
PipeTGL: (Near) Zero Bubble Memory-based Temporal Graph
Neural Network Training via Pipeline Optimization

Jun Liu
HUST

liujun2023@hust.edu.cn

Bingqian Du∗

HUST

bqdu@hust.edu.cn

Ziyue Luo
OSU!

luo.1457@osu.edu

Sitian Lu
HUST¶

st_lu@hust.edu.cn

Qiankun Zhang
HUST§

qiankun@hust.edu.cn

Hai Jin
HUST

hjin@hust.edu.cn

ABSTRACT

Memory-based Temporal Graph Neural Networks (M-TGNNs) demon-

strate superior performance in dynamic graph learning tasks. Their

success attributes to a memory module, which captures historical

information for each node and implicitly creates a memory depen-

dency constraint among chronologically ordered minibatches. This

unique characteristic of M-TGNN introduces new challenges for

parallel training that have not been encountered before. Existing

parallelism strategies for M-TGNN either sacri�ce memory accu-

racy (minibatch parallelism and epoch parallelism) or compromise

space e�ciency (memory parallelism) to optimize runtime. This pa-

per proposes a pipeline parallel approach for multi-GPU M-TGNN

training that e�ectively addresses both inter-minibatch memory

dependencies and intra-minibatch task dependencies, based on a

runtime analysis DAG for M-TGNNs. We further optimize pipeline

e�ciency by incorporating improved scheduling, �ner-grained op-

eration reorganization, and targeted communication optimizations

tailored to the speci�c training properties of M-TGNN. These en-

hancements signi�cantly reduce GPU waiting and idle time caused

by memory dependencies and frequent communication and result

in zero pipeline bubbles for common training con�gurations. Ex-

tensive evaluations demonstrate that PipeTGL achieves a speedup

of 1.27x to 4.74x over other baselines while also improving the

accuracy of M-TGNN training across multiple GPUs.

PVLDB Reference Format:

Jun Liu, Bingqian Du, Ziyue Luo, Sitian Lu, Qiankun Zhang, Hai Jin.

PipeTGL: (Near) Zero Bubble Memory-based Temporal Graph Neural

Network Training via Pipeline Optimization. PVLDB, 18(8): 2722 - 2734,

2025.

doi:10.14778/3742728.3742760

∗Corresponding author.
 National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Cluster and Grid Computing Lab, School of
Computer Science and Technology, Huazhong University of Science and Technology.
! Department of Electrical and Computer Engineering, The Ohio State University.
¶School of Arti�cial Intelligence and Automation, Huazhong University of Science
and Technology.
§School of Cyber Science and Engineering, Huazhong University of Science and
Technology.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742760

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/CGCL-codes/PipeTGL.

1 INTRODUCTION

Many real-world graphs inherently consist of nodes and edges

that dynamically evolve over time, and capturing these dynamic

patterns is crucial. For example, a temporal �nancial transaction

network records the creation and dissolution of �nancial relation-

ships and transactions as they happen, enabling the timely detec-

tion of �nancial crimes. Temporal Graph Neural Networks (TGNNs)

[10, 16, 18, 19, 21, 28] have recently been introduced to e�ectively

capture both structural and temporal relationships in dynamic

graphs, demonstrating superior performance in tasks such as node

classi�cation, link prediction, and graph classi�cation [18, 28].

Among the various TGNN models, memory-based models, such

as TGN [18], DyRep [21], and APAN [26], stand out for their use

of a node memory module [20] and have achieved state-of-the-art

performance in modeling and analyzing dynamic graphs [32]. This

memorymodule, typically a recurrent neural network, continuously

records the information of historical events associated with each

node. This recorded information, along with the node features,

is utilized by graph neural network in each training iteration for

recursive aggregation of structural information. Speci�cally, in M-

TGNN training, minibatches are organized in chronological order

of events. For each minibatch, the memory containing information

from events in prior minibatches is loaded and updated for loss

computation. The updated memory representation is then written

back to the memory module and serves as the basis for processing

subsequent minibatches. The temporal relationship in dynamic

graph is thus maintained, imposing a constraint across minibatches.

This unique characteristic of the M-TGNN model introduces

signi�cant challenges to training e�ciency, which are not typically

encountered in most previous deep learning systems. In most exist-

ing DL systems, minibatches are mutually independent, allowing

various parallelism strategies—such as data parallelism [11] and

model parallelism [8, 14]—to speed up training and improve scala-

bility. However, in the M-TGNN model, minibatches are mutually

dependent due to the need to compute memory chronologically. As

a result, these parallelism strategies cannot be applied e�ectively.

Existing parallel training approaches for M-TGNN either compro-

mise model performance or sacri�ce system scalability. Speci�-

cally, minibatch parallelism ignores memory dependencies among

in-�ight minibatches, adversely a�ecting the performance of the

2722

https://doi.org/10.14778/3742728.3742760
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742760
https://github.com/CGCL-codes/PipeTGL
https://www.acm.org/publications/policies/artifact-review-and-badging-current

learned model. Epoch parallelism increases gradient variance due

to the repeated execution of the same minibatch and jeopardizes

training convergence. Memory parallelism requires separate mem-

ory copies for each GPU, leading to substantial increase in memory

space requirements, which may be prohibitively high.

Given the limitations of existing parallelism strategies for the

M-TGNN model, we propose PipeTGL, an e�cient parallel training

system for M-TGNN in a multi-GPU setup. Our main contributions

and key results are summarized as follows:

• We identify bottlenecks in parallel M-TGNN training to

inform the design of our parallel strategy. We begin by pro-

�ling the runtime of each stage within a training iteration across

various datasets, discovering that approximately 30% of the runtime

is spent on communications for feature and memory fetching. To bet-

ter understand the bottlenecks, we construct a DAG for M-TGNN

training, taking into account both inter-minibatch dependencies,

driven by memory continuity requirements, and intra-minibatch

stage dependencies, driven by the diverse tasks within each train-

ing iteration. By combining the DAG with the pro�led runtime,

we analyze the critical path within this DAG and uncover that the

M-TGNN model’s runtime is constrained by memory dependencies

across minibatches, allowing the stages of a minibatch to be executed

sequentially without signi�cantly increasing overall runtime.

• Building on these bottlenecks, we devises a straightforward

yet e�ective parallel execution plan, deciding the execution

orders and placement of all stages during training. Stages within a

minibatch are executed sequentially on the same GPU to avoid ad-

ditional inter-GPU communication, while di�erent minibatches are

distributed across GPUs using a round-robin algorithm. The mem-

ory fetching and model updating stages for a given minibatch must

wait for the completion of memory updating and model updating in

the preceding minibatch to maintain inter-minibatch dependencies.

This naturally forms a pipeline across di�erent GPUs and mini-

batches. To reduce pipeline bubbles, we integrate two techniques

into the execution order optimization: (1) reorganizing memory-

related operations and prioritizing memory tasks for target nodes

to minimize waiting time due to memory dependencies, and (2)

introducing a pre-sampling strategy that advances the sampling

process by one iteration, allowing feature fetching communication

to overlap with sampling and other computations.

•We optimize the communication processes to minimize the

associated time expenditure. We identi�ed that the bottleneck in

feature fetching lies in the search process for locating the required

nodes, rather than in the I/O itself. Consequently, directly over-

lapping feature-fetching communication with computation stages

does not signi�cantly reduce runtime. To address this, we o�oad

the search task to a separate process, independent of the training

process, allowing for better overlap and improved e�ciency. Ad-

ditionally, we replace D2H and H2D communication with D2D

transfers for memory fetching of target nodes to further reduces

memory dependency and communication runtime, based on data

showing that more than 50% of target nodes recur across adjacent

training minibatches in M-TGNN.

•We achieve an (almost) zero-bubble pipeline parallel training for

M-TGNN that e�ectively addresses the memory continuity require-

ment. We implement PipeTGL on GNNFlow[31], incorporating all

the optimization strategies discussed above. We evaluated PipeTGL

against the existing M-TGNN training systems and demonstrated

that PipeTGL achieves a speedup of 1.27x to 4.74x compared to all

other baselines.

2 BACKGROUND AND MOTIVATION

2.1 Memory-based Temporal Graph Neural
Network

In a dynamic graph G(V, E), where V denotes the set of nodes,

while E is the set of edges, each edge is represented as (ī, Ĭ, ěīĬ, Ī),

indicating an event occurring between nodes ī and Ĭ at time Ī ,

with features ěīĬ . M-TGNN stores the temporal information of each

node Ĭ ∈ V in a memory vector ĩĬ .

Batched Training. M-TGNN employs self-supervised learning to

predict the occurrence of future edges (positive samples) based on

historical events. To achieve this, the edges E are arranged chrono-

logically and divided into minibatches, with each batch containing

a sequence of consecutive edges. Thus, for E = {ā1, ā2, . . . , āĤ}, the

edges are partitioned intominibatches {{ā1, ā2, . . . , āğ }, {āğ+1, āğ+2,

. . . , ā Ġ }, . . . , {āġ+1, āġ+2, . . . , āĤ}}, where Īğ f Īğ+1 for any two

edges āğ and āğ+1. This allows the memory module to continu-

ously capture historical events as training progresses, enabling the

memory containing past events from previous minibatches to be

utilized for predicting edges in subsequent minibatches.

Temporal Sampler. The nodes associated with training edges

(both positive and negative samples) are termed target nodes. In an

Ĥ-layer M-TGNN, each target node requires its Ĥ-hop neighbors,

known as supporting nodes, to recursively compute its embedding.

The sampler samples both negative samples and supporting nodes

to form a computation graph for each minibatch.

Message Generating. Each time an event occurs, messages are

generated for the associated nodes, serving as the basis for memory

updates. For an event (ī, Ĭ, ěīĬ, Ī), the messages for the involved

nodes are:

ģī (Ī) = {ĩī (Ī
−
ī) |ĩĬ (Ī

−
Ĭ) |Ă (Ī − Ī−ī) |ěīĬ},

ģĬ (Ī) = {ĩĬ (Ī
−
Ĭ) |ĩī (Ī

−
ī) |Ă (Ī − Ī−Ĭ) |ěīĬ}.

(1)

where ĩī (Ī
−
ī) (ĩĬ (Ī

−
Ĭ)) represents memories of nodeī (Ĭ) just before

time Ī . The term Ī − Ī−ī denotes the time interval since the last

memory update of node ī, and Ă is the time encoding function [28].

Memory Updating. After generating the message, each node up-

dates its memory accordingly. The updated memory of node ī is

calculated as follows:

ĩī (Ī) = đČĐ (ĩī (Ī
−
ī),ģī (Ī)). (2)

The function đČĐ (·) can be any recurrent model, such as LSTM

and GRU. It is important to note that M-TGNN models typically

delay memory updates to subsequent minibatches to prevent infor-

mation leakage, i.e., to avoid using memory that includes events

from the current minibatch to predict events within the same mini-

batch [12]. Therefore, instead of updating memory immediately,

the messages from the current minibatch are stored and will be

utilized in subsequent minibatch for memory updating.

Embedding Calculation. After updating the nodes’ memory, M-

TGNN employs a single-layer temporal attention mechanism [22]

to aggregate information, including memory and features, from the

2723

neighbors of target nodes to generate the �nal embeddings, similar

to the approach in static GNNs [7, 9].

The complete training process for a minibatch in M-TGNN is

illustrated in Figure 1.

21

2 3

1

Message & Memory

Batch

2

New Message &
Updated Memory

3

Host Memory

4

Node Embeddings

5

Edge Probabilities

Neural
Network

Memory
Updater

Figure 1: The training process of M-TGNN: 1©Fetch the

most recent memory and messages for nodes in computa-

tion graph. 2©Generate the latest memory and messages.
3©Save the latest memory and messages to the host memory.
4©Compute each node’s embedding using the latest memory

and messages. 5©Calculate the probability of each edge using

embeddings for downstream tasks.

2.2 Multi-GPUs Training for M-TGNN

To enable parallel training of M-TGNNmodels in a multi-GPU envi-

ronment, di�erent systems have adopted three distinct approaches:

Minibatch Parallelism, employed by TGL [32] and GNNFlow [31],

bypasses the memory dependency between in-�ight minibatches.

In this approach, each in-�ight minibatch uses the same node his-

tory and messages for model updates. Memory and messages for

nodes involved in multiple in-�ight minibatches are updated only

once. In contrast, with sequential execution, each minibatch loads

the memory and messages updated by the previous minibatch, with

each minibatch corresponding to a separate update. As a result,

this method can lead to information loss and memory staleness.

Figure 2(a) illustrates this approach: In a training cluster with three

GPUs, each GPU processes the 3ğ-th, (3ğ + 1)-th, and (3ğ + 2)-th

minibatches in round ğ using the same memory and messages from

minibatches prior to round ğ in parallel, disregarding the temporal

relationships among these minibatches.

Epoch Parallelism, introduced by DistTGL [33], allows multi-

ple epochs to be trained simultaneously across di�erent GPUs. As

illustrated in Figure 2(b), in a 3-GPU cluster, three epochs run con-

currently: when GPU0 �nishes processing minibatch ğ of the �rst

epoch, GPU1 immediately begins processing minibatch ğ + 1 of the

same epoch, utilizing the updated memory from minibatch ğ . Mean-

while, GPU0 starts training minibatch ğ for the second epoch, using

the memory loaded for the training of minibatch ğ in the �rst epoch.

However, since the parameters used to calculate this memory have

been updated after processing minibatch ğ in the �rst epoch, this

introduces parameter staleness. Additionally, repeatedly applying

gradients from the same set of positive target nodes can negatively

impact the convergence of the model.

Memory Parallelism, as proposed by DistTGL [33], involves each

GPU retaining a complete copy of the node memory, enabling train-

ing similar to a single GPU setup, with only the model parameters

synchronized among GPUs. To prevent the same sample from be-

ing trained multiple times within a short period, the iterations

computed by di�erent GPUs are staggered. Figure 2(c) illustrates

this memory parallelism approach. However, this method signi�-

cantly increases memory overhead, which scales with the number

of GPUs, making it potentially prohibitive compared to other paral-

lelism strategies. For example, in a dynamic graph with 100 million

nodes, the memory required to store a single copy of the node mem-

ory would be about 40GB. With memory parallelism across 8 GPUs,

this requirement would balloon to 320GB, may well exceeding the

host memory capacity of a single machine.

Current parallelism strategies for M-TGNN fall short: either

sacri�ce model performance or limit scalability.

2.3 Challenges of Parallel Training for M-TGNN

The limitations of current parallel training approaches forM-TGNNs

prompt us to rethink and design more e�cient, scalable methods

that ensure memory continuity across multiple GPUs. In this pro-

cess, we’ve identi�ed several previously overlooked challenges.

² No established guidelines to inform the design of parallel

training strategy for M-TGNN models. The existing parallelism

strategy for M-TGNN is intuitively designed, prioritizing runtime

optimization at the expense of memory continuity. However, the

consequences of sacri�cing memory continuity are not well under-

stood. We �rst evaluate the performance of the M-TGNN model

under varying levels of memory continuity and assess the signif-

icance of maintaining memory continuity. Figure 3 (a) evaluates

the convergence accuracy and the number of epochs needed for

convergence when training with varying numbers of GPUs, uti-

lizing minibatch parallelism which disregards memory continuity

among in-�ight minibatches. Each GPU holds 1000 training sam-

ples, resulting in a minibatch size that is 1000 times the number

of GPUs. As the number of GPUs increases, the lack of memory

continuity becomes more pronounced, leading to reduced model

accuracy and a signi�cant increase in the number of epochs re-

quired for convergence. Therefore, memory continuity is crucial for

ensuring faster and better model convergence. An intuitive solution

to mitigate memory discontinuity in minibatch parallelism is to

reduce the minibatch size, thereby minimizing the loss of informa-

tion. However, decreasing the minibatch size would lead to reduced

training throughput and lower GPU utilization (Figure 3 (b)).

Given the importance of memory continuity, no existing work

systematically analyzes and identi�es the bottlenecks in M-TGNN

training when memory continuity is enforced, leaving the design

of parallelism strategies with memory continuity guarantees with-

out clear direction. To address this, we pro�le the runtime of each

stage during a single iteration of the M-TGNN training process and

formulate a directed acyclic graph (DAG) that accounts for both

inter-minibatch memory dependencies and intra-minibatch stage

dependencies, through which we identify the most time-consuming

tasks that require optimization and the critical path that dictates

the design and performance of the parallel execution plan.

² No e�cient parallel execution plan to decide the placement

and execution order for all stages in the M-TGNN training.

The placement and execution order of stages are crucial factors in

the runtime e�ciency of the M-TGNN training system. For instance,

2724

GPU 0

GPU 1

GPU 2

Iteration
1 2 3

i i i

4 5

i+3 i+3

i-2 i+1 i+1 i+1 i+4

i-1 i-1 i+2 i+2 i+2

RW RW

RW

RW

RW

GPU 0

GPU 1

GPU 2

Iteration
1 2 3

i i+3 i+6

4 5

i+9 i+12

i+1 i+4 i+7 i+10 i+13

i+2 i+5 i+8 i+11 i+14

RW RW

RW RW

RW

RW

RW

RW

RW

RW

RW RW RW RW RW

GPU 0

GPU 1

GPU 2

Iteration
1 2 3

0 1 2

4 5

3 4

2 3 4 5 0

4 5 0 1 2

R0W0 R0W0 R0W0 R0W0 R0W0

R1W1 R1W1 R1W1 R1W1 R1W1

R2W2 R2W2 R2W2 R2W2 R2W2

(a) minibatch parallelism (b) epoch parallelism (c) memory parallelism

Figure 2: Overview of minibatch paralleism, epoch parallelism and memory parallelism. RW indicates GPU read and write

memory in this iteration.

1 2 4 8 16
Number of GPUs

20

30

40

50

60

N
um

be
r o

f E
po

ch
s

Number of epochs
Accuracy

200 400 600 800 1000
BatchSize

0.6

1.2

1.8

2.4

3.0

Th
ro

ug
hp

ut
 (

×1
0u

 sa
m

pl
es

/s
)

0.9832

0.9838

0.9844

0.9850

0.9856

Ac
cu

ra
cy

(a) (b)

Figure 3: (a) Model convergence accuracy and the number of

epochs required for convergence on the Reddit dataset with

di�erent numbers of GPUs, using a minibatch size of 1000

times the number of GPUs. (b) Model throughput during

training on the Reddit dataset with varying minibatch sizes.

parallel execution of feature fetching and memory fetching for the

same minibatch across di�erent GPUs reduces runtime compared

to sequential execution on the same GPU. However, the current

M-TGNN training system does not optimize for placement and exe-

cution order, and addressing these challenges is inherently di�cult

due to their combinatorial nature and exponential solution space.

Additionally, memory continuity requirements impose constraints

across minibatches, further complicating the problem.

Building on our �ndings that the runtime of the training pro-

cess is constrained by memory dependencies, we observed that

sequential execution of stages within the same minibatch has little

impact compared to using an optimized execution order. As a result,

we arrange all stages of a single minibatch on the same GPU and

execute them sequentially, while distributing di�erent minibatches

across GPUs using a simple round-robin method, ensuring that

inter-minibatch dependencies are respected. Additionally, we inte-

grate two execution order optimization techniques tailored to the

unique characteristics of M-TGNN to minimize GPU idle time.

² No communication optimization method speci�cally de-

signed to address the unique communication challenges present

in M-TGNN. The communication process in M-TGNN exhibits dis-

tinct characteristics compared to those in other deep learning model

training: �rst, frequent device-to-host and host-to-device commu-

nication occurs for fetching features and per-iteration renewed

memory; second, simply overlapping communication with compu-

tation does not signi�cantly reduce runtime. Understanding the

communication properties of M-TGNN and developing correspond-

ing optimization techniques are essential for enhancing system

e�ciency.

To uncover the underlying reasons, we decomposed the feature

fetching process into two components—I/O operations and feature

gathering—and measured the runtime for each separately. Our �nd-

ings reveal that feature gathering consumes about half of the total

feature fetching time, indicating that the bottleneck is present not

only in the I/O operations but also in the feature gathering process.

We further analyzed the memory fetching process and identi�ed a

pattern in M-TGNN’s training data that can be leveraged to reduce

memory fetching time. Based on these insights, we implemented

communication optimizations to enhance the overlap between fea-

ture fetching and computation, while also accelerating the memory

fetching process.

3 PERFORMANCE ANALYSIS

To identify bottlenecks in M-TGNN training and inform the de-

sign of an e�ective parallel strategy, we started by pro�ling intra-

minibatch tasks in the M-TGNN model to identify the most time-

consuming tasks that require optimization during each training

iteration. We then formulated the inter-minibatch dependencies,

necessary for memory continuity, and the intra-minibatch depen-

dencies, driven by tasks per iteration, into a Directed Acyclic Graph

(DAG) to analyze how these dependencies impact overall training

e�ciency.

3.1 Intra-Minibatch Analysis

In each iteration, the training process for a singleminibatch involves

the following stages: graph sampling, feature fetching, memory fetch-

ing, memory updating, forward and backward propagation, model

updating,1 as shown in Figure 4. In this process, sampling is the

prerequisite task for feature fetching and memory fetching since the

computation graph returned by the sampler determines the content

needed from host memory. Feature fetching and memory fetching

are the only two stages that can be executed in parallel. Next, the

fetched features and memory are utilized in the memory updating

phase, where the memory is updated and written back to the host

memory for the next minibatch’s computation. This updated mem-

ory then participates in loss and gradient computation, creating a

dependency between memory updating and forward and backward

propagation. The �nal step is model updating, where the gradients

1we use ĩ, Ĝ Ĝ ,ģĜ ,ģěģ_īĦ, Ĝ &Ę,ģĥĚěĢ_īĦ as shorthand for di�erent stages.

2725

from forward and backward propagation are applied to the model

parameters.

Figure 4: Intra-minibatch task dependency

Following that, we pro�le the duration of each stage within a

single training iteration to gain a comprehensive understanding of

the time spent on each stage. Table 1 presents the pro�ling results

across various datasets.

Table 1: The runtime distribution of di�erent stages.

Dataset s � mf mem_up f&b model_up

WIKI 13.4% 19.4% 11.4% 9.5% 37.1% 9.2%

MOOC 13.1% 16.3% 10% 11.3% 39.4% 9.9%

REDDIT 12.4% 19.1% 13.5% 8.6% 37.2% 9.2%

LASTFM 13.5% 17.3% 10.9% 8.1% 40.5% 9.7%

GDELT 19.5% 19.9% 12.6% 8.4% 31.4% 8.2%

We make the following observations: Observation #1: Approxi-

mately 30% of the training time is devoted to communication (Ĝ Ĝ

andģĜ);Observation #2: Over 50% of the iteration runtime is con-

sumed by preparing input data, i.e., obtaining the updated memory,

for forward and backward computation. Therefore, to maximize

the GPU’s e�ciency in performing actual computations for model

updating, it is crucial to minimize communication time and reduce

the time spent on preparing input data.

3.2 Intra- and Inter-Minibatch Analysis

When training multiple minibatches concurrently in a multi-GPU

setup, two types of dependencies are involved: intra-minibatch de-

pendency, where tasks within a single minibatch must be executed

according to the speci�c order in Figure 4, and inter-minibatch de-

pendency, which requires minibatch execution to adhere to memory

continuity and model updating dependencies. To identify runtime

bottlenecks, we represent the dependencies in M-TGNN training

as a Directed Acyclic Graph (DAG), as shown in Figure 5. Across

di�erent minibatches, the memory continuity dependency requires

that the memory fetching stage of minibatch Ī + 1 can only com-

mence after minibatch Ī has completed its memory updating stage.

Additionally, the model updating dependency mandates that the

model updating for minibatch Ī + 1 cannot start until minibatch Ī

has �nished its model updating stage.

In a multi-GPU setup, training dependencies often require the

introduction of model parameter staleness to prevent idle waiting

times between GPUs [14] [29]. We adopt a similar approach to

Pipedream [14], where during the forward and backward propa-

gation phase, the GPU processing training batch Ī computes the

loss and gradients using its locally available parameters ĭĪ−Ĥ+1,

with Ĥ being the number of GPUs. Therefore, the parameter update

proceeds as follows:

ĭĪ+1
= ĭĪ − ā · ∇ĭĪ−Ĥ+1 Ĝ (ĭĪ−Ĥ+1) (3)

Figure 5: DAG for M-TGNN training

where ā is the learning rate, Ĝ is the loss function optimized by M-

TGNN andĭĪ+1 represents the model parameters after the Ī + 1-th

iteration/training minibatch.

By integrating the DAG with the pro�led runtime for each stage,

we analyze the earliest possible execution time for each stage, as

indicated by the numbers in parentheses (#) above each stage in

Figure 6. The duration of each preceding stage is labeled on the ar-

rows of the �rst minibatch, re�ecting the average values from Table

1. Figure 6 illustrates a cluster of three GPUs under the assumption

that the system starts at time 0, with each color representing a dif-

ferent minibatch. However, the insights gained from this analysis

can be generalized to any system con�guration. Our observations

are as follows: Observation #3: The system’s runtime is con-

strained by memory dependencies. The memory fetching stage

of each minibatch depends on the completion of memory updating

from the preceding minibatch, placing it consistently on the critical

path. This property is demonstrated by the earliest possible execu-

tion time for the memory fetching stage, which is highlighted in

red; Observation #4: Sequentially executing stages within a

single minibatch has minimal impact on the overall system

runtime.Within a single minibatch, feature fetching and memory

fetching are the only two stages that can be executed in parallel.

However, since there is often a waiting period after feature fetching

before memory fetching can commence, there is no need to execute

them in parallel. The only minibatch where memory fetching can

be executed in parallel with feature fetching is the �rst minibatch,

as it has no preceding memory dependencies. The purple numbers

in (#) indicate the earliest execution time for each stage when they

are executed in parallel, while the grey numbers represent the times

when they are executed sequentially. The di�erence between them

is negligible; Observation #5: The GPU processing minibatch ğ

completes its tasks earlier than the GPU handling minibatch

ğ + 1. This conclusion trivially holds when each GPU processes one

minibatch at a time due to the memory and model dependencies

across minibatches.

4 THE DESIGN OF PIPETGL

4.1 Parallel Execution Plan for M-TGNN

The insights gained from the performance analysis of the M-TGNN

model o�er a straightforward yet e�ective strategy for determining

the placement and execution order of all stages. Stages within a

single minibatch can be executed sequentially on the same GPU, as

the runtime bene�t of parallel execution is minimal (Observation

#4). For di�erent minibatches, a simple round-robin algorithm can

2726

Figure 6: Runtime analysis for M-TGNN training. Milliseconds are the units used for each number.

be used for placement, ensuring that GPUs handling earlier mini-

batches �nish sooner, allowing subsequent minibatches to start

earlier (Observation #5). Additionally, the memory and model de-

pendencies for memory fetching and model updating must be care-

fully respected. This strategy naturally creates a parallel pipeline

across GPUs, as illustrated in Figure 8(a).

The e�ciency of pipeline implementation is signi�cantly in�u-

enced by the idle time of each device, referred to as pipeline bubbles.

These bubbles seem inevitable due to the necessity of communica-

tion during feature and memory fetching, as well as maintaining

memory continuity. We conduct an in-depth examination of the

M-TGNN training process, uncovering hidden characteristics that

can be leveraged to mitigate these bubbles through two execution

order optimization techniques.

Reorder of the memory operations. We identi�ed an opportu-

nity to further reduce the waiting time caused by memory depen-

dency (bottlenecks from Observation #2 and Observation #3)

by considering memory related operations at a �ner granularity.

Recall that for each training minibatch, the computation graph

generated during the sampling stage includes both target and sup-

porting nodes. Current practice in existing systems [31, 33] involves

fetching and updating memory for all nodes in computation graph

simultaneously. However, we observed that only the target nodes

have dependencies for subsequent minibatches. This is because only

the positive target nodes correspond to new events that occurred

in the current minibatch Ī and require their updated memories

ĩī (Ī) and messagesģī (Ī) to be written back to the CPU. The other

nodes in the computation graph of this minibatch are not associated

with any new events, meaning there is nothing new to write back

for these nodes. As a result, there exists no dependencies between

these nodes and subsequent minibatches. Therefore, prioritizing

memory-related operations for the target nodes can further

reduce waiting time due to memory dependencies, as illustrated in

Figure 7.

Based on this insight, we prioritize the memory fetching and up-

dating stages for target nodes, combining them into a single stage

called memory operations on target nodes (t_mem_op). Similarly,

the memory fetching and updating stages for supporting nodes

are also combined into a single stage referred to as memory oper-

ations on supporting nodes (s_mem_op). Figure 8 (a) (b) compares

the schedule and waiting times before and after the reordering of

memory-related operations.

Figure 7: A comparison of the system’s performance before

and after prioritizing memory-related ops for target nodes.

Pre-sampling and pre-fetching for eachminibatch.We further

optimize the execution order by introducing a pre-sampling ap-

proach that decouples the dependency between the sampling stage

and subsequent feature fetching communication stage, enabling

overlapping between communication and computation. Speci�cally,

we move the sampling of minibatch Ī to iteration Ī − Ĥ (where Ĥ

represents the number of GPUs), with the sampling for the �rst

Ĥ iterations completed before training begins. With pre-sampling,

pre-fetching features 2 for each iteration becomes feasible and can

be scheduled to run in parallel with computation tasks whenever

possible. The training paradigm after enabling pre-sampling and

pre-fetching is shown in Fig. 8(c). In this setup, feature fetching for

the next minibatch, based on pre-sampling results, is performed

concurrently with the forward and backward stages of the current

minibatch.

4.2 Communication Optimization for M-TGNN

To address the communication bottleneck identi�ed in Observa-

tion #1, we closely examined the communication process of M-

TGNN and made the following observations: (1) Although pre-

sampling and pre-fetching allow for the parallel execution of feature

fetching and computation stages, using di�erent CUDA streams for

training and feature fetching does not e�ectively achieve parallel

execution; (2) Signi�cant time-consuming H2D and D2H commu-

nication occurs due to the need to fetch up-to-date memory, and

the feasibility of overlapping memory fetching and computation is

2Pre-fetching memory is not feasible due to cross-minibatch memory dependencies.

2727

Memory ops on support nodes8Memory ops on target nodes7Model Updating6
5 Forward and BackwardMemory Updating4Memory Fetching3Feature Fetching2Graph Sampling1

Timeline

1 2

1

1

1

5 6 1 23 4

5 6 1 23 4

5 6 1 23 4

5 1 23 4

5 6 1 23 4

5 6 1 23 4

5 6 13 4

53 4

2

2

2

3 4

2

6

GPU 0

GPU 1

GPU 2

GPU 3

(a) pipeline (before reordering)

Timeline

1 2

1 2

1 2

1 2

57 8 6 1 2

57 8 6 1 2

57 8 1 2

57 8 6 1 2

57 8 6 1 2

57 8 6 1

57 8 6 1 2

57 8 6 1 2

57 8 6

57 8

57 8

57 8

6

GPU 0

GPU 1

GPU 2

GPU 3

2

(b) pipeline (after reordering)

Timeline

1 2

1 2

57 8 6
2

57 8 6
2

57 8 6
2

57 8 6

57 8 6

57 8

GPU 0

GPU 1
2

1

1

2

1

1

2

1

1 6

2

2

2

1 7

1

1 2

1 2

57 8

57 8 6
2

57 8 6

57 8 6
2

57 8

57 8

6GPU 2

GPU 3

1

1

1

1

1

1

6

6
2

1

(c) pipeline (after pre-sampling and pre-fetching)

Figure 8: The execution plan before and after di�erent opti-

mization techniques, with blank spaces indicating idle time.

Each GPU processes a distinct set of minibatches, with di�er-

ent colors and shades representing the various minibatches.

limited by the requirement for memory continuity. We analyzed

the root causes of these issues and proposed targeted optimizations

to address them.

O�loading feature Gathering with a separate process. To in-

vestigate the unexpected system performance when overlapping

feature fetching communication and computation, we divided the

feature fetching stage into two distinct operations: feature gather-

ing, which involves searching for and locating the corresponding

features for the required nodes, and I/O operations, which handle

the transfer of the gathered features from host memory to GPU

memory. We then measured the runtime of each operation sepa-

rately, with the evaluation results presented in Figure 9(a). The fact

that feature gathering accounts for about 30% to 50% of the runtime

suggests that a separate process is necessary to fully overlap fea-

ture fetching with other computation tasks. Using separate CUDA

streams can only overlap I/O operations with computation, leav-

ing half of the feature fetching runtime sequentially executed with

other tasks. Therefore, we introduce an additional process to handle

the feature gathering process for each minibatch, maximizing the

overlap between communication and computation stages.

Direct transfer of memory between adjacent GPUs.We ana-

lyze the construction of the computation graph in M-TGNN with

the goal to identify common characteristics that can be leveraged

to reduce the communication time due to memory fetching. Figure

9(b) illustrates the repetition rate of target nodes across consecu-

tive minibatches for various datasets, showing that approximately

34%-62% of target nodes repeatedly appear between adjacent batches.

This property o�ers an opportunity to replace a portion of the D2H

WIKI MOOC REDDITLASTFM GDELT
Dataset

0

20

40

60

80

100

Tr
an

sf
er

 (%
)

IO Feature gather

WIKI MOOC REDDITLASTFM GDELT
Dataset

0.0

0.2

0.4

0.6

Re
pe

tit
io

n
Ra

te

0

20

40

60

80

100

Fe
at

ur
e

ga
th

er
 (%

)

(a) (b)

Figure 9: (a) The proportion of I/O operations relative to

feature gathering in the feature fetching process. (b) The rep-

etition rate of target nodes between consecutiveminibatches.

and H2D communications for memory fetching with faster D2D

memory transmissions, further reducing memory dependency and

accelerating the overall training process. During the memory ops

on target nodes stage, three steps occur: (1) fetching memory and

messages corresponding to historical events for all target nodes;

(2) computing the updated memory and messages based on events

in the current minibatch; and (3) writing the updated memory and

messages back to host memory to ensure that the subsequent mini-

batch can access the most up-to-date data. Under the D2H and H2D

communication mode, the memory ops on target nodes for a new

minibatch cannot begin until the previous minibatch has completed

the third step of writing back to host memory. However, since 34%-

62% of target nodes are repeated across adjacent minibatches, each

GPU can directly retrieve the memory and messages of duplicate

nodes from the GPU that handled the previous minibatch as soon

as the GPU with previous minibatch completes the second step,

instead of waiting for the third step to �nish. Additionally, since

the memory of repeated target nodes is immediately updated in

the next minibatch, there is no need to write them back to the

host. As a result, only the target nodes that do not appear in the

next minibatch need to be written back in the third step, further

reducing the execution time of the write-back process. This process

is illustrated in Figure 10.

Due to the self-supervised nature of M-TGNN, the target nodes

for each minibatch are �xed and we can identify in advance, before

training begins, which nodes appear repeatedly across adjacent

minibatches. This allows us to determine which nodes’ memory

should be transferred to the next GPU via D2D and which should

be fetched from the host memory. Therefore, this optimization tech-

nique does not introduce any additional overhead, as the decisions

regarding memory transfer can be made prior to training.

Figure 10: A comparison of the communication time on mem-

ory fetching without and with D2D.

2728

4.3 Quantitative Analysis of PipeTGL

Based on the design of PipeTGL, we establish the relationship be-

tween bubble size and the number of GPUs Ĥ involved in training,

o�ering an intuitive understanding of PipeTGL’s performance. We

use Ħğ to denote the time duration of di�erent stages ğ , where ğ can

represent ĩ , Ĝ Ĝ , Ī_ģěģ_ĥĦ , ĩ_ģěģ_ĥĦ , Ĝ &Ę, orģĥĚěĢ_īĦ . Memory-

related operations (i.e., memory fetching and updating) are reor-

ganized into memory operations on target nodes (Ī_ģěģ_ĥĦ) and

memory operations on supporting nodes (ĩ_ģěģ_ĥĦ) in PipeTGL.

The pro�led duration Ħğ for each stage is shown in Table 2.

Table 2: The runtime distribution after memory reordering.

Dataset s � t_mem_op s_mem_op f&b model_up

WIKI 13.4% 19.4% 11.4% 9.5% 37.1% 9.2%

MOOC 13.1% 16.3% 10% 11.3% 39.4% 9.9%

REDDIT 12.4% 19.1% 13.5% 8.6% 37.2% 9.2%

LASTFM 13.5% 17.3% 10.9% 8.1% 40.5% 9.7%

GDELT 19.5% 19.9% 10.6% 10.4% 31.4% 8.2%

The idle time of GPU 0 during the processing of its second

minibatch (denoted as minibatch Ă) is max(Ī2 − Ī1, 0), where Ī1 =

Ħĩ + ĦĪ_ģěģ_ĥĦ + Ħĩ_ģěģ_ĥĦ + Ħ Ĝ &Ę + ĦģĥĚěĢ_īĦ + Ħĩ , Ī2 = Ħĩ +Ĥ ∗

ĦĪ_ģěģ_ĥĦ . Ī2 represents the time when the last GPU completes the

dependent memory operations of target nodes for minibatch Ă − 1,

while Ī1 is the time when GPU 0 has �nished all preceding tasks

allocated to it prior to the memory related operations for minibatch

Ă (Notably, due to the pre-sampling and pre-fetching optimization,

the Ĝ Ĝ stage of one minibatch on a GPU can be fully overlapped

with the Ĝ &Ę stage of the previous minibatch allocated to the same

GPU). Therefore, max(Ī2 − Ī1, 0) measures the duration of GPU 0’s

idle time, if any, while waiting for updated memory from minibatch

Ă − 1. Next, we show that max(Ī2 − Ī1, 0) precisely quanti�es the

pipeline bubble time.

Theorem 4.1. The pipeline bubble time experienced by each GPU

during a single minibatch in PipeTGL is precisely max(Ī2 − Ī1, 0),

where Ī1 = Ħĩ +ĦĪ_ģěģ_ĥĦ +Ħĩ_ģěģ_ĥĦ +Ħ Ĝ &Ę +ĦģĥĚěĢ_īĦ +Ħĩ , Ī2 =

Ħĩ + Ĥ ∗ ĦĪ_ģěģ_ĥĦ .

Proof. The proof can be completed by induction. Suppose the

system starts at time 0. The idle time for GPU 0 while processing

its second minibatch is straightforward to compute: max(Ī2 − Ī1, 0)
3, where Ī1 = Ħĩ + Ħt_mem_op + Ħs_mem_op + Ħf&b + Ħmodel_up + Ħĩ ,

and Ī2 = Ħĩ + Ĥ · Ħt_mem_op.

Assume that this idle time holds for GPU ğ when processing

minibatch Ġ . Let ă1 represent the time when GPU ğ �nishes its tasks

prior to the memory operation for minibatch Ġ , and let ă2 be the

time when GPU ğ − 1 completes the Īmem_op for minibatch Ġ − 1.

The idle time for GPU ğ is then max(ă2 − ă1, 0) = max(Ī2 − Ī1, 0).

Next, we consider whether this relationship holds for GPU ğ + 1

processing minibatch Ġ + 1. The time when GPU ğ + 1 can begin

its preceding tasks before the memory operation for minibatch

Ġ + 1 depends on when GPU ğ completes its t_mem_op stage for

3t_mem_op and s_mem_op account for memory communication; however, we do not
explicitly consider them as GPU idle time due to their short duration and the rapid
D2D memory transfer.

the minibatch allocated to it before minibatch Ġ . This time is given

by ă1 − Ħĩ − Ħmodel_up − Ħf&b.

Thus, we can compute the time when GPU ğ + 1 �nishes its

preceding tasks before the memory operation for minibatch Ġ + 1.

This time, denoted T1, is given by: T1 = ă1 − Ħĩ − Ħmodel_up −

Ħf&b −Ħs_mem_op +Ħt_mem_op +Ħs_mem_op +Ħf&b +Ħmodel_up +Ħĩ =

ă1 + Ħt_mem_op .

Similarly, the time when GPU ğ �nishes its t_mem_op stage for

minibatch Ġ , allowing GPU ğ + 1 to begin its Īmem_op for minibatch

Ġ + 1, is: T2 = max(ă1, ă2) + Ħt_mem_op .

The idle time for GPU ğ + 1 while processing minibatch Ġ + 1 is:

max(T2 − T1, 0) = max(max(ă1, ă2) − ă1, 0) = max(Ī2 − Ī1, 0) . (4)

This completes the proof. □

Remark The bubble size in Theorem 4.1 demonstrates that as

the number of GPUs Ĥ increases, the bubble time also increases, a

trend that aligns with our empirical �ndings in 5.4. Furthermore, by

substituting the stage durations from Table 2 into the bubble size

equation, we observe that PipeTGL achieves nearly zero bubble size

when GPU number Ĥ f 8, which is typically su�cient for dynamic

graph training.

4.4 Scalability of PipeTGL

4.4.1 Distributed Training for M-TGNN. PipeTGL performs e�ec-

tively in single-machine, multi-GPU setups, as it leverages high-

speed GPU-to-GPU communication links (e.g., NVLink or PCIe).

Directly extending the design of PipeTGL—such as round-robin

scheduling and direct memory transfer between adjacent GPUs—to

a distributed, multi-machine, multi-GPU setup is both unnecessary

and potentially detrimental to system performance, especially in

clusters without high-speed inter-machine networking. However,

PipeTGL can be safely extended to a multi-machine, multi-

GPU distributed setup, provided the dataset �ts within a

single machine. This requirement is also consistent with existing

multi-machine approaches, such as DistTGL [33].

•When the dataset �ts within a singlemachine, the system can

maintain at least one complete copy of the node memory on each

machine. This allows for leveraging memory parallelism across

machines while utilizing the pipeline method in PipeTGL within

a single machine/a pipeline group, eliminating the need for node

memory synchronization across trainers and enabling the use of

more GPUs without increasing the number of GPUs or bubbles

within each pipeline group. Let Ħ represent the number of machines

and ġ denote the number of node memory copies to maintain. To

eliminate costly node memory synchronization across machines,

we require ġ g Ħ . The number of node memory copies, ġ , can be

determined based on the hardware con�guration.

•When the dataset is too large to �t on a single machine, par-

titioning the dataset becomes necessary. In this case, each machine

can only store a portion of the nodes, making memory synchro-

nization across machines unavoidable. Although PipeTGL can be

employed across all participating GPUs to maintain memory conti-

nuity, optimizing its performance in a multi-machine, multi-GPU

scenario with substantial cross-machine memory synchronization

overhead remains an open challenge. We leave this as future work.

2729

5 EVALUATION

We implemented PipeTGL based on GNNFlow [31] with PyTorch

1.13.1 [17] and DGL 1.1.1 [25]. All communication between GPUs

and machines was handled by the distributed package provided by

PyTorch, with NCCL as the backend.

DatasetsWe evaluated PipeTGL with several widely-used dynamic

graph datasets of varying scales. Detailed information about these

datasets is presented in Table 3.

• WIKI is a user-internet page bipartite graph, with each edge

corresponding to a user modifying a page. The features of each

edge are derived from the edit document and encoded into a 172-

dimensional vector.

• MOOC tracks student activities within online courses, where

nodes represent either students or courses, and edges indicate in-

teractions between students and courses.

• REDDIT captures interactions between users and sub-reddits

over the course of a month, with edge features derived from the

text of the posts.

• LASTFM tracks users’ song listening activity over the course of

a month, with nodes representing either users or songs.

•GDELT is a knowledge graph that records global events from 2016

to 2020, updated every 15 minutes, with each edge representing an

individual event.

The task for all �ve datasets is temporal link prediction.

Table 3: Dataset statistic. The |V| and |E| denote the number

of nodes and edges. dĬ and dě represent the dimensions of

node features and edge features, respectively. ∗ indicates that

the dataset contains incomplete features, which have been

generated using random data. tģėĮ denotes the maximum

edge timestamp.

Dataset |V| |E| dĬ dě tģėĮ

WIKI [16] 9,227 157,474 128∗ 172 2.7e6

MOOC [16] 7,144 411,749 128∗ - 2.6e7

REDDIT [16] 10,984 672,447 128∗ 172 2.7e6

LASTFM [10] 1,980 1,293,103 128∗ - 1.3e8

GDELT [32] 16,682 191,290,882 413 182 1.6e8

ModelsWe employ the TGN-attn model [18], which achieves state-

of-the-art performance, for our evaluation, same as DistTGL [33].

The model’s learning rate was scaled linearly with the number of

GPUs, as described in previous works [31, 33]. We followed the

same hyperparameter choices as TGN [18], setting the memory

dimension for each node to 100, the number of heads in the multi-

head attention layer to 2, and the dropout probability to 0.2. For

each target node, we sampled its 10 most recent neighbors as sup-

porting nodes to compute its embedding. To balance throughput

and information loss, the minibatch size for each dataset was set

according to its scale, consistent with the settings used in DistTGL

[33]. For smaller datasets (WIKI andMOOC), the minibatch size was

set to 600, while for medium-sized datasets (REDDIT and LASTFM),

it was set to 1000. Due to GPU capacity constraints, the minibatch

size for the large dataset (GDELT) was set to 3200. During training,

80% of the minibatches were used as training data, 10% as validation

data, and 10% as test data. The �nal accuracy for all experiments

was calculated based on the test dataset.

EnvironmentAll experimentswere conducted onmachines equipp-

ed with NVIDIA GeForce RTX 4090 GPUs, an AMD EPYC 7542

processor, 256 GB of host memory. The default bandwidth between

machines was 100 Gbps.

BaselinesWe compare PipeTGL with existing distributed M-TGNN

training systems:

• DistTGL [33], designed to facilitate the distributed training of

M-TGNN models. In multi-machine scenarios, DistTGL employs

memory parallelism across machines, while within a single ma-

chine, it utilizes either minibatch parallelism (denoted as DistTGL1)

or epoch parallelism (denoted as DistTGL2).

• GNNFlow [31], a general system that supports both static GNNs

and temporal GNNs training. Although PipeTGL is built atop GNN-

Flow, the underlying training approaches di�er signi�cantly. GNN-

Flow uses data parallelism across multiple GPUs without guaran-

teeing memory dependency handling. To ensure a fair comparison,

we implement memory parallelism across machines in GNNFlow,

reducing the heavy memory synchronization overhead, while pre-

serving its native training method on a single machine.

WIKI MOOC REDDIT LASTFM GDELT
Dataset

0.0

2.0

4.0

6.0

8.0

10.0

Th
ro

ug
hp

ut
 (

×1
0u

 sa
m

pl
es

/s
)

before
after

Figure 11: A comparison of throughput before and after en-

abling communication optimization.

5.1 Overall Performance Comparison

We �rst compare the end-to-end performance of PipeTGL against

the baselines. The experiments were conducted using 2 machines,

each equipped with 4 GPUs. PipeTGL leverages memory parallelism

across machines and implements pipeline processing with corre-

sponding optimizations on each machine. This approach ensures

that each machine retains a complete copy of the features, mini-

mizing slow inter-machine memory synchronization. Each method

was trained for 100 epochs to ensure the convergence of the M-

TGNN model. Table 4 presents the average precision achieved by

each baseline, along with the speedup achieved by PipeTGL when

it surpasses the highest accuracy obtainable by the baselines. The

average precision of PipeTGL in Table 4 re�ects either the preci-

sion PipeTGL achieved after convergence or the precision at the

point when the corresponding speedup was recorded, as speci�cally

noted.

Overall, PipeTGL achieved the highest average precision across

all datasets and demonstrated a speedup ranging from 1.27× to

2730

Table 4: The average precision (AP) after convergence of each baseline, along with the corresponding speedup achieved by

PipeTGL. × indicates the speed-up, calculated by dividing the average precision convergence time of each baseline by the time

it takes for PipeTGL’s precision to surpass the convergence precision of the baseline. − indicates that although its �tting time is

shorter than that of PipeTGL, it su�ers from a certain loss in accuracy. We found that PipeTGL can achieve the same level of

accuracy in less time.

WIKI MOOC REDDIT LASTFM GDELT

AP(%) Speedup AP(%) Speedup AP(%) Speedup AP(%) Speedup AP(%) Speedup

DistTGL1 98.00 4.57× (320s) 89.51 2.67× (433s) 98.52 1.52× (256s) 80.14 1.27× (843s) 98.01 1.97× (418s)

DistTGL2 97.81 4.5× (315s) 89.61 2.88× (466s) 98.00 2.7× (454s) 73.25 - (237s) 97.82 - (205s)

GNNFlow 98.15 4.74× (332s) 87.38 3.57× (579s) 98.50 1.72× (289s) 80.15 1.52× (1005s) 94.31 1.61× (341s)

PipeTGL 98.28 1× (70s) 90.51∗ 1× (162s)∗ 98.54 1× (168s) 80.30 1× (661s) 98.07 1× (212s)

∗indicates that the accuracy reported is not PipeTGL’s convergence accuracy, but rather the accuracy at the point when PipeTGL’s speedup is calculated. The convergence accuracy
for the MOOC dataset achievable by PipeTGL is 93.41%, with a �tting time of 463 seconds.

4.74× compared to baselines. Speci�cally, for datasets with fewer

nodes, such as WIKI and MOOC, the issue of information loss

with the baselines is more pronounced. As a result, the bene�ts of

PipeTGL are more signi�cant. For WIKI, PipeTGL achieved over a

4.7× speedup while maintaining high convergence accuracy, and

for MOOC, it delivered more than a 3.5× speedup with consis-

tently higher convergence accuracy. Even on larger-scale datasets,

PipeTGL demonstrated a signi�cant acceleration e�ect, achiev-

ing speedups of up to 2.7× across all three datasets, while main-

taining high convergence accuracy. Speci�cally, PipeTGL achieves

higher convergence precision with speedups ranging from 1.52×

to 2.7× on the REDDIT dataset. On the LASTFM dataset, epoch

parallelism (DistTGL2) fails to converge to satisfactory accuracy

due to higher gradient variance, while PipeTGL delivers up to a

1.52× speedup with even better model performance. For the GDELT

dataset, PipeTGL reaches a similar accuracy level to the conver-

gence performance of DistTGL2 in about 60 seconds, after which

the accuracy improvement of DistTGL2 slows down—a limitation

that epoch parallelism does not overcome. Compared to GNNFlow,

PipeTGL achieves higher accuracy in less time, delivering a 1.61×

speedup. Although minibatch parallelism (DistTGL1) can achieve

comparable performance, it requires roughly twice the time of

PipeTGL.

For minibatch parallelism (DistTGL1) and epoch parallelism

(DistTGL2), the negative impact of epoch parallelism on conver-

gence accuracy is more signi�cant, leading to slightly lower accu-

racy compared to minibatch parallelism due to the large gradient

variance introduced by this method. In contrast, PipeTGL main-

tains high convergence accuracy thanks to our memory continuity

assurance. While minibatch parallelism achieves faster training

speeds than epoch parallelism by directly ignoring memory depen-

dencies among in-�ight minibatches, PipeTGL outperforms both

approaches by leveraging an optimized execution plan and com-

munication strategy, achieving signi�cantly faster training speeds

while still respecting memory continuity. Compared to GNNFlow,

which also neglects memory continuity, PipeTGL achieves signi�-

cantly improved model performance and a speedup ranging from

1.52× to 4.74×. This demonstrates that, despite being built on top of

GNNFlow, PipeTGL’s memory continuity-assured pipeline training

method and its optimizations to eliminate pipeline bubbles make it

superior to GNNFlow.

5.2 The E�ect of Memory Reordering

To reduce the waiting time caused by memory continuity require-

ments acrossminibatches, we reorder and prioritizememory-related

operations for target nodes. Next, we evaluate thememory-dependent

time during training using a machine with 4 GPUs, both before

and after implementing memory reordering. Table 5 presents the

evaluation results. For all datasets, memory reordering e�ectively

reduces GPU execute time for update memory from by approxi-

mately 50%, demonstrating the e�ectiveness of memory reordering

in reducing pipeline bubbles.

Table 5: The proportion of the memory-dependent time be-

fore and after memory reordering.

Dataset WIKI MOOC REDDIT LASTFM GDELT

before reordering 20.9% 21.3% 22.1% 19% 21.0%

after reordering 11.4% 10.0% 13.5% 10.9% 10.6%

5.3 The E�ect of Communication Optimization

The pre-sampling technique employed by PipeTGL enables the over-

lapping of communication and computation. Additionally, PipeTGL

replaces a portion of the H2D and D2H communication for mem-

ory fetching with direct D2D communication. Next, we evaluate

the system’s performance both before (with all communication

optimization options in PipeTGL disabled) and after applying the

communication optimization techniques in PipeTGL to demonstrate

their e�ectiveness.

We compared GPU utilization before and after enabling commu-

nication optimizations across various datasets, as illustrated in Fig-

ure 12. A continuous segment of the training process was randomly

selected, and GPU utilization was sampled at a frequency of 0.1

seconds. As shown in Figure 12, our optimization method increased

peak GPU utilization by over 10% and signi�cantly improved aver-

age GPU utilization. Speci�cally, for the �ve datasets—WIKI, MOOC,

REDDIT, LASTFM, and GDELT—the average GPU utilization before

2731

0 1 2 3 4 5 6
Time(s)

0

10

20

30

40

50

60

70

80

90

Ut
iliz

at
io
n

before after

(a) WIKI

0 1 2 3 4 5 6
Time(s)

0

10

20

30

40

50

60

70

80

90

Ut
iliz

at
io
n

before after

(b) MOOC

0 1 2 3 4 5 6
Time(s)

0

10

20

30

40

50

60

70

80

90

Ut
iliz

at
io
n

before after

(c) REDDIT

0 1 2 3 4 5 6
Time(s)

0

10

20

30

40

50

60

70

80

90

Ut
iliz

at
io
n

before after

(d) LASTFM

0 1 2 3 4 5 6 7
Time(s)

0

10

20

30

40

50

60

70

80

90

Ut
iliz

at
io
n

before after

(e) GDELT

Figure 12: A comparison of GPU utilization before and after enabling communication optimization.

communication optimization is 18.35%, 29.21%, 27.31%, 26.57%, and

42.12%, respectively. After enabling communication optimization,

the average GPU utilization increases to 33.00%, 40.53%, 39.79%,

39.07%, and 58.14%, respectively. Additionally, we measured system

throughput before and after enabling the communication optimiza-

tion techniques, as shown in Figure 11. The results demonstrate

that our communication optimization method improved system

throughput by approximately 25%, signi�cantly enhancing the e�-

ciency of PipeTGL.

5.4 Overall Bubble Rate of PipeTGL

We evaluate the size of the pipeline bubble throughout the entire

training process for PipeTGL, which incorporates all the optimiza-

tion techniques. The evaluations were conducted using varying

numbers of GPUs, comparing the bubble size before and after op-

timization under various datasets. The results, shown in Figure

13, indicate that PipeTGL achieves nearly zero pipeline bubble,

with less than 8% GPU idle time during the entire training process.

Additionally, it can be observed that the bubble size increases with

the number of GPUs, as more memory dependencies are introduced.

This observation aligns with the theoretical analysis of pipeline

bubble size for PipeTGL presented in Theorem 4.1.

WIKI MOOC REDDIT LASTFM GDELT
Dataset

0

10

20

30

40

50

Id
le

 ti
m

e
pe

rc
en

ta
ge

 (%
) 2gpu pre-optimization

4gpu pre-optimization
8gpu pre-optimization

2gpu post-optimization
4gpu post-optimization
8gpu post-optimization

Figure 13: The proportion of idle time to total training time

with di�erent numbers of GPUs.

5.5 Convergence Results

We compare the convergence process across various parallelism

strategies forM-TGNNs. Speci�cally, we trained the REDDIT dataset

for 50 epochs using 4 GPUs with four di�erent parallel methods

to assess their convergence e�ciency. The results are shown in

Fig.14(a). The x-axis represents the training epoch number, allowing

us to eliminate the runtime di�erences and enable a fair comparison

of convergence performance. Among the various parallelism strate-

gies for M-TGNN training, epoch parallelism shows the poorest con-

vergence performance due to high gradient descent variance. This

is also why DistTGL prioritizes minibatch parallelism and memory

parallelism over epoch parallelism. Minibatch parallelism, while

faster than epoch parallelism, su�ers from slower convergence and

lower accuracy than PipeTGL and memory parallelism because it

neglects the memory continuity between in-�ight minibatches. In

contrast, PipeTGL and memory parallelism exhibit similar conver-

gence speed and accuracy, but PipeTGL requires signi�cantly less

storage space. As a result, PipeTGL o�ers the best trade-o� between

hardware resource e�ciency and convergence performance.

0 10 20 30 40 50
Epoch

0.900

0.925

0.950

0.975

Ac
cu

ra
cy

PipeTGL
Memory Parallelism
Minibatch Parallelism
Epoch Parallelism

1 GPU 2 GPUs 4 GPUs 8 GPUs
GPU

0

25

50

75

100

125

150

Ep
oc

hs

MOOC Epochs
REDDIT Epochs

MOOC ACC
REDDIT ACC

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

(a) (b)

Figure 14: (a) Convergence curves for di�erent parallel meth-

ods on the REDDIT dataset. (b) Epochs requested for �tting

and accuracy under varying number of GPUs.

5.6 Performance Analysis Under Scaling
Conditions

5.6.1 The impact of training cluster configuration. We evaluate the

system performance of PipeTGL across various training cluster se-

tups, measuring the required training epochs for convergence, the

model accuracy post-convergence, and the corresponding runtimes.

Since graphs with varying characteristics may display distinct con-

vergence properties, we use the MOOC and REDDIT datasets to

assess the impact of training setups on di�erent types of graphs.

The MOOC dataset exhibits a dense structure, whereas the RED-

DIT dataset is comparatively sparse. The results in Fig. 14(b) show

2732

that PipeTGL maintains consistent convergence epochs and accu-

racy across di�erent GPU con�gurations. This demonstrates that

PipeTGL e�ectively prevents the increase in convergence epochs

and the decrease in accuracy as the number of GPUs rises, thanks

to its memory continuity guarantee. In contrast, the system perfor-

mance of minibatch parallelism shows an increase in required train-

ing epochs as the number of GPUs grows, due to increased infor-

mation loss, as illustrated in Fig. 3. Table 6 presents the end-to-end

runtimes of PipeTGL with varying numbers of GPUs. More GPUs

introduce greater parallelism, which generally leads to shorter train-

ing times. However, PipeTGL can achieve runtimes similar to the

baselines even when using only a quarter of the GPUs compared to

the baseline setup for the MOOC and REDDIT datasets (as shown in

the 2-GPUs results in Table 6, which are comparable to the baselines

in Table 4), demonstrating the superiority of PipeTGL. Furthermore,

we observe that the speedup in training e�ciency is lower than

the proportional increase in the number of GPUs. This is due to

increased contention for PCIe lanes between GPUs and a rise in

the number of bubbles in the pipeline, as the GPU count grows, as

outlined in Theorem 4.1.

Table 6: End-to-end runtimes with varying numbers of GPUs.

Number of GPUs 1 GPU 2 GPUs 4 GPUs 8 GPUs

MOOC 768s 470s 274s 162s

REDDIT 496s 291s 198s 168s

5.6.2 Average waiting time per minibatch. We evaluated the GPU

waiting time caused by memory dependencies for the MOOC and

REDDIT datasets across varying numbers of GPUs, with the results

shown in Fig. 15. In the 4GPU*2 machine setup, we leverage the

pipeline design proposed by PipeTGL within each machine and

memory parallelism across machines. When the number of GPUs

in a single pipeline group is 4 or fewer, the GPU waiting time due

to mini-batch dependencies is 0%. However, when the number of

GPUs increases to 8, the waiting times for the MOOC and REDDIT

datasets rise to 5.66% and 7.14%, respectively, due to the extended

critical path. These results also alignwith our calculations in Section

4.3. Based on this, we recommend limiting the number of GPUs in

a single pipeline group to 4 or fewer in PipeTGL to minimize this

overhead.

Dataset

0
5

10
15

Ti
m

e(
%

)

0.00 0.00 0.00 0.00

5.66

0.00 0.00 0.00 0.00

7.14

1 GPU 2 GPUs 4 GPUs 4*2 GPUs 8 GPUs 1 GPU 2 GPUs 4 GPUs 4*2 GPUs 8 GPUs

MOOC REDDIT

Figure 15: The waiting time due to memory dependency un-

der di�erent numbers of GPUs, where the vertical axis rep-

resents the proportion of waiting time in the total training

time.

6 RELATED WORKS

Research on dynamic graph neural network learning can be di-

vided into two main areas, each focusing on a di�erent type of

dynamic graph: discrete-time dynamic graphs (DTDGs) [15, 16, 30]

and continuous-time dynamic graphs (CTDGs) [18, 19, 28]. In the

context of DTDGs, several studies [1, 2, 4, 6, 24] focus on acceler-

ating the training process at the system level. PiPAD [24] o�ers a

method for aggregating repeated regions across multiple snapshots

and parallelizes communication and computation through pipelin-

ing. EDEG [1] introduces a gradient checkpointing technique to

reduce the memory requirements for dynamic graphs and proposes

a graph-di�erence-based transfer method for DTDGs. However,

these approaches are not applicable to CTDGs.

In CTDGs, several studies [3, 5, 12, 13, 20, 28, 32] also aim to

accelerate the training process of TGNNs from both algorithmic and

system perspectives. TGL [32] provides a general framework for

training on CTDGs. Orca [12] introduces a cache-based method that

reduces the time required for forward propagation in M-TGNNs

by reusing stale embeddings. TGOpt [27] focuses on minimizing

redundant computations in TGAT [28]. However, these approaches

do not address distributed training.

DistTGL [33] and GNNFlow [31] introduce several distributed

training methods, but their approaches have various limitations. In

terms of pipelining, PipeDream [14] was among the �rst to intro-

duce the concept, providing a foundational analysis of its impact on

the training process. PipeGCN [23] further developed this idea by

introducing a method for using pipelining in GNNs to parallelize

data transfer and computation. However, due to the unique charac-

teristics of M-TGNNs, these methods cannot be directly applied.

7 CONCLUSION

In this work, we introduce PipeTGL, a parallel training system

meticulously designed to address the challenges of M-TGNN train-

ing under strict memory continuity requirements. We conduct an

in-depth analysis of the limitations inherent in existing M-TGNN

training systems, pinpointing critical bottlenecks and unique chal-

lenges associated with trainingM-TGNNs under memory dependen-

cies. Leveraging the insights, PipeTGL employs a pipeline parallel

approach that strategically integrates a suite of optimization tech-

niques. These optimizations encompass critical aspects such as

node placement, execution order, and communication strategies, all

working in concert to accelerate the training process. Through these

enhancements, PipeTGL not only achieves signi�cant speedups but

also ensures the elimination of pipeline bubbles, resulting in a more

e�cient training system that outperforms traditional methods.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation

of China (NSFC) (Grant No. 62302187 and 62302183), the Natural Sci-

ence Foundation of Hubei Province (Grant No. 2024AFB047), Open

Foundation of Key Laboratory of Cyberspace Security, Ministry

of Education of China (Grant No. KLCS20240401), and CCF-DiDi

GAIA Collaborative Research Funds (Grant No. CCF-DiDi GAIA

202412).

2733

REFERENCES
[1] Venkatesan T Chakaravarthy, Shivmaran S Pandian, Saurabh Raje, Yogish Sab-

harwal, Toyotaro Suzumura, and Shashanka Ubaru. 2021. E�cient scaling of
dynamic graph neural networks. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1–15.

[2] Chaoyi Chen, Dechao Gao, Yanfeng Zhang, Qiange Wang, Zhenbo Fu, Xuecang
Zhang, Junhua Zhu, Yu Gu, and Ge Yu. 2023. NeutronStream: A Dynamic GNN
Training Framework with Sliding Window for Graph Streams. Proceedings of the
VLDB Endowment 17, 3 (2023), 455–468.

[3] Gangda Deng, Hongkuan Zhou, Hanqing Zeng, Yinglong Xia, Christopher Leung,
Jianbo Li, Rajgopal Kannan, and Viktor Prasanna. 2024. TASER: Temporal Adap-
tive Sampling for Fast and Accurate Dynamic Graph Representation Learning.
arXiv preprint arXiv:2402.05396 (2024).

[4] Kaihua Fu, Quan Chen, Yuzhuo Yang, Jiuchen Shi, Chao Li, and Minyi Guo. 2023.
BLAD: Adaptive Load Balanced Scheduling and Operator Overlap Pipeline For
Accelerating The Dynamic GNN Training. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–13.

[5] Shihong Gao, Yiming Li, Yanyan Shen, Yingxia Shao, and Lei Chen. 2024. ETC:
E�cient Training of Temporal Graph Neural Networks over Large-scale Dynamic
Graphs. Proceedings of the VLDB Endowment 17, 5 (2024), 1060–1072.

[6] Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. 2022. Dynagraph:
dynamic graph neural networks at scale. In Proceedings of the 5th ACM SIGMOD
Joint International Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA). 1–10.

[7] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in Neural Information Processing Systems 30
(2017).

[8] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and zhifeng
Chen. 2019. Gpipe: E�cient training of giant neural networks using pipeline
parallelism. Advances in Neural Information Processing Systems 32 (2019).

[9] Thomas N Kipf and Max Welling. 2016. Semi-supervised classi�cation with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[10] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data mining.
1269–1278.

[11] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling dis-
tributed machine learning with the parameter server. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’14). 583–598.

[12] Yiming Li, Yanyan Shen, Lei Chen, andMingxuan Yuan. 2023. Orca: Scalable Tem-
poral Graph Neural Network Training with Theoretical Guarantees. Proceedings
of the ACM on Management of Data 1, 1 (2023), 1–27.

[13] Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. 2023. Zebra: When tem-
poral graph neural networks meet temporal personalized pagerank. Proceedings
of the VLDB Endowment 16, 6 (2023), 1332–1345.

[14] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 1–15.

[15] George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis. 2021.
Transfer graph neural networks for pandemic forecasting. In Proceedings of the
AAAI Conference on Arti�cial Intelligence, Vol. 35. 4838–4845.

[16] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, TimKaler, Tao Schardl, and Charles Leiserson. 2020. Evolvegcn:
Evolving graph convolutional networks for dynamic graphs. In Proceedings of

the AAAI Conference on Arti�cial Intelligence, Vol. 34. 5363–5370.
[17] Adam Paszke. 2019. Pytorch: An imperative style, high-performance deep learn-

ing library. arXiv preprint arXiv:1912.01703 (2019).
[18] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico

Monti, and Michael Bronstein. 2020. Temporal graph networks for deep learning
on dynamic graphs. arXiv preprint arXiv:2006.10637 (2020).

[19] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.
Dysat: Deep neural representation learning on dynamic graphs via self-attention
networks. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 519–527.

[20] Junwei Su, Difan Zou, and Chuan Wu. 2024. PRES: Toward Scalable Memory-
Based Dynamic Graph Neural Networks. arXiv preprint arXiv:2402.04284 (2024).

[21] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
2019. Dyrep: Learning representations over dynamic graphs. In Proceedings of
International Conference on Learning Representations.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems 30 (2017).

[23] Cheng Wan, Youjie Li, Cameron R Wolfe, Anastasios Kyrillidis, Nam Sung Kim,
and Yingyan Lin. 2022. PipeGCN: E�cient full-graph training of graph con-
volutional networks with pipelined feature communication. arXiv preprint
arXiv:2203.10428 (2022).

[24] ChunyangWang, Desen Sun, and Yuebin Bai. 2023. PiPAD: pipelined and parallel
dynamic GNN training on GPUs. In Proceedings of the 28th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming. 405–418.

[25] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li,
and Zheng Zhang. 2019. Deep graph library: A graph-centric, highly-performant
package for graph neural networks. arXiv preprint arXiv:1909.01315 (2019).

[26] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xin-
guang Wang, Ping Cui, Yupu Yang, Bowen Sun, and Zhenyu Guo. 2021. Apan:
Asynchronous propagation attention network for real-time temporal graph em-
bedding. In Proceedings of the 2021 International Conference on Management of
Data. 2628–2638.

[27] Yufeng Wang and Charith Mendis. 2023. TGOpt: Redundancy-aware optimiza-
tions for temporal graph attention networks. In Proceedings of the 28th ACM
SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming.
354–368.

[28] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. arXiv preprint
arXiv:2002.07962 (2020).

[29] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher Aberger, and
Christopher De Sa. 2021. Pipemare: Asynchronous pipeline parallel dnn training.
Proceedings of Machine Learning and Systems 3 (2021), 269–296.

[30] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2019. T-gcn: A temporal graph convolutional network for tra�c
prediction. IEEE Transactions on Intelligent Transportation Systems 21, 9 (2019),
3848–3858.

[31] Yuchen Zhong, Guangming Sheng, Tianzuo Qin, Minjie Wang, Quan Gan, and
Chuan Wu. 2023. GNNFlow: A Distributed Framework for Continuous Temporal
GNN Learning on Dynamic Graphs. arXiv preprint arXiv:2311.17410 (2023).

[32] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and
George Karypis. 2022. TGL: A general framework for temporal GNN training on
billion-scale graphs. arXiv preprint arXiv:2203.14883 (2022).

[33] Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, and Viktor Prasanna.
2023. DistTGL: Distributed Memory-Based Temporal Graph Neural Network
Training. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–12.

2734

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Memory-based Temporal Graph Neural Network
	2.2 Multi-GPUs Training for M-TGNN
	2.3 Challenges of Parallel Training for M-TGNN

	3 Performance Analysis
	3.1 Intra-Minibatch Analysis
	3.2 Intra- and Inter-Minibatch Analysis

	4 The Design of PipeTGL
	4.1 Parallel Execution Plan for M-TGNN
	4.2 Communication Optimization for M-TGNN
	4.3 Quantitative Analysis of PipeTGL
	4.4 Scalability of PipeTGL

	5 Evaluation
	5.1 Overall Performance Comparison
	5.2 The Effect of Memory Reordering
	5.3 The Effect of Communication Optimization
	5.4 Overall Bubble Rate of PipeTGL
	5.5 Convergence Results
	5.6 Performance Analysis Under Scaling Conditions

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

