝑒′⟩
are facts in the KG, so the body of 𝑅 are satisfied. Then, the support
degree (supp), standard confidence (SC), and head coverage (HC)
of 𝜙 are defined as:

supp(𝜙) = #
(︁
𝑒, 𝑒′

)︁
: body(𝜙)

(︁
𝑒, 𝑒′

)︁
∧ 𝑟

(︁
𝑒, 𝑒′

)︁
𝑆𝐶 (𝜙) = supp(𝜙)

# (𝑒, 𝑒′) : body(𝜙) (𝑒, 𝑒′) , 𝐻𝐶 (𝑟 ) =
supp(𝜙)

#(𝑒, 𝑒′) : 𝑟 (𝑒, 𝑒′)
(3)

4.2 Path-based Rule Mining
A critical step for generating path-based explanations is con-

structing a rule set Φ, which includes both closed path (CP) and
Property Transition (PT) rules, as defined in Section 4.1. We do not
mine all possible rules across the entire knowledge graph (KG) but
instead focus on extracting relevant rules for each prediction from
a localized graph relevant to the specific prediction 𝑓 = ⟨ℎ, 𝑟, 𝑡⟩.

PT rules relevant to a given prediction arise from other facts
related to ℎ and 𝑡 (𝑓 ′ ∈ Fℎ

𝑡𝑟𝑎𝑖𝑛
∪F 𝑡

𝑡𝑟𝑎𝑖𝑛
). These rules are constructed

by replacing common entities in 𝑓 and 𝑓 ′ with variables, which
serve as the rule head and body, respectively. For example, for 𝑓 =

⟨Porco_Rosso, language, Japanese⟩ and 𝑓 ′ = ⟨Porco_Rosso, genre,
Anime⟩, the corresponding PT rule is: ⟨X, language, Japanese⟩ ←
⟨𝑋, genre,Anime⟩. This rule, similar to the “sufficient scenario” pro-
posed by Kelpie [31], captures whether different entities in the same
context satisfy the same prediction.

Calculating metrics for PT rules is relatively straightforward.
Based on Equation 3, we simply count the number of facts in G𝑡𝑟𝑎𝑖𝑛
that satisfy ⟨𝑋, language, Japanese⟩ and ⟨𝑋, genre,Anime⟩ as the
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Algorithm 1 Path-based Rule Mining Algorithm

Input: Prediction 𝑓 = ⟨ℎ, 𝑟, 𝑡⟩, Facts from Training Set G𝑡𝑟𝑎𝑖𝑛
Output: Candidate Rule Set for Prediction Φ
1: Φ← ∅
2: {Step 1: CP Rule Extraction}
3: P ← BFSSearch(ℎ, 𝑡)
4: P𝑟 ← Aggregation(𝑃)
5: for each 𝑝 in P𝑟 do
6: ℎ,ℎ′, 𝑡, 𝑡 ′ ← localOptimization(𝑓 , 𝑝,G𝑡𝑟𝑎𝑖𝑛)
7: 𝑅𝑒𝑙ℎ ← 1 − 𝑓𝑟 (ℎ′,𝑡 )

𝑓𝑟 (ℎ,𝑡 ) , 𝑅𝑒𝑙𝑡 ← 1 − 𝑓𝑟 (ℎ,𝑡 ′ )
𝑓𝑟 (ℎ,𝑡 )

8: if 𝑅𝑒𝑙ℎ > 0 and 𝑅𝑒𝑙𝑡 > 0 then
9: (𝐻𝐶, 𝑆𝐶, 𝑠𝑢𝑝𝑝) ← RuleEvaluation(𝑟 ← 𝑝,G𝑡𝑟𝑎𝑖𝑛)
10: if 𝑆𝐶 ≥ 𝑚𝑖𝑛𝑆𝐶 and 𝐻𝐶 ≥ 𝑚𝑖𝑛𝐻𝐶 then
11: Φ← Φ ∪ {𝜙𝐶𝑃 : 𝑟 ← 𝑝 [𝑆𝐶 × 𝑠𝑢𝑝𝑝

𝑠𝑢𝑝𝑝+𝑚𝑖𝑛𝑆𝑢𝑝𝑝
]}

12: end if
13: end if
14: end for
15: {Step 2: PT Rule Extraction (Take Head PT Rule as Example)}
16: Fℎ

𝑡𝑟𝑎𝑖𝑛
← SearchFacts(ℎ,G𝑡𝑟𝑎𝑖𝑛)

17: for each ⟨ℎ, 𝑟0, 𝑡0⟩ in Fℎ
𝑡𝑟𝑎𝑖𝑛

do
18: (𝐻𝐶, 𝑆𝐶, 𝑠𝑢𝑝𝑝) ← RuleEvaluation(𝑟 (𝑋, 𝑡) ← 𝑟0 (𝑋, 𝑡0),G)
19: if 𝑆𝐶 ≥ 𝑚𝑖𝑛𝑆𝐶 and 𝐻𝐶 ≥ 𝑚𝑖𝑛𝐻𝐶 then
20: Φ← Φ∪{𝜙𝑃𝑇 : 𝑟 (𝑋, 𝑡) ← 𝑟0 (𝑋, 𝑡0) [𝑆𝐶× 𝑠𝑢𝑝𝑝

𝑠𝑢𝑝𝑝+𝑚𝑖𝑛𝑆𝑢𝑝𝑝
]}

21: end if
22: end for
23: return Φ

head and body counts, respectively. The number of facts satisfying
both conditions serves as the support count. Finally, we set a thresh-
old: only rules for which 𝑆𝐶 (𝜙) > minSC and 𝐻𝐶 (𝜙) > minHC
are selected to form the PT rule set Φ𝑃𝑇 .

CP rules relevant to a prediction, on the other hand, arise from
relation paths (P𝑟 ) connecting ℎ and 𝑡 . CP rule mining is more
complex than PT rule mining due to the potentially large number
of CP rules for a single prediction and the computational expense of
evaluating CP rules across the entire knowledge graph. As detailed
in Algorithm 1, we first filter P𝑟 using local optimization, ensuring
that only relation paths relevant to the prediction P𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑟 are
considered for evaluation.

During the pruning process, each relation path is assigned a
head relevance score and a tail relevance score, which reflect its
importance to the prediction. Relation paths with positive head
and tail relevance (𝑅𝑒𝑙ℎ > 0 and 𝑅𝑒𝑙𝑡 > 0) scores are considered
relevant to the prediction and retained as candidate rule bodies
(P𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑟 ) for further evaluation. This filtering approach assumes
that a relation path can only serve as a valid rule body if both its
head and tail relations are critical to the prediction.

To compute relevance scores, eXpath adopts an local optimiza-
tion approach inspired by the Kelpie mimic strategy [31]. Mimic
entities for the head and tail, denoted as ℎ′ and 𝑡 ′ (see Fig. 2(b)),
are created. These mimic entities retain the same connections as
the original head or tail entities, except that all facts associated
with the evaluated relation are removed. The embeddings of the
mimic entities, along with the original head and tail entities, are
then independently trained using their directly connected facts.

Three predictive scores are computed: 𝑓𝑟 (ℎ, 𝑡), 𝑓𝑟 (ℎ′, 𝑡), and
𝑓𝑟 (ℎ, 𝑡 ′), where 𝑓𝑟 (ℎ, 𝑡) represents the model’s scoring function
for the triple ⟨ℎ, 𝑟, 𝑡⟩. The relevance of a relation is defined as the
reduction in the predictive score after removing all facts associated
with a specific relation:

𝑅𝑒𝑙ℎ = 1 − 𝑓𝑟 (ℎ
′, 𝑡)

𝑓𝑟 (ℎ, 𝑡)
, 𝑅𝑒𝑙𝑡 = 1 − 𝑓𝑟 (ℎ, 𝑡

′)
𝑓𝑟 (ℎ, 𝑡)

(4)

Here, 𝑅𝑒𝑙ℎ and 𝑅𝑒𝑙𝑡 quantify the importance of relations con-
nected to the head and tail entities. Relative changes in scores are
used instead of rank reductions, as scores provide a more robust
metric. Rank reductions can be unreliable, especially in local op-
timization scenarios where mimic entities may overfit, resulting
in consistent ranks of 1. This relevance score effectively captures
the impact of facts on the prediction by simulating the model’s
underlying embedding mechanisms.

Finally, eXpath constructs a CP rule set Φ𝐶𝑃 for each prediction
based on the relevant relation paths P𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑟 to select high-quality
rules that have strong support and confidence. Confidence is com-
puted as 𝑐𝑜𝑛𝑓 (𝜙) = 𝑆𝐶 (𝜙) · 𝑠𝑢𝑝𝑝 (𝜙 )

𝑠𝑢𝑝𝑝 (𝜙 )+minSupp , which prevents the
overestimation of rules with insufficient support (e.g., 𝑠𝑢𝑝𝑝 < 10),
inadequate for generalizing into a rule. High-confidence CP and PT
rules (Φ𝐶𝑃 and Φ𝑃𝑇 ) are retained for fact selection. Strong support
and confidence ensure that the selected rules are robust for causal
reasoning, enabling eXpath to generate accurate and interpretable
path-based explanations.

To efficiently compute metrics for CP rules, we adopt the matrix-
based approach from prior work RLvLR [27], which leverages adja-
cency matrices to verify the satisfiability of rule body atoms. Each
relation in the knowledge graph is represented as an 𝑛 × 𝑛 binary
adjacency matrix 𝑆 (𝑟 ), where entries indicate the presence of cor-
responding facts. For a CP rule 𝑟 ← 𝑟1, 𝑟2, the inferred facts are
captured by the matrix product 𝑆 (𝑟1) · 𝑆 (𝑟2), followed by a bina-
rization step to obtain the adjacency matrix 𝑆 (𝑟1, 𝑟2). The support,
standard confidence (SC), and head coverage (HC) are computed us-
ing element-wise logical AND operations and summation over these
matrices: support counts overlapping entries between 𝑆 (𝑟1, 𝑟2) and
𝑆 (𝑟 ), while SC and HC normalize this count by the total inferred
or existing 𝑟 -facts, respectively. This method extends naturally to
rules of arbitrary body lengths.

Here we analyze the complexity of Algorithm 1, which consists
of the following components: (1) the bidirectional BFS search for
generating candidate paths, with a complexity of 𝑂 (𝑑

𝐿
2 ), where

𝑑 = 2𝑀
𝑁

is the average node degree, 𝐿 is the maximum path length,
and 𝑁 ,𝑀 , and 𝑅 denote the number of nodes, edges, and relations
respectively.; (2) path aggregation, which merges paths by relation
sequences and results in |P𝑟 | = 𝑂 (min{𝑑

𝐿
2 , 𝑅𝐿}); (3) local optimiza-

tion, which trains on a subgraph of size 𝑂 (𝑑) with a complexity of
𝑂 (𝑑𝑇 ), where 𝑇 is the model-specific training cost (e.g., 𝑂 (𝐷) for
TransE and 𝑂 (𝐷2) for RESCAL, where 𝐷 represents the dimension
of embeddings); and (4) rule evaluation, which scans training facts
with a complexity of 𝑂 (𝑀𝐿) for 𝐿-hop paths. Thus, the overall
complexity is 𝑂 (min{𝑅𝐿, 𝑑

𝐿
2 } · (𝑀𝐿 + 𝑑𝑇 )), dominated by 𝑂 (𝑀),

as 𝐿, 𝑑 , 𝑅 and 𝑇 are limited by dataset characteristics or predefined
bounds. This linear scalability facilitates the effective application
of large-scale KGLP tasks’ explanations.
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4.3 Critical Fact Selection
This section details the method for selecting an optimal set of
facts to explain a given prediction triple ⟨ℎ, 𝑟, 𝑡⟩ leveraging the
rules extracted in the previous step. The core idea is to identify
the most critical fact or a combination of facts within the paths
connecting the head and tail entities. Each fact is scored based on
its contribution to the prediction and the final explanation set is
constructed by selecting the highest-scoring facts.

Several key factors are taken into account to determine the sig-
nificance of a fact: (1) Facts that satisfy a larger number of rules
are given higher priority, as this indicates their broader relevance
within the prediction. (2) Rules with higher confidence are weighted
more heavily, reflecting their more robust causal support. (3) The
frequency and position of a fact within a rule also play a role; facts
appearing more frequently and in critical positions (e.g., adjacent
to the head or tail entity) are considered more important.

To model the contribution of a fact that satisfies multiple rules,
we adopt a confidence degree (CD) aggregation approach inspired
by rule-based link prediction methods [26]. The CD of a fact 𝑓 is
calculated using the confidence values of all the rules that infer 𝑓
in a Noisy-OR manner. we define the CD of 𝑓 as follows:

𝐶𝐷 (𝑓 ) = 1 −
∏︂

𝜙∈Φ(𝑓 )
(1 − 𝑐𝑜𝑛𝑓 (𝜙) ·𝑤 (𝑓 , 𝜙)) (5)

where Φ(𝑓 ) is the set of rules inferred from the prediction, 𝑐𝑜𝑛𝑓 (𝜙)
is the confidence of rule 𝜙 , and𝑤 (𝑓 , 𝜙) represents the importance
of fact 𝑓 within rule 𝜙 , calculated based on the weighted frequency:

𝑤 (𝑓 , 𝜙) = 𝑅𝑒𝑙ℎ (𝜙) · 𝑝ℎ (𝑓 , 𝜙) + 𝑅𝑒𝑙𝑡 (𝜙) · 𝑝𝑡 (𝑓 , 𝜙)
𝑅𝑒𝑙ℎ (𝜙) + 𝑅𝑒𝑙𝑡 (𝜙)

(6)

where 𝑅𝑒𝑙ℎ (𝜙) and 𝑅𝑒𝑙𝑡 (𝜙) are the relevance scores of the rule’s
head and tail relations, respectively. The term 𝑝ℎ/𝑚/𝑡 (𝑓 , 𝜙) repre-
sents the frequency of 𝑓 ’s appearances in the head/middle/tail
of all paths related to rule 𝜙 . This formulation ensures that facts
appearing more prominently in rules are scored higher.

According to Equation 6, only facts that are adjacent to the head
or tail are considered, while non-adjacent facts are disregarded. This
selection is guided by two principles: (1) Embedding sensitivity
ensures that adjacent facts (e.g., ⟨ℎ, 𝑟1, 𝐴⟩) primarily impact the
embeddings of ℎ or 𝑡 , while intermediate facts have weaker effects.
(2) An empirical analysis on FB15k-237 illustrates that head/tail-
adjacent facts show significantly higher mean contribution (𝑝ℎ =

0.0217, 𝑝𝑡 = 0.0037) compared to non-adjacent facts (𝑝𝑚 = 0.0005).
Although middle facts may occasionally contribute (with only 0.2%
of facts having 𝑝𝑚 > 0.01), their influence is overshadowed by
head/tail facts (𝑝𝑚 ≪ 𝑝ℎ, 𝑝𝑡 ). This suggests that adjacent facts
are more likely to be shared among multiple paths within a rule,
making them more critical for explaining the prediction.

In PT rules, the importance score for a fact𝑤 (𝑓 , 𝜙) is simplified
to 1, as the rule corresponds to a unique fact for a given prediction.

After assigning each candidate fact a CD score, we rank all candi-
date facts by their scores and select the highest-ranked facts as the
explanation. This approach ensures that the selected facts are those
most strongly supported by high-quality, relevant rules, providing
robust and interpretable explanations for the given prediction.

Table 1: Statistics of benchmark datasets.

KG
Dataset Entities Relation

Types
Train
Facts

Valid
Facts

Test
Facts

FB15k 14,951 1,345 483,142 50,000 50,971
FB15k-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134

5 EXPERIMENT
5.1 Experimental Setup
We evaluated eXpath on the knowledge graph link prediction task
using four benchmark datasets: FB15k and FB15k-237 [18] (derived
from Freebase), and WN18 and WN18RR [4] (based on WordNet).
As provided in Table 1, As provided in Table 1, FB15k, built from
FreeBase (a real-world knowledge base), includes relations like born-
in and part-of, but its test data contained reversed relationships,
making prediction tasks artificially easy. This led to FB15k-237, a
revised version that removes these reversed links. Similarly, WN18,
based onWordNet (a semantic network), models linguistic relations
like hypernym (e.g., cat is a feline) but suffered from the same
flaw. Its improved version, WN18RR, excludes reciprocal relations
to ensure fairer evaluation. We followed standard dataset splits
and maintained identical training parameters before and after fact
removal to ensure consistency across comparisons.

We compared the performance of eXpath against five contem-
porary methods dedicated to LP interpretation: Kelpie [31], Data
Poisoning (DP) [37], Criage [2], KE-X [41], and KGEAttack [2].
These implementations are publicly available, and we tailored the
code sourced from their respective Github repositories. Since the
explanation framework is compatible with any Link Prediction (LP)
model rooted in embeddings, we conduct experiments on three
models with different loss functions: CompEx [33], ConvE [10],
and TransE [34]. To ensure fairness between the explanation meth-
ods, we restrict the number of facts that can be removed. Specifi-
cally, DP, Criage, KGEAttack limit the removal to at most one fact,
whereas KE-X, Kelpie and eXpath can remove one or four facts.
Based on experiments and existing literature, we set the thresholds
minSC = 0.1,minHC = 0.01,minSupp = 10. These parameters are
adapted from the definitions of high-quality rules in prior work [13].

To evaluate the effectiveness of adversarial explanations, we rig-
orously follow the protocol established in prior work (e.g., Kelpie,
KGEAttack). The evaluation process begins by constructing an eval-
uation set 𝑇 ⊂ G𝑒 , which consists of 100 triples selected from the
test set. These triples are chosen based on the original model’s pre-
dictive performance, requiring a reciprocal rank (𝑅𝑅(𝑀𝑜 , 𝑓 )) greater
than 0.5 to ensure each triple is correctly predicted with at least
one head or tail rank being 1. This selection criterion guarantees
high-quality predictions while maintaining practical applicability,
as overly strict criteria (e.g., requiring both head and tail ranks to
be 1) would unnecessarily limit the scope of evaluable scenarios.

The adversarial attack process involves removing critical facts
identified by explanation methods from the training set. All 100
triples are attacked simultaneously, and the model is retrained once
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after removing triples in explanations of all predictions. This batch
approach aligns with prior work (e.g., Kelpie and KGEAttack) to
avoid computational overhead from repeated retraining. To mini-
mize dependencies, triples are selected to have disjoint head/tail
entities, ensuring minimal overlap in entities or relations.

The model’s explanatory capability is quantified using two met-
rics: the relative reduction in Hits@1 (𝛿𝐻@1) and Mean Reciprocal
Rank (𝛿𝑀𝑅𝑅). These metrics compare the performance of the re-
trained model 𝑀𝑥 (after fact removal) against the original model
𝑀𝑜 , with 𝛿𝑀𝑅𝑅 prioritized for its robustness to rank fluctuations.
While 𝛿𝐻@1 measures the drop in top-ranked predictions, its sen-
sitivity to training stochasticity—particularly in fragile models like
TransE—makes 𝛿𝑀𝑅𝑅, which aggregates rank positions across all
candidates, a more stable indicator of explanation quality. The met-
rics are formally defined as:

𝐻@1(𝑀𝑥 , 𝑓 ) =
1
2
(1(𝑟𝑘ℎ (𝑀𝑥 , 𝑓 ) = 1) + 1(𝑟𝑘𝑡 (𝑀𝑥 , 𝑓 ) = 1))

𝛿𝐻@1(𝑀𝑥 ,𝑇 ) = 1 −
∑︁

𝑓 ∈𝑇 𝐻@1(𝑀𝑥 , 𝑓 )∑︁
𝑓 ∈𝑇 𝐻@1(𝑀𝑜 , 𝑓 )

𝛿𝑀𝑅𝑅(𝑀𝑥 ,𝑇 ) = 1 −
∑︁

𝑓 ∈𝑇 𝑅𝑅(𝑀𝑥 , 𝑓 )∑︁
𝑓 ∈𝑇 𝑅𝑅(𝑀𝑜 , 𝑓 )

(7)

where 1(·) is an indicator function, and 𝑅𝑅(𝑀𝑥 , 𝑓 ) computes
the average of reciprocal ranks for head and tail predictions. The
stochasticity of model training and small dataset size (100 predic-
tions) can cause significant variability in 𝛿𝐻@1 values. This issue
is exacerbated for fragile models like TransE, where ranks fluctuate
even without attacks. We address this by averaging results over five
experimental runs. Each embedding model (e.g., ComplEx, ConvE,
TransE) uses a distinct subset of 100 triples customized to its pre-
dictive capabilities. This is because a triple correctly predicted by
one model may not yield satisfactory results on another model.

We also evaluate fusion methods (e.g., Kelpie + eXpath) by se-
lecting the explanation that yields the greater reduction in metric
between Kelpie and eXpath. Taking 𝛿𝑀𝑅𝑅 as an example, for each
fact 𝑓 to be explained, we define the reciprocal rank of the combined
method as 𝑅𝑅(𝑀𝑥+𝑦, 𝑓 ) = min(𝑅𝑅(𝑀𝑥 , 𝑓 ), 𝑅𝑅(𝑀𝑦, 𝑓 )). The overall
metric for the fusion method is then calculated using the equation 7.
By selecting the minimum value between the two methods, the
fusion method enhances explanation performance.

5.2 Explanation Results
Tables 2 and 3 demonstrate the overall effectiveness of the eXpath
method in generating LP explanations, evaluated using the 𝛿𝐻@1
and 𝛿𝑀𝑅𝑅 metrics as defined in Equation 7. For a fair comparison,
explanation methods are categorized based on explanation size
(i.e., the number of facts provided). The first section of each table
(top 9 rows) presents results for 6 single-fact explanations (L1) and
their fusion models, such as Criage, KE-X, DP, Kelpie, KGEAttack,
and eXpath, which offer one fact per explanation. The second sec-
tion (bottom 4 rows) shows results for four-fact explanations (L4),
including KE-X, eXpath, Kelpie, and their fusion.

For single-fact explanations, eXpath achieves the best average
performance, with an average of 0.611 in 𝛿𝐻@1 and 0.494 in 𝛿𝑀𝑅𝑅.
KGEAttack performs comparably, reaching an average of 0.585 in

Figure 4: Average times in seconds to extract an explanation
for Kelpie and eXpath.

𝛿𝐻@1 and 0.492 in 𝛿𝑀𝑅𝑅. Both methods significantly outperform
Criage and Kelpie, surpassing them by at least 15.4% in 𝛿𝐻@1 and
23.6% in 𝛿𝑀𝑅𝑅 on average. Notably, eXpath secures at least the
second-best performance in 20 out of 24 settings and significantly
outperforms all methods in 12 settings. Interestingly, eXpath expla-
nations exhibit dataset-specific preferences. Compared to KGEAt-
tack, eXpath performs better in explaining relation-dense datasets
such as FB15k-237, achieving an average improvement of 50.3% in
𝛿𝐻@1 and 43.8% in 𝛿𝑀𝑅𝑅. On other datasets, the performance of
both methods is similar.

In a more practical four-fact scenario, only eXpath and Kelpie
support multiple facts as explanations. eXpath, which directly se-
lects the top-scoring set of up to four facts, outperforms Kelpie in 22
out of 24 settings with statistical significance (𝑝-value < 0.05) across
five runs. Specifically, eXpath achieves an average of 0.785 in 𝛿𝐻@1
and 0.663 in 𝛿𝑀𝑅𝑅, while Kelpie achieves averages of 0.691 in 𝛿𝐻@1
and 0.590 in 𝛿𝑀𝑅𝑅. Notably, four-fact explanations of eXpath con-
sistently outperform single-fact explanations across all settings,
emphasizing the importance of multi-fact combinations for mean-
ingful explanations. This is particularly evident in dense datasets
like FB15k and FB15k-237, where four-fact explanations show an
average improvement of 69.5% in 𝛿𝐻@1 and 87.7% in 𝛿𝑀𝑅𝑅, com-
pared to single-fact explanations. In contrast, for sparser datasets
like WN18 and WN18RR, the improvements are more modest, with
average gains of 11.3% in 𝛿𝐻@1 and 41.4% in 𝛿𝑀𝑅𝑅. Dense graphs,
such as FB15k, contain many synonyms or antonyms for relations
(e.g., actor-film, sequel-prequel, award-honor), meaning that
even if one fact is removed from an explanation, other related facts
remain in the knowledge graph, making adversarial attacks less
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Table 2: 𝛿𝐻@1 comparison across different models and datasets using various explanation methods. All results are averaged
over five runs, with higher values indicating better performance. The original 𝐻@1 is 1 for all candidate predictions (𝐻@1 > 1
predictions are excluded). Methods with “+eXpath” indicate fusion approaches that combine the given method with eXpath.

Max
Exp.
Size

Method ComplEx ConvE TransE AVG
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R
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k
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W
N1

8

W
N1

8R
R

single
-fact
exp.

Criage [28] .087 .105 .080 .203 .153 .162 .270 .256 — — — — .165
KE-X [41] .035 .153 .141 .379 .102 .152 .234 .318 .174 .292 .493 .384 .238
DP [37] .529 .315 .799 .758 .246 .162 .794 .829 .304 .326 .910 .709 .557

Kelpie [31] .576 .395 .578 .593 .229 .222 .567 .667 .261 .281 .792 .779 .495
KGEAttack [2] .547 .290 .829 .764 .237 .212 .929 .915 .365 .213 .938 .779 .585

eXpath .512 .395 .834 .797 .271 .343 .929 .891 .313 .337 .938 .767 .611
DP+eXpath .570 .500 .859 .813 .331 .414 .936 .946 .374 .438 .944 .826 .663 (+19%)

Kelpie+eXPath .657 .540 .859 .835 .364 .424 .929 .915 .417 .427 .944 .872 .682 (+38%)
KGEA.+eXpath .576 .452 .859 .802 .322 .384 .929 .946 .417 .360 .938 .872 .655 (+12%)

four
-fact
exp.

KE-X .145 .177 .603 .841 .102 .141 .511 .589 .235 .281 .632 .430 .391
Kelpie .767 .581 .829 .940 .534 .303 .816 .946 .374 .427 .868 .907 .691
eXpath .802 .661 .920 .951 .542 .566 .957 .984 .539 .573 .965 .965 .785

Kelpie+eXpath .831 .742 .935 .989 .653 .596 .965 .984 .609 .674 .965 .965 .826

Table 3: 𝛿𝑀𝑅𝑅 comparison across different models and datasets using various explanation methods. All results are averaged
over five runs, with higher values indicating better performance. The original MRR is above 0.5 in all candidate predictions.
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single
-fact
exp.

Criage .045 .051 .058 .163 .024 .031 .157 .150 — — — — .085
KE-X .007 .072 .121 .306 .023 .017 .132 .194 .039 .104 .283 .279 .131
DP .451 .187 .729 .668 .140 .058 .728 .785 .157 .141 .742 .613 .450

Kelpie .457 .238 .491 .483 .123 .076 .514 .578 .075 .115 .700 .664 .376
KGEAttack .463 .172 .766 .684 .159 .104 .889 .853 .190 .091 .877 .659 .492
eXpath .430 .233 .774 .688 .183 .130 .889 .810 .159 .165 .877 .596 .494

DP+eXpath .491 .282 .803 .711 .241 .211 .900 .893 .239 .252 .891 .675 .549 (+22%)
Kelpie+eXpath .534 .309 .795 .718 .245 .206 .895 .848 .225 .239 .893 .734 .553 (+47%)
KGEA.+eXpath .495 .262 .799 .712 .239 .215 .889 .883 .261 .223 .877 .723 .548 (+12%)

four
-fact
exp.

KE-X .086 .087 .544 .771 .031 .055 .464 .490 .105 .109 .471 .307 .293
Kelpie .632 .434 .777 .891 .391 .143 .795 .919 .203 .199 .805 .893 .590
eXpath .680 .452 .875 .887 .366 .327 .924 .952 .354 .261 .937 .943 .663

Kelpie+eXpath .718 .519 .900 .941 .468 .401 .949 .966 .406 .332 .952 .960 .709

effective. This observation highlights the need for multi-fact expla-
nations to fully capture the predictive context.

The fusion methods (e.g., Kelpie+eXpath), combining eXpath(L1)
with DP, Kelpie(L1), and KGEAttack improves 𝛿𝑀𝑅𝑅 by 22%, 47%,
and 12%, respectively. The eXpath-Kelpie fusion improves Kelpie
alone by 20%. The results demonstrate that the path-based expla-
nations of eXpath offer unique insights and complementary per-
spectives that differ significantly from those provided by other

adversarial methods, particularly when combined with Kelpie. We
also notice that L1 fusion methods converge to an upper bound
(𝛿𝑀𝑅𝑅 ≤ 0.56, 𝛿𝐻@1 ≤ 0.69), indicating that single-fact explana-
tions have inherent limitations. Multi-fact approaches are necessary
for satisfactory explanations in link prediction tasks.

In terms of efficiency, Figure 4 compares the average explanation
time per prediction between eXpath and Kelpie. eXpath achieves
significantly faster explanation speeds, averaging 25.61 seconds per
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Table 4: 𝛿MRR between different models and datasets with different Fact Position Preferences (Rows 1-6) and Rule Component
Ablations (Rows 7-12). Top section compares all (unrestricted), head (head-related), and tail (tail-related) fact position settings.
Bottom section evaluates the impact of excluding CP rules (w/o CP) and PT rules (w/o PT).
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1
eXpath(all) .431 .233 .774 .696 .163 .135 .889 .833 .159 .149 .877 .406 .479
eXpath(head) .433 .243 .774 .693 .165 .119 .889 .810 .148 .127 .877 .598 .490
eXpath(tail) .418 .125 .759 .635 .147 .088 .889 .787 .159 .071 .877 .000 .413

4
eXpath(all) .680 .453 .807 .878 .370 .319 .900 .939 .355 .270 .918 .826 .643
eXpath(head) .659 .438 .877 .887 .372 .290 .925 .952 .346 .271 .935 .942 .658
eXpath(tail) .630 .227 .833 .818 .324 .103 .877 .859 .232 .135 .843 .125 .501

1
eXpath .431 .223 .774 .693 .163 .135 .889 .810 .159 .149 .877 .598 .492

eXpath (w/o CP) .276 .195 .757 .659 .083 .125 .448 .423 .106 .153 .520 .574 .360 (-27%)
eXpath (w/o PT) .431 .118 .774 .685 .154 .047 .889 .853 .155 .097 .877 .558 .470 (-4.5%)

4
eXpath .680 .453 .877 .887 .370 .319 .925 .952 .355 .270 .935 .942 .664

eXpath (w/o CP) .477 .416 .875 .877 .212 .295 .708 .835 .190 .276 .800 .936 .575 (-13.5%)
eXpath (w/o PT) .622 .305 .833 .839 .341 .159 .925 .953 .329 .174 .941 .930 .613 (-6%)

prediction, which is approximately 38.6% of Kelpie’s average time
of 66.36 seconds. This efficiency is attributed to eXpath’s localized
optimization within relation groups and its straightforward scoring-
based fact selection process, compared to Kelpie’s exhaustive tra-
versal of connections and time-intensive combinatorial searches.

In conclusion, eXpath demonstrates clear advantages in both
performance and execution efficiency, highlighting its potential as
a robust framework for path-based adversarial explanation.

5.3 Fact Position Preferences
Many adversarial methods (e.g., KE-X [41], DP [37], and Kelpie [31])
typically select facts directly connected to head entities (head-
related facts) for explanations. To further evaluate this preference,
we analyze the impact of fact position using three settings: all (un-
restricted position), head (head-related facts), and tail (tail-related
facts). Results in Table 4 reveal that the head setting (L1: 0.490 / L4:
0.658) outperforms the all setting (L1: 0.479 / L4: 0.643) on average,
and both settings consistently surpass the tail setting (L1: 0.413
/ L4: 0.501). The tail setting consistently weakens performance
across all datasets, with significant drops in FB15k-237 (-50%) and
WN18RR (-40%) compared to the head setting. These results val-
idate the effectiveness of selecting head-related facts, as seen in
other adversarial methods. Empirical analysis of node degree dis-
tributions reveals that tail entities generally exhibit higher degrees
than head entities, making it challenging for traditional adversarial
methods to select tail-related facts. While these methods inherently
favor head-related facts, such constraints may limit the diversity
and semantic richness of explanations.

Dataset characteristics significantly influence the effectiveness
of fact position restrictions. For FB15k and FB15k-237, the all set-
ting (L1: 0.212 / L4: 0.408) generally outperforms the head setting
(L1: 0.206 / L4: 0.396), while for WN18 andWN18RR, the all setting

(L1: 0.746 / L4: 0.878) notably underperforms compared to the head
setting (L1: 0.774 / L4: 0.920). A possible reason is that FB15k and
FB15k-237 are dense graphs, encouraging models to balance head
and tail entity modeling. In sparser datasets like WN18RR, head
entities often represent concepts with a few relations (average de-
gree < 5), while tail entities serve as hubs with numerous relations
(average degree > 100), making head-related facts far more impact-
ful than tail-related facts. Based on these observations, we apply
fact position restrictions based on graph density (average degree).
In this paper, we apply head-related restrictions for low-density
datasets (average degree < 20, e.g., WN18 and WN18RR) and un-
restricted selection for high-density datasets (average degree > 20,
e.g., FB15k and FB15k-237).

5.4 Ablation Study on Rule Components
To evaluate the individual contributions of CP and PT rules, we
conducted ablation experiments by independently removing each
rule type during fact scoring. The results (Table 4) reveal distinct
roles for these components: CP rules dominate in modeling multi-
hop relational patterns, with their removal causing a 13.5%∼27%
average 𝛿𝑀𝑅𝑅 drop, while PT rules enhance explanation diversity
through property correlation, showing a 4.5%∼6% average 𝛿𝑀𝑅𝑅
drop when excluded. This divergence highlights CP rules as the
core mechanism for capturing semantic dependencies, whereas PT
rules act as complementary validators of co-occurrence patterns.

Dataset-specific analyses reveal distinct rule dominance pat-
terns. In FB15k, CP rules prove indispensable (38% 𝛿𝑀𝑅𝑅 drop
when removed), excelling at path-based reasoning such as film
sequel/prequel relationships (e.g., rule (2) ∼ (6) in Figure 5(b)).
ConvErsely, PT rules dominate in FB15k-237 (42% 𝛿𝑀𝑅𝑅 drop when
removed), where sparse relations rely on their ability to validate
indirect correlations like language-country mappings (country(X,
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Table 5: Comparison of explanations generated by five adversarial methods for three representative examples. Each cell contains
the 𝛿MRR in the first row, followed by the explanation sets generated by each model.

Prediction Criage Data Poisoning KGEAttack Kelpie eXpath

(1) 𝑒2 ,
award_nominee,
𝑒1
(from complex
FB15k)

[0.00]
Joan_Allen,
award, 𝑒2

[0.89]
𝑒1 , award, 𝑒2

[0.89]
𝑒1 , award, 𝑒2

[L1: 0.25/L4: 0.38]
𝑒2 , award_nominee, Anna_Paquin
𝑒2 , award_nominee, Shohreh_Aghdashloo
𝑒2 , award_nominee, Julia_Ormond
𝑒2 , award_nominee, Amanda_Plummer

[L1: 0.89/L4: 0.95]
𝑒1 , award, 𝑒2
𝑒2 , award_nominee, Joan_Allen
Tony_Award.., award_nominee, 𝑒1
Academy_Award.., award_nominee, 𝑒1

(2)
Porco_Rosso,
country, Japan
(from conve
FB15k)

[0.50]
Walt_Disney..,
film,
Porco_Rosso

[0.48]
Porco_Rosso,
edited_by,
Hayao_Miyazaki

[0.00]
Anime,
films_in_this_genre,
Porco_Rosso

[L1: 0.62/L4: 0.74]
Hayao_Miyazaki, film, Porco_Rosso
Porco_Rosso, language,
Japanese_Language

[L1: 0.73/L4: 0.84]
Porco_Rosso, language, Japanese_Language
Hayao_Miyazaki, film, Porco_Rosso
Fantasy, titles, Porco_Rosso
Porco_Rosso, written_by, Hayao_Miyazaki

(3) 𝑒3 , actor,
Jonathan_Pryce
(from complex
FB15k)

[0.33]
𝑒5 , actor,
Jonathan_Pryce

[0.00]
𝑒3 , actor,
Keith_Richards

[0.00]
𝑒3 , prequel, 𝑒4

[L1: 0.00/L4: 0.58]
𝑒4 , sequel, 𝑒3
Keith_Richards, film, 𝑒3
𝑒3 , actor, Keith_Richards
Action_Film, films_in_this_genre, 𝑒3

[L1: 0.33/L4: 1.00]
𝑒5 , actor, Jonathan_Pryce
Jonathan_Pryce, film, 𝑒5
Jonathan_Pryce, film, 𝑒4
𝑒3 , actor, Johnny_Depp

Japan) ← language(X, Japanese) Table 5(b)). For WN18 and
WN18RR, neither CP nor PT rules individually cause significant
performance degradation. This observation indicates that CP and
PT rules are complementary, often providing overlapping support
in sparse scenarios.

These findings underscore CP rules’ foundational role in seman-
tic reasoning and PT rules’ capacity to broaden explanatory scope.
Their synergy achieves optimal performance. While we experi-
mented with additional rule types—such as unary rules with dan-
gling atoms (e.g., country(X, Japan) ← language(X, Y))—their
impact on LP explanation was negligible (<2% 𝛿𝑀𝑅𝑅 drop). This
suggests that CP/PT rules uniquely balance precision and general-
ity, whereas other rules either over-specialize (e.g., dangling atoms)
or lack semantic grounding.

5.5 Case Study
We evaluate five adversarial explanation methods—Criage, Data
Poisoning, KGEAttack, Kelpie, and eXpath—through three repre-
sentative cases (Table 5), assessing their ability to generate minimal
and interpretable explanations. For clarity, certain entities are abbre-
viated: 𝑒1 refers to “Frances McDormand,” 𝑒2 to “Primetime Emmy
Award for Outstanding Supporting Actress,” and 𝑒3–𝑒5 to films in
the Pirates of the Caribbean series (AtWorld’s End,DeadMan’s Chest,
and The Curse of the Black Pearl).

Case 1: Path-Based Explanations Provide Intuitive Rationale. The
first case examines the prediction ⟨𝑒1, award, 𝑒2⟩. Here, KGEAttack
and eXpath generate the highly effective fact ⟨𝑒1, award, 𝑒2⟩, sup-
ported by the rule award_nominee← award′ [SC=0.815], which in-
tuitively links the inverse relations award_nominee and award. This
explanation causes a significant rank drop (head/tail ranks from
1/1 to 6/106). In contrast, Kelpie’s four-fact explanation includes
weaker assertions like ⟨𝑒2, award_nominee, 𝑋 ⟩ but lacks supporting
ontological rules, making it difficult to justify. This highlights a key
limitation of fact-based methods like Kelpie compared to rule-based
systems such as eXpath.

Case 2: Multi-Rule Explanations Capture Comprehensive Signals.
The second case involves explaining the prediction ⟨Anime, country,
Japan⟩. KGEAttack produces a single intuitive rule: country(X,
Japan)← films_in_this_genre(Anime, X) [SC=0.846]. While
this rule has high confidence, eXpath provides a more comprehen-
sive explanation by combining four rules with 𝑆𝐶 ≥ 0.1, including:

(1) country(X, Japan) ← language(X, Japanese) [SC=0.669]
(2) country ← language, language’, country [SC=0.311]
(3) country ← language, language’, nationality [SC=0.194]
(4) country ← language, titles, country [SC=0.122]

While the SC of each rule is lower than that of KGEAttack’s rule,
collectively, they yield a cumulative confidence greater than 0.9.
This demonstrates that relying solely on one rule, as KGEAttack
does, risks overlooking valuable data signals. Kelpie’s explanation
shares two facts with eXpath’s initial rules but is heavily based on
empirical signals from the embedding model and lacks the clarity
and reliability of rule-based approaches.

Case 3: Multi-Fact and Tail-Related Explanations is Necessary. The
third case involves the prediction ⟨𝑒3, actor, Jonathan Pryce⟩. No-
tably, eXpath (L4) delivers the most effective explanation, achieving
the best attack effectiveness (𝛿MRR = 1), while Kelpie (L4) also
performs well (𝛿MRR = 0.58). In contrast, explanations from Kelpie
(L1) and other methods are largely ineffective. The consistent per-
formance of multi-fact explanations highlights the importance of
combining multiple facts, especially in dense datasets like FB15k,
where removing a single fact often fails to impact the prediction.

Kelpie provides fact-based explanations but fails to justify the
relevance of these facts in supporting the prediction. One fact,
⟨𝑒4, 𝑠𝑒𝑞𝑢𝑒𝑙, 𝑒3⟩, is supported by three high-confidence rules, includ-
ing actor ← sequel’, film’ [SC=0.40], while the remaining
facts lack direct relevance. Removing this fact leaves the reverse
relation ⟨𝑒3, 𝑝𝑟𝑒𝑞𝑢𝑒𝑙, 𝑒4⟩, which still supports the prediction, un-
dermining the explanation’s validity. KGEAttack also proposes a
single attacking fact, ⟨𝑒3, 𝑝𝑟𝑒𝑞𝑢𝑒𝑙, 𝑒4⟩, supported by the rule actor
← prequel, film’ [SC=0.38]. Although intuitive, this 2-hop
CP rule fails for the same reason as Kelpie: the reverse relation
maintains the prediction, rendering the explanation insufficient.
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Figure 5: Explanation of the fact ⟨𝑒3, actor, Jonathan_Pryce⟩ predicted by LP models (ComplEx); (a) all 3-hop paths from head
entity to tail entity. (b) Twelve high-confidence rules with 𝑆𝐶 ≥ 0.1 identified by eXpath; (c) comparison of the explanation
provided by KGEAttack (in purple edge), Kelpie (in green edges), and eXpath (in yellow edges).

In contrast, as shown in Figure 5(b), eXpath provides path-based
explanationswith supporting rules. For example, the highest-scoring
fact, ⟨𝑒5, 𝑎𝑐𝑡𝑜𝑟, 𝐽𝑜𝑛𝑎𝑡ℎ𝑎𝑛_𝑃𝑟𝑦𝑐𝑒⟩, is supported by one PT and five
CP rules. These rules collectively contribute to a cumulative score
exceeding 0.9. Unlike KGEAttack, which focuses only on 2-hop CP
rules, eXpath incorporates longer, more complex rules, capturing
additional data signals. eXpath’s four facts comprehensively cover
all critical paths from 𝑒3 to Jonathan Pryce, yielding a nearly perfect
explanation for the prediction.

An interesting observation is that most facts selected by eX-
path relate to the tail entity rather than the head entity (shown
in Figure 5(c)). As depicted in Figure 5(a), the head entity (𝑒3) is
associated with 96 triples. In contrast, the tail entity (Jonathan
Pryce) is connected to only 32, making tail relations sparser and
more critical for prediction. By prioritizing tail-related facts, eX-
path produces more effective explanations. In contrast, Kelpie relies
predominantly on head entity features, often getting trapped in
local optima and missing broader contextual signals. Meanwhile,
KGEAttack selects rules randomly from those it satisfies, leading
to highly varied explanations and limited reliability.

User Evaluation. To assess the effectiveness, rationality, and clar-
ity of eXpath’s explanations, we conducted an in-lab user study
with five graph researchers. Participants evaluated prototype di-
agrams comparing eXpath, KGEAttack, and Kelpie on case study
examples (e.g., actor-film links in FB15k). For “effectiveness,” eX-
path demonstrated superior performance compared to KGEAttack
and Kelpie. The majority of participants (4 out of 5) found eX-
path’s explanations more convincing due to the incorporation of
diverse facts rather than focusing solely on head-related facts. One
participant highlighted that “eXpath’s utilization of analogy and
co-occurrence rules resonates with how I would verify actor-film
connections.” In terms of “rationality,” both eXpath and KGEAttack
received acclaim for anchoring explanations in rules, while Kelpie’s
lack of rationale caused confusion. Regarding “clarity,” some indi-
viduals initially found eXpath’s multi-step rule-to-fact selection
overwhelming (“Too many rules clutter the logic”), but this issue
was alleviated by the graph visualization of rationale. While KGEAt-
tack’s simpler rules were easier to comprehend, they were deemed

less informative. By leveraging comprehensive rule-based reason-
ing and integratingmultiple facts, eXpath strikes an optimal balance
between interpretability and explanatory power.

6 CONCLUSION
In this work, we introduce eXpath, a novel path-based explanation
framework designed to enhance the interpretability of LP tasks
on KG. By leveraging ontological closed path rules, eXpath pro-
vides semantically rich explanations that address challenges such
as scalability and relevancy of path evaluation on embedding-based
KGLP models. Extensive experiments on benchmark datasets and
mainstream KG models demonstrate that eXpath outperforms the
best existing method by 12.4% on 𝛿𝑀𝑅𝑅 in terms of the most im-
portant multi-fact explanations. A higher improvement of 20.2% is
achieved when eXpath is further combined with existing methods.
Ablation studies validate that the CP rule in our framework plays a
central role in the explanation quality, with its removal leading to
a 13.5%∼27% average drop in performance. These findings suggest
that ontological rules, such as CP and PT rules, are not only inter-
pretable but also essential for bridging the gap between symbolic
reasoning and subsymbolic embeddings.

Future work will focus on developing interactive visualization
tools to enhance the accessibility and interpretability of eXpath’s
path-based explanations. These tools will allow users to explore crit-
ical paths and ontological rules supporting each prediction. Building
on this, we plan to conduct a user study involving domain experts
and data scientists to quantify the alignment of path-based expla-
nations with human reasoning and assess their effectiveness in
improving trust and transparency in KG predictions.
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