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ABSTRACT

Modern analytical database systems offer high-performance in-
memory joins. However, if the build side of a join does not fit in
RAM, performance degrades sharply due to switching to traditional
external join algorithms such as sort-merge. In streaming query
execution, this problem is worsened if multiple joins are evaluated
simultaneously, as the database system must decide how to allocate
memory to each join, which can greatly affect performance.

We revisit larger-than-memory join processing on modern hard-
ware, aiming for robust performance that avoids a “performance
cliff” when memory runs out, even in query plans with many joins.

To achieve this, we propose three techniques. First, an adaptive,
external hash join algorithm that stores temporary data in a unified
buffer pool that oversees temporary and persistent data. Second, an
optimizer that creates expressions to compress columns at runtime,
reducing the size of materialized temporary data. Third, a strategy
for dynamically managing the memory of concurrent operators
during query execution to reduce spilling.

We integrate these techniques into DuckDB and experimentally
show that when processing memory-intensive join query plans,
our implementation gracefully degrades performance as the space
requirement exceeds the memory limit. This greatly increases the
size of datasets that can be processed on economical hardware.
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1 INTRODUCTION

Traditional database management systems (DBMS) are optimized
for disk access and they implement sort-based query operators
that use external sorting [22] for query intermediates because only
small amounts of RAM were available. These systems could process
workloads larger than RAM, albeit slowly. Modern DBMSes opti-
mize for main memory access [6, 15] and implement hash-based
query operators [11] because large amounts of RAM are available.
Although their in-memory performance has drastically improved
compared to their traditional disk-based counterparts, their larger-
than-memory processing performance leaves much to be desired.
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Figure 1: A query plan where three hash joins are probed in
a single pipeline. The combined space required for the hash
tables cannot exceed RAM; therefore, to “save” the hash joins
(instead of using sort-merge), the joins must “spill” some data
to storage. Query engines must also decide how to distribute
RAM over the joins, which affects the amount of data spilled
in each join and the total amount of spilled data.

Shortcomings in external query processing are particularly
present in analytical (OLAP) systems, which became mainstream
after DBMSes optimized for main memory, despite OLAP systems
frequently processing large volumes of data and having large in-
termediates. Many analytical systems either abort queries because
they do not support larger-than-memory intermediates or switch
to a traditional disk-based algorithm that is orders of magnitude
slower, introducing a “performance cliff” [23]. For large grouped
aggregations with many unique keys, this cliff can be avoided using
adaptive algorithms [12, 23].

For joins, merely implementing an adaptive algorithm is not
enough to enable robust external query processing. If a single
memory-intensive operator, like grouped aggregation, is evaluated
in a query plan, all memory is available to that operator. The join,
however, has two inputs. One of the join’s inputs is materialized
and could require considerable memory, while the other can usually
be streamed to the next operator in the query plan. Therefore, mul-
tiple memory-intensive operators can be active simultaneously. We
show such a query plan in Figure 1. The combined memory usage of
active operators cannot exceed the memory limit, and the available
RAM must be distributed. Some distributions may under-utilize
RAM and over-utilize storage; therefore, efficient distribution is
critical to query performance [1, 8, 32].

Efficient utilization of secondary storage is key to providing
good performance at a low cost [29], especially given the high
bandwidth of solid-state drives available today. If OLAP systems
implemented robust external query processing, i.e., adaptive algo-
rithms and memory control of multiple active operators, they could
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perform analytical workloads on much more economical hardware.
This would then reduce the cost of challenging analytical workloads
such as large self-joins, join plans including Parquet files, which
are difficult to reorder because only lightweight statistics [30] are
available, and join queries with strings, which are ubiquitous in
real-world data [44] and require more memory than integer keys.

Contributions. This paper revisits external joins, compressed
execution, and multi-operator memory control for modern OLAP
systems to enable robust larger-than-memory analytical join pro-
cessing. Our contributions are the following:

(D A morsel-driven [27] parallel and external hash join algo-
rithm that integrates unified memory management and a
spillable page layout for intermediates [23], which gracefully
degrades performance as the memory limit is exceeded.

(2) An optimizer that uses statistics to create expressions to
compress and decompress columns during execution, re-
ducing the space requirement of materialization without
the need to modify the operators.

(3 A dynamic multi-operator memory control approach
that efficiently distributes the available memory over si-
multaneously active operators, with a low synchronization
overhead to prevent degradation of parallel query execution
performance.

We have implemented these techniques in DuckDB! [38], an in-
process OLAP DBMS with a vectorized execution engine. All three
are available in the v1.2.0 release. DuckDB is no research prototype
but a widely used and well-tested system.

Outline. The rest of the paper is organized as follows. Section 2
discusses related work. After briefly describing how DuckDB man-
ages temporary data in Section 3, we present our external hash join
in Section 4. We describe our approach to compressed execution in
Section 5 and managing concurrent operators’ memory in Section 6.
In Section 7, we describe our experimental setup, which we use to
evaluate and compare our implementation with other systems in
Sections 8 to 10. Finally, we conclude the paper and discuss future
research in Section 11.

2 RELATED WORK

This section discusses related work on larger-than-memory joins,
compressed execution, and multi-operator memory control.

Join Algorithms. The accepted approach to external joins in
traditional disk-based database systems is sort-merge [3], using an
external sort implementation [22]. Once RAM prices decreased, the
efficiency of hash-based algorithms over sort-based algorithms was
quickly recognized [11]. Hash joins have become the most common
way to join relational data. However, a simple hash join cannot
offload (spill) data to storage. Not all workloads fit in memorys;
therefore, disk-based algorithms remain necessary.

In most systems, the query planner must try to choose an efficient
join algorithm, often based on cardinality estimates, which is risky.
Many systems produce significant estimation errors that grow as
the number of joins increases [28]. A poor choice has enormous
implications, and in some cases, inserting a single row into one of
the input tables can cause algorithm choice to change. Choosing a
simple hash join can cause queries to abort if the hash table does

IThe DuckDB source code can be found at https://github.com/duckdb/duckdb
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not fit in memory. Choosing sort-merge can cause execution time
to increase by orders of magnitude if a hash table would fit.

GRACE [21] eliminates this decision with a hash join algorithm
that performs reasonably well in main memory while also being
able to process more data than fits in RAM, allowing it to perform
an external join while avoiding the O(n log n) time complexity of
sorting. GRACE is also parallelizable: partitions are independent;
therefore, they can join in parallel. However, skewed partition
sizes create load-balancing issues. Alternatively, each thread can
build a hash table on some tuples from every partition of the inner
relation and probe it with all tuples from the outer relation [21].
This approach resists skew but increases the total probing effort.

Hybrid Hash Join (HHJ). HHJ [40] improves GRACE hash
join by keeping the first partition in memory and using it to per-
form a simple hash join, only performing GRACE hash join for the
other partitions. HHJ equals a simple hash join if all data fits in
memory and gracefully degrades to GRACE hash join as the data
size exceeds the memory limit. Implementing a single algorithm for
in-memory and larger-than-memory joins leads to more robustness:
the optimizer no longer has to decide between join algorithms with
vastly different performance characteristics.

Research on HHJ has focused on making the algorithm more
adaptive. Instead of statically partitioning, a dynamic strategy can
be used [33] that does not depend on statistics and is, therefore, re-
sistant to skew. Recent research [20] explores dynamic partitioning
policies for HHJ, which can reduce spilling and, therefore, I/O cost.
The Memory-Contention Responsive Hash Join [9] is a variant of
HH]J that adapts to fluctuations in memory contention at runtime,
i.e., it can increase or decrease its memory usage during execution.

Very little research has focused on the parallelism of HH]. Mourad
et al. [31] derive a limit on the parallelism of HHJ under skew when
each thread processes a partition, but the authors offer no improve-
ments to the algorithm. HHJ can also execute in parallel using
plan-driven parallelism, which splits query plans into fragments
and connects them through the exchange [16] operator, keeping
operators largely unaware of parallelism. However, plan-driven par-
allelism also suffers from skewed data distributions. Morsel-driven
parallelism [27] addresses many of the problems of plan-driven
parallelism and can achieve near-linear speedups with additional
CPU cores but requires operators to be parallelism-aware.

Streaming Query Execution. In streaming query execution
such as Volcano [17], tuples stream through pipelined query op-
erators until a pipeline breaker, i.e., a blocking operator. Stream-
ing reduces memory footprint and has a favorable memory access
pattern. Modern analytical streaming query execution paradigms,
such as vectorization, pioneered by VectorWise [7], or data-centric
code-generation, pioneered by HyPer [34], take advantage of this.
Vectorization processes small vertical chunks of cache-resident vec-
tors at a time. Data-centric code generation processes data such
that a tuple is kept in CPU registers as long as possible.

G-join [18] is a sort-based join algorithm that performs well for
inputs that fit in memory but can adapt to larger-than-memory
inputs in a performance-robust way. However, G-join always fully
materializes the outer relation, even if the inner relation fits in
memory; therefore, more memory bandwidth is needed, which can
quickly become a performance bottleneck [6], and much of the
benefit of streaming query execution is lost.
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Radix hash join [43] is a hardware-conscious join algorithm,
popular in literature in the last decade, which also materializes
both input relations. However, a thorough evaluation of this algo-
rithm [2] revealed that it only performs better than the simple hash
join for specific inputs because materializing the tuples dominates
the overall runtime, especially for selective joins.

Compressed Execution. The size of data streamed through
query operators is low; therefore, compressing it does not meaning-
fully reduce memory footprint. However, blocking operators have
a much higher memory footprint because they materialize data.
Compressed execution [19] is a technique that compresses integer
and string values in hash tables to reduce the memory footprint.
This has been shown to improve the performance of in-memory
workloads, and it can most likely improve the performance of larger-
than-memory workloads by reducing the amount of data that needs
to be spilled to storage.

Multi-operator Memory Control. In non-streaming query
execution, a single relational operator is active at any given time. In
streaming query execution, multiple memory-intensive operators
may be active concurrently within a single query plan when joins
are involved. Active operators must be assigned a portion of the
memory pool, as their combined memory usage may not exceed the
limit. A naive approach would be to reserve a fixed amount of mem-
ory for each query and each operator. However, in many cases, this
will lead to over- or under-utilization of memory, namely when the
fixed amount is larger or smaller than the required amount. Under-
utilization of memory is especially detrimental for the Hybrid Hash
Join, as it reduces the effectiveness of the initial in-memory hash
join, thereby requiring more tuples from the (often larger) outer
relation to be partitioned and spilled.

Dageville et al. [8] implement a dynamic approach to multi-
operator memory control that adapts to the workload during ex-
ecution by applying cost-based rules. A global memory manager
publishes a memory bound at three-second intervals, to which oper-
ators must promptly react. This approach improves throughput and
reduces memory footprint compared to reserving a fixed amount
per operator or thread. However, it maintains the same memory
limit for all operators in a query plan; therefore, a memory-intensive
operator cannot exceed this bound, even if the other operators in
the query plan are less memory-intensive. In such cases, query
performance suffers due to underutilization of RAM.

Another dynamic approach to memory control is proposed in [42].

However, this approach adapts to workloads that change over time;
therefore, it does not apply to the problem of managing the memory
of concurrently active operators within a single plan.
Aguilar-Saborit et al. [1] remark that dynamic adjustments can
be expensive and propose a static approach to multi-operator mem-
ory control that assigns allocations to operators before execution.
Their approach applies to bushy plans and builds on prior work that
only considered left-deep query plans [32]. A post-optimization
phase identifies operators in the query plan that are active concur-
rently and enumerates memory assignments to find a near-optimal
solution. This approach allows memory-intensive operators to use
more memory than other operators and considers that not all op-
erators are active simultaneously; therefore, it can assign more
memory to the active operators, improving RAM utilization.

2750

An obvious shortcoming of static approaches is that they assign
memory based on cardinality estimates; therefore, they are prone to
over- or underutilization of RAM due to estimation errors. Another
shortcoming of the dynamic and static approaches discussed so
far is that they reserve memory for joins too early. Lang et al. [25]
delay allocating a hash table and inserting tuples into it until after
materializing the inner relation, such that building the hash table
can be fully parallelized. If temporary data is spillable [23], this
approach can delay a hash join from using significant memory
until right before probing starts: only a minimal amount is needed
for materialization. This leaves more memory available to other
operators, which is especially useful in bushy query plans.

Dynamic memory control does not rely on cardinality estimates
to assign memory to operators, as it assigns memory based on true
cardinalities observed during execution. Dynamically adapting to
workloads causes overhead, especially in parallel query execution.
In plan-driven parallelism [16], threads each have their hash join
operator; therefore, resizing a hash table does not require cross-
thread communication. However, the number of concurrently active
operators increases with the number of threads, which greatly com-
plicates managing their memory on many-core CPU architectures.
In morsel-driven parallelism [27], threads share a single hash join
operator, which avoids this problem. However, cross-thread com-
munication is required to resize a shared hash table.

3 MANAGING TEMPORARY DATA

The external hash join that we present in this paper integrates two
techniques for managing temporary query intermediates proposed
in prior work [23]: (D) unified memory management, which unifies
the memory management of persistent and temporary data, and
(2 a page layout for temporary query intermediates, optimized
for in-memory performance, which is spillable to storage without
serialization overhead. These techniques are central to our hash
join; therefore, we first give an overview.

Unified Memory Management. DuckDB’s buffer manager
maintains a single memory pool for persistent and temporary data,
as proposed by Lasch et al. [26]. Hence, the buffer manager oversees
all memory rather than separately maintaining fixed-size pools
for persistent and temporary data. This unification allows it to
adapt to different workloads better. For example, if the workload is
transactional, all available memory can be utilized for persistent
data. If needed, all persistent data can be evicted to free up space for
a memory-intensive analytical query. In both cases, the available
memory is utilized efficiently.

DuckDB’s buffer manager not only uses paged allocations for
persistent data but also for temporary data. Storing intermediates
on pages allows the buffer manager to evict them to storage if
intermediates exceed the available memory limit. We implement
a specialized page layout for intermediates to avoid serialization
when spilling temporary data, which we discuss later in this section.

DuckDB uses a fixed page size of 218 = 262,144 bytes (256 KiB)
for all persistent pages. For temporary data, we distinguish three
types of allocations. (1) Non-paged allocations are non-spillable
allocations of any size. Despite being non-paged, these allocations
go through the buffer manager so that it can keep track of the
overall memory usage. (2) Paged fixed-size allocations have the same



size as persistent pages (256 KiB) and, therefore, can be efficiently
swapped in and out of a temporary file in storage. Using the same
size for temporary and persistent pages allows for the reuse of
buffer allocations. (3) Paged variable-size allocations can also be
written to storage, but each page is written to a separate temporary
file because it has a variable size.

DuckDB uses variable-size allocations, either paged or non-
paged, only if efficient query processing requires it, e.g., for the
buckets of a hash table or strings larger than DuckDB’s fixed paged
size, i.e., > 256 KiB. Paged fixed-size allocations are the most com-
mon and are used to store almost all temporary query intermediates.

Page Layout. To accommodate storing temporary query inter-
mediates on pages, we have developed a specialized page layout
that is both efficient for in-memory processing and spillable to
storage without any serialization overhead. DuckDB’s page layout
uses a row-major data representation with fixed-size rows, which
is optimal for join/aggregate hash tables [45] and sorting [24]. A
row-major layout improves the locality of accessing subsequent at-
tributes in the same row compared to a column-major layout. Their
fixed size allows efficient access to the attributes using offsets.

Fixing the row size necessitates storing variable-size data, such
as strings, on separate pages and referring to them with pointers.
Pointers create a problem of invalid references: if pages storing
variable-size data are evicted and loaded back into memory, their
addresses may change, invalidating the pointers referencing this
data. Therefore, DuckDB’s page layout stores a small amount of
in-memory metadata alongside the paged data, which describes the
layout of the fixed-size rows and variable-size data on the pages.

The metadata stores the page identifiers and the last-known
addresses of the pages that store variable-size data. When pinning
these pages, DuckDB detects if these pages were evicted and loaded
into a different address by comparing the last-known and current
pointers. If the current page pointer is equal to the stored page
pointer, the buffer manager did not evict the page in between page
accesses, and all of the pointers pointing to this page are still valid.
If the current page pointer is not equal to the stored page pointer,
all pointers pointing to this page have become invalid.

DuckDB then recomputes these pointers by subtracting the last-
known page pointer from them, yielding an offset into the page.
We then add this offset to the current page pointer to obtain a valid
pointer again. Pointer recomputation is inexpensive and happens in
place and lazily, i.e., only after we have detected that the page that
stores variable-size date has gone to disk instead of pre-emptively.

Buffer Eviction Policy. After DuckDB materializes temporary
data on pages, the pages are unpinned. Unpinning effectively frees
up memory, as the buffer manager can offload these pages to storage
whenever necessary, allowing for larger-than-memory data materi-
alization. In DuckDB’s partitioned external hash aggregation [23],
this approach allows for fine-grained spilling of pages instead of
coarse-grained approaches that spill entire hash partitions in an
all-or-nothing manner. However, a drawback of this approach is
that operators no longer have control over which partitions are in
memory unless they are pinned. If the buffer manager arbitrarily
offloads pages, it may offload pages needed soon, causing them
to be offloaded and then loaded again unnecessarily. To prevent
thrashing, the buffer manager should prioritize offloading pages
that will be pinned late.
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To achieve this, we exploit DuckDB’s tendency to process hash
partitions sequentially, i.e., partition 0, 1, etc. We add partitioning
information to pages, which the buffer manager uses to prioritize
spilling pages from, e.g., partition 42 before spilling pages from
partition 0. Pages from the same partitions are evicted using a
least-recently-used policy. Persistent data is always evicted before
any temporary data, as evicting persistent data does not require
writing to storage because it is already stored in the database file. No
distinction is made between temporary pages belonging to queries
from different connections; they are added to the same queue.

By integrating these techniques for managing temporary data
into DuckDB’s hash join, it can effortlessly spill data; therefore,
it can robustly process larger-than-memory query intermediates
by partitioning the data, with only minor modifications to the in-
memory algorithm, as will be explained in detail the next section.

4 EXTERNAL HASH JOIN

This section first discusses the considerations that went into de-
signing DuckDB’s hash join before presenting the implementation.

Considerations. The external processing capabilities of the
hash join should not compromise in-memory performance, and
performance should degrade gracefully as the size of the temporary
intermediates exceeds the memory limit, like with DuckDB’s exter-
nal hash aggregation [23]. This requirement effectively rules out
unnecessarily materializing probe-side data, as this significantly
degrades in-memory performance [2] and increases the space re-
quirement. Not compromising on in-memory performance also
necessitates deferring the decision to perform any external process-
ing to query execution, as this avoids the optimizer erroneously
deciding to deviate from the in-memory strategy based on statistics.

To achieve graceful degradation as the memory limit is exceeded,
the join operator should not have a “hard switch” when it devi-
ates from the in-memory strategy at execution time, as this will
cause a “performance cliff”. Therefore, the join should continue
with the in-memory strategy as much as possible, even if the build
side of the join exceeds the memory limit. The extent to which the
overall strategy deviates from the in-memory strategy should be
proportional to the extent to which the size of the temporary query
intermediates exceeds the memory limit, i.e., a different strategy
should only be used for the portion of data that does not fit in mem-
ory. HHJ [40] achieves this by performing a simple hash join on as
much data as will fit in memory and only performing a partitioned
hash join on an amount of the data that exceeds the memory limit.

The implementation should also be fully parallel at every step,
as any single-threaded execution limits many-core scalability, as
per Amdahl’s law. The parallelism should be skew-resistant, which
rules out parallelization over hash partitions, as data distributions
can skew their sizes, causing some threads to perform much more
work than others, like with plan-driven parallelism [16]. Instead,
we use the concept of morsel-driven parallelism [27] throughout
the entire join, always scheduling tasks over fine-grained fragments
of input data. Although I/O is likely to be the bottleneck when
processing query intermediates larger than RAM, modern storage
devices are highly concurrent and should be accessed concurrently
whenever possible to achieve maximum throughput.
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Figure 2: DuckDB’s hash join. Building is done by assigning morsels to threads until all build-side data has been read. Each
thread radix partitions and materializes the data to DuckDB’s spillable page layout, and a hash table is built on one or more
partitions. Then, probing starts with an initial probe. Morsels are assigned to threads until all probe-side data has been read.
Each thread selects the tuples from the data that can join with the partitions in the hash table and probes and immediately
outputs matching tuples. The overflow tuples that are not selected are also partitioned and materialized. After the initial probe,
all remaining data from both sides has materialized within the join operator, which is processed in a series of subsequent probes.

We will now give an overview of DuckDB’s hash join implemen-
tation, which was designed to fulfill these requirements. DuckDB’s
in-memory hash join is inspired by HyPer’s hash join [27] but with
key optimizations and larger-than-memory processing capabilities.
Our design is illustrated in Figure 2. The algorithm has multiple
distinct phases, which we will explain in detail.

Building. In this phase, we assign morsels to threads until all
build-side data has been read. There can be many more morsels
than threads. Data is scanned from morsels in batches of up to 2,048
tuples, which is DuckDB’s standard vector size. The threads hash
the join key columns and directly materialize tuples into partitions
that use DuckDB’s spillable page layout. As explained in Section 3,
the pages are then unpinned; therefore, they can be evicted by the
buffer manager when necessary.

Note that the partitioned data is in row-major representation,
while the incoming data is in column-major representation: the
conversion of column-major to row-major takes place simultane-
ously while partitioning the data. By materializing and partitioning
tuples simultaneously, rather than consecutively, we avoid copy-
ing tuples more than once, reducing the partitioning cost. This is
an important detail because maintaining the performance of the
in-memory hash join, which does not strictly require partitioning,
unlike the external hash join, is one of our design goals.

Partitions are determined by radix, i.e., a few of the middle bits
of the hash. The lower and upper bits of the hash are used to deter-
mine the entry in the hash table and improve collision resolution
performance, as will be explained. Any of the used bits must not
overlap, as this makes them less effective. Initially, only four radix
bits are used, creating 24 = 16 partitions. After all build-side data
has been partitioned, all thread-local data is exchanged to a global
state. If any single partition is too large to fit in memory, the data
is repartitioned using more radix bits, creating more partitions.

Hash Table Creation. After the building phase, tuples can be
inserted into the hash table. We select as many partitions as will
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fit in memory to insert into the hash table to maximize memory
utilization. If all partitions fit, the join will proceed fully in memory.
Checking whether all partitions fit is a simple and inexpensive op-
eration that does not meaningfully affect in-memory performance.

After selecting the partitions, we allocate and zero-initialize an
array of 64-bit entries with a large enough capacity to fit an entry for
each tuple in the selected partitions. Then, each thread is assigned
morsels from the selected partitions to insert into the array until
all tuples have been inserted. The tuples’ hashes are scanned, and
the offsets into this array are obtained from the lower bits of the
hash. The pointers to the tuples are added to the 64-bit entries at
these offsets using atomic compare-and-swap operations [25].

Collision Resolution. Hash collisions, i.e., tuples hashing to the
same bucket, are resolved using a combination of linear probing and
chaining. We reduce the random access incurred by linear probing
using the upper 16 bits of the hash, which we call salt. Pointers
have a width of 64 bits on 64-bit CPU architectures, but only the
lower 48 bits are used for the address, as this already allows for up
to ~ 281 TB of address space. We store the salt in the remaining 16
bits of the 64-bit entries. When probing, we first compare the salt.
If the salt is equal, we follow the pointer to compare the join keys,
like in DuckDB’s hash aggregation [23].

However, a key difference between the join and aggregate hash
tables is that the join hash table may contain tuples with the exact
same join keys, which are deduplicated in grouped aggregation.
DuckDB’s join hash table treats these collisions differently from
hash collisions that have different join keys.

If we encounter a hash collision (and matching salt) while insert-
ing a tuple into the hash table, we compare its join keys with the
join keys of the colliding tuple. If the join keys are not equal, the
collision is simply resolved using linear probing. If the join keys
are equal, we instead create a chain, i.e., a linked list of tuples with
the exact same join keys. This enables us to create chains that only
feature one unique set of join keys.



By performing these comparisons once while building the hash
table, we do not have to perform them while probing (possibly
multiple times). If a probing tuple’s join keys are equal to those of
the first build tuple in a chain, the probe tuple can be joined with all
build tuples in the chain without further comparisons. This approach
reduces the number of performed comparisons and linear probing
collisions in many-to-many joins. Furthermore, these chains could
also be used for factorization [14], which is crucial for graph query
processing. This optimization also allows us to detect the opposite
case, which is when there are no duplicate join keys at all. We use
this information to improve performance while probing, as we
know that there are no hash collision chains; therefore, we can skip
(attempting to) follow the chains. Probing starts after the hash table
is created. We distinguish two probe phases: the initial probe and
one or more subsequent partitioned probes.

Initial Probe. In this phase, we assign morsels to threads until
all probe-side data has been read. The join key columns are hashed
for every batch of data the threads receive, and the radix is extracted
from the hash. Tuples with a radix that matches one of the inserted
build-side partitions can probe the hash table immediately. Hence,
these tuples are selected. This selection does not imply partitioning
or materialization; only the creation of a selection-vector [7]. The
selected tuples probe the hash table and continue pipelined query
execution. Note that all build-side partitions are inserted into the
hash table for the in-memory hash join. By default, all probe-side
tuples are selected, and their radix does not need to be extracted,;
therefore, in-memory performance is unaffected.

Some probe-side tuples, those with a radix that does not match
one of the inserted build-side partitions, are not selected for exter-
nal hash joins. These tuples are partitioned and materialized to a
spillable page layout. The page layout for the probe-side data is
similar to that of the materialized build-side data, as it also uses
lazy pointer recomputation [23]. An important difference is that
the probe-side data will not be randomly accessed but sequentially
scanned; therefore, we do not need a row-major data representa-
tion to improve the efficiency of attribute access [45]. Instead, the
partitioned probe-side data is stored using a column-major data
representation. This is the default for DuckDB’s execution engine,
allowing the data to be scanned without copying it.

Subsequent Partitioned Probes. For external hash joins, the
initial probe is followed by one or more partitioned probes. First,
however, after the initial probe, the hash table may have to be
scanned, depending on the join type; for example, unmatched tuples
are scanned if it is a right join. The hash table is scanned in parallel
by splitting the data into morsels of, e.g., & 100,000 tuples. If all
build-side data fits into memory, the join is done after completing
this scan. If not, the remaining build- and probe-side data that has
been partitioned and materialized still needs to be joined and output
by performing one or more rounds of partitioned probes.

Each subsequent partitioned probe cycles through three “stages™:
(D Inserting build-side tuples into the hash table, (2) Probing the
hash table, and (3) Scanning the hash table (if the join type requires
it). A thread-global state oversees the progress and assigns tasks to
the active threads. During this phase, the hash table is again built on
as many partitions as possible, allowing for longer uninterrupted
probing, thereby reducing the need for synchronization. After all
partitions have been processed, the join is done.
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DuckDB’s external hash join has been part of every DuckDB
release since v0.5.0. Some of the described optimizations have been
added in later releases. With this design, all decisions regarding the
external hash join are made dynamically during execution with-
out relying on statistics. In every phase of the join, we have been
careful not to compromise the in-memory performance with the
larger-than-memory functionality. If the build side exceeds the
memory limit, memory utilization is maximized by performing an
in-memory hash join on a portion of data that fits in RAM. Al-
though there are some points where threads must synchronize, e.g.,
to decide which partitions will be inserted in the hash table, the bulk
of the work is fully parallelized using morsel-driven parallelism.

In this section, we described how DuckDB’s join adheres to a
memory limit, but multiple operators could be active simultaneously.
In Section 6, we present our approach to multi-operator memory
control and explain how it is integrated with the hash join.

5 COMPRESSED MATERIALIZATION

External joins require materializing data from both relations. If
a quarter of the inner relation fits in RAM, three-quarters of the
outer relation must be materialized. Most joins are asymmetric, with
the inner relation often much smaller than the outer relation. The
benefit of fitting, e.g., 10% more of the inner relation in memory is
enormous, as it avoids materializing another 10% of the potentially
much bigger outer relation.

DuckDB has had a so-called Compressed Materialization opti-
mizer since version 0.9.0. This optimizer creates projections to
compress columns before materializing operators such as joins and
projections to decompress the columns afterward. By implement-
ing compressed execution as an optimizer, instead of within hash
tables [19], the (de-)compression logic is centralized and applicable
to all operators without modification (operator-agnostic).

Integer Compression. If min/max statistics are available, they
are used to apply frame-of-reference compression to compress a
wide integer type to a thinner integer type. If the range (max -
min) of an integer column is small enough to fit in a thinner type,
we subtract the minimum and cast to the thinner type, reducing
its width by at least half. This transformation can be reversed by
casting back to the wider type and adding the minimum again. It
can be applied to all columns from the inner relation, even if the
column is used as a join key, because the transformation does not
affect comparisons as long as the corresponding column from the
outer relation is transformed in the same way.

String Compression. DuckDB uses the string type proposed
by Umbra [35]. With this representation, the width of an arbitrarily
sized VARCHAR is 16 bytes, which includes a pointer if the string is
longer than 12 characters. If the maximum string length is known to
be, e.g., 3 bytes, we store the string in a 32-bit integer instead, saving
12 bytes per value. When a string is converted to an integer type,
its comparison properties can be preserved by copying the bytes in
reverse order on little-endian machines. This conversion reduces
memory usage and speeds up comparisons, as integer comparisons
are much more efficient than string comparisons.

These projections are inexpensive, and adding them improves
performance substantially because they reduce, for example, hash
table memory requirements.



6 MULTI-OPERATOR MEMORY CONTROL

To get a better understanding of how assigning memory to oper-
ators affects query performance, we consider an example similar
to Figure 1, where an outer relation O joins two inner relations,
I and Iy, in a single pipeline, where I; is joined first, and then .
The pipeline ends in the consumption of the data in operator P, for
example, an ungrouped aggregation. We denote the memory limit
with L. To simplify our example, we assume that: (1) Scanning O
and executing P requires no memory, (2) O is much larger than
L, and its join keys are uniformly distributed, (3) Both joins are
non-selective one-to-many relationships, i.e., all tuples from O will
find exactly one match in both joins. These assumptions allow us
to analyze simplified cases where external processing is required.

Memory Assignments. Consider case @ where L = 1 GB,
and I; and I are 1 GB each. We cannot fully perform both joins in
main memory; therefore, we must decide how to divide the memory
between them. If we assign the first join with I; 1 GB and the second
join with I nothing, the first join can proceed fully in memory,
but the second join does not have any memory to build a hash
table; therefore, it cannot perform a streaming probe with any data
coming from O. With this assignment, all of O is fully materialized
in the second join (with I). According to our assumption, O is
much larger than L; therefore, spilling it has a considerable I/O cost
and storage space requirement.

If we assign both joins 500 MB of memory, both can perform a
streaming probe with half of the probe-side data while having to
materialize the other half. With the previous 1,000/0 assignment,
all probe-side data is materialized once. The 500/500 assignment
seems to have the same implications because half the probe-side
data is materialized twice, once in each join. However, with the
1,000/0 assignment, the space requirement is twice as large, as the
probe-side data is materialized all at once in the second join. The
500/500 assignment is preferable because it materializes only up to
half of the probe-side data at any given time.

Relation Sizes. The size of the inner relations significantly
affects how memory should be assigned. Consider again the same
example with L = 1 GB, but now, for case , the inner relations
have different sizes: I; is 200 MB, and I; is 1,800 MB. Choosing
for equality, i.e., a 500/500 memory assignment, is wasteful as I;
only needs 200 MB. Choosing for equity, i.e., a 100/900 assignment,
would again cause half the data to be materialized in both joins. A
better assignment would be 200/800, as this allows the first join to
proceed fully in memory while only requiring 10/18® of the probe-
side data to be materialized in the second join. So, by materializing
just 1/18 more of the probe-side data in the second join, we avoid
materializing half of O in the first join.

From this example, it seems like more memory should always
be given to smaller joins, but this leads to starvation of larger joins.
Consider case © where I3 is 1 GB and I, is 2 GB. We could assign
1 GB to the first join and none to the second to reduce the total
amount of materialized data. With this assignment, all data is ma-
terialized in the second join, and none of the data is fully streamed
through the pipeline into the consuming operator P; therefore, this
assignment increases the overall space requirement. To address this
complex trade-off, we propose a cost model that can be optimized
dynamically during query execution.
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Cost Model. By analyzing the examples in this section, we
have identified two aspects to consider when assigning memory to
joins: materialization cost, which should be minimized, and pipeline
throughput, which should be maximized. As we have seen, these
aspects are at odds, as reducing overall materialization may cause
throughput to drop to zero, and increasing throughput may increase
materialization cost. Therefore, we have created a cost model that
considers materialization cost and pipeline throughput.

We express a join’s materialization cost as the fraction of the
probe-side data that must be materialized. This fraction depends on
the size s; of inner relation I; and how much memory q; is assigned
to the join. We weigh this fraction by a weight w;, as each join’s
materialization cost can differ. In DuckDB, w; is equal to the width
of the probe-side tuples, as the size of the materialized data, and,
therefore, the cost increases linearly with this width.

We define the total materialization cost M(A, S) of a join pipeline
that joins an outer relation with N inner relations as the sum
of these weighted fractions, where S = {s1,s2,....,sny} and A =
{a1,az, ...,an}. We express a join’s throughput as the inverse of
the materialization cost: the fraction of the probe-side data that can
be streamed through it. This fraction also depends on the operator’s
size and memory assignment. We define the throughput T(S, A) of
a join pipeline as the geometric mean of these fractions, creating a
value between 0 and 1.

We formally define M(4, S) and T(S, A) as

N o N x
M(S,A):Zwi‘(l—s—f), T(S, A) = ﬂs—’) .
i=1 ! i=1

As mentioned, M(S, A) must be minimized, whereas T(S, A) must
be maximized. We incorporate both into a single cost model C(S, A)
by multiplying the materialization cost with (1 - throughput), i.e.,
C(S,A) = M(S,A) - (1-T(S, A)).

According to this cost model, the best memory assignments for
the cases are: (A) 500/500, (B) 200/800, (C) 666.6/333.3, assuming
widths w; are equal for each join. As we can see, the cost model
assigns memory equally when the relations are of equal size and
prioritizes smaller joins when they are not. It does so without
starving larger joins completely, as starving any join causes T(S, A)
to quickly become 0, significantly increasing the overall cost due
to the multiplication with 1 — T(S, A) in the cost model.

The model is sufficiently complex to express the combination
of the materialization cost and pipeline throughput into a single
number. It uses materialization and throughput only using relative,
not absolute, sizes; therefore, the cost is the same if constant factors
scale the assignments, sizes, and memory limit. The inputs to the
proposed cost model are observed values, not estimated ones, i.e.,
accurate memory usage is obtained during execution. The model is
also not unnecessarily complex; for example, it does not attempt to
account for variables such as estimated selectivity or memory and
storage bandwidths. Such variables are not guaranteed to remain
constant over time; therefore, if inaccurate, they could negatively
impact the cost model.

Static vs. Dynamic. As discussed in Section 2, static approaches
to multi-operator memory control [1, 32] rely on statistics, which
are not always present. Even when present, statistics are prone to
producing unreliable cardinality estimates for join order optimiza-
tion [28], which can produce plans with much larger intermediates



and are, therefore, orders of magnitude worse than optimal. If relied
upon for multi-operator memory control, these cardinality estima-
tion errors could cause memory to be assigned inefficiently, spilling
more data and significantly degrading performance.

We opt for a fully dynamic approach where memory control is
interleaved with query execution, observing the actual cardinalities
in the pipelines as they occur and reacting accordingly. However,
we avoid limiting operators’ memory usage like the dynamic ap-
proach proposed by Dageville et al. [8], as this can cause memory to
be underutilized, as discussed in Section 2. Instead, we allow large
joins to use more memory, if necessary, like the static approach of
Aguilar-Saborit et al. [1].

Dynamically adjusting memory while executing a query can
be expensive because hash tables may have to be resized. This
is especially costly if systems have a high degree of execution
parallelism, as threads may have to wait while the hash table is
being resized. We must be careful not to impair parallel performance,
especially in the typical case where all operators fit in RAM and
extensive control of the memory of multiple operators is not needed.
Our approach must, therefore, have a low synchronization overhead.

Dageville et al. [8] use a background thread to broadcast a mem-
ory assignment to each operator at a fixed interval, to which opera-
tors must react. Their system uses plan-driven parallelism [16], in
which operator parallelism is encapsulated. In this paradigm, each
thread executes its own plan fragment and has its own copy of each
operator. This complicates dynamic multi-operator memory control
with high degrees of parallelism, as there are many active opera-
tors whose memory usage can be adjusted and whose combined
memory usage must not exceed the memory limit.

DuckDB uses morsel-driven parallelism [27], in which operators
are parallelism-aware. In this paradigm, there is only one copy
of each operator on which threads work in parallel. There are
also fixed synchronization points, which make it very clear when
operators start and end for all participating threads. This simplifies
dynamic multi-operator memory control, as it is much easier to
get an overview of the memory usage of operators, pipelines, and
query plans as a whole in this paradigm.

Dynamic Assignments. In DuckDB, operators indicate the
amount of data they have at these fixed synchronization points and
receive a memory assignment in return. For our external hash join,
this happens right before a hash table is built from materialized
data, i.e., before the initial probe and each subsequent partitioned
probe. This significantly reduces the communication between oper-
ators and the data structure responsible for assigning memory to
operators, which we call the Temporary Memory Manager (TMM).

At first glance, this approach may not seem flexible enough to
produce efficient memory assignments at runtime. In our running
example, the hash table for the join with I; may be built first. Some
memory would be assigned to this join without taking the join with
I; into account. The memory assignment of the join with I; can
only be reduced at this join’s own request. This leaves less memory
available for the join with I, with no way to adapt.

As explained in Section 4, DuckDB first performs Build-Side
Materialization, in which all build-side data is materialized using a
spillable page layout. Large amounts of data can be materialized
without pinning pages in memory because the buffer manager can
spill them. Only after all build-side data has been materialized,
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DuckDB performs Hash Table Creation, in which tuples are inserted
into a hash table, which finally requires data to be in memory.

We exploit the delay between Build-Side Materialization and Hash
Table Creation to produce efficient memory assignments at runtime.
We delay building the hash table of the simultaneously active joins
until the data for all of these joins has been materialized. In our
running example, this entails that we first materialize I; and I.
Then, the sizes of I} and I are communicated to the TMM. Finally,
both joins request a memory assignment from the TMM and build
their hash tables accordingly. By delaying the requests for memory
assignments until all relations have materialized, the TMM can
fairly divide the memory between the active operators with all the
information it needs to optimize the cost model.

This approach ensures that only the joins probed in the same
pipeline require memory simultaneously. This reduces the problem
of assigning memory to active operators to left-deep plans as in [32],
effectively eliminating the need to consider bushy plans as in [1].

Cost Model Optimization. When a memory assignment is
finally requested, parameter S, i.e., the sizes of the materialized rela-
tions of the cost model C(S, A), is known. The memory assignments,
parameter A, are to be decided by the TMM. We approximate the
optimal (according to the cost model) memory assignments with a
few iterations of gradient descent. First, we initialize each a; € A
with a minimum assignment that the operator needs. Then, in each
iteration, we compute the gradient of C(S, A) with respect to each
aj. We increase the a; with the lowest gradient by a fraction of
the free memory. Note, however, that, unlike regular gradient de-
scent, this increase is bounded, as the memory assignment a; of the
operator i should not exceed its total size s;.

To reduce the potential cost of this optimization, we perform
a fixed number of iterations of gradient descent, and only a few
times per operator, at the aforementioned fixed synchronization
points, e.g., before the initial probe and each subsequent probe in the
external hash join. This also only happens when query execution
can benefit from it, i.e., if the total size of the relations exceeds
the memory limit; therefore, in-memory performance is unaffected.
The time spent optimizing the cost model is insignificant compared
to the time spent processing the larger-than-memory data.

Concurrency and Ownership. In DuckDB, there is one shared
TMM for all active connections, meaning that the TMM is also
responsible for managing the memory of concurrent queries. If
multiple connections are concurrently executing join pipelines,
the TMM optimizes the cost model as if the operators from all
connections belong to the same pipeline. The memory that the TMM
assigns to operators is not owned by the TMM but by the operators
themselves. The TMM only gives a limit back to an operator that
requests an assignment, which the operator promises to stay under.

The concurrency and ownership design of the TMM in DuckDB
is an implementation decision. If an individual memory limit per
connection must be imposed, one TMM should be used per connec-
tion instead of a shared TMM for all active connections. Similarly, if
centralized ownership of memory allocations is desired, the TMM
could own the memory it assigns to operators.

The Temporary Memory Manager has been implemented in
DuckDB since v0.10.0 and has since been integrated into the hash
join and aggregation operators. The TMM, as described here, has
been released since v1.1.0.



7 EXPERIMENTAL SETUP

Our experiments run on AWS EC2 using Ubuntu 24. We run each
query 5 times and report the median execution time. If any of the 5
runs does not complete within 1,000 seconds, we report a timeout.
Hardware. We choose the c6id.4xlarge AWS instance type
for our experiments. This instance has an Intel Xeon 8375C CPU
with 8 cores (16 threads) and 32 GB of DDR4 RAM. The instance
has access to 1 TB of NVMe Instance Storage, which is physically
attached to the host, unlike the usual Elastic Block Storage [39]
on EC2. We set the instance’s tenancy to dedicated so that the
entire node is reserved, but we do not use the rest of the node’s
capacity. This setup eliminates the noisy neighbor problem that
cloud environments may have; therefore, our results are consistent.
Data Generation. We generate data using different parameter
configurations, creating a variety of larger-than-memory joins,
allowing us to evaluate how these parameters affect performance.
We consider the following four parameters: (1) Cardinality, the
number of rows. We vary this parameter between 100 million and
1,000 million. (2) Width, the number of sets of projected columns. A
set of columns consists of one tag column (a single uppercase letter),
one employee column (of length 15, e.g., EMPNO4242424242), and
one comment column (a sentence consisting of four random lorem
ipsum words, with an average length of +27 characters). We vary
this parameter between 0 and 4. We only use string columns because
they are ubiquitous in real-world data [44] and more challenging
to process than fixed-width columns. (3) Skew, the skewness of the
join keys. The skewness is determined by sampling from a power
law distribution with parameter . We vary « between 0, for which
the distribution is uniform, and 1, for which the distribution is
Zipfian, and around 75% of join keys are the same. (4) Unique Key
Count, the number of unique join keys from which to sample. We
vary this parameter between 40 million and 200 million.
Isolating Performance. While large join pipelines can easily
dominate a query’s runtime, isolating the performance of internal
components of database systems is difficult because we can often
only reliably observe end-to-end query runtime. Some systems have
built-in query profilers, but these differ from system to system;
therefore, their measurements cannot create a fair comparison. The
end-to-end runtime includes unwanted and unrelated overheads,
such as query planning and transferring the result set through a
client protocol. Client protocol serialization is especially costly and
can dominate a query’s runtime [37]. We must reduce the impact
of these overheads to measure the performance of joins reliably.
With sufficiently large workloads, any planning overhead be-
comes insignificant. To reduce transfer protocol overhead, we add
an ungrouped aggregation to the query, reducing the result set
size to one row. The aggregation must be cheap so that it does
not affect execution time. One of the cheapest aggregate functions
would be COUNT (col), but this can be replaced with COUNT (*) by
the optimizer if col does not contain any NULL values. This would
allow the optimizer to remove that column entirely from the query,
greatly reducing the overall memory usage. Instead, we use the
ANY_VALUE (col) aggregate function, which is a cheap aggregate
function that returns an arbitrary value from the input. In the-
ory, this yields the same result as adding a LIMIT 1 clause to the
query. However, adding LIMIT 1 allows most systems to terminate
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queries early after seeing one row. The ANY_VALUE (col) approach

causes the systems below to fully evaluate the workloads while

also yielding a result set of just one row.

Systems. We compare DuckDB [38] (v1.2.0), against one tra-
ditional database system and two systems with strong analytical
performance. Traditional systems are often orders of magnitude
slower than modern OLAP systems at analytical workloads for
various reasons, such as large amounts of per-tuple overhead [7].
However, they offer robust external query processing; therefore,
they are interesting to compare against. Besides DuckDB, the sys-
tems under evaluation are the following:

PostgreSQL [41] (version 16.3) The popular, open-source, tradi-
tional, disk-based relational DBMS for OLTP workloads, initially
developed at UC Berkeley.

HyPer [34] (version 2023.3), a main-memory-based relational
DBMS for mixed OLTP and OLAP workloads, which uses data-
centric code generation, developed at Technische Universitét
Miinchen (TUM), now Tableau’s data engine.

Umbra [35] (v0.1 2024-04-17), HyPer’s successor, a “Disk-Based
System with In-Memory Performance” that also uses data-centric
code generation, developed at TUM, used by CedarDB [10].

For DuckDB, we use SET allocator_background_threads=true;

to improve jemalloc [13] allocation performance. For HyPer and

Umbra, we use default settings. For PostgreSQL, we use similar

settings to those used by Leis et al. [28], and set work_mem to 1 GB,

shared_buffers to 4 GB, and effective_cache_size to 30 GB.

We also set temp_file_limit to —1, to allow unlimited spilling.

8 EVALUATION: EXTERNAL JOIN

In this section, we experimentally evaluate and compare our exter-
nal join implementation with other implementations. We perform
an inner join of two tables, evaluating only the external join. Multi-
operator memory control will be evaluated in Section 9.

Workload. In our experiments, we change one of the data gen-
eration parameters described in Section 7 at a time, allowing us to
isolate its effect on external joins. We first establish a default pa-
rameter configuration as a starting point. The default inner relation
has a cardinality of 200M rows, a width of 1 set of columns, no skew
(i.e., @ = 0), and 200M unique keys. With these parameters, the size
of the inner relation is roughly equal to the available memory in
our experimental setup, although due to internal differences, this
size is not equal for all systems. DuckDB can fit +2/3"4 of the inner
relation in RAM with this configuration. The default outer relation
has a cardinality of 500M rows, a width of 1 set of columns, skewed
with a = 0.5, and 200M unique keys. We create six experiments by
varying the inner and outer relation’s cardinality, width, and skew.

When varying the cardinality of the inner relation, we ensure
that all tuples will be matched by setting the number of unique keys
equal to the cardinality of the inner relation. Increasing the cardinal-
ity/width of the inner and outer relations stresses systems’ ability to
join larger volumes of data. Execution time should increase linearly
with the cardinality/width of the relations. However, algorithm
choice and spilling may introduce non-linearity in systems, which
this experiment should reveal.

When varying « of the inner relation, we keep a of the outer
relation fixed at 0, and vice versa, to avoid joining two skewed
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Figure 3: Execution times for external joins with different data generation parameter configurations. Lower is better. ‘I’ denotes
that the query timed out after 1,000 seconds. ‘A’ denotes that the query was aborted due to running out of memory.

distributions together and almost creating a cross product. For the
skew experiments, we expect execution time to decrease slightly
for higher a because the random access from probing the hash
table will become skewed towards join keys that appear more of-
ten, which reduces overall cache misses. For @ = 1 (Zipfian) data
distributions, around 75% of the data belongs to a single partition.
These experiments should reveal, e.g., if systems use partitions to
parallelize or spill entire partitions in an all-or-nothing manner.

For our final experiment, we vary the unique key count. With
lower key counts, tuples can have multiple matches, and the result
cardinality is larger than either input relation. For example, with
an inner relation cardinality of 200M and a unique key count of
40M, the result cardinality is 5% the cardinality of the outer relation,
assuming all tuples find a match. We expect execution time to
increase with fewer unique keys, as the join will emit more tuples.
This experiment should reveal how well systems deal with exploding
Jjoins, which may cause issues such as many hash collisions.

Results. We show the results in Figure 3. In the Inner Cardi-
nality experiment, execution times increases linearly as expected,
except HyPer when going from 100M to 200M rows due to switch-
ing join algorithm. At 100M rows, all but PostgreSQL performs
an in-memory join. PostgreSQL has an execution time of +584s
for 100M and times out at 500M rows. From 100M to 200M rows,
DuckDB’s execution time increases from +15s to +51s, HyPer’s
from +29s to +388s, and Umbra’s from +28s to aborting. The Inner
Width experiment tells a similar story with expected linear scaling,
although PostgreSQL manages to finish within the timeout. When
going from 0 to 1 set of columns, DuckDB’s execution time increases
from +12s to +52s, HyPer’s from +27s to +370s, and Umbra’s from
+28s to aborting. Umbra is unable to finish any other query.

In the Outer Cardinality experiment, PostgreSQL has a poor al-
gorithm choice for 200M rows but scales linearly afterward. From
600M rows onward, at least one of the five runs takes more than
1,000s for PostgreSQL. DuckDB and HyPer scale linearly as ex-
pected, although HyPer is orders of magnitude slower due to using
a sort-merge join. In the Outer Width experiment, all systems have
linear scaling as expected. PostgreSQL and HyPer barely finish
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with the timeout with 4 sets of columns, taking +838s and +902s,
respectively, while DuckDB takes +193s.

In the Inner Skew experiment, DuckDB’s execution time is con-
sistent at +51s, although this decreases to +28s for a = 1 for which
the distribution is Zipfian. PostgreSQL’s execution time is mostly
consistent, between +518s and +653s. HyPer’s execution time drops
from +397s to +32s when going from a = 0.5 to a = 0.75 because
a hash table suddenly fits in main memory due to fewer unique
keys. The Outer Skew experiment shows similar behavior, although
HyPer’s execution time is consistent. When going from a = 0.75 to
a =1, DuckDB’s execution time decreases from +51s to +16s, Post-
greSQL’s from +616s to +466s, and HyPer’s from +377s to £339s.
Many sorting algorithms exploit skew; therefore, PostgreSQL’s and
HyPer’s sort-merge join also benefit.

Note that DuckDB would not have been able to finish joins with
larger Zipfian inner relations, as the largest hash partition must fit
in RAM. DuckDB should always be able to finish joins with large
Zipfian outer relations, as partitions from this site do not need to
fit fully in RAM because they are read in a streaming fashion.

Finally, in the Unique Key Count experiment, DuckDB’s execu-
tion time increases from +51s for 200M unique keys to +83s for 40M
unique keys, as expected due to the increased number of emitted
tuples. The same applies to PostgreSQL, which times out at 40M
unique keys. Similar to the Inner Skew experiment, when going
from 120M to 80M unique keys, HyPer switches from its external
to its in-memory join due to fewer unique keys, causing execution
time to decrease from +401s to +35s.

9 EVALUATION: PIPELINED EXTERNAL JOINS

In this section, we experimentally evaluate multi-operator mem-
ory control with workloads in which multiple joins are processed
simultaneously in a pipeline. We exclude the other systems, as
the previous section showed that DuckDB is the only system un-
der benchmark that can complete larger-than-memory joins in a
(partially) streaming fashion. When systems opt for an external
sorting approach, only one operator is evaluated simultaneously,
and multi-operator memory control becomes irrelevant.
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Figure 4: Execution times for join pipeline scenarios with different memory assignment policies. Lower is better. ‘T’ denotes

that the query timed out after 1,000 seconds.

Policies. We compare four different memory assignment policies
in DuckDB: (1) WeightedCost: the cost model proposed in Section 6.
(2) UnweightedCost: equivalent to WeightedCost with weight w;
always equal to to 1. (3) Equality: statically assigns each operator
1/N'™ of the total available memory, where N is the total number of
operators. (4) Equity: dynamically assigns operator j with observed
size s; an amount of memory equal to s; divided by sar1. of the
total available memory, where Sary, is the sum of all operator sizes,
i.e., Equity assigns joins memory proportional to their size.

We expect Weighted- and UnweightedCost to perform similarly.
However, the width of the outer relation increases after every join
by gathering columns from the inner relation. This should give
WeightedCost an edge, as it considers this when optimizing the cost
model. Equality and Equity should perform well when processing
joins with similar sizes but poorly when they have different sizes,
especially Equity, as assigning small joins less memory should
increase materialization cost, as explained in Section 6.

Workload. We create nine interesting join pipeline scenarios
that allow us to evaluate how the different policies behave. We
only consider left-deep query plans, as only these joins are active
simultaneously in DuckDB, as explained in Section 6. In these query
plans, there is one outer relation and one or more inner relations.
We use the same parameter configuration for the outer relation
here as in the previous section: a cardinality of 500M rows, a width
of 1 set of columns, skewed with « = 0.5, and 200M unique keys.
For our inner relation(s), we use a similar parameter configuration
as before: a width of 1 set of columns, no skew (i.e., « = 0). The
inner relation(s) have a varying number of rows, and the number
of unique keys is always equal to the number of rows.

Our first (baseline) scenario is denoted s40, which is a join be-
tween the outer relation and one inner relation with 400M rows.
The inner relation’s size is roughly equal to 2X the available mem-
ory in our experimental setup. The second scenario is a join with
two inner relations, each with a cardinality of 200M rows, which
we denote with s20/20, i.e., we denote scenarios with the cardinalities
of the inner relations that are probed in the same pipeline. Relations
are probed in the encoded order, i.e., sX/Y probes X first, then Y.

To facilitate a comparison between different scenarios, we re-
quire as an invariant that the sum of the cardinalities of the inner
relation(s) is the same in each of the scenarios, which results in a
similar space requirement for each scenario. We also use LEFT joins
to prevent the outer relation’s cardinality from getting reduced by
joins, as this would affect all subsequent joins in the pipeline and
make it difficult to compare scenarios with each other. We create
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seven more scenarios, for a total of nine scenarios, representing a
wide variety of left-deep plans that could occur in challenging join
queries. These will be explained alongside the results.

Results. We show the results in Figure 4. The first three scenar-
ios, 540, s20/20, and $10/10/10/10, have equi-sized inner relations.
There is no small join that should be prioritized in RAM. Instead,
the best strategy is to assign a similar amount of memory to each
of the joins, which all four policies do. WeightedCost has a slight
edge over the other three policies, as the width of the outer relation
increases after every join due to gathering the columns from the
inner relation, which it takes into account by assigning slightly
more memory to joins that appear later in the pipeline.

For the next three scenarios, s30/10, s30/5/5, and s30/5/2.5/2.5,
there is a large 300M join that should be assigned less memory to
allow the much smaller inner relations of <100M to fit in RAM. This
is exactly what Weighted- and UnweightedCost do. As a result, their
execution times here are only slightly higher than for s40. Equality
also does this for s30/10 and s30/5/5, but not for s30/5/2.5/2.5, as it
causes the 50M join to spill, degrading performance unnecessarily.
As expected, Equity performs worse with each added join due to
its memory assignments causing each join in the pipeline to spill.

The last three scenarios, s20/10/10, s20/10/5/5, and s20/5/5/5/5,
have one fairly large 200M join that should be assigned less mem-
ory than the smaller joins of 100M or 50M. However, the size of
the smaller joins totals 200M, meaning that they cannot all fit in
RAM,; therefore, assigning memory is much less straightforward
than for the previous three scenarios. Equity assigns very little
memory to smaller joins; therefore, it again performs worse with
each added join, eventually timing out. For s20/10/10, the best
strategy is to perform as much of the two 100M joins in memory.
Equality assigns more memory to the 200M join than Weighted- and
UnweightedCost and finishes in +390s. UnweightedCost does this
slightly better and finishes in +357s, while WeightedCost finishes
in +267s. For s20/10/5/5, the best strategy is to perform both 50M
joins in memory and as much of the 100M join as possible, leaving
some space for the 200M join, which is exactly what Weighted- and
UnweightedCost do. Equality takes +180s longer, as it assigns less
memory to the 100M join, causing more data to be spilled. Finally,
for s20/5/5/5/5, Equality assigns slightly less memory to each 50M
join than Weighted- and UnweightedCost; therefore, each of the
four joins spills more, causing a timeout.

As expected, Weighted- and UnweightedCost perform better
than the more naive policies, with WeightedCost being slightly
better on some queries. It should be noted, however, that although
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Equality and Equity are worse, they are much better than having
no policy at all, as this would result in running out of memory and
aborting the query or having to resort to processing one operator
at a time, e.g., with sort-merge joins.

10 EVALUATION: TPC-H

In this section, we experimentally evaluate overall external query
processing capabilities using the analytical TPC-H benchmark at
SF 1,000, again using the hardware described in Section 7.

We exclude PostgreSQL from this benchmark, as it suffers from
large amounts of per-tuple overhead [7] and does not unnest the cor-
related subqueries in TPC-H [36], causing quadratic performance.
We also exclude Umbra from this benchmark, as the evaluation in
Section & clearly shows that it cannot process larger-than-memory
intermediates. Therefore, only DuckDB and HyPer are evaluated.
Both implement full unnesting of arbitrary queries and have similar
query plans for most queries.

Figure 5 shows the results of the benchmark. DuckDB and Hyper
perform similarly for all but five queries: 7, 9, 10, 13, and 18. HyPer
switches to out-of-core processing for these queries and is orders
of magnitude slower than DuckDB. If we exclude these queries, the
longest-running query for both systems is query 21, which takes
+183s for DuckDB and +250s for HyPer. If we include these queries,
DuckDB’s longest-running query is Q9, which takes +241s, while
HyPer takes +875s for Q13, and times out after 1,000 seconds for
queries 7, 9, 10, and 18. Only queries 9, 13, and 18 require out-of-
core processing for DuckDB, and despite spilling to storage, their
execution time is not much higher.

Join-Heavy Queries. Queries 7, 9, and 10 have memory-in-
tensive joins that dominate the execution time. DuckDB filters out
data early in Q7 because it implements “Join-Dependent Expression
Filter Pushdown” [4], which HyPer does not. However, DuckDB
and HyPer have almost identical query plans for Q9 and Q10. In
both plans, multiple joins are probed within a single pipeline, re-
quiring the systems to control the memory of multiple operators.
Despite having similar plans, the system’s execution times are dras-
tically different. This difference is attributed to HyPer switching to
disk-based algorithms, which potentially causes it to sort the data
multiple times. Meanwhile, DuckDB continues to use its hash join.

Aggregation-Heavy Queries. Queries 13 and 18 have a large,
memory-intensive grouped aggregation. The plans for these queries
are the same for both systems. The large aggregation is active si-
multaneously with a join in both queries, complicating memory
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control. HyPer has strong in-memory aggregation [27] but is forced
to switch to a disk-based algorithm due to running out of memory.
DuckDB has a similar aggregation strategy but can spill intermedi-
ates to disk [23]; therefore, it can complete much larger aggregations
with many unique groups without sorting.

11 CONCLUSION & FUTURE WORK

In this paper, we have presented three techniques for external join
query processing in analytical database systems, that have been
implemented and released in DuckDB. We have experimentally
evaluated our implementation and compared it with other systems.
Our external join experiments showed that DuckDB could perform
external joins much more efficiently and robustly than the other
systems. Even when intermediates fit in memory, DuckDB can com-
pete with state-of-the-art systems, showing that our external query
processing techniques do not sacrifice in-memory performance.
Our pipelined external join experiments showed that DuckDB’s dy-
namic approach to multi-operator memory control assigns memory
more efficiently than static or naive approaches.

Our experimental results with TPC-H at scale factor 1,000 showed
that our techniques generalize to analytical workloads. DuckDB had
similar execution times for queries regardless of whether it spilled
intermediates to storage, showing that larger-than-memory query
processing does not have to be slow. This allows larger datasets
to be processed on more economical hardware, using less energy
than, for example, distributed data management systems.

Future Work. Although DuckDB’s hash join performs well on
skewed data, it cannot complete joins if any of the inner relation’s
partitions are larger than the memory limit. If many tuples have the
same join key, repartitioning will not help. After the initial probe, all
remaining data has been materialized. Here, DuckDB could decide
to swap the inner and outer relation depending on the sizes of the
materialized partitions. Adaptively swapping sides would reduce
the join’s reliance on the optimizer even further and allow it to
complete skewed joins that it would otherwise not be able to.

Reducing the size of intermediates, especially strings, because
they are ubiquitous in real-world workloads would improve scaling
further. Retaining lightweight string compression such as FSST [5]
during execution could help reduce the size of hash tables even fur-
ther. Retaining FSST would require holding onto some of the storage
metadata during query execution and decompressing the strings as
late as possible, e.g., when used in a comparison expression.
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