
Is Integer Linear Programming All You Need
for Deletion Propagation?∗

A Unified and Practical Approach for Generalized Deletion Propagation

Neha Makhija
Northeastern University, USA
makhija.n@northeastern.edu

Wolfgang Gatterbauer
Northeastern University, USA

w.gatterbauer@northeastern.edu

ABSTRACT
Deletion Propagation (DP) refers to a family of database problems
rooted in the classical view-update problem: how to propagate
intended deletions in a view (query output) back to the source
database while satisfying constraints and minimizing side e!ects.
Although studied for over 40 years, DP variants, their complexities,
and practical algorithms have been typically explored in isolation.

This work presents a uni"ed and generalized framework for
DP with several key bene"ts: (1) It uni!es and generalizes all pre-
viously known DP variants, e!ectively subsuming them within a
broader class of problems, including new, well-motivated variants.
(2) It comes with a practical and general-purpose algorithm that is
“coarse-grained instance-optimal”: it runs in PTIME for all known
PTIME cases and can automatically exploit structural regularities in
the data, i.e. it does not rely on hints about such regularities as part
of the input. (3) It is complete: our framework handles all known DP
variants in all settings (including those involving self-joins, unions,
and bag semantics), and allows us to provide new complexity re-
sults. (4) It is easy to implement and, in many cases, outperforms
prior variant-speci"c solutions, sometimes by orders of magnitude.
We provide the "rst experimental results for several DP variants
previously studied only in theory.

PVLDB Reference Format:
Neha Makhija and Wolfgang Gatterbauer. Is Integer Linear Programming
All You Need for Deletion Propagation? A Uni"ed and Practical Approach
for Generalized Deletion Propagation. PVLDB, 18(8): 2667 - 2680, 2025.
doi:10.14778/3742728.3742756

PVLDB Artifact Availability:
The source code, data, and other artifacts have been made available at https:
//github.com/northeastern-datalab/generalized-deletion-propagation.

1 INTRODUCTION
Deletion Propagation (DP) was proposed as early as 1982 [11] and
corresponds to a basic view-update problem: Given a tuple we want
∗Inspired by the 2017 attention paper [55], an increasing number of research papers
promise that “X is all you need (for Y).” Similarly, our conjecture is that Integer Linear
Programs can be designed to solve all PTIME cases of deletion propagation in guaranteed
PTIME and, hence, there is no more need for specialized combinatorial algorithms. We
give strong evidence of this conjecture by showing that it holds for all currently known
tractable cases. However, since it is a conjecture, we phrase our title as a question.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742756

to delete from a view, which tuples from the source database should we
to delete to accomplish this goal? Because multiple view tuples may
depend on the same base tuple in the source database, deleting that
base tuple can result in unintended side e!ects beyond the requested
deletion. The challenge is then to delete just enough tuples from
the source to achieve the intended view deletion while avoiding
unnecessary side e!ects. This forms a combinatorial optimization
problem. Di!erent optimization goals and di!erent choices about
what constitutes a side e!ect lead to several well-motivated vari-
ants of DP that have been studied over the last 40+ years. Some
variants are used for query explainability, where both contrastive
or abductive explanations [38] can be obtained with appropriate
choices of side e!ects and optimization goals.

“Side e!ects” are usually measured in the number of tuples af-
fected by a modi"cation. Two important types of side e!ects that
have been studied are source side e!ects [7, 11] and view side ef-
fects [7, 31, 32]: Source side e"ects (DP-SS) measure the number of
tuples deleted from the source database to ful"ll the user request,
while view side e"ects (DP-VS) measure the number of unintended
tuples deleted from the same view. A recent variant on the DP-
SS problem is the aggregated deletion propagation (ADP-SS) prob-
lem [27] in which a certain number of tuples should be deleted from
the view, but it is not speci"ed which tuples. A di!erent, seemingly
unrelated problem is the recently proposed smallest witness problem
(SWP) [26, 44], where a user would like to preserve the view as is,
but delete as many tuples from the source as possible. Although
SWP has so far not been understood to be a variant of DP, we show
that is problem shares the same structure as other DP problems, can
be solved using the same techniques, and – when combined with
other DP problems – opens up a new space of natural DP variants.

Despite the long history of Deletion Propagation, at least 3 chal-
lenges remain. This paper shows is that these 3 challenges can be
largely addressed by casting the existing problems as special cases
of a uni"ed “General Deletion Propagation” framework.

Challenge 1: Countless well-motivated variants. DP has
been studied in many forms over the last 40+ years. However, one
can imagine many more variants that are all well-motivated, and
that have not yet been studied. These variants can arise from di!er-
ent de"nitions of side e!ects, di!erent constraints on allowed side
e!ects, and di!erent optimization goals. Example 1 gives just one
such example of DP that has not been described by prior work (we
explore the wider space of variants more thoroughly in Section 4).

E!"#$%& 1. An airline company wants to cut costs by reducing
the number of #ights it o"ers, and reduce its total operational
expenditure by at least 2%. There are various types of costs incurred
by the #ight company, such as the fuel cost of the #ight and the

2667

https://orcid.org/0000-0003-0221-6836
https://orcid.org/0000-0002-9614-0504
https://doi.org/10.14778/3742728.3742756
https://github.com/northeastern-datalab/generalized-deletion-propagation
https://github.com/northeastern-datalab/generalized-deletion-propagation
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742756
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Neha Makhija and Wolfgang Ga!erbauer

airport fee at the locations they operate at. While cutting costs, the
airline wants to ensure that it minimizes the e"ect on its connectivity
network i.e. pairs of locations that are connected directly or via 1
layover called “(0, 1)-hop connections.” Additionally, the airline
would like to ensure that it maintains a pro!table service and so it
would like to preserve of all of its most popular connections.

This problem has all the ingredients of a Deletion Propagation
problem: the source database is the set of all #ights and airports;
the view is the set of all location pairs that have direct or 1-hop
connection between them. The airline would like to delete a cer-
tain amount of #ight and airport costs (corresponding to cancelling
#ights, and not having service to an airport) - but it would like
to minimize the side e"ect on the view (the connectivity network)
and preserve output tuples of a di"erent view (that shows the most
popular connections). This problem is a mixture of Aggregated Dele-
tion Propagation (which involves deleting an arbitrary fraction of a
view), and the Smallest Witness Problem (which involves preserving
a view), but is also any extension in many ways (discussed further
in Section 5). For example, the side e"ects are not measured in the
original source or view, but in a di!erent view (!).

Challenge 2: Dissimilar algorithms for similar problems.
Since DP variants have been studied in isolation, the algorithms
used to solve these problems are often dissimilar. Even for one
variant, di!erent queries currently require di!erent algorithms.
Thus, new variants are often solved “from scratch” and algorithmic
insights are not carried over. DP variants are NPC (NP-complete)
in general, but are PTIME for certain queries. To solve DP for a
query optimally, one needs to know the algorithm that can correctly
solve the problem variant for the given query in PTIME (if such an
algorithm exists), and know that the query and database ful"ll the
requirements that allow applying the specialized algorithm. Since
algorithms that are speci"c to the variant and query, they are not
generalizable, easily implementable, or extensible to new variants
and query classes. We are inspired by recent work [35] that showed
that for a particular DP variant called resilience (i.e., DP with source
side e!ects for a Boolean query), such a uni"ed framework exists
and is guaranteed to terminate in PTIME for all known PTIME
cases. In contrast, we propose a uni"ed “coarse-grained instance-
optimal” framework1 which includes all previously studied DP
variants, including even problems that were not previously phrased
as DP (SWP), and new variants as well.

Challenge 3: Algorithms and tractability criteria are un-
known for many real-world queries and scenarios. DP prob-
lems are typically studied for self-join free conjunctive queries un-
der set semantics, because queries with self-joins are known to be
notoriously di#cult to analyze, and several complexity boundaries
have been open for over a decade [32]. In practice, however, queries
often contain unions, are not self-join free, and are executed under
bag semantics. Only very few algorithms and tractability results are
known for these more complicated settings, such as for queries with
self-joins [15, 31], unions of conjunctive queries [5], and queries
1Notice that we use instance-optimal in a more coarse-grained sense than is more
common in complexity theory [48]. Our focus is on solving all known PTIME cases in
PTIME, but not necessarily using the fastest possible specialized algorithm in each
case. In other words, we ignore !ne-grained complexity that di!erentiates between
di!erent classes within PTIME. We discuss this distinction further in Section 3.

under bags semantics [35]. The overall tractability criterion for
queries for such “real-world” queries is overall ill-understood.

Contributions and Outline. We solve the challenges outlined
above by introducing a uni"ed framework for Deletion Propagation
(DP) problems. We de"ne Generalized Deletion Propagation (GDP),
show that this de"nition encapsulates existing variants as well
many natural new variants, and give a uni"ed algorithm to solve
GDP. In the process, we recover known tractability results, derive
new theoretical results, and provide an experimental validation.

1 We de"ne Generalized Deletion Propagation (GDP) in Sec-
tion 4. This de"nition not only covers all known DP variants, but
also includes the Smallest Witness Problem (SWP, which has so
far been treated as completely di!erent), and covers new well-
motivated variants. Our de"nition allows us to reason about the
many DP variants systematically, thus addressing Challenge 1.

2 We present an Integer Linear Programming (ILP) formulation
for the GDP problem in Section 5. This formulation allows us to
use one solution for all variants of DP, thus providing the "rst step
in addressing Challenge 2. The ILP formulation can cover queries
with unions and self-joins, and both the set and bag semantics
settings, thus giving a valuable tool to address Challenge 3.

3 While providing ILP formulations is a typical approach for
solving NPC optimization problems, our key technical contribution
addressing Challenge 3 is proposing an ILP with the right algo-
rithmic properties: We show in Section 6 that for all known PTIME
cases, our ILP formulation is solvable in PTIME via an LP relax-
ation. Thus, we do not need dedicated PTIME algorithms for special
cases; our theory shows that standard ILP solvers default to solving
these cases in PTIME. This means that the ILP framework can be
directly used to solve all tractable instances of DP, thus resolving
Challenge 2 for all known PTIME cases. Notice that it is not trivial
to come up with the right ILP formulation. We show that a more
obvious ILP formation does not have the desired PTIME guarantees,
and can be over 2 orders of magnitude slower in practice.

4 We uncover a new tractable case for well-known variants of
the DP problem, thus showing that our framework is a powerful tool
to address Challenge 3, the long-standing challenge of capturing
the exact tractability boundary. Concretely, we prove in an online
appendix [36] that the ILP formulation of a query with union and
self-join that can be solved in PTIME under bag semantics.

5 We experimentally evaluate the e#ciency of our contributions
in Section 7. Our approach performs comparably and sometimes
even better than specialized algorithms for particular DP variants,
and can solve new tractable cases that were not previously known.

Due to lack of space, we only provide a proof intuition for each
theorem in the main text, and make full proofs, additional examples
and experiments available in an online appendix [36]. Our code is
available online as well [37].

2 PRELIMINARIES
Standard database notations. A conjunctive query (CQ) is a "rst-
order formula 𝐿(y) = →x (𝑀1 ↑ . . . ↑ 𝑀𝐿) where the variables x =
↓𝑁1, . . . , 𝑁𝑀 ↔ are called existential variables, y are called the head or
free variables, and each atom 𝑀𝑁 represents a relation 𝑀𝑁 = 𝑂 𝑂𝐿 (x𝑁)
where x𝑁 ↗ x ↘ y ↘𝑃 , with𝑃 being a universe of constant values.
var(𝑄) denotes the variables in a given relation/atom. Notice that

2668

Is Integer Linear Programming All You Need for Deletion Propagation?

a query has at least one output tuple i! the Boolean variant of
the query (obtained by making all the free variables existential)
is true. A self-join-free CQ (SJ-free CQ) is one where no relation
symbol occurs more than once and thus every atom represents a
di!erent relation. A union over conjunctive queries (UCQ) is given by
𝐿(y) :≃ ⋃

𝑁⇐[1,𝑃] →x𝑁 (𝑀𝑁1 ↑ . . . ↑ 𝑀𝑁𝐿) where for each 𝑅 , 𝐿(y) :≃ x𝑁 (𝑀𝑁1 ↑
. . . ↑ 𝑀𝑁𝐿) is a CQ. We write D for the database, i.e. the set of tuples
in the relations. When we refer to bag semantics, we allow D to
be a multiset of tuples in the relations. Unless otherwise stated, a
query in this paper refers to a UCQ, and a database instance D can
be considered to a multiset. However, we may fudge notation and
represent D as a set of tuples if all the multiplicities are 1.

We write [w/x] as a valuation (or substitution) of query variables
x by w. A view tuple or an output tuple 𝑆 is a valuation of the
head variables y that is permitted by D. Similarly, a witness 𝑇
is a valuation of all variables x that is permitted by D2. We can
alternately describe a witness as an output tuple for the full version
of the query 𝐿 , which is obtained by making all the free variables
existential. We denote the set of views tuples obtained by evaluating
a query𝐿 over a databaseD simply as𝐿(D). For example, consider
the 2-chain query 𝐿⇒

2 (𝑁) :≃𝑂(𝑁,𝑈), 𝑉(𝑈, 𝑊) over the database D =
{𝑋12:𝑂(1, 2), 𝑋2,2:𝑂(2, 2), 𝑌2,3: 𝑉(2, 3)}. Then 𝐿(D) = {𝐿(1),𝐿(2)} and
witnesses(𝐿⇒

2 ,𝑍) = {(1, 2, 3), (2, 2, 3)}.
Linear Programs (LP). Linear Programs are standard optimiza-

tion problems [1, 51] in which the objective function and the con-
straints are linear. A standard form of an LP ismin c x s.t.Wx ⇑ b,
where x denotes the variables, the vector c denotes weights of
the variables in the objective, the matrix W denotes the weights
of x for each constraint, and b denotes the right-hand side of each
constraint. The objective function 𝑎 = c x may also be referred to
as a soft constraint. We use 𝑎 ⇓ to denote the optimal value of the
objective function. If the variables are constrained to be integers,
the resulting program is called an Integer Linear Program (ILP).
The LP relaxation of an ILP program is obtained by removing the
integrality constraint for all variables.

3 RELATEDWORK
We will discuss in Section 4 related work on problems that "t
within the umbrella of DP. This section covers additional related
work concerning broader themes that are discussed in this paper.

Reverse Data Management (RDM). DP can be seen as a type
of reverse data management problem [41]. RDM problems search
for optimal interventions in the input data that would lead to a
desired output. RDM problems are useful in many applications, such
as intervention-based approaches for explanations [20, 25, 49, 57],
fairness [16, 50], causal inference [17], and data repair [56]. The
Tiresias system [42] solves how-to problems, a type of reverse data
management problem using Mixed Integer Linear Programming
(MILP). However, its focus is on building the semantics of a query
language for how-to problems that can be translated to an MIP, and
not on building a uni"ed method that can recover tractable cases.

Intervention-Based Explanations. Formal Explainability in
AI (FXAI) [38] distinguishes between two types of explanations:
2Note that this di!ers from an alternate notion of witness [7, 26] which de"nes the
witness of an output tuple as a subset of input tuples such that running a query over
the subset produces the output tuple

Abductive explanations (or locally su#cient reasons [4]) identify a
minimal subset of features that, when "xed to their original values,
are su#cient to guarantee the original prediction. They are also
known as ‘Why?’ explanations as they explain why a prediction
is the way it is. Contrastive explanations identify a minimal subset
of features that, when altered from their original values, are suf-
"cient to change the original prediction. They are also known as
‘Why not?’ explanations as they explain why the prediction is not
di!erent from what it is. These notions also extend to relational
query explanations, and we can interpret the Smallest Witness
Problem (SWP) [26, 44] as an instance of abductive explanation,
and the Resilience Problem (RES) [35] as a contrastive explanation.
Generalized Deletion Propagation (GDP) subsumes both SWP and
RES and can give both abductive and contrastive explanations in the
same framework. Notice that ‘Why’ and ‘Why not’ explanations
have been understood di!erently in the context of database prove-
nance [39, 40]: ‘Why’ has been used to understand why a given
tuple is in the output (a ‘prediction’ is true) whereas ‘why not’ to
understand why a tuple is not in the output (a ‘prediction’ is false).

Linear Optimization Solvers. A key practical advantage of
modeling problems as ILPs is that there are many highly-optimized
ILP solvers, both commercial [24] and free [45] which can obtain
exact results e#ciently, in practice. ILP formulations are standard-
ized, and thus programs can easily be swapped between solvers.
Any advances made over time by these solvers can automatically
make implementations of these problems better over time. For our
experimental evaluation we use Gurobi3 which uses an LP based
branch-and-bound method to solve ILPs [22]. This means that it
"rst computes an LP relaxation bound and then explores the search
space to "nd integral solutions that move closer to this bound. If an
integral solution is encountered whose objective is equal to the LP
relaxation optimum, then the solver has found a guaranteed optimal
solution and is done. In other words, if we can prove that the LP
relaxation of our given ILP formulation has an integral optimal solu-
tion, then we are guaranteed that our original ILP formulation will
terminate in PTIME, even without changing the ILP formulation or
letting the solver know about the theoretical complexity.

Complexity of solving ILPs. Solving ILPs is NPC [28], while
LPs can be solved in PTIME with Interior Point methods [9, 21].
The speci"c conditions under which ILPs become tractable is an
entire "eld of study. It is known that if there is an optimal integral
assignment to the LP relaxation, then the original ILP can be solved
in PTIME as well. There are many structural characteristics that
de"ne when the LP is guaranteed to have an integral minimum, and
thus where ILPs are in PTIME. For example, if the constraint matrix
of an ILP is Totally Unimodular [51] then the LP always has the same
optima. Similarly, if the constraint matrix is Balanced [10], several
classes of ILPs are PTIME. We do not use any of these techniques
in this paper, but we believe future research in this area may help
automatically identify more tractable cases of DP problems.

ILPs and Constraint Optimization in Databases. Integer
Linear Programming has been used in databases for problems such
as in solving package queries [6], query optimization [54], and
general optimization applications [53]. However, other than our
3Gurobi o!ers a free academic license https://www.gurobi.com/academia/academic-
program-and-licenses/.

2669

https://www.gurobi.com/academia/academic-program-and-licenses/
https://www.gurobi.com/academia/academic-program-and-licenses/

Neha Makhija and Wolfgang Ga!erbauer

recent work on the resilience problem [35], we are unaware of any
work in databases that uses ILPs to automatically recover tractable
cases by proving that the condition ILP = LP holds for the PTIME
cases, i.e. that the LP relaxation has an optimal integral value and
thus the original ILP problem can be solved in guaranteed PTIME.
We show that a straightforward application of that earlier idea
to our generalized problem formulation does not work as the LP
relaxation of the naive formulation can give fractional optimal
solutions (see Example 3 and Fig. 6). In Sections 5.2 and 5.3 we
develop new techniques that allowed us to prove that the natural LP
relaxation of the resulting non-obvious ILP formulation has the ILP =
LP property. We also show the e!ect in our experiments Fig. 8 with
a reduction from over 3 hours to under 20 seconds.

Instance Optimal Algorithms. Our notion of “coarse-grained
instance optimality” is inspired by the notion of instance optimal-
ity in complexity theory [48]. The need for instance optimality
or beyond worst case complexity analysis has been increasingly
recognized since worst-case complexity analysis can be overly pes-
simistic and fails to capture the e#cient real world performance of
many algorithms such as in ILP optimization and machine learn-
ing. Instance optimal algorithms have also been sought for some
problems in databases such as top-𝑏 score aggregation [13], and
join computation [2, 30, 46].

4 GENERALIZED DELETION PROPAGATION
We introduce Generalized Deletion Propagation (GDP) which gener-
alizes all prior variants of deletion propagation, and also allows for
new variants to be de"ned. The new variants are motivated by the
following observations: (1) The number of deletions in the source or
view are not the only possible side e!ects; one could care about side
e!ects on another view that is di!erent from the one in which the
deletion occurs. (2) It is natural to enforce constraints or optimize
side e!ects over multiple views. (3) Prior variants focus on a speci"c
type of constraint (either deletion or preservation). In practice, one
might want to combine these constraints (e.g., minimizing deletions
from one view while maximizing deletions from another). These
extensions are motivated with examples in Section 4.3.

We observe that with 4 di!erent sets of views, we can model all
existing problems and can also combine individual constraints in
arbitrary ways. De"nition 4.1 thus de"nes generalized deletion prop-
agation as a constraint optimization problem over four set of views.
These sets of views correspond to four primitive operations (or
requirements) that typically occur in deletion propagation variants
- a requirement to delete tuples from a view, preserve tuples in a
view, minimize side e!ects on a view, or to maximize side e!ects on
a view. Section 4.2 discusses how the GDP de"nition encapsulates
all past variants of DP as special cases (also depicted in Fig. 1), while
Section 4.3 motivates DP new variants that are captured by GDP.

4.1 De!ning Generalized Deletion Propagation
Before we de"ne GDP, we introduce some notation. We use bold
notation for vectors (as in x) and superscript for entries (as in 𝑁𝑁).
Q represents an ordered set of queries, and 𝐿𝑁 represents the 𝑅th
query in Q. |𝐿(D)| is de"ned as the number of output tuples in
𝐿(D) and |Q(D)|= ∑

𝑄⇐Q |𝐿(D)| as the number of output tuples
across all views in Q. We de"ne !𝐿(D, ”) as the set of output tuples

in 𝐿(D) that are deleted as a consequence of deleting ” from the
database D and hence are not present in 𝐿(D \ ”). Similarly, we
de"ne !Q(D, ”) as the set of tuples deleted from all views in Q:

|!Q(D, ”)|=
∑
𝑄𝐿 ⇐Q

|𝐿𝑁 (D)|≃|𝐿𝑁 (D \ ”)|

De!nition 4.1 (Generalized Deletion Propagation (GDP)). Given
four ordered sets of monotone queries Qdel,Qpres,Qmin and
Qmax over a database D, and vectors of positive integers kdel
and kpres of size equal to the number of views in Qdel and
Qpres respectively, the GDP problem is the task of determining
a set of input tuples ” ↗ D such that

|!Qmin(D, ”)|≃|!Qmax(D, ”)|
is minimized and the following hard constraints are satis"ed:
(1) Deleting ” from the database D deletes at least 𝑏𝑁del output

tuples from the 𝑅th view de"ned by Qdel i.e.,

|𝐿𝑁
del(D \ ”)|⇔ |𝐿𝑁

del(D)|≃𝑏𝑁del
(2) Deleting ” from the database D preserves at least 𝑏𝑁pres

output tuples from the 𝑅th view de"ned by Qpres i.e.,

|𝐿𝑁
pres(D \ ”)|⇑ 𝑏𝑁pres

4.2 Capturing Prior Variants of Deletion
Propagation with GDP

We next show how each of the previously studied variants of the
deletion propagation problem is a special case of GDP.

4.2.1 Deletion Propagation with Source Side E!ects (DP-SS) [7, 11]
and Resilience (RES) [5, 14, 15, 35, 43, 43]. Deletion Propagation with
source side e!ects (DP-SS) is one of the two originally formulated
variants of the deletion propagation problem [7].

De!nition 4.2 (DP-SS). Given a view de"ned by a query𝐿 over
a database D, and an output tuple 𝑐 ⇐ 𝐿(D), the deletion propa-
gation with source side e!ects problem is the task of determining
a set of input tuples ” ↗ D such that |”| is minimized and 𝑐 is
not contained in 𝐿(D \ ”). In other words,

min|”| s.t. 𝑐 /⇐ 𝐿(𝑍 \ ”)

DP-SS is a special case of GDP - we can solve a DP-SS problem by
setting 𝐿1

del to be a query with constants selecting for the values
of 𝑐 , 𝑏1del = 1 and setting Qmin to be the set of identity queries
that select all tuples from any relation in D. The key observation is
that source side e!ects can also be represented by computing a set
of queries Qmin, and then the di!erence between source and view
side e!ects results from the choice of query that de"nes the view.

Resilience (RES) is a variant of DP-SS that focuses on Boolean
queries and asks for the minimum number of deletions needed to
make a query false. It has been called the “simplest” of all deletion
propagation problems [14], and a large amount of literature has
been dedicated to understanding its complexity [5, 14, 15, 35, 43].
The complexity results for the RES problem also imply complexity
results for the DP-SS problem [14]. Existing work has shown a
complexity dichotomy for self-join free conjunctive queries, both

2670

Is Integer Linear Programming All You Need for Deletion Propagation?

!del

Propagate
Requirements

Optimize
Side-Effect

Soft ConstraintsHard ConstraintsProblem
instance MAXIMIZE:MINIMIZE:PRESERVE:DELETE:

−Deletions in !min= {$ ∈ &}−All tuples in Qdel(&)DP-SS
−Deletions in !min(&)	⊇ !del(&)−All tuples in Qdel(&)DP-VS
−Deletions in !min= {$ ∈ &}−≥	- tuples in Qdel(&)ADP-SS

Deletions in !max= {$ ∈ &}−All tuples in !pres(&)−SWP

Deletions in	!maxDeletions in !min≥ k!"#$% tuples in /!"#$% (0)≥ 	k&#'% tuples in !%de(&)GDP

!pres !min !max
"

!% (&)pres

!min(")!pres(")!del(") !max(")

!% (&)del -% pres-% del

Figure 1: Generalized Deletion Propagation (GDP) is de!ned over 4 di"erent sets of views, two of which model hard constraints, and the other
two model soft constraints (optimization objectives). Our approach encapsulates previously studied NPC variants of the deletion propagation
problem as special cases: Deletion Propagation with Source Side E"ects (DP-SS) [11], Deletion Propagation with View Side E"ects (DP-VS)
[33], Aggregated Deletion Propagation with Source Side E"ects (ADP-SS) [27], and Smallest Witness Problem (SWP) [26]. Notice that GDP is a
generalization of the prior variants in multiple senses: 1) It allows for side e"ects on a view di"erent from the original. 2) It allows each type of
constraint to be enforced over multiple views. 3) It allows for a combination of constraints and measured side e"ects.

under set [14] and bag semantics [35], yet only few tractability
results for queries with self-joins and unions are known [5, 15, 35].
The RES problem can be modelled as a special case of GDP similarly
as DP-SS, with the added restriction that 𝐿1

del is a boolean query.

4.2.2 Deletion Propagation: View Side E!ect (DP-VS) [7, 31–33].
Deletion Propagation with View Side e!ects (DP-VS) has the same
deletion propagation requirement (or “hard constraint”) as DP-SS,
but does so with the goal of minimizing the side e!ects on the view
in which the deletion occurs.

De!nition 4.3 (DP-VS). Given a view de"ned by a query𝐿 over
a database D, and an output tuple 𝑐 ⇐ 𝐿(D), the deletion propa-
gation with view side e!ects problem is the task of determining
a set of input tuples ” ↗ D such that |!𝐿(D, ”)| is minimized
and 𝑐 is not contained in 𝐿(𝑍 \ ”). In other words,

min|𝐿(D)|≃|𝐿(D \ ”)| s.t. 𝑐 /⇐ 𝐿(D \ ”)

DP-VS is a special case of GDP where Qdel(D) contains a single
query whose output is the output tuple 𝑐 (just like in DP-SS), 𝑏1del =
1, and Qmin has as single query𝐿 from the original DP-VS problem.
A complexity dichotomy has been shown for the DP-VS problem for
self-join free CQs under set semantics [32].

4.2.3 Aggregated Deletion Propagation with Source Side e!ect (ADP-SS)
[27]. The Aggregated Deletion Propagation (ADP-SS) formulation
extends the previous DP-SS by requiring the deletion of any𝑏 output
tuples from a view, rather than a speci"c output tuple.

De!nition 4.4 (ADP). Given a view de"ned by a query 𝐿 over
a database D, and a positive integer 𝑏 , the Aggregated Deletion
Propagation (ADP) problem is the task of determining a set of
input tuples ” ↗ D such that |”| is minimized and at least 𝑏
tuples are removed from 𝐿(D) as a consequence of removing ”
from D. In other words,

min|”| s.t. 𝐿(D \ ”)|⇔ |𝐿(D)|≃𝑏

Even though not explicit in the name of the problem, ADP-SS
cares about minimizing source side e!ects (which can be captured
by GDP in the same manner as for DP-SS). A complexity dichotomy
has been shown for the ADP problem for self-join free conjunctive
queries under set semantics [27].

4.2.4 Smallest Witness Problem (SWP) [44]. The Smallest Witness
Problem was not proposed as a DP problem, but was noted to bear
a strong but unspeci"ed resemblance to the deletion propagation
variants [26]. We show that this resemblance is due to the fact
that – when modelled as a constraint optimization problem – the
correspondence of deletions of input and output tuples are based
on exactly the same constraints. Concretely, SWP can be seen as a
“preservation propagation” problem, where the goal is to "nd the
largest set of tuples that can be removed from the database without
a!ecting the results of a query. Using negation, we reformulate
this as minimization problem (to maintain consistency with other
de"nitions in this section):

De!nition 4.5 (SWP). Given a view de"ned by a query 𝐿 over
a database D, the smallest witness problem is the task of deter-
mining a set of input tuples ” ↗ 𝑍 such that |”| is maximized and
!𝑑 (D, ”) is exactly 0. In other words,

min≃|”| s.t. |𝐿(D \ ”)|= |𝐿(D)|

A complexity dichotomy has been shown for the SWP problem
for self-join free conjunctive queries under set semantics [26]. In-
terestingly, the tractable cases for SWP are a subset of the tractable
cases for DP-VS, rea#rming that these variants have a structural
connection and should be studied together.

4.3 Capturing Natural New Variants of Deletion
Propagation with GDP

Our GDP formulation allows for the de"nition of new variants of
the deletion propagation problem based on at least three types of

2671

Neha Makhija and Wolfgang Ga!erbauer

extensions. These extensions can be combined in arbitrary ways,
leading to a rich set of new problems.

Extension 1: New types of side e"ects. Existing DP variants
focus on minimizing source side e!ects or view side e!ects. How-
ever, one can easily imagine a user wanting to delete tuples from one
view while minimizing side e!ects on another view. For instance,
in Example 1, where the output view that deletion constraints very
de"ned on (the connectivity network), was di!erent from the view
side e!ects were measured on (view of popular connections).

Extension 2: Constraints over multiple views. Existing DP
variants focus on a single view fromwhich deletions are propagated.
However, one can imagine a scenario where tuples from multiple
views are to be deleted. As we saw in Example 1, the airline wanted
to cut down on multiple costs such as fuel costs and airport lease
costs. Depending on the current structure of the airline, a di!erent
percent of cost-cutting in each category may be required, and it is
always better to jointly optimize over all the expense views4.

Extension 3: Combination of Deletion and Preservation
Constraints. Current DP variants focus on either deletion con-
straints (DP-SS, DP-VS, ADP-SS) or preservation constraints (SWP)
exclusively. However, one may want to enforce both deletion and
preservation constraints simultaneously - like in Example 1 where
it matters to cut down on costs but also preserve the popular routes.

5 ILP FRAMEWORK FOR GDP
This section speci"es an Integer Linear Program (ILP) ILP[GDP]
which returns an optimal solution for GDP for any instance sup-
ported by De"nition 4.1. We proceed in three steps, "rst providing
a basic ILP formulation and subsequently improving it in two steps.
Our approach works even if some views are de"ned with self-joins,
or if the underlying database uses bag semantics. We focus in this
section on proving correctness, while Section 6 later investigates
how known tractable cases can be solved in PTIME, despite the
problem being NPC in general. The input to the ILP[GDP] are the
four sets of view-de"ning queriesQdel,Qpres,Qmin,Qmax over a
databaseD. Note that any of these sets can be empty as well.5 As in-
put to our computation, we also assume as given the set of witnesses
for each output tuple in any of the computed views, which can be ob-
tained in PTIME by running the full version𝐿𝑅 of each query𝐿 and
computing the associated provenance polynomial. The full version
𝐿𝑅 of a query 𝐿 is the query that we get by making any existen-
tial variables into head variables (or equivalently, by removing all
projections). For example, the full version of 𝐿(𝑁) :≃𝑂(𝑁,𝑈), 𝑉(𝑈, 𝑊)
is 𝐿𝑅 (𝑁,𝑈, 𝑊) :≃𝑂(𝑁,𝑈), 𝑉(𝑈, 𝑊). The use of witnesses as an interme-
diary between input (database) and output (view) tuples is a key
modeling step that allows us to formulate DP problems with lin-
ear constraints. We thus associate with each output tuple a set of
witnesses and use these sets of witnesses to construct ILP[GDP].

In a slight abuse of notation we write 𝑆 ⇐ Q(D) for 𝑆 ⇐ ⋃
𝑄⇐Q

𝐿(D) and similarly, 𝑇 ⇐ Q𝑅 (D) for 𝑇 ⇐ ⋃
𝑄⇐Q 𝐿𝑅 (D). We write

4Note that performing deletions on multiple views one at a time is not the same as
performing deletions on all views simultaneously, and the side e!ects of performing
DP on each view independently may be higher than performing DP on all views
simultaneously. Cutting 2% of total costs is not necessarily the same as cutting 1% of
fuel costs and 1% of airport lease costs.
5Notice that the problem is still de"ned (though trivial) even if all sets are empty: Then
any set of interventions satisfy the problem, and the objective value is always 0.

that 𝑆 ⇐ 𝑇 if 𝑆 ⇐ 𝐿(D) is a projection of 𝑇 ⇐ 𝐿𝑅 (D) onto
the head variables of 𝐿 . For example, for the earlier example of
𝐿(𝑁) :≃𝑂(𝑁,𝑈), 𝑉(𝑈, 𝑊) and𝐿𝑅 (𝑁,𝑈, 𝑊) :≃𝑂(𝑁,𝑈), 𝑉(𝑈, 𝑊), assumewe have
two witnesses 𝑇1 = 𝐿𝑅 (1, 2, 3), 𝑇2 = 𝐿𝑅 (1, 3, 2), 𝑇3 = 𝐿𝑅 (2, 1, 3),
and two view tuples 𝑆1 = 𝐿1(1), 𝑆2 = 𝐿1(2). Then 𝑆1 ⇐ 𝑇1, 𝑆1 ⇐ 𝑇2,
𝑆1 ↖⇐ 𝑇3, 𝑆2 ↖⇐ 𝑇1, etc. It is very important to note that we treat
output tuples of di!erent views as distinct, even if they correspond
to the same set of tuples in the input database. Thus, we can have
𝑆1 ⇐ 𝐿𝑁

del(D) and 𝑆2 ⇐ 𝐿 𝑂
pres(D) with 𝐿𝑁

del = 𝐿 𝑂
pres, and the

valuation of variables for 𝑆1 is the same as for 𝑆2, but we will still
treat them as distinct: 𝑆1 ↖= 𝑆2 (similarly for views). Notice that
this modeling decision appears at "rst to create inconsistencies,
as our algorithm theorectically permits 𝑆1 to be deleted from the
view while 𝑆2 is preserved. However, as we discuss later, this does
not create inconsistencies and is actually crucial for the tractability
proofs in Section 6.

5.1 A basic ILP Formulation for GDP
We "rst de"ne a naive ILP ILPN[GDP] with three components: the
ILP variables, an ILP objective function, and ILP constraints.

5.1.1 ILP Variables. We introduce binary variables 𝑄 [𝑐] for each
input tuple 𝑐 in the relations from D which takes on value 1 if
the corresponding tuple is deleted, and 0 otherwise. Similarly, we
introduce binary variables𝑄 [𝑆] for each output tuple 𝑆 in each of the
view-de"ning queries in Qdel(D),Qpres(D),Qmin(D),Qmax(D),
and 𝑄 [𝑇] for each witness𝑇 in the full version of those queries.

5.1.2 ILP Objective Function (“So" constraints”). The only possible
side e!ects of deleting a set of input tuples on a view de"ned by
a monotone query are deletions of tuples in the view. As de"ned
in De"nition 4.1, we thus count the side e!ects as the number of
output tuples deleted from Qmin(D) plus the number of tuples
preserved in Qmax(D), respectively. Minimizing the number of
tuples preserved in a view is equivalent to maximizing the number
of tuples deleted in that view, which is equivalent to minimizing ≃1
times the number of tuples deleted in that view. Thus, our overall
goal is to minimize the following objective function:

𝑎 (X) =
∑

𝑆⇐Qmin(D)
𝑄 [𝑆] ≃

∑
𝑆⇐Qmax(D)

𝑄 [𝑆]

5.1.3 ILP Constraints (“Hard constraints”). The basic ILP formula-
tion has two types of constraints: (1) User constraints (UCs) are those
that are application-speci"c and are speci"ed by the user. (2) Prop-
agation constraints (PCs) encode the various relationships between
tuple variables, witness variables, and view variables needed for
consistency. In other words, PCs capture the e!ect of the hard user
constraints on the input database, and then the e!ect of the input
database on various views.

(1) User constraints (UCs). These are the deletion and preser-
vation constraints that are speci"ed by the user on the view def-
initions Qdel and Qpres, respectively. The deletion constraints
specify that at least 𝑏𝑁del tuples must be deleted from each view
𝐿𝑁
del ⇐ Qdel, while the preservation constraints specify that at

least 𝑏𝑁pres tuples must be preserved in each view𝐿𝑁
pres ⇐ Qpres

2672

Is Integer Linear Programming All You Need for Deletion Propagation?

Output
tuples

index !
(view)

"!"#($)
"$%"&($)
"'()($)
"'*+($)

Wit-
nesses

index %

"!"#, ($)
"$%"&, ($)
"'(), ($)
"'*+, ($)

PC3: If all witnesses for a given
output tuple ! are deleted,
then ! is deleted
1+	∑ () %-⊆/ −1) ≤) !

PC4: If a view tuple !	is
deleted, then all witnesses
contributing to it are deleted

)[%] ≥) !

PC1: If an input tuple #	is
deleted, then any witness $
containing it is deleted

) / ≤)[%]

PC2: If a witness $ is deleted,
then at least one of its tuples
# ∈ $	is deleted

∑)[/]0∈/ ≥) %

Full query !! Projection

Query !

Input
tuples

index /

$

Figure 2: Propagation constraints in our ILP formulation ILPN[GDP],
explained in the direction of propagating deletions and thus pro-
viding lower bounds on the variables. The witness variables are the
bridge between the tuple variables and the view variables, and rep-
resent the output tuples of the corresponding full query.

(which is equivalent to deleting at most |𝐿𝑁
pres(D)|≃𝑏𝑁pres tuples):∑

𝑆⇐𝑄𝐿
del(D)

𝑄 [𝑆] ⇑ 𝑏𝑁del ↙𝐿𝑁
del ⇐ Qdel

∑
𝑆⇐𝑄𝐿

pres(D)
𝑄 [𝑆] ⇔ |𝐿𝑁

pres(D)|≃𝑏𝑁pres ↙𝐿𝑁
pres ⇐ Qpres

(2) Propagation constraints (PCs). These constraints encode the
relationships between input tuples, witnesses, and tuples in the
views to obtain upper and lower bounds on each. Any deletion
in a view needs to be re$ected also in the input database, and as
consequence also in the other views. It is this necessary “propagation
of deletions” from views (output tuples) to the database (input tuples)
that gave this family of problems its name [7].

Figure 2 shows a summary of the propagation constraints, split
into two parts: the propagation constraints between input tuple
variables and witness variables (PC1 and PC2), and between witness
variables and view variables (PC3 and PC4). Notice that all PCs
are bidirectional in that they compare two types of variables and
give an upper bound for one and a lower bound for the other.
Thus, each constraint can be explained in two ways (depending
on the direction of the propagation), but not all constraints need
to be applied to all views (recall our wildcard semantics). We "rst
describe the constraints, and then discuss when they are enforced.
• PC1: (∝) If an input tuple 𝑐 is deleted, then any witness 𝑇

containing it is deleted. (′) If a witness𝑇 is not deleted, then
neither of its tuples 𝑐 ⇐ 𝑇 is deleted.

𝑄 [𝑐] ⇔ 𝑄 [𝑇], 𝑐 ⇐ 𝑇

• PC2: (′) If a witness𝑇 is deleted, then at least one of its tuples
𝑐 ⇐ 𝑇 is deleted. (∝) Alternatively, if all tuples 𝑐 ⇐ 𝑇 are not
deleted, then the witness𝑇 is not deleted.∑

𝑇 ⇐𝑈
𝑄 [𝑐] ⇑ 𝑄 [𝑇] (1)

• PC3: (∝) If all witnesses for a given output tuple 𝑆 are deleted,
then 𝑆 is deleted. (′) If 𝑆 is not deleted, then at least one witness
𝑇 for 𝑆 is not deleted.

1 +
∑
𝑆↗𝑈

(𝑄 [𝑇] ≃ 1) ⇔ 𝑄 [𝑆]

• PC4: (′) If a view tuple 𝑆 is deleted, then all witnesses con-
tributing to it are deleted. (∝) If a witness𝑇 is not deleted, then

yx
11
21

! "!"#
yx
11
21

x
1
2

"!"#$

yx
11
21

! "!"#
yx
11
21

x
1
2

"!"#$

≥

≥

! " 1,1 =1

Case	1:

! %! 1,1 =1

! " 1,2 =1 ! %! 1,2 =0≥

yx
11
21

! "!"#
yx
11
21

x
1
2

"!"#$

≥

Case	2:

() *, * =+

Case	3:

(," *, * =*≱

≥J

J

L

! % 1 =1

! % 2 =0

! % 1 =1

Figure 3: Example 2: The true state of deletions in the database D
is always faithfully represented by database variables (e.g., 𝑉(1, 2) is
deleted and thus 𝑊 [𝑉(1, 2)] = 1 and is grayed out). However, deletions
in the views de!ned by a query in Qdel need to provide only lower
bounds for modeling DP-SS (e.g., setting 𝑊 [𝑄𝑀 (1, 2)] = 0 in case 2 is ok
even though the view tuple would be deleted).

any view tuple 𝑆 ↗ 𝑇 is not deleted.

𝑄 [𝑇] ⇑ 𝑄 [𝑆], 𝑆 ↗ 𝑇

5.1.4 Naive ILP. We de"ne ILPN[GDP] as the program resulting
from our de"nitions of ILP variables, objective function, and con-
straints, and will sometimes refer to it as the “naive ILP”.

T’&()&# 5.1. [Naive ILP] The interventions given by an optimum
solution of ILPN[GDP] for any D, Qdel, Qpres, Qmin, Qmax, kdel,
kpres are an optimum solution to GDP over the same input.

The direct mapping from the variables, objective and constraints
of GDP into our ILP formulation from this section forms the proof.

5.2 Wildcard Semantics for 𝑄 [𝑇] and 𝑄 [𝑆]
The binary variables for each input tuple 𝑄 [𝑐] are always faithful
to deletions in the database D (a tuple is either deleted or present).
However, for witness variables 𝑄 [𝑇] and output tuple variables
𝑄 [𝑆] we use a semantics that we call “wildcard semantics.” The
intuition is that user constraints on deletion views provide hard
lower bounds on deletions in the database (we need to provide
at least that many deletions), while minimization views provide
upper bounds (more deletions than necessary get automatically
penalized by the optimization objective). This results in a one-sided
guarantee. For example, setting 𝑄 [𝑆1] = 1 for 𝑆1 ⇐ 𝐿𝑁

del(D) means
it is necessarily deleted, and setting 𝑄 [𝑆2] = 0 for 𝑆2 ⇐ 𝐿𝑁

pres(D)
means it is necessarily preserved. However, in this semantics we
cannot infer the actual status from 𝑄 [𝑆1] = 0 and 𝑄 [𝑆2] = 1. This
semantics allows us to simplify the ILP by having fewer constraints;
and, it turns out to be crucial for the tractability proofs in Section 6.

E!"#$%& 2 (wildcard semantics). Consider a database D with
facts {𝑂(1, 1),𝑂(2, 2), 𝑉(1)}, and query𝐿(𝑁) :≃𝑂(𝑁,𝑈), 𝑉(𝑈). Consider
a DP-SS problem where tuple𝐿(1) should be deleted from the output.
We introduce the tuple variables𝑄 [𝑂(1, 1)],𝑄 [𝑂(1, 2)],𝑄 [𝑉(1)], wit-
ness variables𝑄 [𝐿𝑅 (1, 1)],𝑄 [𝐿𝑅 (1, 2)], and view variables𝑄 [𝐿(1)],
𝑄 [𝐿(2)]. We show in Fig. 3 some possible variable assignments and
discuss if they satisfy the wildcard semantics.

Case 1: A feasible solution is setting 𝑄 [𝑂(1, 1)], 𝑄 [𝐿𝑅 (1, 1)],
𝑄 [𝐿(1)] to 1, and all other variables to 0, i.e. tuple 𝑂(1, 1) is deleted

2673

Neha Makhija and Wolfgang Ga!erbauer

X[w] = 0 X[w] = 1 X[v] = 0 X[v] = 1
Qmax(D) ⇓ 𝑇 ↖⇐Q𝑅

max(D) ⇓ 𝑆 ↖⇐Qmax(D)
Qdel(D) ⇓ 𝑇 ↖⇐Q𝑅

del(D) ⇓ 𝑆 ↖⇐Qdel(D)
Qpres(D)𝑇 ⇐Q𝑅

pres(D) ⇓ 𝑆 ⇐Qpres(D) ⇓
Qmin(D) 𝑇 ⇐Q𝑅

min(D) ⇓ 𝑆 ⇐Qmin(D) ⇓

Figure 4: Table showing the one-sided guarantees that any variable
assignment has on solution to a GDP problem. For cases with wild-
cards (“⇓”), the true value of the variable can be either 0 or 1.

from the database, witness 𝐿𝑅 (1, 1) is deleted from the full query,
and tuple 𝐿(1) is deleted from the view. In this case, all variables
are faithful to a set of actual deletions in the database and views.

Case 2: Another solution modi!es 𝑄 [𝑂(1, 2)] to 1, while the other
variables remain the same (including 𝑄 [𝐿𝑅 (1, 2)] = 0). Since the
witness𝐿𝑅 (1, 2)would be deleted once 𝑂(1, 2) is deleted, this solution
is not faithful to any set of interventions (if 0 assignments are
interpreted as required preservations). Notice, however, that this
variable assignment causes no harm in the correct ful!llment of
the user constraints. Marking a witness as not deleted when it is,
is not a problem, since this can never mark the user constraint as
satis!ed if it isn’t in reality.

Case 3: In contrast, a solution with 𝑄 [𝑂(1, 1)] = 0, 𝑄 [𝐿𝑅 (1, 1)] =
1, 𝑄 [𝐿(1)] = 1 is incorrect. It falsely claims to satisfy the user
constraint by deleting the tuple 𝐿(1) from the view, but it does not
actually delete any input tuples that would lead to this deletion.

Example 2 showed that for a variable 𝑄 [𝑇] for a witness 𝑇 in
Q𝑅
del(D), it is important that we do not claim it is deleted if it is

not (as this would not truly satisfy the user requirement). Thus,
𝑄 [𝑇] = 1 must imply that 𝑇 ↖⇐ Q𝑅

del(D). However, deleting 𝑇
while having 𝑄 [𝑇] = 0 is not a problem, because this can never
represent an unsatisfactory interventions (as is the case when a
user required deletions that are not truly carried out). Thus, we
use a semantics for witnesses in Q𝑅

del where 𝑄 [𝑇] = 1 implies
witness𝑇 is deleted, while 𝑄 [𝑇] = 0 acts as a “wildcard”, allowing
the witness to be deleted or not. In other words, truth assignments
to tuples in Qdel(D) provide a lower bound on the deletions of
tuples in the database (Fig. 3). The exact same reasoning applies to
the 𝑄 [𝑆] variables for view tuples in Qdel(D) as well.

Similarly, witness and view variables forQ𝑅
max andQmax provide

upper bounds on tuple deletions in the database. For these views, a
solution stating that a witness / view tuples is not deleted when it
is, is not a problem since the user constraints specify a lower bound.
Thus, here too we allow the same semantics that 𝑄 [𝑇] = 1 and
𝑄 [𝑆] = 1 if𝑇 / 𝑆 is deleted, and 𝑄 [𝑇] = 0 and 𝑄 [𝑆] = 0 are wildcard
values where the witness/view tuple may or may not be deleted.

Symmetrically, for Qpres(D) and Qmin(D), we need to ensure
that if a tuples and witnesses is said to be preserved (i.e. their vari-
ables are set to 0), then it is actually preserved. Thus, 𝑄 [𝑇] = 0 and
𝑄 [𝑆] = 0 for𝑇 , 𝑆 in Qpres and Qmin imply that the corresponding
witness or view tuple is not deleted, while 𝑄 [𝑇] = 1 and 𝑄 [𝑆] = 1
represent a wildcard value, allowing the corresponding witness or
view tuple to be deleted or not. Figure 4 captures the semantics of
the 𝑄 [𝑇] and 𝑄 [𝑆] variables for each type of query.

Selective application of PCs. We use the wildcard semantics
for witnesses and view variables described in Section 5.1.1 to obtain

!
"!"#"$%&'"$%&

"$()"*+",'"*+",

≥PC3

SC

≥PC1

≥PC3 ≥PC1

"!"#'

"$()'

≥PC2 ≥PC4

≥PC2 ≥PC4

Figure 5: Arrows in this !gure illustrate the constraints in the direc-
tion of lower bounds (but recall that constraints are bidirectional). No-
tice that our wildcard semantics applies constraints only selectively
to di"erent views (Section 5.2). Also shown is how our Smoothing
Constraints (SC) replace PC1 for Q𝑀

pres(D) (Section 5.3). It is that
replacement that gives us a powerful PTIME guarantee for PTIME
problems (see later Fig. 8 from the experiments).

amore e#cient ILP. Concretely, we don’t apply the PCs in directions
that are not required to enforce the wildcard semantics.

PC1 and PC3 encode lower bounds on the witness and view
variables, respectively. They ensure that 𝑄 [𝑇] = 0 and 𝑄 [𝑆] = 0
only when𝑇 and 𝑆 are not deleted. Thus, they need to be applied
to Qpres and Qmin, but do not to Qdel and Qmax. Similarly, PC2
and PC4 are upper bounds on the witness and view variables, re-
spectively. They ensure that 𝑄 [𝑇] = 1 and 𝑄 [𝑆] = 1 only when𝑇
and 𝑆 are deleted. Thus, they need to be applied to Qdel and Qmax,
but not to Qpres and Qmin. Figure 5 summarizes the selective
application of PCs to the di!erent views.

Wildcard ILP. We refer to the “wildcard ILP” or ILPW[GDP]
solution to GDP as the basic ILP that applies the PCs only selectively,
namely PC1 and PC3 to Qpres and Qmin (but not PC2 nor PC4),
and PC2 and PC4 to Qdel and Qmax (but not PC1 nor PC3).

T’&()&# 5.2. [Wildcard ILP] The interventions suggested by an
optimum solution of ILPW[GDP] are an optimum solution to GDP over
the same input.

Proof Intuition. The proof is based on the fact that any optimal
solution under traditional semantics is an optimal solution in the
wildcard semantics, and to enforce the wildcard semantics it su#ces
to apply PCs selectively (which is possible as argued before).

5.3 ILP with Smoothing Constraints
The wildcard semantics alone does not give noticeable performance
improvements or PTIME guarantees for our ILP. However, it allows
us to enable a surprising optimization: we will tighten one type of
constraint in a way that the resulting solution space (a polyhedron)
preserves an optimal solution, yet also a!ords desirable proper-
ties on the performance of the resulting ILP and also the optimal
solution for its LP relaxation. It is those seemingly super$uous
constraints that play a key ingredient in the results of Section 6
where we show that an ILP with smoothing constraints ILPS[GDP]
can be solved in PTIME for all known tractable cases. Hence, we
also refer to ILPS[GDP] as simply ILP[GDP].

The user constraints and propagation constraints su#ce to cor-
rectly model GDP as an ILP. The purpose of the Smoothing Con-
straints (SC) is to make the objective of the LP relaxation closer to
the objective of the ILP (in certain cases we see that the smoothing
constraint makes the optimal objective value of LP relaxation equal
to that of the ILP). In the language of linear optimization, adding
these extra bounds is equivalent to adding cutting planes [29] to
the polytope de"ned by the LP relaxation.

2674

Is Integer Linear Programming All You Need for Deletion Propagation?

We identify a smoothing constraint that can be added to describe
the relation between tuple variables, and the witness variables of
Qpres. Recall that for Qpres, we would like to preserve a certain
number of view variables. A view variable 𝑆 is preserved if at least
one of its witnesses𝑇 is preserved. Recall that due to our wildcard
semantics of 𝑄 [𝑇] in Qpres, setting 𝑄 [𝑇] = 1 means that we “do
not care” whether the witness is deleted or not. In other words, we
can say that for any view variable 𝑆 , there is only one𝑇 with𝑄 [𝑇] =
0 and the other witnesses can be set to 1. Now assume that a tuple
𝑐 participates in multiple witnesses 𝑇1,𝑇2, . . . ,𝑇𝑋 corresponding
to the same view tuple 𝑆 (It may also participate in more witnesses,
but we do not care about those here). We know through PC1 that
𝑄 [𝑐] ⇔ 𝑄 [𝑇] for a given 𝑆 and 𝑐 ⇐ 𝑇 ,𝑇 ∞ 𝑆 .

It is correct to now also enforce that ∑𝑁⇐[1,𝑋] 𝑄 [𝑇𝑁] ⇑ 𝑏 ≃ 1
i.e., only one 𝑄 [𝑇] in this set is preserved (the rest may also be
preserved, but due to the wildcard semantics they will still have
𝑄 [𝑇] = 1). Now we can also enforce that 𝑄 [𝑐] ⇔ (∑𝑁⇐[1,𝑋] 𝑄 [𝑇𝑁]) ≃
(𝑏 ≃ 1), since all but 1 values of 𝑄 [𝑇] are set to 1, and only the "nal
value decides the upper bound on 𝑄 [𝑐]. Thus, we get a smoothing
constraint, applied to every 𝑆 ⇐ Qpres(D):

𝑄 [𝑐] ⇔ 1 +
∑

𝑈:𝑇 ⇐𝑈
𝑈∞𝑆

(𝑄 [𝑇] ≃ 1)

Correctness of ILPS[GDP]withwildcard semantics and smooth-
ing constraints. We refer to ILPS[GDP] as the ILP that has only
the PCs that are required for wildcard semantics and has replaced
the PC1 constraints on Qpres in the basic ILP with SC instead.

T’&()&# 5.3. [Smoothened ILP] The interventions suggested
by an optimum solution of ILPS[GDP] with wildcard semantics and
smoothened constraints form an optimum solution to GDP.

Proof Intuition. Adding the smoothing constraint to the wildcard
ILP always preserves at least one optimal solution - this follows
also from the argument above the the smoothing constraint can be
derived by logically following the wildcard semantics.

An interesting asymmetry. We notice an interesting asymme-
try at play. We could apply a symmetric smoothing constraint in the
case for PC4 on Qdel. Interestingly, such an additional smoothing
constraint would identical to our original PC1, as every view tuple
corresponds to exactly one witness. Thus, we do not need to add
any additional smoothing constraints for Qdel.

Reducing the size of the ILP. The smoothing constraints may
subsume some propagation constraints. These subsumed propaga-
tion constraints can be removed from the ILP without a!ecting any
solution of the ILP or LP relaxation.

The Power of Smoothing Constraints. Example 3 is an intu-
itive example of a SWP problem instance modelled as a GDP problem,
where the smoothing constraints ensure that the optimal value of
the ILP is equivalent to the optimal value of its LP relaxation in the
GDP framework. Later in Proposition 6.3, we show that this is the
case for all prior known PTIME cases of SWP.

E!"#$%& 3 (Power of smoothing). Consider again the D from Ex-
ample 2: with 𝑂(1, 1), 𝑂(1, 2), and 𝑉(1). We want to solve the smallest
witness problem SWP(𝐿pres,D) for 𝐿pres(𝑁) :≃𝑂(𝑁,𝑈), 𝑉(𝑁). To
model it as GDP, we setQpres to be ↓𝐿pres↔ and kpres = ↓𝑏pres↔
with 𝑏pres = 1, which is the number of output tuples in𝐿pres(D).

(a) Projection on variables from SC. (b) Projection on database tuples.

Figure 6: Example 3: Our Smoothing Constraint (SC) acts as a cutting
plane, removing a non-integral optimal point from the LP relaxation
of our ILP formulation (see details in text).

We also set Qmax = ↓𝐿1
max(𝑁,𝑈) :≃ 𝑂(𝑁,𝑈),𝐿2

max(𝑁) :≃ 𝑉(𝑁)↔ and
Qdel = Qmin = ∈. Our GDP formulation is as follows:

𝑎 (X) = ≃(𝑄 [𝐿1
max(1, 1)] + 𝑄 [𝐿1

max(1, 2)] + 𝑄 [𝐿2
max(1)])

s.t. following constraints (and integrality constraints):

𝑄 [𝐿pres(1)] ⇔ 0 (UC)

𝑄 [𝐿𝑅
pres(1, 1)] + 𝑄 [𝐿𝑅

pres(1, 2)] ≃ 1 ⇔ 𝑄 [𝐿pres(1)] (PC3)

𝑄 [𝑂(1, 1)] ⇔ 𝑄 [𝐿𝑅
pres(1, 1)] (PC1)

𝑄 [𝑉(1)] ⇔ 𝑄 [𝐿𝑅
pres(1, 1)] (PC1)

𝑄 [𝑂(1, 2)] ⇔ 𝑄 [𝐿𝑅
pres(1, 2)] (PC1)

𝑄 [𝑉(1)] ⇔ 𝑄 [𝐿𝑅
pres(1, 2)] (PC1)

𝑄 [𝑂(1, 1)] ⇔ 𝑄 [𝐿1𝑅
max(1, 1)] (PC2)

𝑄 [𝑂(1, 2)] ⇔ 𝑄 [𝐿1𝑅
max(1, 2)] (PC2)

𝑄 [𝑉(1)] ⇔ 𝑄 [𝐿2𝑅
max(1)] (PC2)

𝑄 [𝐿1𝑅
max(1, 1)] ⇔ 𝑄 [𝐿1

max(1, 1)] (PC4)

𝑄 [𝐿1𝑅
max(1, 2)] ⇔ 𝑄 [𝐿1

max(1, 2)] (PC4)

𝑄 [𝐿2𝑅
max(1)] ⇔ 𝑄 [𝐿2

max(1)] (PC4)

Observe that the optimal solution for the ILP is ≃1 which oc-
curs when either one of the tuples in 𝑂 is deleted, i.e. either of
𝑄 [𝑂(1, 1)] or 𝑄 [𝑂(1, 2)] is set to 1. However, the LP relaxation has a
smaller non-integral optimum of ≃1.5 for 𝑄 [𝑂(1, 1)] = 𝑄 [𝑂(1, 2)] =
𝑄 [𝑉(1)] = 0.5. This is due to the fact that both 𝑄 [𝐿𝑅

pres(1, 1)] and
𝑄 [𝐿𝑅

pres(1, 2)] can take values 0.5, which is why𝑄 [𝐿1
pres(1)] can

be set to 0 while ful!lling all constraints.
Our smoothing constraint for this example is the following

𝑄 [𝑉(1)] ⇔ 𝑄 [𝐿𝑅
pres(1, 1)] + 𝑄 [𝐿𝑅

pres(1, 2)] ≃ 1 (SC)

Notice that it can replace the 𝑒𝑓1 constraints𝑄 [𝑉(1)]⇔𝑄 [𝐿𝑅
pres(1, 1)]

and 𝑄 [𝑉(1)]⇔𝑄 [𝐿𝑅
pres(1, 2)], since it is a strictly tighter constraint.

The SC ensures that if𝑄 [𝑉(1)] is set to 0.5, then𝑄 [𝐿𝑅
pres(1, 1)]+

𝑄 [𝐿𝑅
pres(1, 2)] ⇑ 1.5, thus violating PC4, and thereby e"ectively

removing the non-integer solution. To gain more intuition, Fig. 6
shows the polytope of the LP relaxation of our wildcard formulation
projected on either the variables involved in SC (Fig. 6a), or the
three input tuples (Fig. 6b). The optimal LP solution corresponds to
the orange point (point 3 in Fig. 6a, point 6 in Fig. 6b), and the two
optimal ILP solutions correspond to the two blue points (points 1 and

2675

Neha Makhija and Wolfgang Ga!erbauer

2 in Fig. 6a, points 0 and 2 in Fig. 6b). Notice how our SC (shown as
yellow cutting plane in Fig. 6a) cuts away the non-integer solution,
leaving only points 1 and 2, and their convex extension. Similarly,
this constraint cuts away all points with 𝑄 [𝑉(1)] > 1 (not shown
in Fig. 6b), leaving points 0 and 2 and their convex combination as
the optimum solutions to the new LP.

From the workings of modern solvers we know that any ILP
problem can be solved e#ciently if its natural LP relaxation is tight
with the ILP polytope in the direction of the objective (i.e. the ILP
and its LP relaxation have the same optimal 𝑎 ⇓ and share the same
“face” perpendicular to the objective vector). Now, it su#ces to
show that the LP relaxation of the smoothened ILP has the same
optimum objective values 𝑎 ⇓ and preserves at least one optimal
integral solution. We see experimentally in Fig. 8 in Section 7 a
speedup of 2 orders of magnitude in the ILP solving time simply by
adding the smoothing constraints. This is completely justi"ed by
our claim that ILP solvers are able to solve ILPs e#ciently when
the LP relaxation is tight.

6 RECOVERING EXISTING TRACTABILITY
RESULTS

In this section we focus on self-join free queries under set semantics,
which is the only case in which complexity dichotomies are known
for the DP variants of DP-SS, DP-VS, ADP-SS, SWP. We have shown
previously that the GDP framework naturally captures all these
problems as special cases. In this section, we show that the LP
relaxation of the GDP problem also naturally recovers the optimal,
integral solutions for these problems for self-join queries that are
known to be tractable under set semantics.

DP-SS. A DP-SS problem on a query 𝐿 can be converted to a
resilience problem on the existential version of the query𝐿𝑌 which
is obtained by removing all head variables from𝐿 (both in the head
and the body). Since a dichotomy result for self-join free conjunctive
queries is known for resilience both under set and bag semantics,
it follows that a complexity dichotomy is also known for DP-SS.

Let ILP[GDPDP-SS(𝐿,D, 𝑐)] be the ILP obtained when we pose
the DP-SS problem over a query 𝐿 , database D and target tuple in
view 𝑐 , as a GDP problem via the method described in Section 4.2.1.
We now claim that the LP relaxation LP[GDPDP-SS] of such an ILP
ILP[GDPDP-SS], is always equivalent to the solution of the optimiza-
tion problem DP-SS for all known queries 𝐿 for which DP-SS can
be solved in PTIME, and thus ILP[GDP] can be used to solve DP-SS
in PTIME for such queries.

P)($(*+,+(- 6.1. LP[GDPDP-SS(𝐿,D)] = DP-SS(𝐿,D) for all data-
base instances D under set semantics if the existential query 𝐿𝑌

does not contain a triad. LP[GDPDP-SS(𝐿,D)] = DP-SS(𝐿,D) for all
database instances D under bag semantics if 𝐿𝑌 is a linear query.

Proof Intuition. We show that ILP[GDPDP-SS] is identical to a spe-
cialized ILP that has been proposed [35] for resilience. Since that
paper also shows that for all tractable queries, the LP relaxation of
the ILP is integral, the results naturally carry over.

DP-VS. It is known that DP-VS is PTIME for self-join free con-
junctive queries if and only if they have the head domination prop-
erty [32]. We prove that for such queries that have the head domina-
tion property, if we pose DP-VS(𝐿,D, 𝑐) in the GDP framework, then

the LP relaxation LP[GDPDP-VS(𝐿,D, 𝑐)] is equivalent to the solution
of DP-VS(𝐿,D, 𝑐).

P)($(*+,+(- 6.2. LP[GDPDP-VS(𝐿,D, 𝑐)] = DP-VS(𝐿,D, 𝑐) for all
database instances D under set semantics and any tuple 𝑆 in 𝐿(𝑍) if
𝐿 has the head domination property.

Proof Intuition. If a query has the head domination property, it is
known that optimal solution for DP-VS is side e!ect free [32]. Thus,
the optimal value of the ILP objective is 0, and LP relaxation cannot
take on a negative value and hence must be equal and integral.

SWP. It is known that SWP is PTIME for self-join free queries if
and only if they have the head clustering property [26], which is a
restriction of the head domination property. We are again able to
show that for such queries that have the head clustering property,
if we pose SWP(𝐿,D) in the GDP framework, then the LP relaxation
LP[GDPSWP(𝐿,D)] is equivalent to the solution of SWP(𝐿,D).

P)($(*+,+(- 6.3. LP[GDPSWP(𝐿,D)] = SWP(𝐿,D) for all data-
base instances D under set and bag semantics if 𝐿 is a self-join free
conjunctive query with the head clustering property.

Proof Intuition. We "rst simplify the ILP and phrase it in terms
of variables 𝑔 [𝑐] = 1 ≃ 𝑄 [𝑐]. We next show that due to the head
clustering property, the ILP can be decomposed into multiple in-
dependent ILPs, corresponding to di!erent existentially connected
components of the query. For each such component, the correct
solution can be obtained by preserving an arbitrary witness for
each projection, and hence the LP relaxation must be tight.

ADP-SS. A complexity dichotomy for the ADP-SS problem for
self-join free queries under set semantics is known. However, the
complexity criterion [27] is much more involved. In particular,
ADP-SS for a self-join free query is PTIME if and only if (1) The
query is Boolean and does not have a triad, (2) The query has a
singleton relation, (3) Repeated application of decomposition by
removing head variables that are present in all atoms, and treat-
ing disconnected components of a query independently, results
in queries that are tractable. We show that no matter the reason
for tractability, if we pose ADP-SS(𝐿,D,𝑏) in the GDP framework,
then the LP relaxation LP[ADP-SS] is equivalent to the solution of
ADP-SS(𝐿,D,𝑏).

P)($(*+,+(- 6.4. LP[GDPADP-SS(𝐿,D)] = SWP(𝐿,D) for all data-
base instancesD if𝐿 is a self-join free for which ADP-SS(𝐿) is known
to be tractable under set semantics.

Proof Intuition. The proof of optimality of the LP relaxation for
ADP-SS is similar to the proof for tractability in ADP-SS[27] in terms
of the base cases and how queries are decomposed. For the base
case of boolean queries without a triad, we use the proof of Propo-
sition 6.1 as an argument, while for the base case of singleton
relations, we use the proof similar to that of Proposition 6.2. We
also show that the value of the LP relaxation is preserved even
when the query is decomposed into multiple parts.

7 EXPERIMENTS
The goal of our experiments is to evaluate the performance of
our uni"ed ILP[GDP] (which is our short form for ILPS[GDP]) by
answering the following 4 questions: (Q1) Is the performance of

2676

Is Integer Linear Programming All You Need for Deletion Propagation?

ILP[GDP] comparable to previously proposed specialized algorithms
tailored to PTIME cases of particular DP problems? (Q2) Can our
uni"ed ILP[GDP] indeed e#ciently solve new tractable cases with
self-joins, unions, and bag semantics that we proved to be in PTIME
in the full paper [36]? (Q3) What, if any, is the performance bene"t
we obtain via smoothing constraints as discussed in Section 5? (Q4)
What is the scalability of solving completely novel DP problems
that fall into our uni"ed GDP framework on real-world data?

Algorithms. ILP[GDP] denotes our ILP formulation for the gen-
eralized deletion propagation. DPVS-S, SWP-S, ADP-S denote prior
specialized algorithms (“-S”) for the three problems V DP-VS [32],
S SWP [26], and A ADP-SS [27], respectively. Recall that these are
dedicated algorithms proposed for a PTIME cases of particular prob-
lems. We were not able to "nd open source code for any of these
problems and implemented them based on the pseudocode provided
in the respective papers that proposed them: V [32], S [26], A
[27]. To the best of our knowledge, no experimental evaluation has
ever been undertaken for some of these algorithms [26, 32]. We do
not include experimental comparison for DP-SS, as for this problem
the ILP[GDP] produced is exactly the same as a prior specialized
approach [35], and hence there is no di!erence in performance.

Data. For most experiments we generate synthetic data by "x-
ing the max domain size to 1000, and sampling randomly from all
possible tuples. For experiments under bag semantics, each tuple is
duplicated by a random number that is smaller than a pre-speci"ed
max bag size of 10. For answering (4) in Fig. 9, we use an exist-
ing $ights’ database [47] that shows $ights operated by di!erent
airlines in Jan 2019 as real world data case study on a novel problem.

Software and Hardware. The algorithms are implemented
in Python 3.8.8 and solve the optimization problems with Gurobi
Optimizer 10.0.1. Experiments are run on an Intel Xeon E5-2680v4
@2.40GHmachine available via the Northeastern Discovery Cluster.

Experimental Protocol. For each plot we run 3 runs of loga-
rithmically and monotonically increasing database instances. We
plot all obtained data points with a low saturation, and draw a trend
line between the median points from logarithmically increasing
sized buckets. All plots are log-log, and we include a dashed line to
show linear scalability as reference in the log-log plot.

(Q1) Known tractable cases. Is the performance of ILP[GDP] over
PTIME instances comparable to specialized algorithms studied in
prior work? We pick the 3-star query𝐿3⇓(𝑕) :≃𝑂(𝑕,𝑖), 𝑉(𝑕, 𝑗),𝑂(𝑕,𝑘),
for which all three problems can be solved in PTIME. We run all
three problems on this query and compare the performance of
ILP[GDP] against specialized algorithms. The ILP and the LP have
worse worst-case complexity than the specialized algorithms, how-
ever we see that ILP[GDP] is at times even faster than the specialized
algorithms, due to the better heuristics used in the ILP solver. In
Fig. 7a, we see that ILP[GDP] is about 20 times worse than the spe-
cialized algorithms for D DP-VS. But this is expected for this case,
since the PTIME cases of DP-VS are only those where there are no
side e"ects and any tuple that contributes to the answer can be
deleted, thus making the problem solvable via a trivial algorithm.
However, in Figs. 7c and 7e, we see that ILP[GDP] is about 2 and
3 orders of magnitude faster than the specialized algorithms for S
SWP and A ADP-SS, both of which use decomposition based tech-
niques, with the specialized algorithm for A ADP-SS also requiring

𝐿3⇓

(Known tractable Case)
𝐿∋-

(Tractable for DP-VS and SWP)

V
DP

-V
S

(a) (b)

S
SW

P

(c) (d)

A
AD

P-
SS

(e) (f)

Figure 7: (Q1)/(Q2): Performance of ILP[GDP] on a previously known
(left column compared against prior specialized algorithms) and a
newly discovered tractable query (right columnwith no prior known
specialized algorithm) for three prior studied problems V DP-VS,
S SWP, and A ADP-SS. In all cases, ILP[GDP] scales well under the
theoretical worst case complexity of ILPs and LPs. This is due to
the nice algorithmic properties of ILP[GDP], which ensure that the
optimal LP solution is integral for all known tractable queries.

dynamic programming. Thus, although the specialized algorithms
have better asymptotic "ne-grained complexity and will perform
better on adversarially chosen instances, over random instances
the LP solver (using heuristics) is able to "nd a solution faster.

(Q2) Newly discovered Tractable cases. We evaluate the perfor-
mance of ILP[GDPDP-VS], ILP[GDPSWP] and ILP[GDPADP-SS] for𝐿∋-, a
query with self-joins and a union that we run under bag semantics.
We showed in the online appendix that the D DP-VS, S SWP, and
A ADP-SS problems are tractable for this query under bag seman-
tics. There are no known specialized algorithms for these problems,
and thus we only compare the performance of ILP[GDP] with the
PTIME LP Relaxation. We see in Figs. 7b, 7d and 7f that the ILP is
as fast as its LP Relaxation and shows linear scalability even for
this complicated setting.

(Q3) The Power of Smoothing Constraints. Figure 8 shows
two orders of magnitude speedup in the ILP solving time after
adding our Smoothing Constraint (SC). We run ILP[GDPSWP] for the

2677

Neha Makhija and Wolfgang Ga!erbauer

637x (3h 15m)

110x

18 sec

Figure 8: (Q3): Experiment showing the power of Smoothing Con-
straints in ILP[GDP]: we observe that ILP[GDP] is orders-of-magnitude
faster than the naive ILP formulation ILPN[GDP], while also guar-
anteeing the optimality of its LP relaxation. Contrast with the LP
relaxation of ILPN[GDP] which can have an over 30% higher optimal
objective (GDP) value.

3-star query𝐿3⇓, contrasting ILP[GDP]with and without smoothing
constraints. Since we show in Section 6 that the LP relaxation of
ILP[GDP] shares the same optimum objective value, this surprising
speed-up completely justi"ed by our the fact that ILP solvers can
solve ILPs e#ciently when the LP relaxation is tight. Moreover, we
see that the LP relaxation of ILP[GDPSWP] is always tight for the𝐿3⇓

query. This is notably not true for the naive ILP formulation, which
can have an over 30% higher optimal objective (GDP) value.6

(Q4) General performance.We use the $ights’ database [47] that
shows 500K+ $ights operated by 17 di!erent airlines in Jan 2019.We
take the use case of Example 1 and solve the GDP with the following
requirements: (1) Cut 2% of total costs of the airline, (2) Let the
connection network of an airline contain all pairs of places that have
a direct (0-hop) or 1-hop $ight between them. Minimize the e!ect
of deletions on the connection network i.e., minimize the number
of location pairs that are removed from the connection network.
(3) A subset of pairs of places are “popular connections”. Ensure
that such connections are preserved in the connection network. For
our case study, we assign a random expense value to each airport
as an airport fee and each $ight as a fuel cost, since the dataset
does not contain any cost information. However, such information
or cost factors if known can be easily incorporated into the ILP
formulation by simply changing the randomly assigned costs to
the actual costs. We assume if an airline uses an airport, it must
pay its fee and assume that there are no additional costs. We show
in Fig. 9 the time to solve the GDP for this use case via ILP[GDP],
and compare it to the LP relaxation. We see that even for this real-
world dataset, where there are no guarantees on the properties of
ILP[GDP], most instances are solved in well under a minute, and
the optimal solutions of the ILP and LP relaxation coincide in many
cases.7

8 A NOTE ON SYSTEM IMPLEMENTATION
Our current proof of concept (see Section 7) uses Python to com-
pute the provenance of query results, and to translate this into
an ILP formulation. This part could be more tightly integrated
6Due to SWP being a maximization problem being posed as a minimization problem
through GDPSWP , the optimal values of GDPSWP are negative, and hence the magnitude
of the LP relaxation is higher than the ILP (despite the LP being a lower bound).
7We observed that in some cases, ILP is faster than LP. This is a known observation
and may be due to numerical and $oating-point issues [23].

Figure 9: (Q4): Performance Evaluation of the Generalized Deletion
Propagation over a real-world dataset shows fast solve times (within
a minute) and comparable to linear-time (black dashed line) scala-
bility.

with existing database systems by leveraging existing e!orts in
our community that have been investigating how to repurpose
provenance functionality during query execution into PostgreSQL,
such as Perm [18, 19], GProM [3], or ProvSQL [52]. Furthermore,
the extensibility features of today’s database systems could be used
to add such an ILP solver to the database systems, just user de"ned
functions can be written in programming languages other than
the native SQL [6, 8, 34]. Such integrations of highly sophisticated
solvers for solving important database problems have been pre-
viously proposed for consistent query answering [12] and query
optimization [54], and we believe will become more common.

We believe our uni"ed approach provides an easier integration
into existing database infrastructure than prior solutions for sev-
eral reasons: 1 Prior solutions to individual problems use di!er-
ent solution approaches (e.g., ADP-SS uses dynamic programming,
whereas DP-SS uses reduction to $ow). Thus an integration of all
prior work would require several adaptations, one for each method.
2 For an approach to be natively supported by a relational data-
base (thus without user de"ned functions written in a programming
language), the approach would have to be "rst-order rewritable.
Among the prior solutions, the only cases we know of that are
"rst-order rewritable are the few PTIME cases for DP-VS [32]. All
other approaches require writing functionality in programming
languages other than SQL, just as ours. 3 All prior exact methods
(except [35]) are incomplete in that they work only for those con-
junctive queries which can be solved in guaranteed PTIME. Only
some prior work propose approximation algorithms for the hard
cases (such as the one for DP-VS), yet implementing those require
yet other methods. 4 In addition, to our approach being the only
one that is complete, it also has a desirable anytime property: ILP
solvers can produce solutions of increasing quality as optimization
progresses and are able to provide bounds for how far the current
solution is from the optimum.

ACKNOWLEDGMENTS
This work was supported in part by the National Science Foun-
dation (NSF) under award number IIS-1762268 and IIS-1956096,
and conducted in part while the authors were visiting the Simons
Institute for the Theory of Computing.

REFERENCES
[1] Karen Aardal, George L Nemhauser, and Robert Weismantel. 2005. Handbooks

in Operations Research and Management Science: Discrete Optimization. Elsevier.

2678

Is Integer Linear Programming All You Need for Deletion Propagation?

doi:10.1016/s0927-0507(05)x1200-2
[2] Kaleb Alway, Eric Blais, and Semih Salihoglu. 2021. Box Covers and Domain

Orderings for Beyond Worst-Case Join Processing. In ICDT (LIPIcs, Vol. 186).
3:1–3:23. doi:10.4230/LIPICS.ICDT.2021.3

[3] Bahareh Sadat Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, and Qitian
Zeng. 2018. GProM - A Swiss Army Knife for Your Provenance Needs. IEEE Data
Eng. Bull. 41, 1 (2018), 51–62. http://sites.computer.org/debull/A18mar/p51.pdf

[4] Shahaf Bassan, Guy Amir, and Guy Katz. 2024. Local vs. Global Interpretability:
A Computational Complexity Perspective. In ICML (PMLR, Vol. 235). 3133–3167.
https://proceedings.mlr.press/v235/bassan24a.html

[5] Manuel Bodirsky, Zaneta Semanisinová, and Carsten Lutz. 2024. The Complexity
of Resilience Problems via Valued Constraint Satisfaction Problems. In LICS.
ACM, 14:1–14:14. doi:10.1145/3661814.3662071

[6] Matteo Brucato, Azza Abouzied, and Alexandra Meliou. 2019. Scalable computa-
tion of high-order optimization queries. Commun. ACM 62, 2 (2019), 108–116.
doi:10.1145/3299881

[7] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. 2002. On Propagation
of Deletions and Annotations Through Views. In PODS. 150–158. doi:10.1145/54
3613.543633

[8] Surajit Chaudhuri. 2019. To do or not to do: extending SQL with integer linear
programming?: technical perspective. Commun. ACM 62, 2 (2019), 107. doi:10.1
145/3299879

[9] Michael B Cohen, Yin Tat Lee, and Zhao Song. 2021. Solving linear programs in
the current matrix multiplication time. Journal of the ACM (JACM) 68, 1 (2021),
1–39. doi:10.1145/3424305

[10] Michele Conforti, Gérard Cornuéjols, and Kristina Vu%kovi&. 2006. Balanced
matrices. Discrete Mathematics 306, 19-20 (2006), 2411–2437. doi:10.1016/j.disc.2
005.12.033

[11] Umeshwar Dayal and Philip A. Bernstein. 1982. On the Correct Translation
of Update Operations on Relational Views. ACM TODS 7, 3 (1982), 381–416.
doi:10.1145/319732.319740

[12] Akhil A. Dixit and Phokion G. Kolaitis. 2022. Consistent Answers of Aggregation
Queries via SAT. In ICDE. IEEE, 924–937. doi:10.1109/ICDE53745.2022.00074

[13] Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal aggregation algo-
rithms for middleware. In PODS. 102–113. doi:10.1145/375551.375567

[14] Cibele Freire, Wolfgang Gatterbauer, Neil Immerman, and Alexandra Meliou.
2015. The Complexity of Resilience and Responsibility for Self-Join-Free Conjunc-
tive Queries. PVLDB 9, 3 (2015), 180–191. http://www.vldb.org/pvldb/vol9/p180-
freire.pdf

[15] Cibele Freire, Wolfgang Gatterbauer, Neil Immerman, and Alexandra Meliou.
2020. New Results for the Complexity of Resilience for Binary Conjunctive
Queries with Self-Joins. In PODS. 271–284. doi:10.1145/3375395.3387647

[16] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness testing:
testing software for discrimination. In 11th Joint Meeting on Foundations of
Software Engineeriing (ESEC/FSE). 498–510. doi:10.1145/3106237.3106277

[17] Sainyam Galhotra, Amir Gilad, Sudeepa Roy, and Babak Salimi. 2022. HypeR:
Hypothetical Reasoning With What-If and How-To Queries Using a Probabilistic
Causal Approach. In SIGMOD. 1598–1611. doi:10.1145/3514221.3526149

[18] Boris Glavic. 2010. Perm: e$cient provenance support for relational databases.
Ph. D. Dissertation. University of Zurich. http://cs.iit.edu/%7edbgroup/assets/p
dfpubls/G10a.pdf

[19] Boris Glavic and Gustavo Alonso. 2009. The perm provenance management
system in action. In SIGMOD (Providence, Rhode Island, USA) (SIGMOD ’09).
1055–1058. doi:10.1145/1559845.1559980

[20] Boris Glavic, Alexandra Meliou, and Sudeepa Roy. 2021. Trends in explanations:
Understanding and debugging data-driven systems. Foundations and Trends in
Databases 11, 3 (2021). doi:10.1561/9781680838817

[21] Martin Grötschel, László Lovász, Alexander Schrijver, Martin Grötschel, László
Lovász, and Alexander Schrijver. 1993. The ellipsoid method. Geometric Algo-
rithms and Combinatorial Optimization (1993), 64–101. doi:10.1007/978-3-642-
78240-4_4

[22] LLC Gurobi Optimization. 2021. Mixed-Integer Programming (MIP) – A Primer
on the Basics. Retrieved 2025-05-24 from https://www.gurobi.com/resource/mip-
basics/

[23] LLC Gurobi Optimization. 2022. Gurobi Guidelines For Numerical Issues. Re-
trieved 2025-05-24 from https://www.gurobi.com/documentation/10.0/refman/g
uidelines_for_numerical_i.html

[24] LLC Gurobi Optimization. 2022. Gurobi Optimizer Reference Manual. Retrieved
2025-05-24 from http://www.gurobi.com

[25] Melanie Herschel, Mauricio A. Hernández, and Wang Chiew Tan. 2009. Artemis:
A System for Analyzing Missing Answers. PVLDB 2, 2 (2009), 1550–1553. doi:10
.14778/1687553.1687588

[26] Xiao Hu and Stavros Sintos. 2024. Finding Smallest Witnesses for Conjunctive
Queries. In ICDT (LIPIcs, Vol. 290). 24:1–24:20. doi:10.4230/LIPIcs.ICDT.2024.24

[27] Xiao Hu, Shouzhuo Sun, Shweta Patwa, Debmalya Panigrahi, and Sudeepa Roy.
2020. Aggregated Deletion Propagation for Counting Conjunctive Query An-
swers. PVLDB 14, 2 (2020), 228–240. doi:10.14778/3425879.3425892

[28] RichardMKarp. 1972. Reducibility among combinatorial problems. InComplexity
of computer computations. Springer, 85–103. doi:10.1007/978-1-4684-2001-2_9

[29] J. E. Kelley, Jr. 1960. The Cutting-Plane Method for Solving Convex Programs. J.
Soc. Indust. Appl. Math. 8, 4 (1960), 703–712. doi:10.1137/0108053

[30] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2016.
Joins via Geometric Resolutions: Worst Case and Beyond. ACM TODS 41, 4,
Article 22 (Nov. 2016), 45 pages. doi:10.1145/2967101

[31] Benny Kimelfeld. 2012. A Dichotomy in the Complexity of Deletion Propagation
with Functional Dependencies. In PODS. 191–202. doi:10.1145/2213556.2213584

[32] Benny Kimelfeld, Jan Vondrák, and Ryan Williams. 2012. Maximizing Conjunc-
tive Views in Deletion Propagation. ACM TODS 37, 4, Article 24 (2012), 37 pages.
doi:10.1145/2389241.2389243

[33] Benny Kimelfeld, Jan Vondrák, and David P.Woodru!. 2013. Multi-tuple Deletion
Propagation: Approximations and Complexity. PVLDB 6, 13 (2013), 1558–1569.
doi:10.14778/2536258.2536267

[34] Anh L. Mai, Pengyu Wang, Azza Abouzied, Matteo Brucato, Peter J. Haas, and
Alexandra Meliou. 2024. Scaling Package Queries to a Billion Tuples via Hierar-
chical Partitioning and Customized Optimization. PVLDB 17, 5 (2024), 1146–1158.
doi:10.14778/3641204.3641222

[35] Neha Makhija and Wolfgang Gatterbauer. 2023. A Uni"ed Approach for Re-
silience and Causal Responsibility with Integer Linear Programming (ILP) and LP
Relaxations. PACMMOD 1, 4, Article 228 (dec 2023), 27 pages. doi:10.1145/3626715

[36] NehaMakhija andWolfgang Gatterbauer. 2024. A Uni"ed and Practical Approach
for Generalized Deletion Propagation. arXiv:2411.17603 (2024). https://arxiv.or
g/abs/2411.17603

[37] Neha Makhija and Wolfgang Gatterbauer. 2025. Generalized Deletion Propoga-
tion: Code. https://github.com/northeastern-datalab/generalized-deletion-
propagation

[38] Joao Marques-Silva. 2023. Logic-Based Explainability in Machine Learning.
Springer Nature Switzerland, 24–104. doi:10.1007/978-3-031-31414-8_2

[39] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu.
2010. The Complexity of Causality and Responsibility for Query Answers and
non-Answers. PVLDB 4, 1 (2010), 34–45. http://www.vldb.org/pvldb/vol4/p34-
meliou.pdf

[40] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu.
2010. Why so? or Why no? Functional Causality for Explaining Query Answers,
In 4th International Workshop on Management of Uncertain Data (MUD). CoRR,
3–17. http://arxiv.org/abs/0912.5340

[41] Alexandra Meliou, Wolfgang Gatterbauer, and Dan Suciu. 2011. Reverse Data
Management. PVLDB 4, 12 (2011), 1490–1493. http://www.vldb.org/pvldb/vol4/
p1490-meliou.pdf

[42] Alexandra Meliou and Dan Suciu. 2012. Tiresias: the database oracle for how-to
queries. In SIGMOD. 337–348. doi:10.1145/2213836.2213875

[43] Dongjing Miao, Jianzhong Li, and Zhipeng Cai. 2020. The parameterized com-
plexity and kernelization of resilience for database queries. Theoretical Computer
Science 840 (2020), 199–211. doi:10.1016/j.tcs.2020.08.018

[44] Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. Explaining Wrong Queries
Using Small Examples. In SIGMOD. 503–520. doi:10.1145/3299869.3319866

[45] Stuart Mitchell, Michael OSullivan, and Iain Dunning. 2011. PuLP: a linear
programming toolkit for python. The University of Auckland, Auckland, New
Zealand 65 (2011). https://optimization-online.org/?p=11731

[46] Hung Q. Ngo, Dung T. Nguyen, Christopher Re, and Atri Rudra. 2014. Beyond
worst-case analysis for joins with minesweeper. In PODS. 234–245. doi:10.1145/
2594538.2594547

[47] Chandrasekhar Ramakrishnan. 2020. 2019-01 US Flights. doi:10.7910/DVN/WT
ZS4K

[48] Tim Roughgarden. 2020. Beyond the Worst-Case Analysis of Algorithms. Cam-
bridge University Press. doi:10.1017/9781108637435

[49] Sudeepa Roy and Dan Suciu. 2014. A Formal Approach to Finding Explanations
for Database Queries. In SIGMOD. 1579–1590. doi:10.1145/2588555.2588578

[50] Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. 2019. Interventional
fairness: Causal database repair for algorithmic fairness. In SIGMOD. 793–810.
doi:10.1145/3299869.3319901

[51] Alexander Schrijver. 1998. Theory of linear and integer programming. John Wiley
& Sons. doi:10.1137/1030065

[52] Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. 2018. ProvSQL:
Provenance and Probability Management in PostgreSQL. PVLDB 11, 12 (2018),
2034–2037. doi:10.14778/3229863.3236253

[53] Laurynas Siksnys and Torben Bach Pedersen. 2016. SolveDB: Integrating Op-
timization Problem Solvers Into SQL Databases. In SSDBM. ACM, 14:1–14:12.
doi:10.1145/2949689.2949693

[54] Immanuel Trummer and Christoph Koch. 2017. Solving the Join Order-
ing Problem via Mixed Integer Linear Programming. In SIGMOD. 1025–1040.
doi:10.1145/3035918.3064039

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, ’ ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In NeurIPS, Vol. 30. https://arxiv.org/abs/1706.03762

2679

https://doi.org/10.1016/s0927-0507(05)x1200-2
https://doi.org/10.4230/LIPICS.ICDT.2021.3
http://sites.computer.org/debull/A18mar/p51.pdf
https://proceedings.mlr.press/v235/bassan24a.html
https://doi.org/10.1145/3661814.3662071
https://doi.org/10.1145/3299881
https://doi.org/10.1145/543613.543633
https://doi.org/10.1145/543613.543633
https://doi.org/10.1145/3299879
https://doi.org/10.1145/3299879
https://doi.org/10.1145/3424305
https://doi.org/10.1016/j.disc.2005.12.033
https://doi.org/10.1016/j.disc.2005.12.033
https://doi.org/10.1145/319732.319740
https://doi.org/10.1109/ICDE53745.2022.00074
https://doi.org/10.1145/375551.375567
http://www.vldb.org/pvldb/vol9/p180-freire.pdf
http://www.vldb.org/pvldb/vol9/p180-freire.pdf
https://doi.org/10.1145/3375395.3387647
https://doi.org/10.1145/3106237.3106277
https://doi.org/10.1145/3514221.3526149
http://cs.iit.edu/%7edbgroup/assets/pdfpubls/G10a.pdf
http://cs.iit.edu/%7edbgroup/assets/pdfpubls/G10a.pdf
https://doi.org/10.1145/1559845.1559980
https://doi.org/10.1561/9781680838817
https://doi.org/10.1007/978-3-642-78240-4_4
https://doi.org/10.1007/978-3-642-78240-4_4
https://www.gurobi.com/resource/mip-basics/
https://www.gurobi.com/resource/mip-basics/
https://www.gurobi.com/documentation/10.0/refman/guidelines_for_numerical_i.html
https://www.gurobi.com/documentation/10.0/refman/guidelines_for_numerical_i.html
http://www.gurobi.com
https://doi.org/10.14778/1687553.1687588
https://doi.org/10.14778/1687553.1687588
https://doi.org/10.4230/LIPIcs.ICDT.2024.24
https://doi.org/10.14778/3425879.3425892
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/0108053
https://doi.org/10.1145/2967101
https://doi.org/10.1145/2213556.2213584
https://doi.org/10.1145/2389241.2389243
https://doi.org/10.14778/2536258.2536267
https://doi.org/10.14778/3641204.3641222
https://doi.org/10.1145/3626715
https://arxiv.org/abs/2411.17603
https://arxiv.org/abs/2411.17603
https:%20//github.com/northeastern-datalab/generalized-deletion-propagation
https:%20//github.com/northeastern-datalab/generalized-deletion-propagation
https://doi.org/10.1007/978-3-031-31414-8_2
http://www.vldb.org/pvldb/vol4/p34-meliou.pdf
http://www.vldb.org/pvldb/vol4/p34-meliou.pdf
http://arxiv.org/abs/0912.5340
http://www.vldb.org/pvldb/vol4/p1490-meliou.pdf
http://www.vldb.org/pvldb/vol4/p1490-meliou.pdf
https://doi.org/10.1145/2213836.2213875
https://doi.org/10.1016/j.tcs.2020.08.018
https://doi.org/10.1145/3299869.3319866
https://optimization-online.org/?p=11731
https://doi.org/10.1145/2594538.2594547
https://doi.org/10.1145/2594538.2594547
https://doi.org/10.7910/DVN/WTZS4K
https://doi.org/10.7910/DVN/WTZS4K
https://doi.org/10.1017/9781108637435
https://doi.org/10.1145/2588555.2588578
https://doi.org/10.1145/3299869.3319901
https://doi.org/10.1137/1030065
https://doi.org/10.14778/3229863.3236253
https://doi.org/10.1145/2949689.2949693
https://doi.org/10.1145/3035918.3064039
https://arxiv.org/abs/1706.03762

Neha Makhija and Wolfgang Ga!erbauer

[56] XiaolanWang, Alexandra Meliou, and EugeneWu. 2017. QFix: Diagnosing errors
through query histories. In SIGMOD. 1369–1384. doi:10.1145/3035918.3035925

[57] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining Away Outliers in
Aggregate Queries. PVLDB 6, 8 (2013), 553–564. doi:10.14778/2536354.2536356

2680

https://doi.org/10.1145/3035918.3035925
https://doi.org/10.14778/2536354.2536356

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Generalized Deletion Propagation
	4.1 Defining Generalized Deletion Propagation
	4.2 Capturing Prior Variants of Deletion Propagation with GDP
	4.3 Capturing Natural New Variants of Deletion Propagation with GDP

	5 ILP Framework for GDP
	5.1 A basic ILP Formulation for GDP
	5.2 Wildcard Semantics for X[w] and X[v]
	5.3 ILP with Smoothing Constraints

	6 Recovering Existing Tractability Results
	7 Experiments
	8 A Note on System Implementation
	Acknowledgments
	References

