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ABSTRACT
Subgraph counting is a fundamental problem in graph analytics

with broad applications, yet remains computationally intractable

due to its #P-hardness. To address this, numerous approximate so-

lutions have been proposed, though they often suffer from limited

efficiency and accuracy. In this paper, we introduce FlowSC, a novel
approach that achieves both high accuracy and efficiency in sub-

graph counting. Our method starts with an enhanced candidate

filtering algorithm, which significantly improves the pruning capa-

bility of bipartite graph-based techniques with minimal overhead.

Building on this, we propose a bottom-up flow-learning model

based on a new Graph Neural Network (GNN) architecture. By

employing a carefully designed message-passing mechanism, the

model explicitly controls the direction, range, and iterations of in-

formation flow, enabling a simulation of the candidate tree-based

counting process. This mechanism is further empowered by a cus-

tomized message aggregation technique, alongside a pretraining

strategy that facilitates model training. Extensive experiments show

that FlowSC can achieve up to 4 orders of magnitude improvement

in accuracy and 3× improvement in efficiency over the baselines

across datasets, while scaling to billion-edge graphs.
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1 INTRODUCTION
Subgraph isomorphism is an essential concept in analyzing graph-

structured data. Among its related problems, subgraph matching

and subgraph counting have attracted extensive research attention.
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Given a query graph𝑄 and a data graph𝐺 , subgraph matching aims

to find all isomorphic matches of 𝑄 in 𝐺 , while subgraph counting

focuses on computing the total number of such matches. They are

both important tasks with a wide range of real-world applications,

including analyzing social networks [13, 17, 48], understanding

biological networks [11, 44, 45, 54], and optimizing graph query

plans [2, 22]. This paper focuses on subgraph counting.

Despite its importance, subgraph counting is computationally

challenging due to its #P-hardness [47]. This challenge is further am-

plified by the worst-case exponential number of possible matches.

For example, in the dataset Yeast, which only contains 3112 ver-

tices, the number of matches for a single query with 32 vertices

can exceed 10
8
. Clearly, exact solutions are limited to query-data

graph pairs that yield a feasible number of matches, even when data

graphs are relatively small. To broaden the application range, re-

cent research efforts have been devoted to developing approximate

solutions [9, 10, 13, 26, 29, 35, 36, 42, 47, 49, 55, 72].

Existing Solutions and Limitations. Existing approximate solu-

tions for subgraph counting can be classified into three categories:

summarization-based [10, 42, 49], sampling-based [9, 13, 29, 35,

47], and learning-based methods [26, 36, 55, 72]. Summarization-

based methods follow a decomposition-aggregation framework.

The query graph is first decomposed into substructures, and the

counts of these substructures are then aggregated to obtain the

final count. However, these methods assume that the counts of

these substructures are independent, which is often impractical for

real-world graphs, and thus offer inaccurate estimation.

Sampling-based methods infer subgraph counts by evaluating

the frequency of isomorphic matches among the subgraphs sam-

pled from the data graph. Although these methods can achieve

high efficiency, they often suffer from sampling failures caused by

the vast sample space, especially when handling complex queries

or large graphs. The state-of-the-art algorithm FaSTest [47] mit-

igates this issue by reducing the sample space through effective

candidate space refinement, albeit at the cost of expensive precom-

puted indexes. Nevertheless, inherent sampling failures are still not

eliminated, leading to low estimation accuracy.

Recently, learning-based models have attracted growing atten-

tion in subgraph counting. NSIC [36] first encodes the query and

data graphs using neural networks, followed by an attention-based

network to model their interactions. Due to the large parameter

space and the lack of effective isomorphism capturing, NSIC suf-

fers from severe efficiency and accuracy issues. LSS [72] adopts
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a learning-based decomposition-aggregation approach: it decom-

poses the query graph and encodes the substructures with data

graph information, then aggregates the features through a self-

attention mechanism. However, it relies on simplistic representa-

tions of the data graph and lacks effective modeling of query-data

correlations. NeurSC [55] reduces redundancy in the data graph

through candidate filtering and enhances query-data correlation

learning with a Wasserstein estimator, yet it does not capture the

relationship between structural features and isomorphic counts.

The latest method LearnSC [26] jointly decomposes the query and

data graphs, and applies contrastive interaction to model their rela-

tionship. However, it still fails to capture the connection between

structural features and isomorphic counts and exhibits instability

during training. In summary, despite their diverse strategies, these

methods still have three main limitations: (1) insufficient reduc-

tion of redundancy on data graph, (2) inability to learn isomorphic

patterns from structural features, and (3) lack of explicit modeling

between structural features and subgraph counts. These limitations

lead to unsatisfactory performance in both efficiency and accuracy.

Contributions. In this paper, we propose a new learning-based

method, termed FlowSC. To alleviate the limitations of existing

solutions, we propose two techniques, including a candidate space

refinement algorithm and a novel bottom-up flow-learning model.

First, we propose an efficient and effective candidate space (CS)

refinement algorithm, termed BipartitePlus. The state-of-the-art CS
refinementmethod [47] enhances the pruning power of the bipartite

graph-based approach via precomputed indexes of substructures

(e.g., triangles and four-cycles). We observe that the computation

of such substructures is costly, especially for large data graphs.

Motivated by this, we improve the filtering performance of the

bipartite graph by considering the connectivity between neighbors

of the matching vertex with little overhead. Our empirical study

suggests that BipartitePlus achieves similar pruning capacity but

much better efficiency than the precomputed indexes.

Second, we propose a novel bottom-up flow-learning model,

which is inspired by the candidate tree-based counting approach.

This model includes a new GNN architecture, which can accurately

simulate the information flow in the candidate trees via a one-pass

bottom-up message-passing mechanism. Via this carefully designed

message-passing mechanism, we can control the direction, range,

and iterations of information propagation, so as to avoid the limita-

tions existing in generic GNNs. To deal with the complex matching

conditions between the query graph and the data graph, we pro-

pose a customized message aggregating method via a cross-graph

attention mechanism. This method leverages the structural infor-

mation of the query graph to guide the information aggregation of

vertices in the candidate space, and thus offers a more accurate sim-

ulation of the matching condition checks. Moreover, we introduce

a pretraining technique to improve training stability.

We conduct extensive experiments on 10 real-world datasets

to evaluate FlowSC. The experimental results demonstrate that

FlowSC can achieve up to 4 orders of magnitude accuracy and

3× query efficiency improvement over its counterparts, averaged

across datasets. Compared to the state-of-the-art method FaSTest,
FlowSC performs slightly worse on simple query-data pairs but

achieves much better accuracy and stability on complex ones.

•We propose a new candidate space filtering algorithm Bipar-
titePlus, which improves the pruning power of the bipartite graph-

based method with little overhead.

• We propose a novel bottom-up flow-learning model, which

utilizes a one-pass message-passing mechanism, optimized by cus-

tomized message aggregation and pretraining techniques.

• Extensive experimental results on real graphs demonstrate the

outstanding performance of our method FlowSC.

2 PRELIMINARIES
2.1 Problem Definition
In this paper, we focus on a connected, undirected, and vertex-

labeled graph 𝑔 = (𝑉 , 𝐸, 𝐿), where 𝑉 is a set of vertices, 𝐸 ⊆ 𝑉 ×𝑉
is a set of edges, and 𝐿 is a labeling function that maps each vertex

𝑣 ∈ 𝑉 to a label in a label set Σ, denoted as 𝐿(𝑣). Given a vertex

𝑣 ∈ 𝑉 , the neighbors of 𝑣 , denoted as 𝑁 (𝑣), are all adjacent vertices
of 𝑣 , i.e., 𝑁 (𝑣) = {𝑣 ′ ∈ 𝑉 | (𝑣, 𝑣 ′) ∈ 𝐸}. The degree of 𝑣 , denoted
as 𝑑 (𝑣), is the number of neighbors of 𝑣 , i.e., 𝑑 (𝑣) = |𝑁 (𝑣) |. For
presentation clarity, we use 𝑄 = (𝑉𝑄 , 𝐸𝑄 , 𝐿) and 𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝐿)
to denote the query graph and data graph, respectively. Besides,

we use 𝑢 and 𝑣 to represent a vertex in the query graph and data

graph, respectively.

Definition 2.1 (Subgraph Isomorphism). Given a query graph
𝑄 = (𝑉𝑄 , 𝐸𝑄 , 𝐿) and a data graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝐿), 𝑄 is subgraph
isomorphic to𝐺 if and only if there exists an injective mapping 𝑓 from
𝑉𝑄 to 𝑉𝐺 such that ∀𝑢 ∈ 𝑉𝑄 , 𝐿(𝑢) = 𝐿(𝑓 (𝑢)) and ∀(𝑢,𝑢′) ∈ 𝐸𝑄 ,
(𝑓 (𝑢), 𝑓 (𝑢′)) ∈ 𝐸𝐺 .

We call an injective mapping from vertices in 𝑄 to vertices in

𝐺 as a subgraph isomorphic embedding of 𝑄 in 𝐺 . We use the term

embedding or match to simply refer to subgraph isomorphic em-

bedding when the context is clear.

Definition 2.2 (Subgraph Matching and Counting). Given a
query graph𝑄 and a data graph𝐺 , the problem of subgraph matching
is to find all matches of 𝑄 in𝐺 , while the subgraph counting problem
is to compute the number of matches.

It is clear that all subgraph matching algorithms can also be

used for subgraph counting. However, exact subgraph matching or

counting is computationally challenging or even infeasible, espe-

cially for complex queries or large data graphs. In this paper, we

focus on approximate solutions for subgraph counting.

Problem Statement. Given a query graph 𝑄 and a data graph 𝐺 ,

we aim to approximate the number of all matches of 𝑄 in 𝐺 .

2.2 Candidate Space
To improve the efficiency of subgraph matching or counting, an

important task is to remove the unnecessary vertices and edges

beforehand. The surviving vertices and edges are organized by an

auxiliary data structure, called candidate space (CS). We first give

the necessary concepts relevant to CS, and then introduce useful

filtering techniques for constructing a compact CS.

Definition 2.3 (Candidate Vertex). Given a vertex 𝑢 ∈ 𝑉𝑄 , a
vertex 𝑣 ∈ 𝑉𝐺 is a candidate vertex of 𝑢, if there exists a match of
𝑄 in 𝐺 that maps 𝑣 to 𝑢. We use 𝐶 (𝑢) to denote a set of candidate
vertices of 𝑢.
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Figure 1: A running example of candidate space refinement processing for a query graph 𝑄 and data graph 𝐺 .

Definition 2.4 (Conditional Candidate Vertex). Given two ver-
tices 𝑢 ∈ 𝑉𝑄 and 𝑣 ∈ 𝑉𝐺 , for a vertex 𝑢′ ∈ 𝑁 (𝑢), a vertex 𝑣 ′ ∈ 𝑁 (𝑣)
is a conditional candidate vertex of 𝑢′ if there exists a match of 𝑄 in
𝐺 that maps 𝑣 ′ to 𝑢′ under the condition that 𝑢 matches 𝑣 . We use
𝐶 (𝑢′ | 𝑢, 𝑣) to denote all conditional candidate vertices of 𝑢′.

Definition 2.5 (Candidate Edge). Given an edge (𝑢,𝑢′) ∈ 𝐸𝑄 , an
edge (𝑣, 𝑣 ′) ∈ 𝐸𝐺 is a candidate edge of (𝑢,𝑢′), if there exists a match
of 𝑄 in 𝐺 that maps 𝑢 to 𝑣 and 𝑢′ to 𝑣 ′. We use 𝐶 (𝑢,𝑢′) to denote a
set of candidate edges of (𝑢,𝑢′).

The candidate vertex set of each vertex and the candidate edge

set of each edge in 𝑄 collectively define the candidate space CS.

According to the above definitions, it is evident that all embeddings

of𝑄 in𝐺 are preserved in CS.We call this property of CS as complete.
This implies that, to find all embeddings of𝑄 , it is sufficient to only

consider CS rather than 𝐺 . To improve efficiency and accuracy,

the key is to refine the candidate space as much as possible while

retaining completeness.

Initializing CS. We use local filtering, such as LDF [53] and

NLF [7], to initialize the candidate vertex set. For a vertex 𝑢 ∈ 𝑉𝑄 ,
LDF adds a vertex 𝑣 ∈ 𝑉𝐺 into𝐶 (𝑢) if 𝐿(𝑢) = 𝐿(𝑣) and 𝑑 (𝑢) ≤ 𝑑 (𝑣).
For each label 𝑙 , NLF checks whether a candidate vertex 𝑣 has not

fewer neighbors with label 𝑙 than vertex 𝑢. To initialize candidate

edges, we add an edge (𝑣, 𝑣 ′) ∈ 𝐸𝐺 into 𝐶 (𝑢,𝑢′) if 𝑣 ∈ 𝐶 (𝑢) and
𝑣 ′ ∈ 𝐶 (𝑢′).

Example 2.6. Consider the query graph 𝑄 and data graph𝐺 in Fig-
ure 1(a) and (b). Take 𝑢0 for example. Because 𝑣0 and 𝑣1 pass the
check of LDF and NLF, we have that 𝐶 (𝑢0) = {𝑣0, 𝑣1}. The candidate
set of other vertices in𝑉𝑄 can be computed analogously. Since 𝑣9 does
not satisfy the LDF and NLF matching conditions of any query vertex,
it is removed from the initial CS. Figure 1(c) shows the initial CS after
creating the candidate edges accordingly.

Refining CS. To refine CS, recent work mainly focuses on utilizing

the neighborhood for filtering. The intuition is that vertex 𝑣 matches

𝑢 only if 𝑣 ’s neighbors match 𝑢’s neighbors.

• GQL [23]. For each 𝑣 ∈ 𝐶 (𝑢), we build a bipartite graph 𝐵𝑣𝑢
between 𝑁 (𝑢) and 𝑁 (𝑣). First, for any two vertices 𝑢′ ∈ 𝑁 (𝑢) and
𝑣 ′ ∈ 𝑁 (𝑣), a bipartite edge 𝑒𝑏 (𝑢′, 𝑣 ′) is created if 𝑣 ′ ∈ 𝐶 (𝑢′ | 𝑢, 𝑣).
Then, we check whether there is a maximum matching in 𝐵𝑣𝑢 , i.e.,

each vertex in 𝑁 (𝑢) is connected to a unique neighbor in 𝑁 (𝑣),
with no two bipartite edges sharing a vertex. If not, 𝑣 is removed

from 𝐶 (𝑢). We refer to the refinement process based on a bipartite

graph as a bipartite check.
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Figure 2: Different bipartite graph based methods.

Example 2.7. Following Example 2.6, to further reduce the candidate
space, GQL removes false positive candidates via bipartite checks. For
example, to validate 𝑣8 ∈ 𝐶 (𝑢4), GQL builds a bipartite graph 𝐵

𝑣8
𝑢4

between 𝑁 (𝑢4) and 𝑁 (𝑣8) as shown in Figure 2(a). Since the 𝑣9 has
already been filtered out by NLF, 𝐵𝑣8𝑢4

cannot form a size-2 match,
thus 𝑣8 can be removed from 𝐶 (𝑢4), and edges incident on it can also
be discarded. The CS after GQL filtering is shown in Figure 1(d).

• EdgeBipartite [47]. FaSTest [47] further enhances the bi-

partite check and proposes an advanced filtering method, termed

EdgeBipartite. It points out that if a bipartite edge 𝑒𝑏 (𝑢′, 𝑣 ′) is not
included in any maximum matching in 𝐵𝑣𝑢 , 𝑣

′
should be removed

from𝐶 (𝑢′ | 𝑢, 𝑣). Meanwhile, to maintain a compact candidate edge

set, EdgeBipartite removes an edge (𝑣, 𝑣 ′) from the set if it cannot

match any query edges, even though both 𝑣 and 𝑣 ′ remain valid in

the candidate vertex set.

Example 2.8. Continuing Example 2.7, EdgeBipartite performs an
advanced bipartite check. Considering the candidate matching pair
⟨𝑢0, 𝑣1⟩, EdgeBipartite builds a bipartite graph 𝐵

𝑣1
𝑢0
, as shown in Fig-

ure 2(b). There are two maximummatchings in 𝐵𝑣1𝑢0
, i.e., {⟨𝑢1, 𝑣2⟩, ⟨𝑢2,

𝑣3⟩, ⟨𝑢3, 𝑣5⟩} and {⟨𝑢1, 𝑣3⟩, ⟨𝑢2, 𝑣2⟩, ⟨𝑢3, 𝑣5⟩}. However, the two bipar-
tite edges 𝑒𝑏 (𝑢3, 𝑣2) and 𝑒𝑏 (𝑢3, 𝑣3) shown in red lines do not appear
in any maximum matching, so 𝑣2 and 𝑣3 are removed from 𝐶 (𝑢3 |
𝑢0, 𝑣1). Similarly, 𝑣2 and 𝑣4 are also removed from 𝐶 (𝑢3 | 𝑢0, 𝑣0). In
this way, EdgeBipartite checks all query-candidate pairs. The CS after
being refined by EdgeBipartite is shown in Figure 1(e).

• Triangle Safety and Four-cycle Safety [47]. FaSTest also
introduces two substructure filtering techniques, namely triangle

safety (3C) and four-cycle safety (4C). A candidate edge (𝑣, 𝑣 ′) is
triangle safe with respect to a query edge (𝑢,𝑢′) if the following
conditions are met: (1) The number of triangles formed by (𝑣, 𝑣 ′)
in 𝐺 is not fewer than that of triangles formed by (𝑢,𝑢′) in 𝑄 ; and

(2) the corresponding vertices that form triangles with (𝑣, 𝑣 ′) and
(𝑢,𝑢′) should also be matched. A candidate edge can be removed

from 𝐶 (𝑢,𝑢′) if it is not triangle-safe regarding (𝑢,𝑢′). Similarly,

4C considers an edge together with two other vertices to form a
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four-cycle. It is easy to verify that the redundant vertices and edges

outlined in red in Figure 1(b) can be removed by 3C check. The CS

refined by 3C is illustrated in Figure 1(f).

2.3 Candidate Tree-based Counting
The candidate tree structures organize the candidate space hierar-

chically to assist subgraph counting.

Definition 2.9 (Candidate Tree). Let 𝑇𝑄 be a spanning tree of the
query graph 𝑄 , a candidate tree 𝑇𝐶 for 𝑇𝑄 is a homomorphism of 𝑇𝑄
in the candidate space.

Given a candidate tree 𝑇𝐶 , a bottom-up dynamic programming

approach is developed to calculate the exact number of matches of

𝑇𝑄 in𝑇𝐶 [20, 47, 73]. In particular, for a vertex𝑢 ∈ 𝑉𝑄 , we use𝑁𝑐 (𝑢)
to denote its children in 𝑇𝑄 . For each 𝑣 ∈ 𝐶 (𝑢), we use𝑊 (𝑢, 𝑣) to
denote the number of matches of 𝑇𝑄 (𝑢) contained in the candidate

tree 𝑇𝐶 (𝑣), where 𝑇𝑄 (𝑢) (Resp. 𝑇𝐶 (𝑣)) is the subtree rooted at 𝑢

(Resp. 𝑣). Then,𝑊 (𝑢, 𝑣) is computed as follows.

𝑊 (𝑢, 𝑣) =
∏︂

𝑢𝑐 ∈𝑁𝑐 (𝑢 )

∑︂
𝑣𝑐 ∈𝐶 (𝑢𝑐 |𝑢,𝑣)

𝑊 (𝑢𝑐 , 𝑣𝑐 ) (1)

Clearly, 𝑊 (𝑢, 𝑣) = 1 if 𝑢 is a leaf vertex. Based on Equation 1,

the number of matches in a candidate tree can be obtained by

iteratively updating the𝑊 (𝑢, 𝑣) value of vertices in a bottom-up

manner until to the root of the tree. The final count for𝑇𝑄 is the sum

of counts returned by all candidate trees for 𝑇𝑄 in CS. The overall

computation can be efficiently done in 𝑂 ( |𝐸𝑄 | |𝐸𝐺 |) time [47].

However, the above bottom-up dynamic programming approach

still bears two main issues. First, it only supports homomorphism,

isomorphism counting remains NP-hard even for tree queries [41].

Second, the counting for the original query graph 𝑄 is still very

difficult, because there exist non-tree edges, which pose complex

matching condition checks. To address this, FaSTest [47] treats a
tree count as an upper bound and builds upon it with sampling

strategies. By calculating the isomorphic matching success proba-

bility of the sampled trees, one can estimate query graph matches.

3 OUR APPROACH
Motivation. The candidate tree-based method offers a promising

computation framework for subgraph counting. However, existing

solutions still suffer from the following two limitations.

• Limitation 1: Unsatisfactory Candidate Space Filtering. FaSTest
employs EdgeBipartite to refine the candidate space, which how-

ever still has limited filtering power. Although additional filtering

techniques (i.e., triangle safety and four-cycle safety) are developed

to further refine the CS, the computation of such substructures itself

is computationally costly, especially for large data graphs. In fact,

it is observed that the time cost of computing triangles dominates

the overall cost of subgraph counting for FaSTest. As a result, there
is a pressing need to develop more efficient and effective candidate

space refinement techniques.

• Limitation 2: Inaccurate Subgraph Counting. The candidate tree-
based counting method adopts a bottom-up dynamic programming

approach. However, this method is only feasible for tree structures

(e.g., the spanning tree of the query graph) under homomorphism

semantics. This is because there exist non-tree edges for generic
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graphs, and it is NP-hard for isomorphism, which poses great com-

putational challenges. Although FaSTest proposes a sampling-based

algorithm to address these challenges, we observe that it performs

reliably only when the data graph is relatively small and the query

graph has a simple structure. For the complex query-data pairs

with a large sample space, it is difficult to obtain successful samples,

which significantly affects accuracy.

Approach Overview. Motivated by the above analysis, we pro-

pose a novel approach, termed FlowSC. First, we develop an ef-

ficient and effective candidate space filtering algorithm, termed

BipartitePlus, which improves the filtering performance of GQL
and EdgeBipartite by considering the connectivity between neigh-

bors of the matching vertex with little overhead. Second, to avoid

large estimation errors brought by sampling failure, we resort to

the learning-based framework. In particular, we develop a novel hi-

erarchical graph-oriented GNN architecture, which can control the

information flow in the message-passing process, so as to accurately

estimate the matching count in the candidate space.

The overall framework of FlowSC is presented in Figure 3, which

consists of three phases. First, we use BipartitePlus to construct a

compact candidate space (see Section 4 for the details). Then, we

transform the candidate space to a hierarchical graph, where a novel

bottom-up GNN architecture is developed to learn the information

flow (see Section 5 for the details). Last, the learned features of

both the query graph and candidate space are fed to a multi-layer

perception (MLP) to obtain the final estimation of the count.

4 ADVANCED CANDIDATE FILTERING
4.1 Motivation
Recall that GQL and EdgeBipartite utilize the neighborhood to

enhance the filtering performance. However, we observe that these

two methods failed to consider the matching edge between the

neighbors, resulting in redundant candidate vertices or edges. More

specifically, consider a bipartite graph 𝐵𝑣𝑢 for a matching pair ⟨𝑢, 𝑣⟩.
Let𝑢′ and𝑢′′ be two neighbors of𝑢, and 𝑣 ′ and 𝑣 ′′ be two neighbors
of 𝑣 matching 𝑢′ and 𝑢′′, respectively. Now, suppose there is an
edge between 𝑢′ and 𝑢′′, while no edge between 𝑣 ′ and 𝑣 ′′. GQL
and EdgeBipartite will still consider 𝑢 and 𝑣 a successful match.

Example 4.1. Continuing Example 2.8, in 𝐵
𝑣1
𝑢0

shown in Figure 2(b),
although 𝑣2 and 𝑣3 are removed from 𝐶 (𝑢3 | 𝑢0, 𝑣1), EdgeBipartite
still considers 𝑣1 as a candidate of 𝑢0 because there exists a maximum
matching in 𝐵

𝑣1
𝑢0
. However, as shown in Figure 1(a), there exists an

edge between the neighbors of 𝑢0, i.e., (𝑢1, 𝑢2), while no edge exists
between neighbors of 𝑣1 in Figure 1(b). Thus, 𝑣1 cannot be a candidate
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for𝑢0. Actually, all invalid vertices and edges depicted by the red solid
circles or lines in Figure 1(b) cannot be filtered out by EdgeBipartite.

Although the invalid candidates can be further filtered out by

cyclic substructures, e.g., triangles or four-cycles [47], the compu-

tation for such substructures itself is time cost expensive. For ex-

ample, it is𝑂 ( |𝐸 |3/2) to find all triangles in a graph, not to mention

the computation of four-cycles. In fact, it is noticed that the time

cost of computing triangles dominates the overall cost of subgraph

counting in large data graphs. Instead of utilizing such expensive

pre-computed cyclic substructures, BipartitePlus conducts a light-
weight connectivity check for the neighbors of the matching vertex

pair to enhance the filtering performance.

4.2 BipartitePlus Algorithm
Technical Details. We focus on a candidate matching pair ⟨𝑢, 𝑣⟩
and its corresponding bipartite graph 𝐵𝑣𝑢 . We begin by introducing

the concept of triangle edge.

Definition 4.2 (Triangle Edge). Given a vertex 𝑣 in a graph 𝑔, and
two vertices 𝑣 ′, 𝑣 ′′ ∈ 𝑁 (𝑣), the edge (𝑣 ′, 𝑣 ′′) ∈ 𝐸𝑔 is called a triangle
edge with respect to 𝑣 .

Clearly, a triangle edge forms a triangle with 𝑣 since its two

endpoints are both neighbors of 𝑣 . We use Δ(𝑣) to denote all triangle
edges with respect to 𝑣 , and Δ(𝑣, 𝑣 ′) to denote a set of vertices that

can form a triangle with edge (𝑣, 𝑣 ′). Below, we formally give the

triangle edge-based filtering rule.

Lemma 4.3. Given a bipartite graph 𝐵𝑣𝑢 , if there exists a triangle edge
in (𝑢′, 𝑢′′) ∈ Δ(𝑢) having no matching edge in Δ(𝑣), i.e., ∄(𝑣 ′, 𝑣 ′′) ∈
Δ(𝑣) where 𝑣 ′ ∈ 𝐶 (𝑢′ | 𝑢, 𝑣) and 𝑣 ′′ ∈ 𝐶 (𝑢′′ | 𝑢, 𝑣) ∩𝐶 (𝑢′′ | 𝑢′, 𝑣 ′),
then 𝑣 cannot be a candidate vertex for 𝑢.

Proof. The lemma is immediate since the neighborhood matching

is a necessary condition for the matching of two vertices. □

Note that Lemma 4.3 only offers a necessary condition to refine

the candidate space, rather than a sufficient one, because multiple

triangle edges in Δ(𝑢) might be matching to the same edge in

Δ(𝑣). Nevertheless, by incorporating injectivity checks in GQL, the
triangle edge can still be utilized to refine 𝐵𝑣𝑢 .

Algorithm Details. To strengthen the bipartite check, we con-

struct a refined 𝐵𝑣𝑢 by imposing stricter conditions. In particular, for

any 𝑢′ ∈ 𝑁 (𝑢) and 𝑣 ′ ∈ 𝑁 (𝑣) such that 𝑣 ′ ∈ 𝐶 (𝑢′ | 𝑢, 𝑣), a bipartite
edge 𝑒𝑏 (𝑢′, 𝑣 ′) is created if

• Δ(𝑢,𝑢′) is empty, or

• Δ(𝑢,𝑢′) is not empty and ∀𝑢′′ ∈ Δ(𝑢,𝑢′), ∃𝑣 ′′ ∈ 𝐶 (𝑢′′ | 𝑢, 𝑣) ∩
𝐶 (𝑢′′ | 𝑢′, 𝑣 ′) such that (𝑣 ′, 𝑣 ′′) ∈ 𝐸𝐺 .

Otherwise, 𝑣 ′ is removed from 𝐶 (𝑢′ | 𝑢, 𝑣). We call the second

condition as the triangle match between 𝑢′ and 𝑣 ′. After refining
𝐵𝑣𝑢 , we check whether there exists a maximum matching, which

confirms that 𝑣 is a candidate for 𝑢.

Example 4.4. Following the discussion in Example 4.1, BipartitePlus
considers edge (𝑢1, 𝑢2) ∈ Δ(𝑢0) in its bipartite check of 𝐵𝑣1𝑢0

. Specif-
ically, consider 𝑢1 ∈ 𝑁 (𝑢0) and 𝑣2 ∈ 𝑁 (𝑣1). Although 𝑣2 ∈ 𝐶 (𝑢1 |
𝑢0, 𝑣1), Δ(𝑢0, 𝑢1) = {𝑢2} is not empty. We cannot find a vertex in
𝐶 (𝑢2 | 𝑢0, 𝑣1) ∩𝐶 (𝑢2 | 𝑢1, 𝑣2) having an edge with 𝑣2, indicating that
𝑢1 cannot match 𝑣2 in 𝐵

𝑣1
𝑢0
. Thus, we do not create a bipartite edge

Algorithm 1: BipartitePlus
Input:Query graph 𝑄 and initial candidate space 𝐶𝑆
Output: Refined 𝐶𝑆

1 foreach 𝑢 ∈ 𝑉𝑄 do
2 foreach 𝑣 ∈ 𝐶 (𝑢) do
3 foreach 𝑢′ ∈ 𝑁 (𝑢) do
4 foreach 𝑣 ′ ∈ 𝐶 (𝑢′ | 𝑢, 𝑣) do
5 if Δ(𝑢,𝑢′) = ∅ or

∃𝑣 ′′ ∈ 𝐶 (𝑢′′ | 𝑢, 𝑣) ∩𝐶 (𝑢′′ | 𝑢′, 𝑣 ′) s.t.
(𝑣 ′, 𝑣 ′′) ∈ 𝐸𝐺 for each 𝑢′′ ∈ Δ(𝑢,𝑢′) then

6 Create a bipartite edge 𝑒𝑏 (𝑢′, 𝑣 ′) in 𝐵𝑣𝑢 ;

7 else
8 Remove 𝑣 ′ from 𝐶 (𝑢′ | 𝑢, 𝑣);

9 if ∄ a maximum match in 𝐵𝑣𝑢 then
10 Remove 𝑣 from 𝐶 (𝑢);

between 𝑢1 and 𝑣2. Figure 2(c) presents the 𝐵
𝑣1
𝑢0

after refining. Since
there is no maximum matching in 𝐵𝑣1𝑢0

, we remove 𝑣1 from𝐶 (𝑢0). The
CS refined by BipartitePlus is illustrated in Figure 1(f).

Algorithm 1 illustrates the details of BipartitePlus. For each can-

didate matching pair ⟨𝑢, 𝑣⟩, we go through all its neighboring pairs

(Lines 3-8). For a neighboring pair ⟨𝑢′, 𝑣 ′⟩, we created a bipartite

edge 𝑒𝑏 (𝑢′, 𝑣 ′) in 𝐵𝑣𝑢 if it satisfies the triangle match (Lines 5-6).

After considering all neighboring vertices, we remove 𝑣 from 𝐶 (𝑢)
if there does not exist a maximum matching in 𝐵𝑣𝑢 (Lines 9-10). Be-

sides, we also remove all candidate edges between 𝑣 and 𝑁 (𝑣) that
were introduced to match the query edges between 𝑢 and 𝑁 (𝑢).
Complexity Analysis. For each vertex pair 𝑢′ ∈ 𝑁 (𝑢) and 𝑣 ′ ∈
𝐶 (𝑢′ | 𝑢, 𝑣) in 𝐵𝑣𝑢 , it is clear the time complexity of a single tri-

angle matching check is 𝑂 (𝑑 (𝑢)𝑑 (𝑣)) since |Δ(𝑢,𝑢′) | and |𝐶 (𝑢′′ |
𝑢, 𝑣) ∩𝐶 (𝑢′′ | 𝑢′, 𝑣 ′) | are bounded by 𝑑 (𝑢) and 𝑑 (𝑣), respectively.
Given that we can determine whether 𝐵𝑣𝑢 has a maximum match in

𝑂 (𝑑2 (𝑢)𝑑 (𝑣)) time using Ford-Fulkerson algorithm [18]. The over-

all time complexity of validating 𝑣 to𝑢 is bounded by𝑂 (𝑑2 (𝑢)𝑑2 (𝑣)).
We remark that although EdgeBipartite andGQL have a lower com-

plexity of 𝑂 (𝑑2 (𝑢)𝑑 (𝑣)), BipartitePlus is not necessarily slower in

overall efficiency. A stronger filter can eliminate more vertices and

edges in an earlier refinement stage, thus significantly reducing the

number of checks needed in subsequent steps.

Discussion. Unlike the 3C filter in FaSTest, our filter has two key

differences: (1) We do not build a triangle index for all edges in the

data graph. Instead, we perform a triangle matching check only for

the limited candidate edges corresponding to a query edge forming

a triangle in the query graph; and (2) The check on (𝑣, 𝑣 ′) ∈ Δ(𝑣) is
conducted within a reduced search space, i.e.,𝐶 (𝑢′′ | 𝑢, 𝑣) ∩𝐶 (𝑢′′ |
𝑢′, 𝑣 ′), rather than by pre-storing all common neighbors of 𝑣 and

𝑣 ′ in the original data graph. In other words, we avoid constructing

triangles across the entire data graph and instead construct them

in a sufficiently refined scope with minimal overhead.

4.3 Effective Filtering Strategy
Postponing BipartitePlus Filtering. Our complexity analysis

shows that BipartitePlus has a higher worst-case time complexity
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than GQL/EdgeBipartite, although it exhibits stronger pruning

power. To further mitigate the computation overhead, we also adopt

a postponing filtering strategy, which is motivated by the following

empirical observations. At the beginning of refinement, GQL alone

can filter out the majority of vertices. For example, on the dataset

Human, a single execution of GQL can eliminate about 94% vertices.

Moreover, on 7 out of the 8 datasets we tested, more than 90% of

the vertices can be removed by a single GQL refinement.

Therefore, we improve the filtering efficiency by postponing the

activation of BipartitePlus. At the beginning, GQL is employed, the

right side of each bipartite graph can be significantly refined after

that. Thus, the number of candidate triangle edges is very limited.

We then execute BipartitePlus on the reduced bipartite graphs to

further filter out the invalid candidates with little overhead.

Details of Adaptive Refinement. During the filtering process,

the removal of a candidate vertex may immediately invalidate some

of its neighbors, triggering a cascading effect. Therefore, it is im-

portant to consider the traverse order as well as the number of

refinement rounds as below.

• Traverse Order. In the GQL refinement round, we start from

the query vertex with a maximum degree based on the intuition

that it is difficult for a large-degree vertex to satisfy the matching

conditions. The subsequent filtering follows a BFS order by always

selecting the neighbor with the maximum degree. In the following

BipartitePlus refinement, we prioritize filtering the query vertex

that is most reduced in the previous round. We also use a BFS order

to refine the candidate space of the remaining query vertices.

• Refinement Rounds. As more rounds of refinement are con-

ducted, more vertices and edges can be filtered out. However, the

incremental benefit also diminishes [70], making further refine-

ments less effective. Thus, it is important to stop the refinement

process immediately when the gain brought by the enhanced prun-

ing power cannot be well paid off. To this end, we establish the

conditions for activating BipartitePlus and stopping the refinement

process as follows, where 𝜌 denotes the proportion of vertices sur-

vived after one refinement iteration.

(i) Employ GQL at the beginning of refinement;

(ii) Activate BipartitePlus in the following when 𝜌 > 𝜏1;

(iii) Stop BipartitePlus when 𝜌 > 𝜏2.

We empirically set 𝜏1 = 0.6 and 𝜏2 = 0.9.

5 BOTTOM-UP FLOW-LEARNING
5.1 Motivation
We observe that the summation operation in the candidate tree-

based method can be well simulated by the summation-based mes-

sage aggregation operation of GNNs. However, the direct use of

classic GNNs on subgraph counting would face the following issues.

• Issue 1: In a classic GNN, each vertex indiscriminately sends and

receives messages in its neighborhood. However, the candidate

tree-based framework favours conducting message-passing in a

limited scope and in a bottom-up manner.

• Issue 2: In a classic GNN, a vertex aggregates information from

its neighbors in each iteration. In the context of candidate tree

counting, this would make the vertex weight be counted and

accumulated repeatedly.

• Issue 3: In the context of subgraph counting, the matching

conditions defined by non-tree edges are critical to counting ac-

curacy. A small change in query graph would cause a significant

change in the final result.

Clearly, the above issues pose great challenges in utilizing GNN

techniques. To address these challenges, we propose a new GNN

architecture that can control the information flow in the message-

passing process. To improve the ability of GNNs to handle the

complex matching conditions, we propose a customized aggrega-

tion strategy by using a cross-graph attention mechanism. This

approach leverages the structural information of the query graph

to guide the information aggregation of vertices in the candidate

space, and thus offers a more accurate simulation of the matching

condition checks.

5.2 Overall Architecture of Our Model
The bottom-up dynamic programming of the candidate tree-based

method offers a promising computation framework. However, this

method cannot well handle the non-tree edges for generic graphs.

To get rid of this limitation, we propose a hierarchical graph-based

method. Our model consists of the following main components.

Constructing Hierarchical Graphs. To accurately simulate the

bottom-up information flow, we transform the query graph into a

hierarchical graph, as defined below.

Definition 5.1 (Hierarchical Graph). Given a query graph 𝑄 ,
a hierarchical graph 𝐻𝑄 of 𝑄 is simply a re-arrangement of 𝑄 by
selecting a vertex 𝑢 in 𝑄 as the root (i.e., level 0) and organizing the
rest vertices into levels based on the distance to 𝑢.

For example, in Figure 4(a), 𝐻𝑄 is a hierarchical graph of 𝑄 in

Figure 1(a) rooted at 𝑢0. Based on the structure of 𝐻𝑄 , we also

construct the corresponding hierarchical graph of CS, denoted as

𝐻𝐶 . Specifically, let 𝑈𝑙 be the set of vertices in level 𝑙 of 𝐻𝑄 . Then,

the vertices in level 𝑙 of 𝐻𝐶 are the union of candidates of all query

vertices in 𝑈𝑙 . After that, for any two vertices 𝑣 and 𝑣 ′ in 𝐻𝐶 , we

created an edge between them if (𝑣, 𝑣 ′) exists in the CS. In general,

the hierarchical graph of CS can be considered a “slim” version of CS

by removing the duplicate candidates at the same level. Figure 4(b)

shows a hierarchical graph of the CS in Figure 1(f).

Flow Feature Learning and Prediction. Based on the hierarchi-

cal graphs, we develop a novel GNN architecture, which adopts

a one-pass bottom-up message-passing scheme to conform to the

hierarchical graphs (see subsection 5.3 for details). More specifically,

the information flows from the bottom of the hierarchical graphs to

the top for only one pass. This can ideally simulate the bottom-up

dynamic programming computation paradigm. Moreover, to deal

with the complex matching conditions, we utilize a cross-graph

attention to optimize the message aggregation in the GNN (see

subsection 5.4 for details). The information is propagated to the

root vertices of 𝐻𝑄 and 𝐻𝐶 , which are eventually fed to an MLP to

generate the final result.

5.3 One-pass Bottom-up Message-passing
To conform to the hierarchical structures, our message-passing

process should obey three principles: (1) each vertex only receives

messages from neighboring vertices in the same or lower level;

2700



v0 v1

v2 v3 v4 v5

v6 v7

Candidate Forest Message-passing View

Layer 0

Layer 1

Layer 2

C(u0)

C(u1) C(u2)

C(u3)

V0     V1

V2     V3   V4   V5

V2     V3   V4   V5V6     V7

V0     V1

v0

v2 v4 v5

v6

(b) HC (c) Message-passing View in HC

Level 0

Level 1

Level 2

V0    

V0    

V6    

V4    V2    

V4    V2    V5    

V5    

A

B B

C

u0

u1 u2

u4

B u3

(a) HQ

Figure 4: Hierarchical graphs and the message-passing view.

(2) each vertex only sends messages to neighboring vertices in

the same or upper level; and (3) once a vertex has updated and

passed its feature, it halts on feature updating. Here, we use level to
distinguish from layer in a standard GNN, where the root level is

numbered 0. The overall message-passing process can be achieved

by irregular adjacency matrices:

H (𝑘 ) = AGG(A (𝑘 )
𝐶
(H (𝑘+1) ∥H (𝑘 ) )W (𝑘 )

𝐶
) (2)

Here,A (𝑘 )
𝐶

is an irregular adjacency matrix to propagate the vertex

features between level 𝑘 and 𝑘 + 1 in 𝐻𝐶 , H𝑘
is the feature of

vertices in level 𝑘 andW (𝑘 )
𝐶

is the weight matrix. Specifically, the

rows ofA (𝑘 )
𝐶

correspond to the vertices at level 𝑘 , and the columns

correspond to the vertices at both level 𝑘 + 1 and 𝑘 . Thus, A (𝑘 )
𝐶

a matrix of size 𝑛 (𝑘 ) × (𝑛 (𝑘+1) + 𝑛 (𝑘 ) ) where 𝑛𝑘 is the number of

vertices in level 𝑘 , andA (𝑘 )
𝐶
(𝑖, 𝑗) = 1 indicates that there is an edge

between vertex 𝑖 at level 𝑘 and vertex 𝑗 at level 𝑘 or 𝑘 + 1 in 𝐻𝐶 .

According to Equation 2, each pair of adjacent levels has its own

irregular adjacency matrix, and the feature of vertices in level 𝑘 is

updated by that of their neighboring vertices in level𝑘 and𝑘+1. The
learning process starts from the bottom of the hierarchical graph

and propagates the messages level-by-level simulating a bottom-up

information flow. Apparently, this one-pass bottom-up message-

passing method can control the direction, range, and iterations of

information propagation, addressing Issue 1 and Issue 2.

Example 5.2. Figure 4 illustrates an example of message-passing
process for the query graph and data graph shown in Figure 1. In
specific, Figure 4(a) and (b) show the hierarchical graphs 𝐻𝑄 and
𝐻𝐶 , respectively. Figure 4(c) presents a computational view of the
message-passing, where vertices sending/receiving messages in the
same round are placed at the same level. This information flows from
level 2 where 𝑣2, 𝑣4, and 𝑣6 send their input features upwards to 𝑣2
and 𝑣4 along the edges between them. Note that, as 𝑣2, 𝑣4, and 𝑣5
are vertices at the same level in 𝐻𝐶 , they send and receive messages
simultaneously, and hence appear in both level 2 and level 1. Then,
in level 1, the feature of 𝑣2 (Resp. 𝑣4) is updated by aggregating its
initial feature with the messages from 𝑣4 (Resp. 𝑣2) and 𝑣6. After that,
the features of 𝑣2, 𝑣4 and 𝑣5 are aggregated to 𝑣0. Last, the feature of
𝑣0 is used to estimate the final count.

5.4 Customized Message Aggregation
In the message-passing process, each vertex receives messages

from neighboring vertices at the same or lower level. According

to Equation 1, messages from different candidate sets should be

aggregated differently. More specifically, if the vertices match the

same query vertex, summation should be used. If they match dif-

ferent query vertices, multiplication should be used. Besides, the

matching conditions defined by the non-tree edges influence the

message aggregation as well (i.e., Issue 3). To customize the message

aggregation, we employ two optimization techniques.

Nonlinear Aggregation. Message-passing, implemented by ma-

trix multiplication, inherently performs the summation aggregation.

On the basis of that, we introduce nonlinear computations via a

multi-layer perceptron (MLP) to simulate cumulative multiplication

in Equation 1.

H (𝑘 ) =W2𝜎 (W1H (𝑘 ) + b1) + b2 (3)

whereW1 andW2 are the weight matrices for the first and sec-

ond linear transformations, b1 and b2 are their corresponding bias

vectors, and 𝜎 is the activation function to introduce nonlinear-

ity. By combining the two linear layers, we introduce approximate

nonlinear aggregation.

However, there are matching condition checks defined by the

edges in the same level of 𝐻𝑄 . Non-tree connections of a vertex

in 𝐻𝑄 must align with those of its candidate vertex in 𝐻𝐶 . If these

connections match, the accumulated weight for each candidate

vertex is valid. Motivated by this observation, we incorporate the

structural information of the query graph in the aggregation process

to customize the aggregation for each candidate vertex under the

guidance of the corresponding query vertex.

Query-guided Message Aggregation. In order to incorporate

the information of the query graph into the candidate space, we uti-

lize the cross-graph attention [58], which has recently demonstrated

great performance on dealing with inter-graph GNN learning. In

general, this graph learning architecture enables us to capture the

relationships between the query and candidate vertices at the same

level of 𝐻𝑄 and 𝐻𝐶 . In each level of the hierarchical graphs, the

cross-graph attention-reshaped messages are combined with the

input feature to generate the new feature of vertices in the current

level of 𝐻𝐶 . This processing is conducted iteratively from bottom

to top of the hierarchical graphs.

To realize cross-graph attention, we follow a query-key-value

architecture to establish query-key pairs and update values by

combining information from both the queries and keys at each

level. The detailed computation steps are as follows.

• The hierarchical graph 𝐻𝑄 performs the bottom-up message-

passing to establish a structured input of messages at each level.

• The queries and keys are constructed by using linearly trans-

formed query vertex messages and candidate vertex messages

at the same level, respectively.

• The initial values are derived from linearly transformed query

vertex messages, and these values are updated through interac-

tions between the queries and keys to form query-to-candidate

messages.

• The new feature of each candidate vertex is obtained by integrat-

ing the candidate messages with query-to-candidate messages.

At the 𝑘-th level, we use 𝑛
(𝑘 )
𝑄

and 𝑛
(𝑘 )
𝐶

to denote the number of

query and candidate vertices, respectively. The input messages re-

ceived by these vertices are represented by the vectorsH (𝑘 )
′

𝑄
and

H (𝑘 )
′

𝐶
, respectively. Besides, by Q (𝑘 ) , K (𝑘 ) , andV (𝑘 ) , we denote

the query, key, and value matrices, respectively. Specifically,K (𝑘 ) is
obtained by transformingH (𝑘 )

′

𝐶
with a weight matrixWK , while

Q (𝑘 ) andV (𝑘 ) are obtained by transformingH (𝑘 )
′

𝑄
with weight
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matricesWQ andWV , respectively. The following equation sum-

marizes the details.

Q (𝑘 ) = H (𝑘 )
′

𝑄
WQ ,K (𝑘 ) = H

(𝑘 ) ′
𝐶
WK ,V (𝑘 ) = H

(𝑘 ) ′
𝑄
WV (4)

The correlation between each query-key pair guides the update

of the value vectors. We conduct dot product between query and

key matrices to measure their alignment, resulting in attention

matrix X (𝑘 )𝑎 ∈ R𝑛
(𝑘 )
𝐶
×𝑛 (𝑘 )

𝑄
, where X (𝑘 )𝑎 (𝑖, 𝑗) indicates the correla-

tion between candidate vertex 𝑖 and query vertex 𝑗 . This attention

matrix X (𝑘 )𝑎 is then scaled by the square root of 𝑑𝑘 and normal-

ized through a softmax function, where 𝑑𝑘 is the number of vector

dimensions. Finally, by performing a dot product between the at-

tention scores X (𝑘 )𝑎 and the value vectors V (𝑘 ) , we obtain new

query-to-candidate messages. By further combining this query-to-

candidate messages with the candidate messages, we obtain the

updated feature H (𝑘 )
′′

𝐶
for the candidate vertices at level 𝑘 . The

following equation summarizes the details.

X (𝑘 )𝑎 = softmax( K
(𝑘 )Q (𝑘 )𝑇√︁

𝑑𝑘

),H (𝑘 )
′′

𝐶
= X (𝑘 )𝑎 V (𝑘 ) + H (𝑘 )

′

𝐶
(5)

Cross-graph attention reshapes the input messages for each candi-

date level based on the corresponding query level. By combining

nonlinear and summation aggregation, we customize the message

aggregation for updating the feature of each candidate vertex. Al-

gorithm 2 illustrates the details of our method.

5.5 Prediction and Training
Prediction. Through bottom-up message-passing, we collect the

root-level features H𝑟𝑜𝑜𝑡
𝑄

and H𝑟𝑜𝑜𝑡
𝐶

. We use a regression-based

approach for count prediction. More specifically, we construct a

regression neural network by an MLP. The concatenation ofH𝑟𝑜𝑜𝑡
𝑄

and H𝑟𝑜𝑜𝑡
𝐶

is then fed into this neural network to make the final

prediction 𝑐 . The overall prediction is summarized as:

𝑐 = MLP(H𝑟𝑜𝑜𝑡
𝑄 ∥H𝑟𝑜𝑜𝑡

𝐶 ) . (6)

Following the previous works, we use 𝑞-error as the evaluation

metric for prediction accuracy, defined as max(max(1,𝑐 )
max(1,𝑐 ) ,

max(1,𝑐 )
max(1,𝑐 ) ),

where 𝑐 is the ground truth counts.

Training Strategy. To enhance parameter initialization, improve

the generalization, and stabilize performance across different query

graphs, we first use 20% of the query graphs from each dataset to

pretrain the model.

In the pretraining phase, in addition to 𝑞-error , we also incorpo-

rate Mean Squared Logarithmic Error (MSLE) into the loss function.

MSLE is a widely used regression loss metric for smoothing the

errors, as defined below.

MSLE =
1

𝑁

𝑁∑︂
𝑖=1

SLE(𝑐𝑖 , 𝑐𝑖̂ ) =
1

𝑁

𝑁∑︂
𝑖=1

(log(𝜖 + 𝑐𝑖 ) − log(𝜖 + 𝑐𝑖̂ ))2 (7)

where 𝑁 is the batch size, and 𝜖 is a small constant introduced to

prevent logarithmic calculations of 0. The pretraining purpose is to

obtain generally well-optimized initial parameters for subsequent

fine-tuning on individual datasets rather than to achieve optimal

performance on any single query. Therefore, the model is updated

based on the average 𝑞-error of a batch of queries, together with

Algorithm 2: Flow-learning

Input: Hierarchical query graph 𝐻𝑄 , hierarchical CS graph

𝐻𝐶 , initial feature matricesH𝑄 andH𝐶

Output: Root level features of 𝐻𝑄 and 𝐻𝐶

// Build adjacency matrices from top to bottom

1 for 𝑘 = 0, ..., |𝐻𝑄 | − 2 do
2 Construct A (𝑘 )

𝑄
and A (𝑘 )

𝐶
with rows representing the

vertices at level 𝑘 in 𝐻𝑄 and 𝐻𝐶 , respectively, and
columns formed by concatenating the vertex sets from
levels 𝑘 + 1 and 𝑘 in 𝐻𝑄 and 𝐻𝐶

3 SetH (𝑘 )
𝑄

andH (𝑘 )
𝐶

as the subsets ofH𝑄 andH𝐶

corresponding to vertices in level 𝑘 in 𝐻𝑄 and 𝐻𝐶

4 SetH ( |𝐻𝑄 |−1)
𝑄

andH ( |𝐻𝑄 |−1)
𝐶

// Message passing from bottom to top

5 H 𝑙𝑜𝑤𝑒𝑟_𝑚𝑠𝑔

𝑄
←H ( |𝐻𝑄 |−1)

𝑄
,H 𝑙𝑜𝑤𝑒𝑟_𝑚𝑠𝑔

𝐶
←H ( |𝐻𝑄 |−1)

𝐶

6 for 𝑘 = |𝐻𝑄 | − 2, ..., 0 do
7 H (𝑘 )

′

𝑄
= A (𝑘 )

𝑄
(H 𝑙𝑜𝑤𝑒𝑟_𝑚𝑠𝑔

𝑄
∥H (𝑘 )

𝑄
)W (𝑘 )

𝑄

8 H (𝑘 )
′

𝐶
= A (𝑘 )

𝐶
(H 𝑙𝑜𝑤𝑒𝑟_𝑚𝑠𝑔

𝐶
∥H𝑘

𝐶
)W (𝑘 )

𝐶

9 H (𝑘 )
′

𝑄
,H (𝑘 )

′

𝐶
= MLP(H (𝑘 )

′

𝑄
),MLP(H (𝑘 )

′

𝐶
)

10 Q (𝑘 ) ,K (𝑘 ) ,V (𝑘 ) = H (𝑘 )
′

𝑄
W𝑄 ,H (K)

′

𝐶
W𝑘 ,H

(𝑘 ) ′
𝑄
WV

11 H (𝑘 )
′′

𝐶
= softmax( K (𝑘 ) Q (𝑘 )𝑇√

𝑑𝑘
)V (𝑘 ) + H (𝑘 )

′

𝐶

12 H 𝑙𝑜𝑤𝑒𝑟_𝑚𝑠𝑔

𝑄
,H 𝑙𝑜𝑤𝑒𝑟_𝑚𝑠𝑔

𝐶
= H (𝑘 )

′

𝑄
,H (𝑘 )

′′

𝐶

13 H𝑟𝑜𝑜𝑡
𝑄

←H 𝑙𝑜𝑤𝑒𝑟_𝑚𝑠𝑔

𝑄
,H𝑟𝑜𝑜𝑡

𝐶
←H 𝑙𝑜𝑤𝑒𝑟_𝑚𝑠𝑔

𝐶

14 returnH𝑟𝑜𝑜𝑡
𝑄

,H𝑟𝑜𝑜𝑡
𝐶

MSLE that is applied to smooth out loss variations within the batch.

We define the pretraining loss function as:

L =
1

𝑁

𝑁∑︂
𝑖=1

𝛼 · q-error(𝑐𝑖 , 𝑐𝑖̂ ) + 𝛽 · SLE(𝑐𝑖 , 𝑐𝑖̂ ) (8)

where 𝛼 and 𝛽 are weight coefficients. The model is pretrained on a

mixed set of query graphs of different sizes from all datasets, using

the hybrid loss function with weight decay. The optimal parameters

are saved to initialize the fine-tuning phase.

In the fine-tuning phase, we further split the remaining 80% of

the query graphs into training and testing sets. Note that query sets

for pretraining, training (fine-tuning) and testing do not overlap,

and we only use 𝑞-error as the loss function in training phase.

5.6 Analysis and Discussion
Time Complexity. We construct the hierarchical graphs using a

BFS on the query graph and then assign each vertex and edge in the

CS to a specific level. The time cost is 𝑂 ( |𝑉𝑄 | + |𝐸𝑄 | + |𝑉𝐶 | + |𝐸𝐶 |).
The bottom-up flow learning updates features upward along the

edges of the 𝐻𝑄 and 𝐻𝐶 using sparse matrix multiplication in a

single pass. The time cost of learning in𝐻𝑄 and𝐻𝐶 is𝑂 ( |𝐸𝑄 |+|𝐸𝐶 |).
Each level of query vertices interacts with the candidate vertices at

the same level, resulting in a complexity of 𝑂 ( |𝑉𝑄 |× |𝑉𝐶 ||𝐻𝑄 | ), where
the impact of hyperparameters is omitted.
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Table 1: Statistics of Datasets. #𝑄𝑥 is the number of query
graphs of size 𝑥 used in one dataset.
Dataset |𝑉 | |𝐸 | |Σ| 𝑑 #𝑄4 #𝑄8 #𝑄12 #𝑄16 #𝑄20 #𝑄24 #𝑄32

Yeast 3,112 12,519 71 9.0 198 399 - 369 - 319 234

HPRD 9,460 34,998 307 7.4 200 399 - 379 - 397 391

Human 4,674 86,282 44 36.9 176 164 46 21 - - -

WordNet 76,853 120,399 5 3.1 200 398 276 183 136 - -

DBLP 317,080 1,049,866 15 6.6 203 398 - - - - -

Youtube 1,134,890 2,987,624 25 5.3 199 399 - 164 - 64 27

Eu2005 862,664 16,138,468 40 37.4 200 295 - - - - -

Patents 3,774,768 16,518,947 20 8.8 200 400 - 376 - 215 161

Twitter 41,652,230 1,202,513,344 100 57.7 214 - - - - - -

Friendster 65,608,366 1,806,067,135 100 55.1 400 280 - - - - -

Parameter Size. In the FlowSC learning framework, each level

has weight matricesW (𝑘 )
𝑄

andW (𝑘 )
𝐶

, along with two weight ma-

trices in each MLP. Additionally, there are 3 linear transformation

matricesWQ ,WK andWV , which are shared across all levels.

Therefore, the total parameter size is 𝑂 ( |𝐻𝑄 | ( |𝑉𝑄 | + |𝑉𝐶 |)𝑑ℎ𝑖𝑑 ),
where 𝑑ℎ𝑖𝑑 is the dimensions of features.

Root Selection. When constructing the hierarchical graphs, we

need to choose a vertex in the query graph as the root. Our root

selection is based on the intuition to concentrate as many candidate

vertices as possible at the root level, thereby simplifying the struc-

tural complexity of the lower levels in 𝐻𝐶 . Consequently, we select

the query vertex with the largest number of candidate vertices as

the root in 𝑄 . The exploration of more advanced strategies for root

selection could be considered in future work.

Extension to Dynamic Graphs. To deal with dynamic graphs,

we need to update the candidate space and learning model. First,

when new vertices/edges are inserted/deleted, we conduct Bipar-
titePlus only in the neighborhood of these vertices/edges to update

the candidate space, following the well-studied continuous sub-

graph matching problem [39, 62]. Second, our learning model can

directly handle dynamic graphs although its accuracy performance

may decline. A simple way is to retrain the model periodically or

when the distribution of the graph has changed over a threshold.

6 EXPERIMENT
We empirically evaluate the performance of our proposals in this

section. Experiments are conducted on an Ubuntu 22.04.1 LTS sys-

tem, equipped with an Intel Xeon Silver 4314 CPU @ 2.40GHz with

64 cores and NVIDIA RTX A5000 GPUs with 24GB VRAM each.

6.1 Experiment Setup
Datasets. We conduct experiments on 10 real-world datasets,

where the query graphs of the first 8 datasets are publicly avail-

able [50] and widely used in previous works [47, 55, 72]. The Twit-
ter [32] and Friendster [63] datasets do not have publicly available

query sets. We generate random query sets for the two datasets

following [50]. To obtain the exact counts, we use the recommended

algorithm in [50]. Since obtaining an exact count is extremely time-

consuming, we follow the existing work [55] to only select queries

forwhich the exact count can be computedwithin 30minutes for the

first 8 datasets, and 2 hours for Twitter and Friendster. The statistics
of data graphs and query graphs for each dataset are summarized

in Table 1. In Human_20, only 7 queries, and in DBLP_16, only 11

queries have exact counts, which are insufficient for training. Thus,

we exclude them from evaluation.

Compared Algorithms. In the experiments, we compare FlowSC
with the following algorithms: (1) FaSTest [47], the state-of-the-art
method, which significantly outperforms earlier leading sampling-

based methods (e.g., Alley [29]); (2) LearnSC [26], the lastest

learning-based method; (3) NeurSC [55], and (4) LSS [72].
The source code of FaSTest, LSS and NeurSC are publicly avail-

able, and LearnSC was obtained from the authors. All parameter

settings follow their default values. Besides, we employ the active

learning version ALSS [71] for LSS. FaSTest can be optimized with

triangle and four-cycle indices by precomputing and keeping them

in memory for continuous querying. In real-world applications,

subgraph matching/counting typically involves independent data-

query pairs. In this paper, we follow the common setting [50, 55, 70]

of loading a data-query graph pair into memory each time. There-

fore, we primarily use the FaSTest with EdgeBipartite, but conduct
an extra experiment to compare all FaSTest variants.
Evaluation Metrics. In the experiments, we evaluate the perfor-

mance of the compared methods regarding the estimation accuracy

and efficiency. Following existing works [26, 47, 55, 72], we mea-

sure the accuracy using 𝑞-error , defined as max(max(1,𝑐 )
max(1,𝑐 ) ,

max(1,𝑐 )
𝑚𝑎𝑥 (1,𝑐 ) ),

where 𝑐 and 𝑐 are the estimated and ground truth counts, respec-

tively. The efficiency is measured by the average elapsed time per

data-query pair.

Experiment Settings. In the experiment, 20% query graphs are

exclusively used for pretraining of our model. The remaining 80%

are used for evaluation. In particular, the sampling-based methods

are tested on all remaining queries. For learning-based methods, the

remaining queries are further divided into 5 disjoint folds. Each fold

iteratively serves as the test set once, and the remaining 4 folds are

used for training (or fine-tuning), with model parameters reinitial-

ized in each iteration. For FlowSC, the vertex feature is represented
with a 128-dimensional vector, initialized by transforming the ver-

tex’s label through a linear layer. The final prediction is obtained

through a 3-layer MLP. The constant 𝜖 in MSLE is set to 1, and

the weight coefficients in pretraining loss L are tuned within the

range (0, 1) with 𝛼 + 𝛽 = 1. The optimizers used in pretraining and

fine-tuning are AdamW and Adam, respectively. For pretraining,

we collect the reserved 20% query graphs of all datasets, where the

batch size and epochs are set to 10 and 20, respectively. The model is

then fine-tuned by the query graphs of each dataset independently,

and the batch size is set to 10 by default.

6.2 Accuracy Performance
Figure 5 reports the accuracy performance of the competing al-

gorithms on each query graph set. Following the convention, we

use box-plots to present the distribution of 𝑞-error . In particular,

the upper bound (Resp. lower bound) of a box is 75% (Resp. 25%)

percentile of the 𝑞-error , the whiskers contain all 𝑞-error from min-

imum to maximum, and the line in the box is the median. Overall,

FlowSC consistently outperforms other learning-based methods,

reducing the mean q-error across all datasets by more than 2 or-

ders of magnitude. It also surpasses the state-of-the-art FaSTest on
large datasets and complex query graphs. The result is omitted if

an algorithm fails due to training time or memory constraints.

Comparing with Learning-based Methods. Among the three

recent learning-based methods, LSS is relatively stable, whereas
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FlowSC FaSTest LearnSC NeurSC LSS

Yeast HPRD Human WordNet DBLP

Youtube Eu2005 Patents Twitter Friendster

Figure 5: Evaluating accuracy with the x-axis representing the number of query graph vertices.

LearnSC and NeurSC exhibit great fluctuation. NeurSC generally

outperforms LSS on the Yeast dataset due to its ability to cap-

ture the relationship between the query and data graphs. However,

its complex query-candidate interactions lead to instability dur-

ing training, especially for large query graphs. Similarly, another

complex-designed model, LearnSC, suffers from poor model ini-

tialization and training difficulties, which lead to low accuracy. In

addition, limited query graphs make the learning-based models dif-

ficult to learn the relationship between input structures and counts.

FlowSC is also affected by this issue. For example, the precision of

FlowSC declines on Human when the query graph size is 12 and

16 with only 46 and 21 samples, respectively.

We have an interesting observation onWordNet that the accu-
racy of FlowSC and LSS improves when the query size increases

from 12 to 20. This contradicts the intuition that smaller queries

are easier to handle. However, we find that the subgraph count

variance actually decreases as query size increases from 12 to 20,

which facilitates the regression learning.

FlowSC shows a better performance over the learning-based

competitors under all settings. Even on Yeast, where all three coun-
terparts are well-initialized, FlowSC obtains an average 𝑞-error of
25.86 when the query size is 32, while that of NeurSC, LSS, and
LearnSC is 822.72, 2172.25, and 16108.52, respectively. We also

observe that FlowSC can handle large data graphs very well. For

instance, it returns an average 𝑞-error of 126.38 on Patents when
the query size is 32, while the 𝑞-error of LSS is 241351.67.

Moreover, FlowSC can handle two billion-scale datasets Twitter
and Friendster, demonstrating good scalability of FlowSC.
Comparing with Sampling-based Method. We observe from

Figure 5 that FaSTest performs much better than the learning-based

method, and even outperforms FlowSC on relatively easy datasets.

For instance, on HPRD, FaSTest achieves results with 𝑞-error close
to 1, while the 𝑞-error of FlowSC averages at 4.49. This is attrib-

uted to FaSTest’s effective filtering algorithm, which constructs a

relatively tight candidate space on HPRD, combined with its ad-

vanced sampling algorithms. However, the advantage of FaSTest
diminishes for larger data-query pairs, where the candidate space

inevitably grows despite strong filtering, resulting in an expansive

sample space and higher failure rates. For example, on WordNet, a
dataset having the most average candidate vertices, it is observed

that the average 𝑞-error of FaSTest exceeds 109 when query size

is 20 due to frequent sampling failure. In contrast, FlowSC has a

much lower average 𝑞-error of 13.23. Additionally, FaSTest cannot
process Twitter and Friendster due to excessive memory usage.

To further evaluate FaSTest, we test two index-aided versions,

namely Fastest+3C and Fastest+4C, which denote FaSTest with
triangle, and both triangle and four-cycle indices, respectively. Fig-

ure 6 reports the experiment results. OnHPRD, where the candidate
space is small, all three FaSTest variants perform much better than

FlowSC. However, their performance drops sharply onWordNet
due to frequent sampling failures caused by a much larger sam-

ple space, especially for large query graphs where the matching

conditions are complex. This experiment demonstrates that even

equipped with more advanced indices, FaSTest cannot consistently
deliver reliable performance.

Relationship Between Subgraph Counts and Precision. Fig-

ure 7 evaluates the relationship between subgraph counts and preci-

sion of all methods on Yeast. Overall, FlowSC,NeurSC and LearnSC
tend to overestimate small counts while underestimate large ones,

which is a common regression-to-the-mean effect in regression

problems [47]. However, LSS avoids this problem via an active

learning strategy that samples more in high-uncertainty regions

to obtain a more balanced accuracy distribution across different

count ranges. The accuracy of FaSTest is mainly influenced by the

sample space and query graph size, rather than showing a specific

trend across different count ranges.

6.3 Efficiency Performance
Query Processing Time. Figure 8 records the end-to-end elapsed
time for conducting a query against a data graph. A cross indicates

failure due to training time or memory limits.

Learning-based methods are generally faster than sampling-

based methods on large datasets. For example, FaSTest struggles
on Youtube, Eu2005, and Patents, due to its inefficient filter and the
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Figure 6: Evaluating all FaSTest variants.
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Figure 7: Effect of subgraph counts.

Table 2: Training efficiency.
Dataset FlowSC LearnSC NeurSC LSS

Yeast 10.83 7.87 24.18 12.18

HPRD 13.98 9.95 26.47 15.80

Human 3.27 4.78 21.04 2.42

WordNet 240.73 - - 5.76

DBLP 32.35 334.51 1078.51 4.23

Youtube 58.91 65.51 1013.10 5.43

Eu2005 251.89 - - 6.63

Patents 617.38 - - 11.35

Twitter 21,407.63 - - 13.66

Friendster 88,184.39 - - -

Epochs 15 50 50 50
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(b) Filtering timeFigure 8: Efficiency performance (ln scaled).
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Figure 9: Filtering performance (ln scaled).

large sample space generated by large graphs. Among the learning-

based methods, LearnSC and NeurSC showcase relatively poor

efficiency. For example, they are 6.4 and 107.7 times slower than

FlowSC on Youtube. This is because they adopt a query-candidate

interaction network architecture, where edges are created between

query vertices and their corresponding candidate vertices. This

augmented graph not only incurs significant computational over-

head for construction but also high inference costs for GNNs in

the graph learning phase. LSS, instead, adopts a lightweight archi-
tecture that avoids graph learning on the data graph, resulting in

relatively fast overall inference. However, its inference time grows

quadratically [55] with the growth of the query graph size. As a

result, even on datasets like Yeast, where other methods perform

well, LSS takes a long average query time because there are more

large query graphs in Yeast. Overall, FlowSC beats the competi-

tors on all datasets butWordNet, where the filtering phase takes
lots of processing time. The outstanding efficiency performance of

FlowSC attributes to (1) the compact candidate space brought by

our powerful filtering algorithm; and (2) the one-pass bottom-up

hierarchical flow-learning architecture, where only a small number

of vertices are involved in each computation step and the complex

interactions occur only among vertices at the same level.

Training Time. Table 2 reports the average training time per

epoch and the number of epochs for learning-based methods. In

general, LSS is more efficient in training speed as it avoids com-

plex learning on large data graphs. More importantly, unlike other

learning-based methods that digest a pair of graphs each time, LSS
loads the data graph into memory at once and pre-processes all

query graphs in a single pass. This results in a long preprocess-

ing time but a short training time. For example, on the Twitter
dataset, LSS takes 4434.12 seconds for the initial preprocessing of

a single data graph but only 13.66 seconds per epoch for training.

FlowSC demonstrates comparable performance to LSS on small

datasets such as Yeast, HPRD and Human, but worse on larger

datasets like WordNet. LearnSC and NeurSC rely on computation-

ally intensive networks to capture query-candidate interactions,

leading to slower training that becomes practically infeasible on

large datasets. FlowSC strikes a good balance between training

speed and accuracy.

Due to the pretraining strategy, FlowSC achieves good accuracy

with relatively few epochs. In our experiments, it is sufficient to

fine-tune FlowSC with only 15 epochs on all datasets. The pretrain-

ing of FlowSC can be done in an average of 752.23 seconds per

epoch. After 20 epochs of pretraining, the model parameters are

well initialized across all datasets. In contrast, without pretraining,

other methods require more epochs for training. Considering that

pretrained parameters can be used as initialization for all datasets,

this strategy is highly efficient and effective.

6.4 Evaluating Individual Techniques
Evaluating CS Filtering Techniques. We start by evaluating the

candidate space filteringmethods.We compareBipartitePlus (BP) to
EdgeBipartite [47] (EB), EdgeBipartitewith triangle safety (EB_3C),
EdgeBipartite with triangle and four-cycle safety (EB_4C), as well
as GQL [23]. We investigate the number of candidate edges after

refinement and the average processing time of filtering.

It is observed from Figure 9(a) that BipartitePlus is more effective

than others on refining the candidate space, especially for large

datasets such as Youtube, Eu2005, Patents, Twitter and Friendster.
For example, on Patents, the average number of survived edges is

8378, 12587, and 35793 forBipartitePlus, EdgeBipartite, andGQL, re-
spectively. Even compared to the two precomputed methods EB_3C
and EB_4C, BipartitePlus can still achieve similar performance on

Yeast, HPRD, Human, DBLP and Patents. The experiment results

verify the strong filtering capability of BipartitePlus.
As for the filtering efficiency, Figure 9(b) shows that Bipar-

titePlus and GQL can achieve similarly strong performance on

most datasets, while EdgeBipartite and its variants fail to respond

on large datasets such as Twitter and Friendster. On Friendster,
BipartitePlus completes filtering in an average of 963.15s, slightly

faster than GQL (968.80s), and removes over 60% more edges. The
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Figure 10: Ablation studies.

only exception occurs on WordNet, a dataset with densely dis-

tributed labels, where lots of vertices share the same label. This

increases the number of triangle matching checks and broadens

the search space, leading to extra overhead for BipartitePlus. For
such datasets, we may adjust the parameters 𝜏1 and 𝜏2 to further

delay the activation of BipartitePlus refinement.

Sensitivity to Candidate Space. In this experiment, we evaluate

the sensitivity of our flow-learning framework to the candidate

space. By FlowSC_BipartitePlus, FlowSC_GQL, and FlowSC_NLF,
we denote FlowSC using BipartitePlus, GQL, and NLF, respectively.
The experiment results are reported in Figure 10(a). It is observed

that FlowSC_BipartitePlus outperforms the others under all set-

tings, while FlowSC_NLF performs the worst. The reason is that a

compact candidate space can reduce the noise, and therefore our

flow-learning model can make more accurate predictions.

Effectiveness of Flow-learning Model. We evaluate the core

components of our flow learning model, namely one-pass bottom-

up message passing mechanism and customized aggregation. By

FlowSC_NormalAGG, we replace the customized aggregation with

standard GCN sum aggregation, while by GIN_CrossAGG, we re-
place the one-pass bottom-up message passing with graph iso-

morphism network (GIN) and still incorporate query guidance

through cross-graph attention. Figure 10(b) illustrates the experi-

ment results. FlowSC outperforms its two variants on all settings.

FlowSC_NormalAGG achieves similar accuracy to FlowSC on small

datasets. However, the performance gap becomes significant on

larger data graphs (e.g., WordNet). This is because the model strug-

gles to learn the matching relationships without query guidance.

Although GIN can effectively capture neighborhood features of ver-

tices, it fails to explicitly capture the relationship between structure

and count. As a result, even equipped with cross-graph attention,

its performance is still unsatisfactory.

Effect of Training Strategy. In the last experiment, we evaluate

the effect of pertaining. We compare FlowSC, which is initialized

with pretrained parameters, and FlowSC_NoPreTrain, which is ini-

tialized with random parameters for each test run. We conduct 50

tests on query graph sets of different sizes from HPRD andWord-
Net, and reinitialize the model before each run. This setup allows

us to assess how much the pretrained initialization helps compared

to training from scratch. We record the average 𝑞-error for each
test. As reported in Figure 10 (c), FlowSC consistently achieves high

accuracy across all query settings. FlowSC_NoPreTrain can only

achieve comparable accuracy when it finds the correct optimization

direction. This experiment demonstrates that the pretraining strat-

egy can significantly improve the stability without losing accuracy.

7 RELATEDWORK
Subgraph Matching. Recently, the filtering-ordering-enumeration

framework has dominated research trend on the subgraphmatching

problem due to its outstanding performance [50, 70]. Powerful filter-

ing algorithms [6, 7, 20, 21, 23], good matching orders [7, 8, 15, 46],

and enumeration acceleration [3, 20, 28, 51, 64] have significantly

improved subgraph matching efficiency. Another category of sub-

graph matching approaches is the join-based methods [4, 33, 34, 43,

65], which transform the query graph into a multi-way join, pro-

gressively match smaller substructures, and combine them to form

a complete matching. Besides, machine learning based algorithms

are also investigated [38, 56, 57, 66].

Subgraph Counting. Existing subgraph counting methods can be

categorized into three major classes: sampling-based [9, 13, 29, 35,

47], summarization-based [24, 25, 40, 42, 49], and learning-based [26,

36, 55, 72]. Sampling-based methods often struggle with sampling

failures in the exponentially large sample space.Summarization-

based methods rely heavily on the independence assumption of

query substructure counts, which often leads to poor performance

on real-world datasets. While learning-based methods offer faster

inference, the accuracy is often unsatisfactory. In addition, there are

some learning-based algorithms specifically designed for counting

small motifs [14, 27, 37, 52, 61, 68].

Graph Neural Networks. GNNs have beenwidely adopted in var-
ious graph-related tasks due to their ability to effectively capture

and utilize graph-structured information. Prominent GNN architec-

tures include GCN [30], GAT [5], GraphSAGE [19], GIN [59] and

Graph Transformers [16, 31, 67]. In addition, various GNN variants

like [1, 12, 60, 69] have been proposed to improve expressiveness,

scalability, or generalization in different application scenarios.

8 CONCLUSION
In this paper, we study the problem of subgraph counting. We

present FlowSC, an efficient and accurate approach to subgraph

counting, which combines a novel candidate space filtering algo-

rithm with a bottom-up flow-learning model. Extensive experi-

ments demonstrate the outstanding performance of our proposals.
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