The UDFBENcH Benchmark for General-purpose UDF Queries

Yannis Foufoulas
Athena Research Center
Athens, Greece
johnfouf@athenarc.gr

ABSTRACT

User-defined functions (UDFs) extend the expressiveness of declar-
ative SQL with functional capabilities, but also pose a core bottle-
neck in query processing due to the impedance mismatch between
the UDF and SQL execution environments, and the limitations of
the query optimizers to consistently produce good plans for UDF
queries. Research and commercial approaches propose remedies for
performant UDF query execution ranging from logical optimization
and heuristics to physical optimization and compilation techniques.
Each work however follows a different path to evaluate their pro-
posed techniques. Despite the practical significance of optimizing
UDF queries, UDFs have not been so far the focus of the database
benchmarks. In this paper, we present UDFBENCH, a UDF-centric
database benchmark based on real-world schema and data. We
identify the core overheads in UDF query execution and design the
UDFBENcH UDFs and queries to enable experimentation with these
overheads, alone or in tandem with others. Finally, to showcase the
portability and scope of UDFBENCH, we present an experimental
analysis on five popular databases with different characteristics.

PVLDB Reference Format:
Yannis Foufoulas, Theoni Palaiologou, and Alkis Simitsis. The UDFBENCH
Benchmark for General-purpose UDF Queries. PVLDB, 18(9): 2804-2817, 2025.
doi:10.14778/3746405.3746409

PVLDB Artifact Availability:
UDFBENCH code repo: https://github.com/athenarc/UDFBench.

1 INTRODUCTION

Relational database systems support functional extensions to SQL
with user-defined functions (UDFs), which allow developers to im-
plement complex logic and algorithms using a language of their
choice. Most popular data engines support several types of UDFs
(e.g., scalar, aggregate, table), but often UDF execution is neither
optimized nor fully integrated with the underlying engine compo-
nents such as the query optimizer and execution engine. And this
comes at a cost, as the performance of executing queries with UDFs,
or simply, UDF queries, inside a data engine is routinely subpar
and creates significant bottlenecks largely due to the impedance
mismatch between relational (SQL) evaluation and procedural (e.g.,
C/C++, Python, Java, Scala, R, JS) execution [19, 60, 61, 68].

Although external functions have been studied from the early
90’s [e.g., 7, 28, 80], recently we experience an emerging interest in
more advanced UDF functionality emanating from applications in
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.
doi:10.14778/3746405.3746409

Theoni Palaiologou
University of Athens, Athena R.C.
Athens, Greece
€s2210019@di.uoa.gr

2804

Alkis Simitsis
Athena Research Center
Athens, Greece
alkis@athenarc.gr

data science and data analytics, including new and complex UDF
types, such as analytic functions, ML models, ELT and continu-
ous load functions [69, 71]. This trend has exacerbated the UDF
query performance problem and has led to solutions employing low-
level, physical optimization and compilation of UDF queries with
an emphasis on UDFs coded in C/C++, Java, and Python [17, 18].
Python UDFs are particularly interesting as they (a) tend to be very
popular among the growing communities of data science and data
analytics [56], and (b) present intriguing and limiting performance
challenges due to the conversions required between Python and
C/C++, which is the implementation choice of most data engines.

As the performance deficiencies of UDF queries increasingly
attract the spotlight, we need tools to benchmarking against best
practices and results. Several database benchmarks have been pro-
posed. The TPC benchmarks suite covers transactional, analytical,
data integration, decision support, and other such workloads [76].
Other benchmarks include the Join Order Benchmark (JOB) [38],
OptMark [39], Star Schema Benchmark (SSB) [49, 50], ETL-oriented
benchmarks [70, 78], and frameworks such as the OLTPBench [12].
These focus on query processins challenges, such as join ordering,
but they do not consider UDF queries. TPC-C and TPC-E contain
a few store procedures, but as their focus is different, they do not
capture the complexity and overheads UDFs pose to queries.

SQL-ProcBench is the only benchmark to date that focuses on
procedural SQL workloads [24]. It employs an augmented TPC-DS
schema with store procedures, user-defined functions, and trig-
gers obtained from real-world applications. It is an starting point
to study procedural SQL workloads, but it has several limitations.
(a) The schema, object, and query definitions are expressed in three
SQL dialects: PL/SQL [52], PL/pgSQL [54], and T-SQL [43], which
makes it not fit to study the effect of UDFs coded in other popu-
lar languages such as C/C++ or Python. (b) SQL-ProcBench lacks
support for popular UDF types. It comprises 24 scalar and 10 table
UDFs, but not native aggregate UDFs. Its table UDFs are mainly
blocking UDFs, corresponding to just 1 table UDF type (sub-type 5)
out of the 8 types we use in our classification described later (see
Figure 3). (c) Several of its UDFs are not used in the queries provided
(e.g., genRandomChar, bestPromoStore). (d) And those they do are
invoked by simple SQL queries (‘select udf from dual’), while its
few more complex queries employ just a single UDF. But to under-
stand and measure the implications of UDF query execution, we
need to explore more complex combinations of UDFs and relational
operators in the same query and to systematically organize UDFs
based on their characteristics. (e) Finally, although SQL-ProcBench
can evaluate specific techniques such as inlining, it is not designed
to test other critical dimensions as we discuss in Section 2.

In this paper, we present the UDFBENCH, a UDF-centric database
benchmark that focuses on UDFs and their implications to SQL
query performance. UDFBENCH is based on an extensive analysis

https://doi.org/10.14778/3746405.3746409
https://github.com/athenarc/UDFBench
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746409
https://www.acm.org/publications/policies/artifact-review-and-badging-current

of research and commercial solutions related to UDF query pro-
cessing [17, 18] to identify (a) the core challenges in UDF query
optimization and execution at both (physio-)logical and physical
levels, (b) the design complexity due to the large variety of UDF
and data types involved, (c) the complexity of dealing with multiple
programming languages, (d) the multiplicity of execution environ-
ments and how these affect UDF execution, and (e) the expresive-
ness expectations developers have for procedural programming in
data engines. We follow a choke point analysis to identify the core
bottlenecks in UDF query execution and designed the UDFBENCH
to enable studying and measuring each of these overheads, alone or
in tandem with others. UDFBENCH utilizes a database schema, data,
and queries inspired from a real-world application. To demonstrate
the portability of the benchmark, we present experimental results
on five data engines with different characteristics.

Our contributions. UDFBENCH is designed to study the limita-
tions and potential opportunities in current approaches, hoping
that it could influence future work toward more performant UDF
execution. Our contributions are summarized as follows:

(a) We describe the challenges and complexity of UDF execution,
and the core factors of UDF performance deficiencies.

(b) We present UDFBENCH, a benchmark based on a real-world
application and data that treats UDFs as a first-class citizen and is
specifically tailored for UDF queries in SQL databases.

(c) We showcase the portability of UDFBENCH with an experi-
mental evaluation on five data engines with different architectures.

(d) We identify performance deficiencies and design limitations
that indicate potentially fruitful, future research directions.

(e) The implementation of UDFBENCH follows a modular design
that could be straightforwardly extended to additional queries, pro-
gramming languages, and data engines. To that end, we open-source
all the bits of UDFBENCH, schema, data, and UDF queries [77].

2 DESIGN PRINCIPLES

Our design process relies on choke points analysis [13] to identify
critical factors in UDF query processing as listed next.

UDF programming language. Most SQL engines support UDFs
in various languages, with PLSQL, C/C++, Python, and Java being
among the most popular choices. Table 1 presents a listing of UDF
language support in popular SQL engines. We used the first five
engines as representative engines in our evaluation presented in Sec-
tion 4. Furthermore, a SQL query may contain UDFs coded in more
than one language, which complicates further its performance anal-
ysis. For example, the query: ‘select median(jsoncount(citations))
from result’, may involve median as a C UDF and jsoncount as a
Python UDF. Although early research efforts handle such queries
as poly-glot or federated queries [22, 30, 31, 72], SQL engines could
be a performant one-stop shop for multi-language UDF queries.

UDF types. Modern SQL engines support a variety of UDF types,
including scalar, aggregate, and table UDFs. Scalar and aggregate
UDFs process one tuple or one group at a time, respectively, and
return a single value. Table UDFs process a subquery or scalar
parameters at a time and return a table. Other UDF types include
Lambda expressions (especially, for scalar UDFs), window functions,
selection functions, and so on. However, as these are still not widely
supported, we do not cover them in the first version of UDFBENCH.

2805

SQL engine | UDF languages

DuckDB Python/Pandas, C

MonetDB C, Python, R

PostgreSQL | pgSQL, Tcl, Perl, C, Python

SQLite C, Python (with APSW)

Spark Scala, Java, Python (PySpark)
Databricks Hive, Python/Pandas, Scala

DB2 C++, Lua, Python, R

Greenplum | C, Python, pgSQL, Tcl

MariaDB C/C++, Rust

MongoDB JS

Oracle PL/SQL, C, Java, Python (OML4Py)
Redshift SQL UDF, Python, Lambda (Java, Go, C#, Ruby, etc.)
Snowflake Java, JS, Python, Scala, SQL UDFs
SQL Server | Transact-SQL (TSQL)

Vertica C++, Java, Python, R

Table 1: Example UDF language support in SQL engines

Data types. The data types used in the UDF input and output
schemata may be simple (int, float, string, null) or complex (json,
dicts, lists). Simple data types are typically aligned with the under-
lying engine. For example, a Python UDF running on a C++ based
engine should deal with data conversion and data copy issues. Nu-
meric values are seamlessly processed between the Python and C++
runtimes via cdata objects. String values are transformed into a
format processable by either runtime via pointers to cdata objects
with or without (interned) data copies, with methods such as a com-
piler friendly ffi.string, ffi.buffer (memoryview without string
copy), or direct pass the pointer to the C string enabling low level
optimizations in a C manner. Complex data types introduce addi-
tional complexity, especially if the engine handles these types via
JSON strings. Then, the UDF developer should (de)serialize the na-
tive structure to JSON, which adds an overhead to data conversions
and switches. For example: Python struct — Python JSON string
— C/C++ string. UDFBENCH includes UDFs with both simple and
complex data types to allow measuring such overheads.

Example. The query ‘select extractmonth(date) from artifacts’
employs a scalar UDF extractmonth with three semantically equiv-
alent variants but different return data type: integer (1-12), string
(Jan-Dec), and JSON ({ ‘month’ : “Jan’ }). Figure 1(left) shows the data
conversion and copy overheads in (a) the UDF body and (b) the
(de)serialization between the UDF and the engine, here MonetDB.

Execution mode. UDF execution depends on the characteristics
of the underlying engine, such as thread/process parallelism, in/out
process execution, and tuple/operator at a time execution. Multi-
threaded query execution improves query performance and scala-
bility. However, parallelism in UDF execution is limited by several
factors [20]. For example, the performance of Python UDFs run in
parallel is limited by the Python Global Interpreter Lock (GIL) [58],
a mutex that allows only one thread to control the Python inter-
preter hence forcing the Python program to run single-threaded. To
remediate this, multi-process execution could be employed instead.
Additionally, the UDF may be executed in the same or separate
process with the engine. The former mode is performant as there
is little handshake between the UDF and the engine’s runtime, but
it could become a potential vulnerability in a malformed execution.
The out-process execution adds a safety net for the engine at the
cost of potentially increased communication overheads at the UDF
execution. Performance trade-offs also exist when the UDF runs
per tuple resulting into numerous functions calls, versus running
in vectorized mode, which may break the execution pipeline and
introduce intermediate results. The query and UDF design in our

Win-proc, op-at-a-time
30 Win-proc, tup-at-a-time
out-proc, op-at-a-time

input data conc/copy
® output data conv/copy
m udf body
20

46,34

json

23,87s

in-proc, op-at-a-time (4x)
W out-proc, op-at-a-time (4x)
20 wjit, in-proc, op-at-a-time

=
5]

exec time (sec)
exec time (sec)

10

1 n 9

int

5,695

int

0

string json string

Figure 1: Query overheads related to data types (left) and
execution modes (right) on the large dataset

benchmark creates opportunities to measure such execution modes.
Example. Figure 1(right) shows a comparison of out-of-the-box
query execution on MonetDB (i.e., in-process (in-proc) and operator-
at-a-time (op-at-a-time)) with other combinations of hand-crafted
execution modes including out-process (out-proc), tuple-at-a-time
(tup-at-a-time), multi-threaded (in-proc 4x, with 4 parallel threads),
multi-processed (out-proc 4x, with 4 parallel processes), and JIT-
compiled (jit). Several observations can be made: (a) the differ-
ence between op-at-a-time and tup-at-a-time (the first two bars)
is attributed to the excess function calls due to per tuple function
invocation, (b) out-proc is slower than in-proc, (c) thread-level par-
allelism is slower than process-level parallelism due to GIL, (d) a
combination of in-process, operator-at-a-time, process parallelism
and JIT-compiled UDFs is a good choice for this particular engine.
We investigate such design options in more detail in Section 4.

Query optimization. Query optimizers generally treat UDFs as a
black-box. Early approaches identified that computationally expen-
sive and complex functions become dominant cost factors in query
optimization, whilst conventional heuristics often do not work [7-
9, 27, 28, 80]. Later approaches explored factorization of shared
subexpressions (e.g., UDF calls) for finding optimal orderings of
predicates and functions, which is an NP-hard problem [46, 47].
Techniques such as introspection [5, 29] and code analysis enable
logical optimization, such as operator re-ordering or UDF push-
down, a problem recently revisited using a search-verification ap-
proach [81]. Adaptive query execution (ADE) improves UDF query
optimization, as it deals with the varying UDF cost in a query’s
lifespan [11, 23, 33, 40, 79]. For example, interleaved execution
depends on live query statistics for multi-statement table-valued
functions, a specific type of table UDFs with T-SQL statements [63].
UDFBENCH is a testbed for such techniques, as its queries blend
relational operators and UDFs in a variety of combinations offer-
ing query optimization opportunities of an increasing complexity,
ranging from relatively easy to capture to more challenging cases.

UDF optimization. UDF query execution can benefit from tech-
niques such as parallelization, vectorization, function inlining/out-
lining, loop fusion, and just-in—time (JIT) compilation [2, 10, 14—
16, 19, 20, 25, 32, 34, 53, 59-61, 65-68, 73]. Approaches to physical
optimization of UDF queries differ to each other in the method of
UDF integration with the data engine. Frequent choices include
UDF translation to either SQL or to an internal representation (IR),
and engine-level UDF compilation and integration [17, 18]. UDF-
BENCH is designed to enable testing the benefits, implications, and
limitations of such low-level techniques. For example, it comprises
queries with varying UDF chaining and nesting levels, as follows:
select pubmedid, jpack(frequentterms(stem(filterstopwords(

keywords(abstract))),10)) as pmcterms from file(’pubmed.json’).

2806

This query could presumably benefit from loop fusion [3, 6, 34],
function inlining/outlining [2, 16, 20, 60], vectorization [20, 35, 36,
59], and JIT-compilation [21, 37, 45, 62, 64, 73], should the underly-
ing execution engine supports any of these techniques.

Expressiveness. Procedural programming allows dynamic/static
typed functions, parametric polymorphism, and stateful execution.
These features are sparsely supported for UDFs in SQL engines. For
example, a dynamically typed UDF such as add(a,b) could be in-
stantiated with various types at query time: select cast(add(1,2)
as int) or select cast(add(‘hello’, ‘world’) as string). Simi-
larly, a polymorphic function such as file in ‘select authors from
file(‘pubmed.json’)’, should allow to dynamically determine the
schema of authors based on the format of the input; e.g., the authors
could be either { ‘name’ : ‘Peter’}or {‘name’: ‘Peter’, ‘citedby’:100}.
Finally, a stateful function should retain the state in between query
runs, e.g., after a variable instantiation with ‘select var(‘a’, ‘HELLO’)’,
the query ‘select lower(var(‘a’))’ should return hello.

We have designed UDFBENCH to enable investigating and mea-
suring such factors across data engines and research solutions.

3 THE UDFBENCH BENCHMARK

UDFBENCH comprises a schema populated with real-world data,
UDFs of varying complexity, and queries containing a blend of
relational and UDF operators. A complete listing of UDFBENCH
queries and UDFs may be found in our code repository [77].

3.1 Schema

3.1.1 Schema origin. The UDFBENCH schema hails from a real-
world application, OpenAIRE (openaire.eu), which uses 150+ UDFs
to perform information extraction, text mining and analytics over
Open Access publications. To date, it has harvested over 130M
publications, 2M datasets, 85K software artifacts, and 1.5M projects.
UDFBENCH schema is a curated subset of OpenAIRE’s schema [41].

3.1.2 Data origin. UDFBENCH comprises real-world data at three
scale factors: small (13M rows), medium (60M rows), and large
(120M rows). These are adequate to show the implications of UDFs
in UDF queries. Larger datasets would mingle the UDF overheads
(i.e., the focus of UDFBENCH) with other factors (e.g., increased
I/O or disk spills). Based on demand, we could offer a generator of
synthetic data from the real dataset at arbitrary sizes [4].

3.1.3 Schema description. Figure 2 depicts the ER-diagram of the
UDFBENCH schema, which comprises 10 tables as shown in Table 2.
It has 2 core tables, artifacts and projects, connecting to 7 tables
containing author metadata, author lists per artifact (in JSON), arti-
fact abstracts and accessing fees, artifacts related to a project, and
1 table with view statistics for each artifact. Note that the schema
contains denormalized features such as nested attributes (JSON list,
dict) and the queries presented shortly connect to external denor-
malized files, hence, enabling testing complex UDF functionality
beyond relational. The schema includes fields of various data types
and sizes, and allows building queries with expensive relational op-
erators such as aggregation, grouping, and join paths of moderate
length (up to 5). We find this fit for benchmarking UDF queries. For
studying problems such as join ordering in many-join queries, one
could use specialized benchmarks such as JOB [38] or SSB [49, 50].

id table name table description #fields row 90unts disk Slz.e (MB)
small medium large small | medium | large
T1 artifacts artifacts (e.g., publications, datasets) 17 376,152 1,880,762 3,761,525 112 560 1,119
T2 artifact_abstracts abstracts of the artifacts 2 137,454 686,165 1,372,429 98 489 1,345
T3 artifact_authorlists author(s) of each artifact (in JSON) 2 127,269 635,753 1,271,629 25 122 243
T4 artifact_authors author metadata 7 1,022,184 4,956,523 9,931,641 305 1,469 2,946
Ts artifact_charges artifact processing charges 3 17,057 85,287 170,574 1 5 10
Te6 artifact_citations citation count per artifact 3 15,218 76,090 156,749 7 25 38
T7 projects project metadata 24 469,604 1,653,651 3,307,303 132 447 890
T8 projects_artifacts links between projects and artifacts 3 628,274 3,144,975 6,578,760 71 354 741
T9 project_artifactcount | artifacts per project 5 469,604 1,653,651 3,307,303 29 101 201
T10 | views_stats statistics about artifact views 5 9,686,539 | 44,960,583 89,921,167 1,153 5,353 10,619
total: 71 12,949,355 | 59,733,440 | 119,779,080 1,933 8,916 | 18,152

Table 2: UDFBENCH tables

sub | type process return in — out
1 scalar 1 tuple at a time or a scalar value one value tuple — value
l artifact_citations l l artifact_abstracts l l artifacts_authorlists l 2 aggregate | 1 group at a time one value group — value
3 table 1 tuple at a time one tuple tuple — tuple
4 table 1 tuple at a time one table tuple — table
[projects] [project_artifacts] { artifacts] 5 table 1 table one table table — table
6 table 1 group at a time one tuple group — tuple
7 table 1 group at a time one table group — table
- - - - - 8 table 1 scalar value one table or tuple value — table
l project_artifactcount l l views_stats l l artifact_authors l l artifact_charges l 9 table 1 table one value usually with a side effect | table — value
10 | table 1 table one tuple table — tuple
Figure 2: UDFBENCH: Schema Table 3: UDF type (type) and sub-type (sub) classification

3.2 User-defined functions

UDFBENCH contains 42 UDFs inspired by production code in Ope-
nAIRE [51], which are carefully crafted to enable experimentation
with the factors and challenges described in Section 2.

3.2.1 UDF classification. We consider the most popular UDF types:
scalar, aggregate, and table UDFs. Their input and output schemata
are critical in how a UDF operates in a query and how it interacts
with its producer and consumer operators. Based on this, we classify
these three types into 10 sub-types (sub), as shown in Table 3. Scalar
and aggregate UDFs have always the same mapping from their
input to their output. Table UDFs are more complicated; they have
8 mappings of their input to their output schemata, e.g., process a
table and return a tuple, or process a table and return a table.

Each sub-type in Table 3 enables different optimization oppor-
tunities. Table UDFs that process one tuple at a time (T-3, T-4) are
parallelizable via data partitioning, while those processing the en-
tire table at once are blocking. For example, the strsplitv UDF
splits a string’s token into separate rows (one tuple at a time). Each
input text can be processed independently, still some engines such
as MonetDB treat strsplitv as a black-box table function. Table
UDF sub-types T-6 and T-7 process one group at a time. Unlike
aggregate UDFs, they return multiple values but enable similar
optimizations. For example, the top UDF processes a group at a
time, returning the max N values as separate rows.

3.2.2 UDF design and characteristics. Table 4 presents the UDF-
BencH UDFs along with their types, sub-types, and complexity. The
list contains 24 scalar, 4 aggregate, and 14 table UDFs of various
sub-types. Table 5(left) shows statistics including the cardinality of
UDFs that have a pipeline or blocking execution, can be parallelized,
are stateful, (may) have side-effects, and are supported in more than
one programming language. Table 5(right) shows statistics related
to the data types of the UDF input and output schemata.

3.2.3 UDF description (abridged). UDF implementation is engine
specific. UDFBENCH exploits each data engine’s UDF capabilities
and adapts to differences in type definitions and execution models

2807

across engines. For example, extractfromdate (table, T-3) may be
implemented either as a blocking table UDF or as a parallelizable
scalar UDF. Next, we describe example UDF design choices for poly-
morphic/dynamic UDFs, stateful UDFs, and parallelism in UDFs.
Dynamic and polymorphic UDFs. Polymorphic UDFs are imple-
mented once and can be reused with varying input/output types
and different arguments in each invocation. Some engines, such as
PostgreSQL, support polymorphic UDFs and permit data type spec-
ification at query time, hence handling multiple types dynamically.
Systems lacking built-in support for UDF polymorphism, require
the UDF developer define a UDF multiple times -one for each type
variation- to express queries in SQL-standard syntax. The following
example lists an implementation of the table UDF file (U40) in
(a) MonetDB and (b) PostgreSQL, and two example SQL queries.

(U40-a): create or replace function file_v1(fpath string, ftype string)
returns table (coll string, col2 string, col3 string, col4 string)
language python {

-- udf body that returns a specific output schema
13
create or replace function file_v2(fpath string, ftype string)
returns table (coll string, col2 string, col3 string)
language python {
-- udf body that returns a different output schema
I8
[SQL query]: select * from file_v1(‘arxiv.xml’;xml’);
(U40-b): create or replace function file(fpath text, ftype text)
returns setof record as $$
-- udf body that returns dynamic schemas according to inputs
$$ language plpython3u;
[SQL query]: select * from file(“arxiv.xml”;'xml”)
f(doi text, amount float, totalpubs int, sdate text);

Stateful UDFs. Implementing stateful UDFs depends on how an
engine handles persistent resources. Consider the keywords UDF
(U20), which tokenizes text input based on a regular expression.
(a) SQLite allows reusing a pre-compiled regex pattern across calls
by defining it at the module level, so it maintains state and avoids
repeated compilation overhead. (b) PostgreSQL PL/Python does not
support persistent state within UDFs across calls, so the regex must
be recompiled each time the UDF runs, leading to higher overhead.

id name type | cost id name type | cost id name type | cost

U1l | Addnoise S-1 O(n) U15 | Jaccard S-1 O(nx*k) U29 | Extractfromdate T-3 | O(n)

U2 | Clean S-1 O(n) U16 | Jpack S-1 O(n*k) U30 | Jsonparse T-3 | O(n+k)

U3 | Cleandate S-1 | O(n) U17 | Jsoncount S-1 | O(n) U31 | Combinations T-4 | O(n+k?) T ot T data t o ¢
U4 | Converttoeuro | S-1 | O(n) U18 | Jsort S-1 O(n) U32 | Extractkeys T4 | O(n+k) ype cou ata y_pe ou
U5 | Extractclass S-1 O(n) U19 | Jsortvalues S-1 O(n) U33 | Strsplitv T4 | O(nxk) scalar 24 numeric 8 1
U6 | Extractcode S-1 | O(n) U20 | Keywords S-1 | O(n) U34 | Jgroupordered T-5 | O(n) aggregate 4 int 0 6
U7 | Extractday S-1 | O(n) U21 | Logl0 S-1 | O(n) U35 | Kmeans (iterative) | T-5 | O(n?) table 14 float 0 6
U8 | Extractfunder S-1 | O(n) U22 | Lower S-1 | O(n) U36 | Kmeans (recursive) | T-5 | O(n?) pipeline 36 string 22 16
U9 | Extractid S-1 | O(n) U23 | Removeshortterms | S-1 | O(n) U37 | Xmlparse T-5 | O(n) blocking 6 rset 0 1
U10 | Extractmonth S-1 O(n) U24 | Stem S-1 O(n) U38 | Pivot T-6 | O(nxk) parallelizable 32 json 4 1
U1l | Extractprojectid | S-1 O(n) U25 | Avg A-2 | O(n) U39 | Top T-7 | O(n = logk)

U12 | Extractyear S-1 O(n) U26 | Count A-2 | O(n) U40 | File T-8 | O(n) stateful 14 xml 1 0
U13 | Filterstopwords | S-1 | O(n) U27 | Max A-2 | O(n) U41 | Output T-9 | O(n) side-effect 1 bool 0 1
U14 | Frequentterms | S-1 | O(n) U28 | Median A-2 | O(n*logn) U42 | Getstats T-10 | O(n = logn) multi-lang 3 polymorphic 7 10

Table 4: UDFBENCH UDFs: type (scalar-S, aggregate-A, table-T), sub-type (1-10), and cost

(U20-a): text tokens = re.compile(r‘([\d.]+\b[\w+)’, re. UNICODE)

keywords udf
’7res = text_tokens.findall(input)

’7 keywords udf

(U20-b):

text_tokens = re.compile(r‘([\d.]+\b|\w+)’, re. UNICODE)
res = text_tokens.findall(input)

Parallel UDFs. Scalar UDFs, which operate on a row-to-row basis,
are typically straightforward to parallelize. Aggregate UDFs can be
parallelized, especially, if implemented with an init-combine-final
model to merge partitioned results. Table UDFs are generally more
complex to parallelize. UDF parallelization can also be directed
by the developer. For example, in PostgreSQL, tagging a UDF as
PARALLEL SAFE enables parallel execution, assuming that its opera-
tions are safe for concurrent processing. Hence, with PARALLEL SAFE,
PostgreSQL executes extractfromdate across parallel workers.

(U29): create type _extractfromdate as (extractyear integer,
extractmonth integer, extractday integer);

create or replace function extractfromdate(arg text)

returns _extractfromdate as $$
-- udf body that converts date to an _extractfromdate type

$$ language plpython3u immutable strict parallel safe;

3.3 Queries

3.3.1 Query classification. Following the principles described in
Section 2, we categorize the benchmark queries into four query classes.

(QC1) Queries with UDFs and a few relational operators (emphasis
on UDFs): useful for evaluating UDF related overheads.
Queries with a blend of UDFs and expensive relational
operators (e.g., join, group) or nesting: useful for evaluating
the interaction of UDFs with heavy relational operators.
Queries with UDFs and complex relational logic: for evalu-
ating the impact of UDFs in query execution/optimization.
(QC4) Queries with UDF and DML operations (e.g., insert, update).

(QC2)

(QC3)

3.3.2 Query design and characteristics. UDFBENCH contains 21
queries inspired by real-world use cases, fine-tuned to enable inves-
tigating the challenges described in Section 2. Table 6 presents their
characteristics: (a) query class (QC1 to QC4), (b) #UDFs per UDF
type, (c) data type of the query input/output either simple (text,
numeric, etc.) or complex (JSON, list, dict, etc.), (d) may process
null values, (e) contains a UDF chain (nested UDFs), its UDF and
query nesting depth, (f) could benefit from optimizations such as
JIT compilation, fusion, vectorization, parallelization, (g) could op-
erate in-process, (h) contains dynamic, polymorphic, stateful UDFs,
(i) number of expensive relational operators, etc.

Table 5: UDF characteristics

3.3.3 Query description (abridged). Next, we describe representa-
tive UDFBENCH queries per query class.

QC1 - Simple UDF queries. These queries are useful to analyze the
impact of UDF specific characteristics, such as UDF type, language,
low-level overheads and potential UDF optimizations.

(a) Extract the year, month, and day from date. (Q1): use 3 scalar
UDFs that input the date as a string and produce three integer values.
(Q2): use a table UDF that inputs one string column (date) and
produces three integer columns. (Q3): same as Q1, but the 3 UDFs are
implemented in different languages (Python, C, SQL, Java, Scala).

(Q1):

select id, extractyear(date), extractmonth(date), extract-
day(date) from artifacts;

select id, extractfromdate(date) from artifacts;

select id, extractyear(date), extractmonth_c(date), extract-
day_sql(date) from artifacts;

(Q2):
(Q3):

(b) Similarly, we include UDF queries designed to test simple
data types (Q4, Q5) e.g., numeric, float, and complex data types
(Q6-Q9) e.g., JSON list, XML, with various UDF types.

QC2 - Mix of UDFs and relational operators. These queries are
useful for exploring potential query optimization opportunities,
pipeline or blocking processing, context switches and data copies
and conversions between UDF and relational operators.

(a) Clustering of artifact types based on the funded amounts of
their linked projects. Alternative implementations: (Q10): use itera-
tive k-means clustering. (Q11): use recursive k-means clustering.

(Q10): select * from kmeans(
‘select id, type, sum(famt) as sfamt from (
select a.id as id, a.type, converttoeuro(p.fundedamount, p.currency) as famt
from artifacts a, projects p, projects_artifacts pa
where a.id = pa.artifact_id and pa.project_id = p.id and fundedamount>0.0)
group by id, type’, ‘type’, ‘sfamt’, ‘id’, 5);

Some engines (e.g., PostgreSQL, MonetDB) execute Q10 as two
queries, hence enabling query optimization that could otherwise be
blocked by kmeans UDF: (a) a query with the k-means UDF and (b) a
query that passes as an argument in the k-means UDF. In the latter
query, the converttoeuro UDF could be pushed before the join.

(b) Combine UDFs with join and group-by. (Q12): Show the 10
most viewed publications in the last year and add Gaussian noise
to hide the specific number of views. This is a top-k query that ap-
plies a UDF per artifact. Q12 explores low-level UDF optimizations
(e.g., loop fusion) in synergy with SQL expressions, and overheads
involved for executing two UDFs with grouping and sorting.

(Q12): select artifact_id, addnoise(count(*)::int) as views
from views_stats where cleandate(date)::timestamp with
time zone >= now() - interval ‘12 months’
group by artifact_id order by views desc limit 10;

2808

query class
query id

QC1 (simple UDF queries)
2 3 4 5 6 7 8 10 11

QC2 (UDFs + expensive RelOps)

12

QC4 (UDFs + DML)
20 21

QC3 (complex UDF queries)
13 14 15 16 17 18 19

#scalar
#aggr
#table

3 2 1 1
2 1 1 1
1 1

2

2
1

1 4 3 10
1 8
2 1*

-
o

1 1

2 2

int
string
float
null
complex

®on
»

»
%
*

i

X

X

"
"

X

RN | SR
»

®o%
i

parallel

in-process

udf chain

jit

fusion/loop fusion
vectorization

i
i

i

i
KW XK oKX
I

®

KR KKK
KoH X ORI M X
I
LI

R I I B A A I S)
T A

KoMK R
WM oM KK

dynamic/polymorphic
stateful

MMM MR KRR KKK

#rel-ops 1
cost model

nest udf depth 1
nest qry depth 1 1 1 1 1

[

2
2

w WX a

3

[T}

-
)

15
X
2
3

[N

3
4

[R L I A VR
w

WWHR AR KR K KR KKK XK K

NS]
»

Table 6: UDFBENCH: List of queries with their characteristics

(c) Table UDFs with nested subqueries. (Q13): Parse an external
JSON file and extract information to link publications with projects.

QC3 - UDFs and complex relational logic. These queries are useful
for exploring advanced query optimization and low-level, UDF
optimization opportunities, involving expensive operators and deep
nested UDFs and subqueries with expensive context switches, data
copies and conversions. As these may be not handled by existing
query optimizers, we also offer hand-crafted optimized alternative
query implementations to highlight the potential.

(a) (Q14): Find the most recent affiliation of the first author for
publications funded by EU. This query could benefit from a UDF
pull-up optimization [27, 28] as the expensive jsonparse UDF could
be postponed until after the selective join (Q14’).

(Q14): with aa (ath,aff,..) as (

select jsonparse(authorid,..), jsonparse(affiliation,..), [..]

from artifacts_authors where [..4 filters..])
select aa.ath, aa.aff
from aa, artifacts a, projects_artifacts pr, projects p
where [..3 filters / 1 subquery with join/group..] and

pP<pr and pr><a and aab<a;
select jsonparse(authorid,..), jsonparse(affiliation,..)
from artifact_authors, artifacts, projects_artifacts, projects
where [..7 filters / 1 subquery with join/group..] and

p><pr and pr><a and aab<a;

(Q14’):

(b) (Q16): Investigate how research projects affect the collabora-
tion among scientists in terms of publications they co-authored.
(Q16): with pairs as (
select [..], extractid(), extractfunder(), extractclass(),
combinations(jsort(jsortvalues(removeshortterms(lower([..])))))
from artifacts)
select funder, class, projectid,
sum(case: cleandate() between projectstart and projectend [..])
as authors_during,
sum(case: cleandate() < projectstart [..]) as authors_before,
sum(case: cleandate() > projectend [..]) as authors_after
from ([..two nested subqueries..]) as projectpairs < pairs)
group by funder, class, projectid;

A

This query presents several optimization opportunities. The
UDFs in the A and/or C portions could be fused, respectively, into
two single UDFs. This would eliminate overheads such as context
switches and data copies, reduce function calls, potentially enabling
more performant compilation including the core functionality of

2809

the fused UDFs into the same hot-loop (loop fusion). Then, the
query plan abstractly becomes A — B — C. This presents opti-
mization opportunities, such as reordering of UDFs and relational
operators, predicate push-down (e.g., search only for European
funders) [81] or predicate pull-up (e.g., postpone time-consuming
or resource-consuming UDFs after a selective join operation) [28].

Similar opportunities and challenges could be explored with the
other queries of this category that implement functionality such as:

(c) (Q15): Search crossref (an XML file) to find publication-project
pairs that do not exist in the local dataset.

(d) (Q17): TF/IDF computation for artifact abstracts.

(e) (Q18): Identify the top-5 most similar documents for a given
document. The query applies several preprocessing steps and com-
putes the Jaccard similarity on document abstracts from 2 different
sources (csv and JSON files) for each pair of documents.

() (Q19): Employ a pivot operator to count the number of arti-
facts per artifact_type and per project.

QC4 - UDFs and DML operations. These queries investigate the
impact of UDF execution on typical DML queries (insert, update).
(a) (Q20): Update dates in the artifacts table after a cleaning task.
(b) (Q21): Extract links between publications and projects from an
external JSON file and insert them to the projects_artifacts table.

(Q20): update artifacts set date = cleandate(date);
(Q21): insert into projects_artifacts
select publicationdoi, crossref.pid from (
select publicationdoi, extractprojectid(fundinginfo) as pid
from (select * from jsonparse(..) as t) as crossref);

3.4 Parameters and Metrics
We consider the following metrics associated with UDFBENCH.

3.4.1 Performance. To measure the overheads of UDF execution,
we use: (a) execution time: it measures the time from the moment
a query is issued until the result is retrieved; (b) resource utiliza-
tion: the average cpu/memory utilization for a query execution; (c)
process/read size: the size of data (MBs) processed/read by a query.

3.4.2 Software metrics. To measure the complexity and expres-
siveness of the proposed UDFs, we employ software engineering
techniques, such as the Halstead metrics, McCabe’s cyclomatic com-
plexity (CC), the maintainability index (MI), and raw metrics, such
as total (LOC), logical (LLOC), and source (SLOC) lines of code.

The Halstead metrics assess a program’s complexity and stati-
cally analyze the source code to compute the number of distinct
(71 and n;) and total (N; and N,) operators and operands [26].
From these, we compute the measures: (a) program vocabulary:
n =n1 + 12, (b) program length: N = N; + Ny, (c) calculated pro-
gram length: N = 11 log, n1 +n2log, 12, (d) volume: V = N xlog, 1,
(e) difficulty to write/understand a program: D = "71 X I’;—’zz (f) effort
to code: E = DXV, (g) estimated time to code: T = E/18 seconds, and
(h) estimated number of bugs in the code: B = V/3000. These metrics
help understand the diversity and size of the code, aiding in evalu-
ating its complexity and potential maintainability, and hence they
provide valuable insights into the code’s structure and complexity.

The cyclomatic complexity considers conditional logic in blocks
measuring the linearly independent paths in the code [42]. Pro-
grams with lower cyclomatic complexity are easier to understand
and less risky to modify. The maintainability index shows the rel-
ative maintenance effort for blocks of code and is computed as a
factored formula of Halstead’s volume, the cyclomatic complexity,
the lines of code (LOC), and the percentage of comments [48, 75].
We use these metrics as a ‘rule of thumb’ to compare the relative
trends of the UDF implementations across different systems.

4 PERFORMANCE EXPERIMENTS

We present an experimental evaluation on five SQL engines to show-
case how UDFBENCH could be used to evaluate various features and
techniques related to UDF implementation and architecture, and
we fine-tune the engines for this purpose. However, this analysis
should not be used as an engines comparison, this is not our target.

4.1 Experimental setup

Single-node experiments ran on a server with 2x Xeon E5-2630V4
(40pt), 144GB DDR4, and Ubuntu 22.04, which was otherwise un-
loaded. The systems/tools used include: PostgreSQL (17), MonetDB
5 server (v11.50.0), DuckDB (1.0.0), SQLite3 (3.37.2), Spark/PyS-
park (3.5.5), Python (3.10.12), gcc (11.4.0), PyPy (7.3.12), CFFI
(1.15.1), APSW (3.40.0.0), NumPy (1.26.4), PyArrow (18.0.0),
Pandas (2.2.0), Scikit-learn (1.4.0), NLTK (3.8.1), Radon 6.0.1 [57].

4.2 Methodology

Engines. We deployed UDFBENCH to DuckDB, MonetDB, Post-
greSQL, SQLite, and Spark, which represent various architectures:
embedded vs. server-based, memory-based vs. disk-based, row-
store vs. column-store, and single-node vs. distributed.

Engine compatibility. The UDFBENCH queries capture aspects
of UDF design options that may (M) or may not (O) be currently
supported by all engines. Also, the queries may slightly differ across
the engines due to differences in SQL dialects and the UDF types
each engine supports. Next, we list a query compatibility matrix.
QU Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QI0 Qi1 Q12 QI3 Q4 Q5 Ql6 Q17 Q18 Q19 Q20 Qul
I R R R R R RN | | [. | | | [I | | [| []
| |
[u]

[n]
| |

MonetDB
PostgreSQL
DuckDB
SQLite
Spark

In general, PostgreSQL and MonetDB support UDFBENcH UDFs
natively with minor adjustment to align with how they employ UDF
types. DuckDB, SQLite, and Spark do not currently support all UDF

types. Next, we describe how we evaluated them with UDFBENCH.

| I | " I R R R RN | | | | |] n | | | | n n | | | | n
| I | [D B B BN BN BN | | | | n] | | | | n |] |] | | n
| I | [D B B BN B B | | | |] n | | | | [|] | | | | | |
| I | 00 e ® ®R O o | | n n | | | | o n o u) o

2810

DuckDB supports scalar UDFs, but not aggregate or table UDFs
(except UDFs of sub-type 3). Instead of reporting ‘n/a’, we pro-
vide an alternative implementation (M). To simulate table UDFs in
DuckDB, we combine scalar UDFs with the SQL unnest operator.
This applies to queries Q6, Q7, Q9, Q10, Q11, Q13, Q15, Q16, Q17,
Q18, Q19, and Q21. Similarly, in queries involving aggregate UDFs
without a group-by, we implement the UDFs as scalar functions that
receive the subquery string as a parameter. The UDF executes the
subquery and returns a Pandas dataframe without data copy. The
aggregation is then computed directly on the dataframe, and the
final result is returned. This applies to queries Q4, Q5, Q7, Q8, and
Q9. Queries involving aggregations with group-by are implemented
as a combination of the above two techniques (e.g., Q14).

SQLite supports scalar and aggregate UDFs but not table UDFs.
To simulate table UDFs (M), we use lazily evaluated, non-materialized,
virtual tables that mimic the behavior of table-returning UDFs [74].
We also employ APSW [1], a Python wrapper for SQLite, to rewrite
the query to create a lazy virtual table and then use it in the query.

Spark performance and scalability relies on aggressive partition
parallelism. Hence, Spark applies the same principle to UDF exe-
cution as well. Spark UDFs run as out-process. Scalar UDFs run
tuple-at-a-time, whereas aggregate UDFs are vectorized via Pandas.
Spark requires that table UDFs (new in Spark 3.5) can be safely par-
allelized, which is true for those UDF sub-types that have tuple or
value input type and process tuples independently (e.g., sub-types
3, 4, 8 in Table 3). But UDFs with other input types (e.g., tables or
groups) are not always parallelizable. The blocking UDF sub-types
5,9, and 10 process the full table at once and are not fit for parti-
tioned parallelism. UDF sub-types 6 and 7 operate on grouped data
and without careful handling of partition parallelism would either
lead to incorrect results or the UDF query would fail. As a special
case, should the UDF input fit in a single partition, the query would
run but likely suboptimally. Currently, several UDFBENCH queries
do not run ‘as is’ on Spark as they involve either blocking table
UDFs (Q5, Q6) or non-parallel-safe UDFs (k-means Q10/Q11, tf/idf
Q17, pivot Q19). Additionally, Spark does not support DML UDF
queries (Q20, Q21). We tested Spark on local (for comparison with
the other engines) and cluster (for distributed execution) modes.
Spark offers an optional Arrow optimization to boost inter-operator
data move via vectorization. This benefits a few queries (1.6x in Q2
with UDFs sub-type 3), but regresses many others (-4x in Q9 with
UDFs sub-type 4). Next, we report results with Arrow disabled.

Data copy. MonetDB and DuckDB base their UDFs on NumPy
and Pandas, and achieve zero-copy by passing arrays or dataframes
to UDFs and returning results in the same format without data copy.
PostgreSQL and SQLite invoke UDFs for each tuple, handle results
as Python objects, which then transform into C representations.

UDF semantics. (a) Multilingual queries involving UDFs in multi-
ple languages (Q3) are not supported in DuckDB and SQLite, while
Spark supports UDFs in Python, Java, and Scala but not in SQL
or C/C++. (b) Iteration is a common operation in modern UDFs;
but iteration can also be implemented with recursion. And several
works support recursive UDFs (e.g., [14]). UDFBENCH supports both
implementations; e.g., queries Q10 and Q11 implement kmeans with
iteration and recursion. However, in our experiments, we imple-
ment recursive UDFs using sub-functions inside the UDF body as
the engines tested do not support natively recursive Python UDFs.

3 120

6 90

4 60

“I o
111 T I T

Q7 Q@8 Qi3 Q21

{
|
|

2

exec time (Sec)

0 |

1
1

!
2

Q4 Q5 Q Q: Q3 Q6

W MonetDB m PostgreSQL ® DuckDB m SQLite M Spark

1E ! -
I | i/ 1
Q15 Q19 Q20

W MonetDB ® PostgreSQL ® DuckDB m SQLite M Spark

400 25000

20000

15000
ne oomMm
10000 |
|
|
5000 |
|
o il o mili- |

Ql1 Q12 Q14 Qe av

300
00M - gom
2 |
nal
\

100 f ‘
|
0 | |
Q Q

10

1<}
S

Q18

W MonetDB DuckDB

SQlite

PostgresQL

W MonetDB M PostgreSQL M DuckDB ™ SQite M Spark mSpark

Figure 3: UDFBENCH query runtimes (in sec) for the large dataset grouped based on the magnitude of the measurements

Datasets. We ran the experiments on the small, medium, and
large datasets described in Table 2. For space considerations, unless
otherwise stated, we present results on the large dataset.

We investigate the key factors affecting UDF query execution
and showcase how UDFBENCH can be used in other engines as well.
We also present micro-experiments to detail issues related to UDF
query performance, complexity, and expressiveness.

4.3 Performance analysis

4.3.1 UDF types. We run the UDFBENCH queries on the five en-
gines (see Figure 3). Here, Spark runs on local mode for a fair
comparison with the execution environment of the other engines.
Queries of the first class QC1 (queries Q1-Q9) are suitable to study
UDF performance. Scalar UDFs are examined in Q1-Q3 (multiple
languages in Q3: C, Python, SQL). Since multi-thread parallelism in
Python is limited by GIL, leveraging multi-processing parallelism
(as PostgreSQL does) achieves greater speedups in these queries.
Spark multi-process, tuple-at-a-time execution is faster than Post-
greSQL (Q1, Q2) due to more aggressive partitioning. The aggregate
UDFs in Q4 demonstrate the benefit of vectorized execution over
tuple-at-a-time; here, MonetDB and DuckDB shine. Spark reads the
entire dataset and directly applies the aggregation in one partition.

Most engines treat table UDFs of sub-type 4 (e.g., combinations
in Q9) and sub-type 3 (e.g., extractfromdate in Q2) as blocking
operations that limit parallelism. However, these UDFs could be
parallelized as they process each tuple independently. For exam-
ple, in Q9 PostgreSQL achieves nice parallelism. But Spark runs
a suboptimal parallel scan on the input parquet file and uses a
single partition for the aggregate. Table UDFs of sub-type 10 (e.g.,
getstats in Q5) are blocking and run sequentially in all engines.
In this case, in-process, vectorized UDF execution is preferred due
to seamless data exchange between the data engine and the UDF.
Thus, MonetDB and DuckDB perform better than the other engines.
On the other hand, executing this query type as out-process and
tuple-at-a-time is sub-optimal, as it causes significant process over-
heads per tuple, which explains PostgreSQL weak performance here.
Table UDFs of sub-types 8 and 9 (e.g., file and output, respectively
in Q6) make the entire query to run sequentially in all engines.
This query does not benefit from vectorized execution (e.g., it does
not involve aggregation), so in-process, tuple-at-a-time execution
achieves better results with SQLite being the fastest for this query.
Spark is 'n/a’ here due to the blocking table UDF output.

Query Q7 combines aggregate and scalar UDFs on top of a block-
ing, table UDF of sub-type 8 (file), which takes a single value (file
path) and hence, makes the query run sequentially. Vectorization
improves aggregation. Still, DuckDB faces an overhead caused by
unnesting operations to support aggregates. MonetDB is faster than

2811

PostgreSQL, while SQLite is slower due to its aggregate implementa-
tion in Python. PostgreSQL good performance is due to its step func-
tion implementation for aggregates (e.g., ‘accum’ for average) [55].
Spark runs a suboptimal out-process single-partition execution.
Query Q8 is similar to Q7, but without the blocking table UDF,
and highlights the pipeline parallelization of scalar and aggregate
UDFs. As with Q1 and Q2, multi-processing allows PostgreSQL to
achieve nice parallelization. Single-process, tuple-at-a-time SQLite
is slower. Q8 involves a UDF (jsoncount) with a complex input
type, which reduces the efficacy of vectorization as described in
Section 2. Still, MonetDB and DuckDB achieve excellent execution
due to vectorized processing. Spark parallelizes jsoncount but sub-
performs as it uses a single partition for the aggregate UDF.
4.3.2 Execution. Queries of the second class QC2 (10-13) integrate
UDFs with relational operators, introducing challenges such as
context switching, data conversion overheads, and optimization.
Q10 and Q11 implement kmeans with a blocking UDF of sub-
type 5 using Python scikit-learn and process Pandas dataframes
either iterative (U35) or recursive (U36). These queries involve data
exchange between a UDF and expensive subqueries (join, group-
by). Vectorized execution with zero-copy exchange with the Pandas
dataframes fits nicely this scenario, as DuckDB’s performance in-
dicates. Tuple-at-a-time implementation implicates dataframe cre-
ation with excessive data copies, and hence, SQLite is the slowest
here. Parallel execution of the inner subquery benefits PostgreSQL
runtime, despite the overhead of tranforming the subquery results
to Pandas dataframes. Having a complex subquery as a parameter
of a table UDF tricks MonetDB’s optimizer to implement a cross
product (crossjoin) and require excessive memory that eventually
leads to out-of-memory (OOM) issues. If we split the query and the
subquery, MonetDB employs algebra.join and performs as DuckDB.
Q12 merges expensive operators (group-by, aggregates) with
scalar UDFs and a native aggregate (count). UDF parallelization with
partitions helps PostgreSQL run faster than the other engines that
fail to parallelize the query effectively due to GIL limitations. Spark
shines due to aggressive parallelization; it uses 20 partitions for the
scalar UDFs, while PostgreSQL with the same plan uses only 4.
Q13 involves 2 blocking table UDFs of sub-types 5 and 8 (jsonparse
and file) with the outer table UDF (jsonparse) processing the re-
sults of an inner SQL subquery. Similarly to Q10 and Q11 zero-copy
results into MonetDB and DuckDB being faster. Although Q13 does
not involve translation into Pandas dataframes, PostgreSQL’s out-
process execution involves excessive data copies. Spark runs here
with a single partition due to the table UDF sub-type 8 (file).

4.3.3 Optimization. Queries of the third class QC3 (14-19) involve
complex interactions among UDFs and relational operators and
introduce query optimization and execution challenges.

Q14 involves join operations with filters, group-by’s, and UDFs
(e.g., jsonparse UDF), and offers several optimization opportunities
as described in Section 3.3. Indexing enhances this query, so SQLite
shines with its automatic index creation, as PostgreSQL also does if
indexes are explicitly created (our default PostgreSQL setup). Spark
shines due to partitioning parallelism applied for jsonparse.

Q15 involves a not-in statement based on attributes produced by
UDF pipelines. This stresses the optimizer; e.g., SQLite is slow due
to a suboptimal nested-loop join selection. Similarly, Q18 executes
a cross product on two tables produced by two UDF pipelines, and
then runs an aggregation. Q18’s top UDF (sub-type 7) is paralleliz-
able per group, but current engines treat it as a black-box, limiting
parallelism. Spark, as with Q7, is hurt by serial query execution
due to the table UDF subtype 8 (file). Specifically, Q18 runs fully
sequential and in Q15 only the not-in statement is parallelized. file
is an example case where AQE could help. Spark cannot predict the
output cardinality of file and runs the entire query on top of the
UDF sequentially. Q15 and Q18 offer several currently unexplored
opportunities for UDF optimization (e.g., UDF fusion [6]).

Q16 involves complex UDFs and SQL operations. The table UDF
combinations (U31, sub-type 4) is parallelized in PostgreSQL (sim-
ilar to Q9), however, a premature pull-up of cleandate into the
case statement affects query performance. MonetDB and DuckDB,
with less UDF invocations, run faster. Single-threaded SQLite is
slower here. Spark shines due to a better plan choice (push-down
cleandate) and process parallelism. We elaborate on missing opti-
mization opportunities for this query in Section 4.6.

Q17 computes tf/idf scores and contains multiple aggregations
and data grouping, which presumably make operator-at-a-time
model preferable. This is true for small/medium datasets, where
DuckDB and MonetDB outperform the tuple-at-a-time engines but
with aggressive memory usage. However, in our environment, for
the larger dataset, DuckDB and MonetDB fail with OOM errors.

Q19 highlights the advantage of operator-at-a-time engines to
handle subqueries with zero-copy. In contrast, PostgreSQL struggles
with tuple-at-a-time, inter-process communication, while SQLite
benefits from in-process execution. Q19 involves the table UDF
pivot (U38, sub-type 6), which is not parallelized by any engine.

4.3.4 DMLs. Queries of the fourth class QC4 (20-21) show the ef-
fect of UDFs in DML queries. We observe that the UDFs do not run
in parallel for these queries, which affects their performance. En-
gines with indices enabled are also penalized for index maintenance.
MonetDB is faster due to lazy materialization of updates [44].

4.3.5 Process size. The size of data processed by a UDF query
is an indication of side-effects such as materialized outputs and
data copies. We show aggregated results: (a) the average process
size (MB) per engine for all queries (average), (b) the ratio ps/pm
averaged for all queries, where p, is an engine’s process size for
a query and py, is the minimum process size among all engines
for the same query (relative), and (c) the cardinality of p,,’s per
engine for all queries (count-min). UDFs in vectorized MonetDB
and DuckDB process the least amount of data in 14 queries, and
on average DuckDB processes half the data that MonetDB does.
PostgreSQL and SQLite process overall over 20x the size of the data
processed by the leanest engines, but still process the minimum
size of data in 6 (Q3, Q6, Q9, Q13, Q15, Q21) and 1 (Q17) queries,

2812

100 mQ20 mQ14

M MonetDB m PostgreSQL m DuckDB m SQLite 6,7 6,5 6,4

g 75 g ; Q12 mas
8
&
E 50 Lo8 1,76 342 2
% 25 0,32 6,89 g o TR
0 Q
4 o ® . = - a1 g 1632 8 16 32 8 16 32
Q8 Q12 Q14 Q20 MonetDB PostgresQL DuckDB

Figure 4: Disk/mem (left) and parallelism (right)

respectively. This is due to PostgreSQL’s efficient use of indices.
Q17 (tf/idf) failed to terminate for the large dataset on MonetDB
and DuckDB as explained earlier. Spark presents similar behavior
with PostgreSQL for the supported queries. However, it processes a
larger data volume primarily due to broadcast joins that cause the
same data to be processed multiple times across different workers.
Also, memory-intensive compression codecs (e.g., Snappy) further
increase memory consumption during processing.

process size MonetDB PostgreSQL DuckDB SQLite Spark
average 2602.91 7305.68 1091,1 3886,43 5398,14
relative 4,77 21,45 6,06 23,31 80,31
count-min 5 6 9 1 0

As Spark shares similar architecture choices with the other en-
gines (e.g., partition parallelism as PostgreSQL, albeit more aggres-
sive) and it does not support many UDFBENCH queries, we do not
include it in the rest of the analysis on single-node. We revisit it in
Section 4.9 that explores UDF execution in a distributed setting.

4.4 Architecture choices

4.4.1 Disk vs. memory. Figure 4(left) shows the percentage (%) of
improvement when queries from the 4 query classes (QC1-QC4)
run in memory (/dev/shm) vs. on disk (ssd). PostgreSQL and SQLite
achieve high speedups for in-memory runs (39% on average), due to
the i/o overheads inherent to row-store, tuple-at-a-time execution.
MonetDB and DuckDB achieve less diverse performance, with mini-
mal speedups when running in memory (7.6% and 11%, respectively,
on average), reflecting their efficient data access patterns.

4.4.2 Parallelism. SQLite is single-threaded so it is not applicable
in this test. Figure 4(right) shows the execution speedup as we vary
the number of threads: 8, 16, and 32. Multi-thread parallelism does
not scale in Python with GIL. Query runtime is either slightly im-
proved (MonetDB) or even degrades (DuckDB) due to excessive GIL
contention. Multi-process parallelism achieves higher speedup with
PostgreSQL: ~6.5x over single-threaded execution for 8 threads.
Enabling additional threads does not affect the optimizer’s choice.
The update UDF query (Q20) does not improve with parallelism.

4.5 Stateful vs. stateless

We study the performance impact of stateful vs. stateless UDF
variants with the keywords UDF (see Section 3.2) on the large dataset.

We tested keywords (U20) on three text columns of varying length
with a simple UDF query ‘select keywords(<col>) from <table>’
processing a varying size of non-null rows (#rows). The stateful
UDF implementation compiles the pattern once at a global level and
performs significantly faster (speedup %) than the stateless approach
that compiles the pattern with each invocation. The gain increases
with shorter text and high row counts. For columns with longer
text, the UDF’s inherent complexity dominates execution time,
reducing the relative impact of the pattern compilation overhead.

N
5]

mQ14 8 Q14 1

'K R R K

mQl4 §Q14'

- L
0 [\l -_—% _—

1

exec time (sec)
#rows proc (M)

MonetDB PostgreSQL DuckDB sQlLite MonetDB PostgreSQL DuckDB SQLite
Figure 5: Operator reordering in Q14
10
=Ql6 ®Q16 9081175 9081175 8210003
SQ16 Q16 S 8210003 <

3571 1800

° 2 §
|38

MonetDB PostgreSQL DuckDB

#rows (M)
#function-calls

bl

MonetDB PostgreSQL DuckDB

Figure 6: Operator reordering in Q16

SQLite SQlite

The overhead of stateless execution, noted even in such a simple
scenario, is critical in applications (e.g., text analytics) where the
UDF involves heavy external libraries (e.g., nltk.download()).

#rows stringlen speedup (%)
keywords(abstract) 1.3M 735 5.14
keywords(title) 3.8M 87 12.74
keywords (fullname) 9.9M 14 27.77

The results here are with SQLite, as PostgreSQL and MonetDB do
not support stateful execution. For single UDF execution, stateless
execution does not impact MonetDB or DuckDB as the pattern
is compiled just once for the entire column. However, vectorized
engines might benefit from stateful execution in queries with chains
of UDFs, where a UDF could retain the state for an upstream UDF.

4.6 UDFs and query optimization

4.6.1 Operator reordering. Consider query Q14 and its variant
Q14’ described in Section 3.3. Figure 5 presents the query runtime
and the number of rows processed by the jsonparse UDF on the
small dataset. Both queries process the same number of rows on
SQLite and PostgreSQL, indicating that these effectively apply UDF
reordering (also verified in their plans). DuckDB does reordering
but the rows processed differ slightly due to aggressive predicate
push-down. In contrast, MonetDB does not apply UDF reordering
and thus, has slower query runtime. Notably, if jsonparse is im-
plemented as a table UDF (sub-type 3) rather than a scalar UDF as
used in this experiment, SQLite treats it as a black-box operator
and does not perform reordering resulting in significant runtime
difference (Q14 lasts 26s and Q14° only 12s, for the small dataset).

Let us now consider query Q16, which blends multiple UDFs with
complex query logic, and investigate the impact of reordering the
execution of the UDF operator cleandate. We test two semantically
equivalent queries: (Q16): the original query (see Section 3.3), and
(Q16’): in which the UDF is manually pushed down into the form
clause to reduce the UDF invocations and, hopefully, to improve
query performance. We measure the numbers of rows processed
and the number of UDF calls in both queries. Figure 6 presents
the results. SQLite and PostgreSQL exhibit identical plans for Q16
and Q16’, indicating that both engines apply reordering. DuckDB
and MonetDB process more rows in Q16 than Q16 and as their
plans indicate they do not automatically reorder cleandate. In Q16’,
DuckDB processes the same number of rows as MonetDB but with
more UDF calls, suggesting that it employs a batching mechanism.

4.6.2 UDF fusion. We investigate the impact of UDF fusion with
Q16”, a restructured version of Q16, in which we combine a series
of UDFs and relational operators into fewer, fused UDFs to reduce
the frequent context switches between the engine and the UDF

2813

execution environment. As described in Section 3.3, we create Q16”
by manually fusing the upper segment of Q16 (portion A) into a
single UDF. And we fuse the lower segment (portion C) into another
UDF. Note that although the engines tested here do not support
UDF fusion, related approaches have automated this process [6].
Figure 7 shows that Q16” outperforms Q16 in all four engines on
the medium dataset. Q16 runtime varies across the engines due to
UDF implementation differences. Although the relational operators
of Q16 take about the same time (t-relop) in all engines but the
single-threaded SQLite, the time spent in i/o (io-time), scalar (t-
scalar) and table (t-table) UDFs varies. PostgreSQL runs sub-type 4,
table UDFs (combinations) in parallel and pipelined, and it is 4x and
7x faster than DuckDB and MonetDB, respectively, where table
UDFs materialize intermediate results. However, scalar UDFs are
slower in PostgreSQL as the overhead of the excessive function calls
(see Figure 6) is exacerbated by a suboptimal operator reordering
that here, the other engines avoid. The runtime variance is smoother
for Q16” that involves only two (fused) UDFs implemented similarly
across all engines, which reduces the UDF integration overheads.

4.6.3 AQE. Adaptive query execution (AQE) deals with the lack of
UDF statistics and may enable optimizations such as UDF reordering
and fusion. Among the engines tested, only Spark supports AQE
but to date mainly for physical join optimization. Q16 comprises
a self-join over a table UDF. With AQE and careful tuning (e.g.,
autoBroadcastJoinThreshold = 1.5GB), after executing the table
UDF combinations, Spark revises the running plan and achieves a
4.4x speedup over the static plan (550s -> 125s). AQE is a promising
direction for UDF execution, but clearly more work is needed.

4.7 Compilation

The performance of UDF queries can be improved with JIT compi-
lation, either at the UDF or the query levels [17]. UDFBEncH UDFs
and queries offer opportunities for improving query performance
with JIT compilation, should such option is offered by an engine.
Let us consider Python UDFs as a case in point. Most engines are
implemented in C and employ CPython to compile Python UDFs
into intermediate bytecode. However, to date, most data engines do
not JIT-compile the UDFs. Hence, in order to evaluate the impact of
JIT compilation on UDF queries, we follow a solution proposed by
YeSQL [19]: embed Python UDFs in C using CFFL, which supports
both interpreted CPython and tracing JIT, such as PyPy. This setup
allows us to define C UDFs with embedded Python, which can be
executed on either CPython or PyPy across the four data engines.

In this experiment, we test performance for query Q1. Figure 8
compares UDF query execution with CPython and PyPy, and high-
lights the impact of JIT-compiled UDFs in query processing. In
MonetDB, tracing JIT significantly boosts performance through
parallelized UDF execution via multi-threading. However, in multi-
threaded parallelism the GIL poses a constraint in both CPython and
PyPy, as it involves a GIL lock/release per tuple in the C <> Python
conversions. To address this, we apply a threading lock around the
entire UDF bodies, which leads to substantial time reduction in
CPython (CPython-L), where GIL-related contention during CFFI
calls takes around 14 sec. The impact is lower in PyPy (PyPy-L),
which releases the GIL more effectively. PostgreSQL is not affected
by GIL limitations, as it uses multi-processes for parallelism, hence,

M t-scalar Flt-table &Et-relop Wio-time & Q16" (fused) W CPython m PyPY © CPython-L & PyPY-L 30 42.25 B MonetDB B PostgreSQL .
— _ 8 -)
9 750 65,81 pmm 20 | g 30 i ,g 20 DuckDB sQLite 8,9
Y) {
% 500 sy 2219 o 20 } i @2 L4 032 3,12
€ 143 99 2,48/ 37,82 E ‘ \ o 10 2,44
5250 2643 20,58 5 10 ! [- c ‘ ‘
g 35,14 508 , 3 ; = M . \ N
5 ﬁ 3 - [NN N
0 0 - N NS Q < S & © c),s c’(‘ <:Q
MonetDB PostgreSQL DuckDB sQLite MonetDB PostgreSQL DuckDB SQLite LA < RN 1

Figure 7: UDF fusion in Q16

there is no further benefit from using a threading lock. Such a lock
is also not useful for SQLite, which is single-threaded.

When executing UDFs with CPython in MonetDB and Post-
greSQL, PostgreSQL achieves faster parallel execution thanks to
its multi-processing that bypasses the GIL. However, with trac-
ing JIT compilation and improved GIL handling MonetDB outper-
forms PostgreSQL. Even when running with locks (hence, resulting
into serialized execution), MonetDB still surpasses PostgreSQL, as
PostgreSQL’s multi-processing, while improving parallelism, intro-
duces additional overheads such as inter-process communication
and copying UDF results back to the main process. DuckDB shows
similar performance to MonetDB, however, it does not avoid GIL
contentions with threading lock. Single-threaded, in-process SQLite
also speedups its execution with JIT-compiled UDFs.

4.8 UDF programming language

In this experiment, we evaluate multilingual UDF queries. Query
Q3 involves three scalar UDFs available in Python (p), C (c), and
SQL (s). We test Q3 in eight variants: all UDFs in the same language
(p or c or s), all UDFs in different languages (p-c-s), or UDFs in two
languages (p-c-c, p-s-s, s-c-c, p-c-p). SQLite and DuckDB do not
support multilingual queries or UDFs written in SQL; hence, only
two variants apply on these engines: all UDFs either in Python or C.
Figure 9 shows the impact of UDF language on query performance.

The query with C UDFs runs fast on all engines and faster on
the vectorized MonetDB and DuckDB. It also runs in parallel in all
engines but SQLite. Q3 with Python UDFs is overall slow and slower
on MonetDB as its multi-threaded execution is limited by GIL, a
problem that multi-process PostgreSQL avoids. MonetDB faces GIL-
related slowdowns in all runs involving at least one Python UDF.

SQL UDFs run efficiently in MonetDB and PostgreSQL, but their
runtime varies depending on their implementation. In Figure 9, the
SQL UDFs in MonetDB are simple one-liners, but adding control
flow statements (e.g., if/else) or variable declarations increases ex-
ecution time significantly. For example, checking for null values
with ‘return ifthenelse(date,nullif(...),null);’ runs as a sin-
gle atomic operation, while breaking it into separate statements
results into multiple operators and intermediate materializations.
In this micro-experiment, the former runs in 2.6s and the latter in
49.7s. Analyzing the query plans reveals that this 20x slowdown is
due to excessive materializations in if/else statements.

4.9 UDF distributed execution

We tested UDF distributed execution on Spark in distributed mode
(1 master, 3 workers), deployed on three VMs (28pt, 48GB DDR4).
Here, Spark uses the same query plans as in local mode (Figure 3).
Figure 10 shows the speedup when scaling from 1 to 2-3 workers.

As discussed in Section 4.2, 8 UDFBENCH queries do not run on

Figure 8: Compilation

2814

Figure 9: Languages: Python (p), C (c), SQL (s)

B1node @2 nodes M3 nodes

g 60

72 nodes B3 nodes
2 nodes (sql) M3 nodes (sql)

dl ¥ " Er
1441214122427 A
AAAA AAAAAAAAA =/

Ql Q2 Q3 Q4 Q7 Q8 Q9 Q12Q12*Q13 Q14 Q15 Q16 Q18 Q12* Q12

Figure 10: Distributed UDF execution on Spark (1 node = 1x)

Spark. Several of the supported queries (Q4, Q7, Q13, Q15, Q18) do
not gain from partitioning parallelism due to the non-parallelizable
UDF types they contain. Q7 is also hurt from slow SparkFiles file
distribution. On the other hand, queries involving many relational
operators (QC3) benefit from distributed execution with additional
workers, while UDF-based queries (e.g., QC1) generally do not as
the UDFs are treated as black boxes, preventing the application of
inner UDF parallelism. Instead, only partitioned parallelism is used,
where the UDF runs sequentially within each partition.

We study this further with Q12% a variant of Q12 that uses
only native Spark SQL without any UDFs. Q12* employs efficient
parallelism and achieves ~2x speedup when scaling from 1 to 3
workers. Q12 exhibits faster execution on a single node (see Fig-
ure 10(right)) due to implicit operation fusion but limits parallelism
in a distributed environment. In contrast, the SQL-based version
decomposes computations into multiple operators, enabling better
parallelization at the cost of additional interpretation overhead. The
trade-off between encapsulating SQL operators within a single UDF
and enabling parallel execution presents opportunities for optimiz-
ing UDF-heavy workloads, an interesting topic for future work.

Query Q3 comprises multilingual UDFs, which here are im-
plemented in Scala (extractday), Java (extractmonth), and Python
(extractyear), as these are the UDF languages supported in Spark.
Multi-process execution in Spark works well for multilingual queries,
as we did not observe any significant overhead due to different UDF
languages such as those identified for other engines in Section 4.8.

18
1,4

1
06

speedup
exec time (

ooa

s 8

o

4.10 Complexity and expressiveness

Besides performance, UDF developers also value highly easiness and
maintainability. We perform static code analysis of the UDFBENCH
UDFs as implemented in the various engines and evaluate their
complexity and expressiveness using the software metrics discussed
in Section 3.4.2. We do not include Spark here, as it does not support
several UDFBENCH UDFs. The results are shown in Figure 11.
Although the UDFs follow the same logic, their implementation
varies across the four engines. Overall, in terms of maintenance (mi
- maintainability index), PostgreSQL is the most difficult and SQLite
the simpler to maintain. In terms of complexity (i.e., cyclomatic
complexity), SQLite requires the most complex code (especially,
due to implementation of table UDFs), and DuckDB the simpler
code. In terms of size, as it is expressed by the Halstead metrics
(i.e., volume, length, etc.), MonetDB requires the lengthier and most
convoluted code, as it involves conversions to NumPy for compute

db DuckDB SQLite
udf-type all scalar aggr table all scalar aggr
mi 85,47 84,08 91,78 86,05 81,97 88,75 69,74
complexity 2,6 2,76 2,17 2,45 3,82 3,38 1,94
vocabulary 6,76 8,63 1 521 8,93 7,96 11,25
length 10,33 13,92 1 6,86 12,9 12,42 14,25
calculated_length 29,59 42,21 0 16,41 35,5 38,78 34,64
volume 54,56 79,72 1 26,73 63,83 71,31 58,56
difficulty 0,85 0,9 0,25 0,94 1,22 0,81 2,33
effort 289,65 462,72 0,5 75556 324,14 430,03 289,58
time 16,09 25,71 0,03 4,2 18,01 23,89 16,09
bugs 0,02 0,03 0 0,01 0,02 0,02 0,02
loc 40,1 42,54 25,5 40,07 38,19 35,63 17
lloc 30,26 B29 18,25 29,36 27,29 24,08 15,25
sloc 31,33 34,17 18,25 30,21 28,14 25,5 15
comments a5 1,96 1 1,07 2,26 2,04 0,75
count 42 24 4 14 42 24 4

MonetDB PostgreSQL

table all scalar aggr table all scalar aggr table
73,86 85,08 86,72 88,76 81,21 92,24 95,91 71,92 91,75
5,13 3,4 il 3,75 3,8 3,41 3,58 1,58 3,64
9,93 19,9 26,42 6,75 12,5 6,93 8,33 6,5 4,64
13,36 30,17 40 8,25 19,57 10,52 13,54 8,25 6
30,12 80,09 114,56 14,38 39,76 28,76 40,92 15,2 11,79
52,52 146,21 207,09 23,25 76,99 53,77 77,71 27,87 20,13
1,62 2,77 3,67 0,63 1,84 0,97 0,85 1,75 0,95
152,49 708,37 111437 16,61 210,03 28519 452,22 104,24 50,56
8,47 39,35 61,91 0,92 11,67 15,84 25,12 57k 2,81
0,02 0,05 0,07 0,01 0,03 0,02 0,03 0,01 0,01
48,64 46,93 38,17 40,75 63,71 35,07 33,58 30,25 39
36,21 27,9 21 23 41,14 19,86 20,13 7,25 23
36,43 28,05 22,38 23 39,21 20,83 21,5 7,25 23,57
3,07 8,45 6,92 11 10,36 9,69 8,04 21,75 9,07
14 42 24 4 14 42 24 4 14

Figure 11: Code complexity and expressiveness (color range: from green-low values to red-high values)

and intermediate results. Therefore, it also shows the highest effort
and time to code. Note that although UDFs in MonetDB require
the most lines of code (loc), the logical lines of code (lloc) is on par
with the other engines. However, in PostgreSQL lloc is significantly
lower indicating that it requires lesser executable “statements”.
Figure 11 also reveals insights about the UDFs of UDFBENCH.
The scalar UDFs implement string/text manipulation operations
and are lengthier to code. However, MonetDB requires more com-
plex code and DuckDB simpler code to implement the same logic.
The aggregate UDFs have simpler implementations in DuckDB and
PostgreSQL, require lengthier programs in SQLite, and are more
complex in MonetDB. Interestingly, the complexity of aggregate
UDFs in DuckDB is low but its maintainability index is high. This
is due to our design that ‘simulates’ aggregate UDF in DuckDB im-
plementing them as scalar UDFs in combination with SQL unnest
(Section 4.2). The table UDFs are complex in all engines, but more in
SQLite and MonetDB. Still, table UDFs in PostgreSQL are harder to
maintain. Note that effectively in SQLite and DuckDB we measure
our own design choices for implementing table UDFs (Section 4.2).
Finally, MonetDB and PostgreSQL employ lengthier boilerplate
code to create/register a UDF, which could help the UDF developer
write less application-specific code. This is shown by the avg num-
ber of comment lines (~9 vs. ~2 comment lines in DuckDB/SQLite),
as we commented the SQL and measure only the Python UDF code.

5 INSIGHTS AND OBSERVATIONS

Our analysis with UDFBENCH reveals insights and observations for
improving UDF execution in data engines.

Parallelization. Multi-process UDF parallelism benefits queries
with parallelizable UDFs. This is particularly useful for Python UDFs
that suffer from GIL events. However, in distributed environments
such as Spark, special care is required for partition parallelism.

Vectorization. Analytical queries excel in vectorized models pro-
cessing aggregations on arrays or dataframes without data copies.
Engines lacking native support for aggregate and table UDFs force
developers to use potentially suboptimal workarounds (e.g., unnest).
Some engines (e.g., Spark) employ vectorization via external frame-
works (e.g., Arrow) to reduce communication overheads.

Optimization. Query optimization with UDFs remains challeng-
ing, as rule-based optimizers may misinterpret plans and unneces-
sarily employ costly operations like cross joins. Rewriting queries
with temporary tables and indexes improves performance, espe-
cially in tuple-at-a-time models that struggle with joins on UDF-
produced tables due to reliance on nested-loop joins. Additionally,

the execution order of UDFs heavily impacts performance, with
suboptimal placements in query plans causing UDFs to process
unnecessary tuples and increase execution time.

Adaptive query execution (AQE). AQE presents opportunities for
improved UDF query performance, although its potential is not
yet fully realized. State-of-the-art systems utilize AQE mainly for
physical optimization of joins, leaving other aspects of UDF query
execution (e.g., order in UDF chains) largely unexplored.

UDF types. Currently, most SQL engines have limited support for
table UDFs. Several UDF sub-types are not currently considered,
which leads to sub-optimal or even incompatible UDF queries.

Security. Unrestricted UDF operations (e.g., fwrite, fopen) high-
light the need for enhanced security. Out-process UDF execution
mitigates the risk to some extent and enhances fault isolation at the
cost of performance overheads for non-parallelizable UDFs, which
in general run faster with in-process execution.

Unexplored aspects. Future systems should explore aspects such
as sharing computations across UDFs, serverless structures (e.g.,
dictionaries) for stateful execution with lambda functions, fusion
of UDFs and relational operators, JIT compilation, and enhanced
query optimization strategies. Additionally, mechanisms for dy-
namic UDF push-down or push-up could reduce context-switching
overhead and better integrate UDFs with the underlying query en-
gine. Addressing such challenges would be essential for achieving
performance gains and robust security in UDF query execution.

6 CONCLUSIONS

Extending declarative SQL with functional capabilities is essential
to support modern applications and to some extent, could be a path
to a new market for database products. To advance toward a new
generation of data engines, where UDFs (such as Al operators) are
treated as first-class citizens, we must first systematically identify
the strengths and limitations of current solutions. To facilitate this,
we introduced the UDFBENCH, a tool designed to help the commu-
nity standardize the evaluation and comparison of database engines
that support multi-lingual UDFs in SQL queries, and to provide a
testbed for a systematic analysis of their capabilities.

ACKNOWLEDGMENTS

This work was partially supported by the EU Horizon Europe pro-
grammes: DataGEMS (GA.101188416), CREXDATA (GA.101092749),
and EBRAINS 2.0 (GA.101147319).

2815

REFERENCES

(1]

[2

—

(3]

[12]

[13]

[14]

[15

[16]

=
=

[18]

[19

[20]

[21]

[22

[23]

[24

[25]

[26]
[27

[28

[29

APSW. 2024. APSW documentation, available at: https://rogerbinns.github.io/
apsw.

Samuel Arch, Yuchen Liu, Todd C. Mowry, Jignesh M. Patel, and Andrew Pavlo.
2024. The Key to Effective UDF Optimization: Before Inlining, First Perform
Outlining. Proc. VLDB Endow. 18, 1 (2024), 1-13.

Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexan-
dre V. Evfimievski, and Niketan Pansare. 2018. On Optimizing Operator Fusion
Plans for Large-Scale Machine Learning in SystemML. Proc. VLDB Endow. 11, 12
(2018), 1755-1768.

Nicolas Bruno and Surajit Chaudhuri. 2005. Flexible Database Generators. In
VLDB.

Michael J. Cafarella and Christopher Ré. 2010. Manimal: Relational Optimization
for Data-Intensive Programs. In WebDB.

Konstantinos Chasialis, Theoni Palaiologou, Yannis Foufoulas, Alkis Simitsis, and
Yannis E. Ioannidis. 2024. QFusor: A UDF Optimizer Plugin for SQL Databases.
In 40th IEEE International Conference on Data Engineering, ICDE 2024, Utrecht,
The Netherlands, May 13-16, 2024. IEEE, 5457-5460.

Surajit Chaudhuri and Kyuseok Shim. 1993. Query Optimization in the Presence
of Foreign Functions. In VLDB. 529-542.

Surajit Chaudhuri and Kyuseok Shim. 1996. Optimization of Queries with User-
defined Predicates. In VLDB’96. 87-98.

Surajit Chaudhuri and Kyuseok Shim. 1999. Optimization of Queries with User-
Defined Predicates. ACM Trans. Database Syst. 24, 2 (1999), 177-228.

Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur Cetintemel,
and Stanley B. Zdonik. 2015. Tupleware: "Big" Data, Big Analytics, Small Clusters.
In CIDR. www.cidrdb.org.

Harshad Deshmukh, Hakan Memisoglu, and Jignesh M. Patel. 2017. Adaptive
Concurrent Query Execution Framework for an Analytical In-Memory Database
System. In 2017 IEEE International Congress on Big Data, BigData Congress 2017,
Honolulu, HI, USA, June 25-30, 2017, George Karypis and Jia Zhang (Eds.). IEEE
Computer Society, 23-30.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-
lational Databases. PVLDB 7, 4 (2013), 277-288.

Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H Choke Points and Their Optimizations. Proc. VLDB Endow.
13, 8 (2020), 1206-1220

Christian Duta and Torsten Grust. 2020. Functional-Style SQL UDFs With a
Capital 'F’. In SIGMOD. 1273-1287.

Christian Duta, Denis Hirn, and Torsten Grust. 2020. Compiling PL/SQL Away.
In CIDR.

Tim Fischer, Denis Hirn, and Torsten Grust. 2024. SQL Engines Excel at the
Execution of Imperative Programs. Proc. VLDB Endow. 17, 13 (2024), 4696-4708.
Yannis Foufoulas and Alkis Simitsis. 2023. Efficient Execution of User-Defined
Functions in SQL Queries. Proc. VLDB Endow. 16, 12 (2023), 3874-3877.

Yannis Foufoulas and Alkis Simitsis. 2023. User-Defined Functions in Modern
Data Engines. In 39th IEEE International Conference on Data Engineering, ICDE
2023, Anaheim, CA, USA, April 3-7, 2023. IEEE, 3593-3598.

Yannis E. Foufoulas, Alkis Simitsis, Eleftherios Stamatogiannakis, and Yannis E.
IToannidis. 2022. YeSQL: "You extend SQL" with Rich and Highly Performant
User-Defined Functions in Relational Databases. PVLDB 15, 10 (2022), 2270-2283.
Kai Franz, Samuel Arch, Denis Hirn, Torsten Grust, Todd C. Mowry, and Andrew
Pavlo. 2024. Dear User-Defined Functions, Inlining isn’t working out so great
for us. Let’s try batching to make our relationship work. Sincerely, SQL. In 14th
Conference on Innovative Data Systems Research, CIDR 2024, Chaminade, HI, USA,
January 14-17, 2024.

Henning Funke, Jan Miihlig, and Jens Teubner. 2022. Low-latency query compi-
lation. VLDB .31, 6 (2022), 1171-1184.

Philipp Marian Grulich, Steffen Zeuch, and Volker Markl. 2021. Babelfish: Effi-
cient execution of polyglot queries. Proceedings of the VLDB Endowment 15, 2
(2021), 196-210

Tim Gubner and Peter A. Boncz. 2022. Excalibur: A Virtual Machine for Adaptive
Fine-grained JIT-Compiled Query Execution based on VOILA. Proc. VLDB Endow.
16, 4 (2022), 829-841.

Surabhi Gupta and Karthik Ramachandra. 2021. Procedural Extensions of SQL:
Understanding their usage in the wild. Proc. VLDB Endow. 14, 8 (2021), 1378-1391.
Stefan Hagedorn, Steffen Klébe, and Kai-Uwe Sattler. 2021. Putting Pandas in a
Box. In CIDR.

Maurice H. Halstead. 1977. Elements of Software Science. Elsevier, New York.
Joseph M. Hellerstein and Jeffrey F. Naughton. 1996. Query Execution Techniques
for Caching Expensive Methods. In SIGMOD. 423-434.

Joseph M. Hellerstein and Michael Stonebraker. 1993. Predicate Migration:
Optimizing Queries with Expensive Predicates. In SIGMOD. 267-276.

Fabian Hueske, Mathias Peters, Aljoscha Krettek, Matthias Ringwald, Kostas
Tzoumas, Volker Markl, and Johann-Christoph Freytag. 2013. Peeking into

the optimization of data flow programs with MapReduce-style UDFs. In ICDE.
1292-1295.

2816

[30

[31

[32

[33

[36

(37]

(38]

[40

(41

(42]

=
&

[44

[45]
[46]
(47]

(48]

[50

[51]

[52

[53

[54

[55

[56

Petar Jovanovic, Alkis Simitsis, and Kevin Wilkinson. 2014. BabbleFlow: a
translator for analytic data flow programs. In SIGMOD. 713-716.

Petar Jovanovic, Alkis Simitsis, and Kevin Wilkinson. 2014. Engine independence
for logical analytic flows. In ICDE. 1060-1071.

Michael Jungmair and Jana Giceva. 2023. Declarative Sub-Operators for Universal
Data Processing. Proc. VLDB Endow. 16, 11 (2023), 3461-3474.

Gaurav Tarlok Kakkar, Jiashen Cao, Aubhro Sengupta, Joy Arulraj, and Hye-
soon Kim. 2024. Hydro: Adaptive Query Processing of ML Queries. CoRR
abs/2403.14902 (2024).

Ken Kennedy and Kathryn S. McKinley. 1993. Maximizing Loop Parallelism and
Improving Data Locality via Loop Fusion and Distribution. In LCPC, Vol. 768.
301-320.

Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter A. Boncz. 2018. Everything You Always Wanted to Know About
Compiled and Vectorized Queries But Were Afraid to Ask. PVLDB 11, 13 (2018),
2209-2222.

Steffen Kldbe, Bobby DeSantis, Stefan Hagedorn, and Kai-Uwe Sattler. 2022.
Accelerating Python UDFs in Vectorized Query Execution. In Proceedings of the
Annual Conference on Innovative Data Systems Research. CIDR.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A LLVM-Based
Python JIT Compiler. In LLVM-SC.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204-215.

Zhan Li, Olga Papaemmanouil, and Mitch Cherniack. 2016. OptMark: A Toolkit
for Benchmarking Query Optimizers. In Proceedings of the 25th ACM International
Conference on Information and Knowledge Management, CIKM 2016, Indianapolis,
IN, USA, October 24-28, 2016. ACM, 2155-2160.

Rui Liu, Jun Hyuk Chang, Riki Otaki, Zhe Heng Eng, Aaron]. Elmore, Michael J.
Franklin, and Sanjay Krishnan. 2024. Towards Resource-adaptive Query Execu-
tion in Cloud Native Databases. In 14th Conference on Innovative Data Systems
Research, CIDR 2024, Chaminade, HI, USA, January 14-17, 2024. www.cidrdb.org.
Paolo Manghi, Claudio Atzori, Alessia Bardi, Miriam Baglioni, Harry Dimitropou-
los, Sandro La Bruzzo, Ioannis Foufoulas, Andrea Mannocci, Marek Horst, Ka-
terina Jatropoulou, Argiro Kokogiannaki, Michele De Bonis, Michele Artini,
Antonis Lempesis, Alexandros Ioannidis, Natalia Manola, Pedro Principe, Thana-
sis Vergoulis, Serafeim Chatzopoulos, and Dimitris Pierrakos. 2024. OpenAIRE
Graph Dataset. https://doi.org/10.5281/zenodo.10488385

TJ. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software
Engineering SE-2, 4 (1976), 308-320.

Microsoft. 2024. Transact-SQL, available at: https://learn.microsoft.com/en-
us/sql/t-sql.

MonetDB. 2024. Transaction Schema, available at: https://www.monetdb.org/
documentation- Aug2024/admin-guide/transaction-schema.

Thomas Neumann. 2021. Evolution of a Compiling Query Engine. Proc. VLDB
Endow. 14, 12 (2021), 3207-3210.

T. Neumann, S. Helmer, and G. Moerkotte. 2005. On the optimal ordering of
maps and selections under factorization. In ICDE. 490-501.

Thomas Neumann, Sven Helmer, and Guido Moerkotte. 2006. On the Optimal
Ordering of Maps, Selections, and Joins Under Factorization. In BNCOD. 115-126.
Paul W. Oman and Jack R. Hagemeister. 1992. Metrics for assessing a software
system’s maintainability. In Proceedings of the Conference on Software Mainte-
nance, ICSM 1992, Orlando, FL, USA, 9-12 November, 1992. IEEE Computer Society,
337-344.

Pat O’Neil, Betty O’Neil, and Xuedong Chen. 2009. The Star Schema Benchmark
(SSB). (2009).

Patrick E. O’Neil, Elizabeth J. O’Neil, Xuedong Chen, and Stephen Revilak. 2009.
The Star Schema Benchmark and Augmented Fact Table Indexing. In Performance
Evaluation and Benchmarking, First TPC Technology Conference, TPCTC 2009, Lyon,
France, August 24-28, 2009, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 5895). Springer, 237-252.

OpenAire. 2025. Text Exploration and Analysis. Available at:
https://github.com/openaire/iis/tree/master/iis- wi/iis- wf-referenceextraction/
src/main/resources/eu/dnetlib/iis/wf/referenceextraction.

Oracle. 2024. Getting Started With PL/SQL, available at: https://www.oracle.
com/database/technologies/appdev/plsql.html.

Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul
Palamuttam, Parimajan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk,
Saman Amarasinghe, Samuel Madden, and Matei Zaharia. 2018. Evaluating
end-to-end optimization for data analytics applications in weld. In Proceedings
of the VLDB Endowment. VLDB, 1002-1015.

PostgreSQL. 2022. PL/pgSQL, SQL Procedural Language. Available at:
https://www.postgresql.org/docs/current/plpgsql.html.

PostgreSQL. 2024. PostgreSQL documentation: User-Defined Aggregates, avail-
able at: https://www.postgresql.org/docs/current/xaggr.html.

Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Matteo Interlandi, Avrilia Floratou,
Konstantinos Karanasos, Wentao Wu, Ce Zhang, Subru Krishnan, Carlo Curino,
and Markus Weimer. 2019. Data Science through the looking glass and what we

https://rogerbinns.github.io/apsw
https://rogerbinns.github.io/apsw
https://doi.org/10.5281/zenodo.10488385
https://learn.microsoft.com/en-us/sql/t-sql
https://learn.microsoft.com/en-us/sql/t-sql
https://www.monetdb.org/documentation-Aug2024/admin-guide/transaction-schema
https://www.monetdb.org/documentation-Aug2024/admin-guide/transaction-schema
https://github.com/openaire/iis/tree/master/iis-wf/iis-wf-referenceextraction/src/main/resources/eu/dnetlib/iis/wf/referenceextraction
https://github.com/openaire/iis/tree/master/iis-wf/iis-wf-referenceextraction/src/main/resources/eu/dnetlib/iis/wf/referenceextraction
https://www.oracle.com/database/technologies/appdev/plsql.html
https://www.oracle.com/database/technologies/appdev/plsql.html
https://www.postgresql.org/docs/current/xaggr.html

[57]
[58]

[59]

[60

[61]

[63]

[64

[65]

[66

[67]

[68

[69]

[70]

found there. CoRR abs/1912.09536 (2019). http://arxiv.org/abs/1912.09536
PyPy. 2024. Radon, available at: https://pypi.org/project/radon.
Python. 2022. Global interpreter lock.
https://wiki.python.org/moin/GloballnterpreterLock.

Mark Raasveld and Hannes Miihleisen. 2016. Vectorized UDFs in Column-Stores.
In Proceedings of the 28th International Conference on Scientific and Statistical
Database Management. SSDBM, 1-12.

Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani, Alan Halverson,
César A. Galindo-Legaria, and Conor Cunningham. 2017. Froid: Optimization of
Imperative Programs in a Relational Database. PVLDB 11, 4 (2017), 432-444.
Viktor Rosenfeld, René Miiller, Pinar Toziin, and Fatma Ozcan. 2017. Processing
Java UDFs in a C++ environment. In SoCC. 419-431.

Maximilian E. Schiile, Jakob Huber, Alfons Kemper, and Thomas Neumann. 2020.
Freedom for the SQL-Lambda: Just-in-Time-Compiling User-Injected Functions
in PostgreSQL. In SSDBM. 6:1-6:12.

SQL Server. 2024. Intelligent query processing, available at: https:
//learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-
query-processing-details.

Hesam Shahrokhi, Callum Groeger, Yizhuo Yang, and Amir Shaikhha. 2023.
Efficient Query Processing in Python Using Compilation. In SIGMOD. 199-202.
Hesam Shahrokhi and Amir Shaikhha. 2023. Building a Compiled Query Engine
in Python. In SIGPLAN. ACM, 180-190.

Moritz Sichert and Thomas Neumann. 2022. User-defined operators: efficiently
integrating custom algorithms into modern databases. Proceedings of the VLDB
Endowment 15, 5 (2022), 1119-1131.

Moritz Sichert and Thomas Neumann. 2022. User-Defined Operators: Efficiently
Integrating Custom Algorithms into Modern Databases. PVLDB 15, 5 (2022),
1119-1131.

Varun Simhadri, Karthik Ramachandra, Arun Chaitanya, Ravindra Guravannavar,
and S. Sudarshan. 2014. Decorrelation of user defined function invocations in
queries. In ICDE. 532-543.

Alkis Simitsis, Spiros Skiadopoulos, and Panos Vassiliadis. 2023. The History,
Present, and Future of ETL Technology (invited). In Proceedings of the 25th Inter-
national Workshop on Design, Optimization, Languages and Analytical Processing
of Big Data (DOLAP), Vol. 3369. 3-12.

Alkis Simitsis, Panos Vassiliadis, Umeshwar Dayal, Anastasios Karagiannis, and
Vasiliki Tziovara. 2009. Benchmarking ETL Workflows. In Performance Evaluation
and Benchmarking, First TPC Technology Conference, TPCTC 2009, Lyon, France,

Available at:

2817

[71]

[72]

(74]

[75]

[76]
[77]

(78]

(80]

(81]

August 24-28, 2009, Revised Selected Papers (Lecture Notes in Computer Science,
Vol. 5895). Springer, 199-220.

Alkis Simitsis, Panos Vassiliadis, Manolis Terrovitis, and Spiros Skiadopoulos.
2005. Graph-Based Modeling of ETL Activities with Multi-level Transformations
and Updates. In Data Warehousing and Knowledge Discovery (Lecture Notes in
Computer Science, Vol. 3589). Springer, 43-52.

Alkis Simitsis, Kevin Wilkinson, Umeshwar Dayal, and Meichun Hsu. 2013.
HFMS: Managing the lifecycle and complexity of hybrid analytic data flows.
In 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013. IEEE Computer Society, 1174-1185.

Leonhard F Spiegelberg, Rahul Yesantharao, Malt Schwarzkopf, and Tim Kraska.
2021. Tuplex: Data Science in Python at Native Code Speed. In Proceedings of the
2021 International Conference on Management of Data. SIGMOD, 1718-1731.
SQLITE. 2022. Application-Defined SQL Functions Available at:
https://www.sglite.org/appfunc.html.

MS Visual Studio. 2024. Code metrics - Maintainability index range and meaning,
available at: https://learn.microsoft.com/en-us/visualstudio/code-quality/code-
metrics-maintainability-index-range-and-meaning?view=vs-2022.
Transaction Processing Performance Council. 2024. Active TPC Benchmarks,
available at: https://www.tpc.org/information/benchmarks5.asp.

UDFBench. 2025. Code repository, available at: https://github.com/athenarc/
UDFBench.

Panos Vassiliadis, Anastasios Karagiannis, Vasiliki Tziovara, and Alkis Simitsis.
2007. Towards a Benchmark for ETL Workflows. In Proceedings of the Fifth
International Workshop on Quality in Databases, QDB 2007, at the VLDB 2007
conference, Vienna, Austria, September 23, 2007. 49-60.

Maryann Xue, Yingyi Bu, Abhishek Somani, Wenchen Fan, Ziqi Liu, Steven Chen,
Herman Van Hovell, Bart Samwel, Mostafa Mokhtar, Rk Korlapati, Andy Lam,
Yunxiao Ma, Vuk Ercegovac, Jiexing Li, Alexander Behm, Yuanjian Li, Xiao Li,
Sriram Krishnamurthy, Amit Shukla, Michalis Petropoulos, Sameer Paranjpye,
Reynold Xin, and Matei Zaharia. 2024. Adaptive and Robust Query Execution
for Lakehouses At Scale. Proc. VLDB Endow. 17, 12 (2024), 3947-3959.

Kenichi Yajima, Hiroyuki Kitagawa, Kazunori Yamaguchi, Nobuo Ohbo, and
Yuzuru Fujiwara. 1991. Optimization of Queries Including ADT Functions. In
DASFAA, Vol. 2. 366-373.

Cong Yan, Yin Lin, and Yeye He. 2023. Predicate Pushdown for Data Science
Pipelines. Proc. ACM Manag. Data 1, 2 (2023), 136:1-136:28.

http://arxiv.org/abs/1912.09536
https://pypi.org/project/radon
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-details
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-details
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-details
https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning?view=vs-2022
https://www.tpc.org/information/benchmarks5.asp
https://github.com/athenarc/UDFBench
https://github.com/athenarc/UDFBench

	Abstract
	1 Introduction
	2 Design Principles
	3 The UDFBench Benchmark
	3.1 Schema
	3.2 User-defined functions
	3.3 Queries
	3.4 Parameters and Metrics

	4 Performance Experiments
	4.1 Experimental setup
	4.2 Methodology
	4.3 Performance analysis
	4.4 Architecture choices
	4.5 Stateful vs. stateless
	4.6 UDFs and query optimization
	4.7 Compilation
	4.8 UDF programming language
	4.9 UDF distributed execution
	4.10 Complexity and expressiveness

	5 Insights and Observations
	6 Conclusions
	Acknowledgments
	References

