
Conformal Prediction for Verifiable Learned Query Optimization
Hanwen Liu

University of Southern California
Los Angeles, California, USA

hanwen_liu@usc.edu

Shashank Giridhara∗
Amazon Web Services

Palo Alto, California, USA
smgiridh@amazon.com

Ibrahim Sabek
University of Southern California
Los Angeles, California, USA

sabek@usc.edu

ABSTRACT
Query optimization is critical in relational databases. Recently, nu-
merous Learned Query Optimizers (LQOs) have been proposed,
demonstrating superior performance over traditional hand-crafted
query optimizers after short training periods. However, the opacity
and instability of machine learning models have limited their prac-
tical applications. To address this issue, we are the first to formulate
the LQO verification as a Conformal Prediction (CP) problem. We
first construct a CP model and obtain user-controlled bounded
ranges for the actual latency of LQO plans before execution. Then,
we introduce CP-based runtime verification along with violation
handling to ensure performance prior to execution. For both scenar-
ios, we further extend our framework to handle distribution shifts
in the dynamic environment using adaptive CP approaches. Finally,
we present CP-guided plan search, which uses actual latency upper
bounds from CP to heuristically guide query plan construction.
We integrated our verification framework into three LQOs (Balsa,
Lero, and RTOS) and conducted evaluations on several workloads.
Experimental results demonstrate that our method is both accurate
and efficient. Our CP-based approaches achieve tight upper bounds,
reliably detect and handle violations. Adaptive CP maintains accu-
rate confidence levels even in the presence of distribution shifts,
and the CP-guided plan search improves both query plan quality
(up to 9.84x) and planning time, with a reduction of up to 74.4% for
a single query and 9.96% across all test queries from trained LQOs.

PVLDB Reference Format:
Hanwen Liu, Shashank Giridhara, and Ibrahim Sabek. Conformal
Prediction for Verifiable Learned Query Optimization. PVLDB, 18(8): 2653 -
2666, 2025.
doi:10.14778/3742728.3742755

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ihanwen99/Conformal-Prediction-for-Verifiable-Learned-
Query-Optimization.

1 INTRODUCTION
A query optimizer is a performance-critical component in every
database system. It translates declarative user queries into efficient
execution plans [3, 45]. There have been numerous efforts to learn
query optimizers (LQOs)(e.g., [18, 34, 35, 59]) to reduce the reliance

∗Work done while at USC’s NexDIG group.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742755

on manual tuning and expert intervention, and ultimately lead to
more intelligent and responsive database systems. Unfortunately,
LQOs suffer three main drawbacks. First, they can result in slow
execution plans at the beginning of the learning process (sometimes
orders of magnitude slower than the optimal plan [28]), where the
probability of selecting disastrous plans is high. These disastrous
plans at the beginning can slow the LQO’s convergence to efficient
query plans. Second, although LQOs can outperform traditional
optimizers on average, they can perform catastrophically in the
tail cases, especially when the training data is sparse [35]. Third,
LQOs are normally trained for specificworkload. Their performance
degrades significantly when distribution shifts exist in the query
workloads and the underlying data [35, 40, 49].

Given these drawbacks, verifying that the LQO’s generated plans
satisfy the critical latency constraints in real-life applications is cru-
cial. Unfortunately, typical model checking techniques (e.g., [9, 11])
that have been successfully investigated to verify the properties
of other database components, such as transaction management
and concurrency control, fail when the search space to be explored
grows drastically as in query optimizers. In addition, statistical vari-
ations of these techniques (e.g., [10]) do not perform verification
during the runtime. Using these techniques, an LQO might be veri-
fied to be constraint-compliant a priori. However, during runtime,
we may observe certain query plans that violate the constraints
due to the unforeseen changes in the execution environment. In
such case, these techniques should provide runtime verification.
Additionally, these techniques should also be capable of verifying
LQOs operating in dynamic environments.

Recently, Conformal Prediction (CP) [2, 55] has emerged as an
efficient solution to perform runtime verification (e.g., [6, 56]) with
formal guarantees (e.g., [8, 12, 29, 44]). In particular, CP is a rigorous
statistical tool to quantify the uncertainty of the ML models’ predic-
tions while allowing users to specify the desired level of confidence
in the quantification and being agnostic to the details of the ML
models. CP-based runtime verification showed a great success in
verifying cyber-physical systems such as autonomous cars [29],
autonomous robots [41], and aircraft simulation [29, 44], among
others. However, CP-based runtime verification was never explored
in the context of database systems before.

In this paper, we present the first study of the LQO verification
problem using CP. Specifically, we use CP to solve the LQO verifi-
cation problem in three ways. First, we employ CP to provide user-
controlled bounded ranges for the actual latency of constructed
plans by LQOs even before executing them (e.g., verifying that an
LQO plan for a specific query will never result in an execution time
of more than 300 msec with a probability of at least 90%). Second,
we go further and explore the use of CP to perform a runtime verifi-
cation, with formal bounds, that can early detect any performance
constraint violation during the LQO’s plan construction process

2653

https://doi.org/10.14778/3742728.3742755
https://github.com/ihanwen99/Conformal-Prediction-for-Verifiable-Learned-Query-Optimization
https://github.com/ihanwen99/Conformal-Prediction-for-Verifiable-Learned-Query-Optimization
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742755
https://www.acm.org/publications/policies/artifact-review-and-badging-current

based solely on the constructed partial plans so far and before the
full plan is completed (e.g., with a user-defined confidence level
of 95%, we can detect at the second step of building a query plan
by the LQO that the eventual complete plan will fail to satisfy a
specific latency constraint). This will help in planning how to han-
dle such violations during the plan construction before execution
(e.g., falling back to a traditional query optimizer for re-planning).
For both scenarios, we introduce an adaptive CP framework to
support LQOs in static cases (LQOs are trained and tested on the
same workload) and in distribution shift cases (evaluating LQOs on
different workloads). Additionally, we propose a CP-guided plan
search algorithm that relies on upper bounds of the actual latency,
instead of typical predicted costs by LQOs, to generate more op-
timal query plans within shorter time frames. We also provide
rigorous theoretical proofs of our approaches to ensure correct-
ness and frameworks that facilitate the integration of our CP-based
verification approaches with LQOs in real-world environments.

Our experimental results on the JOB [28] and TPC-H [7] work-
loads confirm the correctness of latency bounds across multiple
LQOs, including Balsa [59], Lero [64], and RTOS [62], all aligning
with theoretical expectations. We then demonstrate the effective-
ness of our adaptive CP framework under distribution shift by
evaluating it on workloads transitioning to CEB [39] and JOBLight-
train [24]. In runtime verification, we show that our CP-based meth-
ods accurately detect violations, and our violation handling reduces
overall execution latency by 12,030.1 ms across 7 violating queries.
Using the CP-guided algorithm, our approach improves plan quality
in 33% of queries from a moderately trained LQO, achieving an
additional 9.96% reduction in overall planning latency across all test
queries. For well-trained LQOs, we observe better plan quality and
faster query planning with our CP-guided plan search algorithm.
These comprehensive experiments substantiate the correctness and
effectiveness of our CP-based verification frameworks.

In summary, our novel contributions are as follows:

• We are the first to formulate the Learned Query Optimizer
(LQO) verification as a Conformal Prediction (CP) problem.
• We develop CP-based latency bounds for LQOs, with formal

proofs, to provide a user-defined confidence level a bounded
range for the actual latency of query plans.

• Wedesign CP-based runtime verification, with formal bounds,
which detect and address long-latency query plans even
before completing the plan construction.

• Wepropose anAdaptive CP framework for LQOswhich aids
in handling distribution shifts, enhancing the robustness
of the verification framework for real-world scenarios.

• We introduce a generic CP-guided plan search algorithm
that can enhance both the query plan quality and the plan-
ning time from a trained LQO.

• Our experimental evaluation using the proposed CP-based
verification frameworks, across three LQOs and four work-
loads, demonstrates the correctness and effectiveness of
our CP-based frameworks for LQOs.

We believe that our proposed CP-based verification approaches
hold promising potential for future applications across other learned
components in database systems.

Complete
Candidate

 Plans

User
Query

Black-Box LQO (e.g., Bao, RTOS)

 Candidate Plans Generator
with Traditional Optimizer

Learned Complete Plan Selector

Partial
Plans

Predicted
 Cost

 Predicted
 Cost

Predicted
 Cost

User
Query

White-Box LQO (e.g., Balsa, Neo)

Partial Plans Constructor/Searcher

Learned Cost Predictor

Final Plan
and its

Predicted
Cost

Extra Info
(e.g.,

hint sets or
join order)

(a) ML Decision Per Partial Plan

(b) ML Decision Per Complete Plan

Final Plan
and its

Predicted
Cost

Step 1 Step 2 Step 3

Figure 1: ML Decisions in Learned Query Optimizers (LQOs).

2 BACKGROUND
In this section, we first discuss the granularity levels of prediction
decisions to be verified in learned query optimizers (Section 2.1).
Then, we provide a brief introduction for the Conformal Prediction
(Section 2.2) and Signal Temporal Logic (Section 2.3) tools that are
used to build our verification framework and formally represent
the performance constraints we verify LQOs against, respectively.

2.1 Granularity Levels of Decisions to be
Verified in Learned Query Optimizers

While Learned Query Optimizers (LQOs) (e.g., [18, 34, 35, 59, 62, 64])
can improve the performance over traditional optimizers by adapt-
ing to complex queries and data distributions, their reliance on ML
models to take decisions introduces variability and potential unpre-
dictability in performance. Therefore, verifying LQOs against user-
defined performance constraints is crucial to ensure that generated
plans meet specific efficiency and reliability standards (e.g., the exe-
cution time of a specific query should be ≤ 100ms). Broadly, LQOs
fall into three categories based on how ML is used. The first cate-
gory uses ML to improve specific components of the optimizer (e.g.,
cardinality estimator [25, 49, 60] and cost estimator [37, 48]). The
second category uses ML to construct the query plan from scratch,
replacing the traditional optimizer (e.g., [35, 59]). The third category
uses ML to steer the traditional optimizer in constructing better
candidate plans and/or in selecting among them (e.g., [34, 62, 64]).
In this paper, we focus on verifying the ML decisions made by LQOs
in the second and third categories only, where ML is involved in
constructing the query plan itself. However, the granularity level
of these decisions differs between these two categories. Figure 1
shows a high-level overview of these two LQO categories, highlight-
ing their ML decisions in red. In the second category, fine-grained
prediction decisions are performed to construct the query plan step-
by-step and predict the associated cost at each step1. For instance,
Balsa [59] uses a learned value model to construct the optimized

1In this paper, we assume that the cost of a plan is indicative of its actual latency,
where a higher cost corresponds to longer latency.

2654

plan operator-by-operator and predict the intermediate cost for the
final plan construction at each operator. We refer to the second
category as white-box LQOs because we rely on these fine-grained
prediction decisions during the verification process. In contrast, in
the third category, learned models neither perform step-by-step
plan construction nor intermediate cost predictions. Instead, these
models are used to select the best plan from a set of candidate plans,
either by predicting the high-level cost for each candidate [34] or
by assigning a relative rank to all candidates [62]. These candidate
plans are typically constructed by a traditional optimizer and based
on auxiliary information, such as join orders [62] and hint sets [34].
Therefore, in this category, the selection decisions are mainly only
on the level of the whole plan and its high-level associated cost,
if available. We refer to the third category as black-box LQOs be-
cause we only access coarse-grained plan-level decisions (i.e., no
partial-plan-level predictions) during the verification process.

2.2 Standard Conformal Prediction (CP)
We build our LQO verification framework, as shown later, based on
Conformal Prediction (CP) [2, 55], a rigorous statistical tool that
efficiently quantifies the uncertainty of the ML models’ predictions.
CP enables users to specify the desired level of confidence in the
quantification while being agnostic to the details of the ML models.
To introduce CP, assume that 𝑅 (0) , 𝑅 (1) , . . . , 𝑅 (𝐾) are 𝐾 + 1 inde-
pendent and identically distributed (i.i.d) random variables, where
each variable 𝑅 (𝑖) for 𝑖 ∈ {0, . . . , 𝐾} is an estimate of the prediction
error between the true output 𝑦 (𝑖) , i.e., ground truth, for input 𝑥 (𝑖)

and the predicted value of this output 𝜂 (𝑥 (𝑖)) by the ML predictor 𝜂.
Formally, this error can be expressed as:

𝑅 (𝑖) = ∥𝑦 (𝑖) − 𝜂 (𝑥 (𝑖))∥

where ∥·∥ denoting the absolute value. 𝑅 (𝑖) is commonly referred to
as the non-conformity score, where a small score suggests a strong
predictive model and a large score indicates poorer performance
(i.e., less accurate predictions).

Now, assuming that 𝑅 (0) belongs to test data and 𝑅 (1) , . . . , 𝑅 (𝐾)
are calibration data, the objective of CP is to quantify the uncer-
tainty of 𝑅 (0) using 𝑅 (1) , . . . , 𝑅 (𝐾) . Specifically, for a user-defined
uncertainty probability 𝛿 ∈ [0, 1] (i.e., 1 − 𝛿 is a confidence level),
CP aims to compute an upper bound 𝐶 (𝑅 (1) , . . . , 𝑅 (𝐾)) for the pre-
diction error 𝑅 (0) such that:

Prob(𝑅 (0) ≤ 𝐶 (𝑅 (1) , . . . , 𝑅 (𝐾))) ≥ 1 − 𝛿 (1)

This upper bound 𝐶 (𝑅 (1) , . . . , 𝑅 (𝐾)) can be efficiently determined
by computing the (1 − 𝛿)th quantile of the empirical distribution
of 𝑅 (1) , . . . , 𝑅 (𝐾) and ∞, assuming training, calibration, and test-
ing data originate from the same underlying distribution (i.e., the
scores 𝑅 (0) , 𝑅 (1) , . . . , 𝑅 (𝐾) are exchangeable) [2]. Although this as-
sumption aligns with the data and workload scenarios used in most
state-of-the-art workload-aware LQOs (e.g., [34, 35, 59]), we extend
our LQO verification framework to support adaptive CP for distri-
bution shifts [63] as shown later in Section 3.2. For simplicity, we
refer to the upper bound 𝐶 (𝑅 (1) , . . . , 𝑅 (𝐾)) as 𝐶 in the rest of the
paper. Note that CP guarantees marginal coverage, which is not
conditional on the calibration data [2].

2.3 Formal Representation of Performance
Constraints to be Verified with CP

To formally represent the desired performance constraints to ver-
ify against LQOs, we employ Signal Temporal Logic (STL) [17], a
CP-compliant formal logical language for verification. STL was orig-
inally introduced to verify the properties of time series data (e.g., sig-
nals), especially in the context of cyber-physical systems [33]. STL
can also handle non-traditional time-series data where sequence
or order matters. An STL specification 𝜙 is recursively defined as
𝜙 = 𝑇𝑟𝑢𝑒 | 𝜇 | ¬𝜙 | 𝜙 ∧𝜓 | G[𝑎,𝑏]𝜙 , where𝜓 is an STL formula. ¬
and ∧ are the not and conjunction operators, respectively. The al-
ways operator G[𝑎,𝑏]𝜙 encodes that 𝜙 has to be always true for the
entire duration or steps between 𝑎 and 𝑏. 𝜇 is a predicate to check
whether the semantics of the specification 𝜙 are achieved or not,
i.e., 𝜇 : R𝑛 → {True, False}. For instance, we can define an operator
G[0,𝑁−1]𝜙 to check whether the query plan generated by a LQO
will always have a latency less than 750 msec at each of its 𝑁 exe-
cution steps (i.e., partial plans). In this case, 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑁−1)
will represent the partial plan latencies at steps 0, 1, . . . , 𝑁 − 1 and
the condition 𝑥𝜏 < 750 forms the semantics of the specification 𝜙
that needs to be checked at each step 𝜏 .

Moreover, we can use robust semantics 𝜌𝜙 (𝑥), as in [17, 19],
to extend the binary evaluation of STL satisfaction (i.e., 𝜇 (𝑥)) by
providing a quantitative measure of the degree to which this sat-
isfaction is achieved. Unlike traditional binary satisfaction, robust
semantics 𝜌𝜙 (𝑥) produces a real-valued metric: positive values
indicate that the specification 𝜙 is satisfied, with the magnitude
representing the strength of satisfaction, whereas negative values
denote a violation, with the magnitude reflecting the severity of the
violation. For example, considering the previously discussed speci-
fication 𝜙 with condition 𝑥𝜏 < 750, the robust satisfaction 𝜌𝜙 (𝑥)
can be defined to provide a quantitative measure of how robustly
all latencies 𝑥 satisfy this condition by calculating (750 − 𝑥𝜏) for
each 𝑥𝜏 ∈ 𝑥 . In this case, 𝑥𝜏 = 100 exhibits stronger robustness in
satisfying 𝜙 than 𝑥𝜏 = 600, whereas 𝑥𝜏 = 800 results in a violation.
More details about robust STL semantics are in [17, 19].

3 CP-BASED LATENCY BOUNDS FOR LQOS
As mentioned in Section 2.1, we focus on two categories of LQOs:
white-box and black-box, both of which use learned models to con-
struct the query plan itself. In white-box LQOs (e.g., [35, 59]), the
learned model builds the query plan incrementally, constructing
one partial plan at a time based on a predicted cost (Figure 1 (a)).
Here, we employ CP to obtain user-controlled bounded ranges for
the actual latency (not the predicted cost) of these constructed
partial plans before executing them. For example, given a partial
plan 𝑠 and a user-defined confidence level (i.e., 1 − 𝛿) of 90%, we
can determine a latency range [𝑙𝑠

𝑚𝑖𝑛
, 𝑙𝑠𝑚𝑎𝑥] that the latency 𝑙𝑠 of 𝑠

will fall within with at least 90% probability, where 𝑙𝑠
𝑚𝑖𝑛

and 𝑙𝑠𝑚𝑎𝑥
represent the lower and upper latency bounds, respectively. The
intuition is to leverage CP to gain insights into the relationship
between predicted costs and actual latencies of partial plans from
the LQO’s calibration query workloads, and then use these insights
to obtain latency ranges for testing queries.

Similarly, in black-box LQOs (e.g., [34, 62]), we use CP to pro-
vide such user-controlled bounded ranges, yet for the end-to-end

2655

latencies of complete plans rather than partial ones. This is because
black-box LQOs rely on learned models solely to select the best
plan among complete candidates (Figure 1 (b)).
Latency-Cost Non-conformity Score. A critical step in applying
CP is defining the non-conformity score 𝑅 (check Section 2.2), as
it quantifies the deviation between the predicted and actual out-
comes. In the LQO context, we focus on how the actual latency
of a plan, whether partial or complete, deviates from its predicted
cost2. Following the CP notation, we formally define a latency-cost
non-conformity score 𝑅 (𝑖) for the plan at step 𝜏 in a query 𝑞 𝑗 to be:

𝑅 (𝑖) = ∥𝑡 (𝑗)𝜏 − 𝑐 (𝑗)𝜏 ∥ (2)

where 𝑡 (𝑗)𝜏 is the actual latency of this plan and 𝑐 (𝑗)𝜏 is its predicted
cost. Note that 𝑅 (𝑖) represents a score for a calibration plan (i.e.,
𝑅 (𝑖) ∈ {𝑅 (1) , . . . , 𝑅 (𝐾) }) when 𝑞 𝑗 belongs to the calibration work-
load Q𝐶𝑎𝑙 and represents a score for a testing plan 𝑅 (0) when 𝑞 𝑗
belongs to the testing workload Q𝑇𝑠𝑡 .

In the following, we introduce our approach for using CP to
obtain the bounded latency ranges when the calibration and testing
distributions are similar, i.e., static case, (Section 3.1), and then we
extend it to handle distribution shifts in the testing distribution, i.e.,
distribution shift case (Section 3.2). Finally, we detail our proposed
verification framework (Section 3.3).

3.1 Latency Bounds in Static Cases
Using equations 1 and 2, we can directly derive an upper bound 𝐶
on the latency of any plan, whether partial or complete, in a testing
query as the (1 − 𝛿)th quantile of the latency-cost non-conformity
scores such that:

𝑃 (∥𝑡 (𝑗)𝜏 − 𝑐 (𝑗)𝜏 ∥ ≤ 𝐶) ≥ 1 − 𝛿 (3)

By reformulating Equation 3, we can compute a range for the actual
latency 𝑡 (𝑗)𝜏 of this plan, with confidence 1−𝛿 , based on its predicted
cost 𝑐 (𝑗)𝜏 and the upper bound 𝐶 as follows:

𝑃 (𝑐 (𝑗)𝜏 −𝐶 ≤ 𝑡 (𝑗)𝜏 ≤ 𝑐 (𝑗)𝜏 +𝐶) ≥ 1 − 𝛿 (4)

This allows us to estimate a bounded range for the actual latency
even prior to executing the plan. However, the tightness of this
range primarily depends on the upper bound 𝐶 , which itself is in-
fluenced by the number of calibration plans used to establish it.
Therefore, determining the sufficient number of calibration plans
to construct a valid upper bound 𝐶 is crucial. Here, we derive a
lower bound on this number.

Lemma 1 (Lower Bound on Required Calibration Plans).
Let the latency-cost non-conformity scores of a testing plan 𝑅 (0) and
𝐾 calibration plans 𝑅 (1) , . . . , 𝑅 (𝐾) be exchangeable and realizing i.i.d
random variables, 𝛿 ∈ [0, 1] be a user-defined uncertainty probabil-
ity, and 𝐶 be an upper bound on the score 𝑅 (0) of the testing plan,
calculated at a confidence level of 1 − 𝛿 . Then, the lower bound on the
number of calibration plans, i.e., 𝐾 , to calculate 𝐶 is 1−𝛿

𝛿
.

Proof. If the scores 𝑅 (0) , 𝑅 (1) , . . . , 𝑅 (𝐾) are exchangeable (i.e., in-
dependent of their order and are drawn from the same distribution),
2Note that, during calibration, we can obtain the actual latency of any partial or com-
plete plan straightforwardly with tools like EXPLAIN ANALYZE in PostgreSQL [43].

then the joint distribution of these scores remains unchanged [2].
This means that the rank of any score, including 𝑅 (0) , is uniformly
distributed on the ranks {1, . . . , 𝐾 + 1}. As a result, we can estimate
the probability of the 𝑅 (0) ’s rank in this uniform distribution using
the (1 − 𝛿)th quantile as follows:

Prob(Rank of 𝑅 (0) ≤ ⌈(𝐾 + 1) (1 − 𝛿)⌉) ≥ 1 − 𝛿
where ⌈·⌉ denoting the ceiling function. However, according to [2],
if ⌈(𝐾 + 1) (1 − 𝛿)⌉ > 𝐾 , then the upper bound 𝐶 becomes trivial
and uninformative, yielding 𝐶 = ∞. Therefore, to ensure that 𝐶 is
nontrivial, we need the following condition:

⌈(𝐾 + 1) (1 − 𝛿)⌉ ≤ 𝐾
From this, we can easily get 𝐾 ≥ 1−𝛿

𝛿
, which means the lower

bound on the number of calibration plans should be 1−𝛿
𝛿

.

3.2 Latency Bounds in Distribution Shift Cases
In the previous section, we assumed that the test data {𝑅 (0) } and
the calibration data {𝑅 (1) , . . . , 𝑅 (𝐾) } are drawn from the same un-
derlying distribution. However, this assumption does not hold in
workload drift scenarios, i.e., new or evolving workloads, that are
common in database applications [40, 57, 58]. For instance, slight
changes in query patterns (e.g., filters on new columns), can vi-
olate the exchangeability assumption of 𝑅 (0) , 𝑅 (1) , . . . , 𝑅 (𝐾) (see
Section 2.2), leading to an invalid upper bound 𝐶 . To address this,
we adopt an adaptive CP variation, inspired by [38], which dynami-
cally adjusts the upper bound to be 𝐶̃ based on the distribution shift
in the testing workload only, assuming that this shift can be empir-
ically estimated. This approach ensures that the newly calculated
bounded latency range, based on 𝐶̃ , preserves the user-specified
confidence level 1 − 𝛿 , even in the presence of distribution shifts.

Specifically, let D represent the distribution of the testing work-
load (i.e.,𝑅 (0) ∼ D) andD0 represent the distribution of the calibra-
tion workload (i.e., 𝑅 (1) , . . . , 𝑅 (𝐾) ∼ D0). We can rigorously quan-
tify the deviation between the calibration and test distributions us-
ing the total variation distance𝑇𝑉 (D,D0) = 1

2
∫
𝑥
|𝑃 (𝑥) −𝑄 (𝑥) |𝑑𝑥,

where 𝑃 (𝑥) and 𝑄 (𝑥) denote the probability density functions
(PDFs) of D and D0, respectively [16]. To realize this in our LQO
context, we empirically estimate these PDFs of latency-cost non-
conformity scores using kernel density estimators (KDEs) as Gauss-
ian kernels. According to [38, 63], we can compute an adjusted
uncertainty probability 𝛿̃ to account for the distribution shift from
D0 to D as follows:

𝛿̃ = 1 − 𝑔−1
(︃
𝑔

(︃(︃
1 + 1

𝐾

)︃
𝑔−1 (1 − 𝛿)

)︃)︃
(5)

where 𝛿 is the original user-specified uncertainty probability, 𝐾 is
the number of calibration plans, and 𝑔(𝛽) = max(0, 𝛽 − 𝜖) and its
inverse 𝑔−1 (𝛽) = min(1, 𝛽 + 𝜖) are two functions calculated based
on the allowable distribution shift 𝜖 , which must be set to a value
greater than or equal to 𝑇𝑉 (D,D0).

Then, similar to Equation 4, the new latency bounds are calcu-
lated as follows:

𝑃 (𝑐 (𝑗)𝜏 − 𝐶̃ ≤ 𝑡 (𝑗)𝜏 ≤ 𝑐 (𝑗)𝜏 + 𝐶̃) ≥ 1 − 𝛿 (6)

where 𝐶̃ is the (1− 𝛿̃)th quantile of the latency-cost non-conformity
scores from the original calibration workload Q𝐶𝑎𝑙 ∼ D0.

2656

Distribution D

User Query
Q'

Learned
Query Plan

LQO
[90,110]

[140,160]

Bounded Latency
Range with at least

1 - δ Probability

Sorted
Latency-Cost

Non-Conformity
Scores (R)

Bounded
Latency Range

Constructor

Upper Bound Mode
(Unified or Pattern-based)

Calibration
Queries

Q1, Q2, ...

150
100

Predicted
Costs

150
100

Online Phase

Distn Shift
Quantifier ϵ

One or Multiple Upper Bounds
(e.g., One Unified C = 10)

Uncertainty δ
User-Defined Upper

Bound on Scores
Calculator (C)

Offline Phase

Distribution D0

User Query
Q

C̃

Distn Shift
Handler

δ

Figure 2: CP-based Bounded Latency Range Framework.

3.3 Framework Overview
Figure 2 gives an overview of our CP-based framework to provide
bounded latency ranges before execution.
Offline Phase. After training the LQO, we first construct a set
of latency-cost non-conformity scores using all plans - whether
partial or complete - from the calibration query workload Q𝐶𝑎𝑙 . For
each plan, we collect its predicted cost during the LQO’s planning
phase and its actual latency from execution. These scores are then
sorted in ascending order and stored to be used along with the user-
specified uncertainty probability 𝛿 to compute any upper bound,
whether 𝐶 in the static case or 𝐶̃ in the distribution shift case.
Online Phase. The user first submits a testing query to the trained
LQO, which generates a query plan with predicted costs (either
per partial plan for white-box LQOs or a single cost for the entire
plan in black-box LQO). In case there is a distribution shift in the
testing queries from D0 to D, queries are also sent (represented
by a dashed line) to a distribution shift quantifier to determine the
allowable distribution shift 𝜖 (check Section 3.2). This value, along
with the user-defined parameter 𝛿 , is then used to construct the
adjusted upper bound 𝐶̃ . Hereafter, we use 𝐶 to denote the upper
bound for both the static and distribution shift cases since they
are applied identically in subsequent steps. We support two modes
for calculating the upper bound, namely Unified and Pattern-based,
depending on the desired granularity level. In theUnifiedmode, non-
conformity scores from all partial and complete plans are treated
equally to construct a single upper bound value for 𝐶 , applicable
to both partial and complete plans of the testing query3. In the
Pattern-based mode, we account for the internal structure of partial
plans by setting a unique𝐶 value for each parent-child pattern. This
𝐶 value is applied only when that pattern appears in the testing
query. Note that pattern-based upper bounds are available only for
white-box LQOs and are effective if we have sufficient calibration
scores for each pattern (i.e., meeting the lower bound 𝐾 in Lemma 1
for each pattern). Otherwise, the unified upper bound is preferable.
Algorithm 1 illustrates how to construct the two types of upper
bounds given a specific user-defined uncertainty probability 𝛿 . Once
the upper bound(s) construction is done, the query plan along

3Note that unified upper bounds can be calculated for white-box and black-box LQOs

(b) Pattern-based Upper Bounds (C1, C2)

C = 10

C = 10 100 [90,110]

[50,70]60

(a) Unified Upper Bound (C)

Predicted Costs

Bounded
Latency
Range

R2R1

HJ
R3

HJ

C1 = 5

C2 = 10

(HJ,SS,SS)

(HJ,HJ,SS)

100 [90,110]

[55,65]60

Predicted Costs

Bounded
Latency
Range

R2R1

HJ
R3

HJ

Figure 3: Bounded Latency Ranges with Different Types of
Upper Bound (𝐶).

with the upper bound(s) are passed to the bounded latency range
constructor to obtain the bounded ranges as in Equation 4.

Figure 3 shows an example of using both unified and pattern-
based upper bounds to calculate the bounded latency ranges for
one testing query plan. Here, we assume a white-box LQO that
constructs the plan from the bottom up. Initially, it constructs a
Hash Join (HJ) at the first level, with Sequential Scan (SS) operations
as left and right children. This parent-children pattern is labeled
as (HJ, SS, SS)4. Similarly, the partial plan in the second level has
the (HJ, HJ, SS) pattern. In this example, the LQO predicts 60 and
100 as costs for these two partial plans. In the case of using unified
upper bound (Figure 3 (a)), we use a single value 𝐶 = 10, resulting
in latency ranges of [50, 70] and [90, 110] for the first and second
partial plans, respectively. In the case of using pattern-based upper
bounds (Figure 3 (b)), two different values 𝐶1 = 5 and 𝐶2 = 10 are
used, resulting in latency ranges of [55, 65] and [90, 110] for the
(HJ, SS, SS) and (HJ, SS, HJ) patterns, respectively.

4 CP-BASED RUNTIME VERIFICATION FOR
WHITE-BOX LQOS PLAN CONSTRUCTION

Earlier (Section 3), we showed how CP can provide a bounded la-
tency range for partial or complete query plans, helping to assess
the uncertainty of LQO decisions before execution. Here, we aim
to go further by exploring the use of CP to early detect any perfor-
mance constraint violations during the plan construction process
of white-box LQOs (e.g., [35, 59]), based solely on the constructed
partial plans so far and before the full plan is completed.

SupposeD is an unknown distribution over the query plans gen-
erated by a white-box LQO. Let 𝑋 = (𝑋0, 𝑋1, . . .) ∼ D represent a
random query plan generated by the LQO, where 𝑋𝜏 is a random
variable denoting the state of the generated partial plan at step 𝜏
(e.g., predicted cost or actual latency). Then, we can formally define
the white-box LQO runtime verification problem as follows:

Definition 1 (The White-Box LQO Runtime Verification
Problem). Assuming a white-box LQO (e.g., [59]) and a testing
query 𝑞 that this LQO already finished constructing its partial plans
till step 𝜏 and is still running, we aim to verify whether all generated
partial plans by this LQO (past and future) result in a complete plan,
represented by 𝑋 , that satisfies a user-defined STL-based performance
constraint 𝜙 with a confidence level 1 − 𝛿 , i.e., Prob(𝑋 |= 𝜙) ≥ 1 − 𝛿 ,
where 𝛿 ∈ [0, 1] is a constraint violation probability.

4We assume that the roles of the left and right child operators are not interchangeable.
Therefore, the order of children in any pattern is important, i.e., (HJ, SS, HJ) and (HJ,
HJ, SS) are different patterns.

2657

Algorithm 1 Constructing a List of Upper Bound(s) C on the
Latency-Cost Non-Conformity Scores
Require: List of sorted latency-cost non-conformity scores 𝑅, Uncer-

tainty probability 𝛿 ∈ [0, 1], Upper bound type 𝑇 ∈ {Unified,
Pattern-based}

Ensure: List of upper bound(s) C
1: 𝐾 ← length of sorted 𝑅
2: if 𝐾 < 1−𝛿

𝛿
then ⊲ Calibration scores are not enough

3: Get more 𝑅 scores from calibration
4: else
5: if 𝑇 is Unified then
6: 𝑝 ← ⌈(𝐾 + 1) (1 − 𝛿) ⌉ − 1 ⊲ (1 − 𝛿)th quantile index
7: U ← 𝑅 (𝑝) ⊲ (1 − 𝛿)th quantile of 𝑅
8: C← {U} ⊲ List has one unified upper bound
9: else ⊲ Upper bounds will be calculated based on patterns
10: for all parent-children patterns in calibration do
11: 𝑅𝑝𝑎𝑡𝑡 ← List of sorted 𝑅 of the current pattern
12: 𝑛𝑝𝑎𝑡𝑡 ← Size of 𝑅𝑝𝑎𝑡𝑡
13: if 𝑛𝑝𝑎𝑡𝑡 < 1−𝛿

𝛿
then

14: Get more 𝑅𝑝𝑎𝑡𝑡 scores from calibration
15: else
16: 𝑝𝑝𝑎𝑡𝑡 ← ⌈(𝑛𝑝𝑎𝑡𝑡 + 1) (1 − 𝛿) ⌉ − 1
17: U𝑝𝑎𝑡𝑡 ← 𝑅 (𝑝𝑝𝑎𝑡𝑡)

18: C← C ∪ {U𝑝𝑎𝑡𝑡 }
19: end if
20: end for
21: end if
22: return C
23: end if

Let 𝑥 = (𝑥0, 𝑥1, . . .) be the realization of𝑋 = (𝑋0, 𝑋1, . . .), where
𝑥obs = (𝑥0, . . . , 𝑥𝜏) represents the constructed partial plans till
step 𝜏 and 𝑥un = (𝑥𝜏+1, 𝑥𝜏+2, . . .) represents the future unknown
partial plans that will be predicted. Since existing white-box LQOs
(e.g., [35, 59]) predict one partial plan at a time, then we can estimate
the realization 𝑥 at step 𝜏 , with its constructed plans so far (i.e.,
𝑥obs) and next prediction at step 𝜏 + 1 as follows:

𝑥̂ = (𝑥obs, 𝑥̂𝜏+1 |𝜏) (7)

As described in Definition 1, our goal is to verify the quality of the
white-box LQO’s complete query plan, represented by 𝑋 , against
a user-defined STL specification 𝜙 . We can use robust semantics
𝜌𝜙 (.) (check Section 2.3) to achieve that. First, we define 𝜌𝜙 (𝑋)
to indicate how robustly the specification 𝜙 is satisfied with the
complete query plan, and 𝜌𝜙 (𝑥̂) to denote the estimate of this
robustness we obtained so far based on the observations 𝑥obs and
the prediction 𝑥̂𝜏+1 |𝜏 . Then, according to [12, 29], we can use CP
(Equation 1) to define an upper bound 𝐶 on the difference between
the actual robustness 𝜌𝜙 (𝑋) of the complete query and the estimate
of this robustness 𝜌𝜙 (𝑥̂) till step 𝜏 such that:

Prob(𝜌𝜙 (𝑥̂) − 𝜌𝜙 (𝑋) ≤ 𝐶) ≥ 1 − 𝛿 (8)

This upper bound5 can be easily obtained from the calibration
query workload Q𝐶𝑎𝑙 by calculating the following non-conformity

5Note that upper bounds on the robustness values can be adjusted in the distribution
shift cases using the same approach in Section 3.2.

Distribution D0

User Query
Q

Distribution D

User Query
Q'

Verified Plan with at
least 1 - δ Probability

White-Box
LQO

Sorted Non-
Conformity Scores

based on

CP-based
Runtime

Verification

Upper Bound

Calibration
Queries

Q1, Q2, ...

Partial Plan Traditional QO
(e.g., PostgreSQL)

Fallback Plan

Continue

Violation

Violation Handler
Violating Query Q

ρφ

ρφUncertainty δ Upper Bound on
Scores Calculator (C)

Online Phase

 Constraint Φ

Offline Phase

Distn Shift
Quantifier ϵ C̃

Distn Shift
Handler

δ

Figure 4: CP-based Runtime Verification Framework.

score 𝑅 (𝑖) for each partial plan in each calibration query 𝑞𝑖 ∈ Q𝐶𝑎𝑙 :

𝑅 (𝑖) = 𝜌𝜙 (𝑥̂ (𝑖)) − 𝜌𝜙 (𝑥 (𝑖)) (9)

where 𝑥 (𝑖) is the realization of 𝑋 for query 𝑞𝑖 (i.e., actual latencies
and predicted costs for all partial plans in𝑞𝑖) and 𝑥̂ (𝑖) is the estimate
of this realization till step 𝜏 only (i.e., 𝑥̂ (𝑖) = (𝑥 (𝑖)obs, 𝑥̂

(𝑖)
𝜏+1 |𝜏)). Given

that, we can define the following condition to verify whether the
LQO satisfies 𝜙 or not.

Lemma 2 (The White-Box LQO Runtime Verification Con-
dition). Given a testing query 𝑞 that uses LQO to generate its plan,
represented by𝑋 , andwith 𝑥̂ = (𝑥obs, 𝑥̂𝜏+1 |𝜏) realizing the constructed
and predicted partial plans at step 𝜏 , an STL constraint 𝜙 , a robust
semantics measure 𝜌𝜙 (.) for this 𝜙 constraint, and a constraint vi-
olation probability 𝛿 ∈ [0, 1]. Then, we can guarantee that these
constructed and predicted partial plans 𝑥̂ so far will result in a com-
plete plan that satisfies the constraint 𝜙 with a confidence level 1 − 𝛿 ,
i.e., Prob(𝑋 |= 𝜙) ≥ 1 − 𝛿 , only if the robust semantics defined over
these partial plans 𝜌𝜙 (𝑥̂) is larger than 𝐶 , where𝐶 is an upper bound
calculated at a confidence level 1 − 𝛿 and using equations 8 and 9.
Otherwise, the resulting complete plan will cause a violation.

Proof. By reformulating Equation 8, we can obtain:

𝑃 (𝜌𝜙 (𝑋) ≥ 𝜌𝜙 (𝑥̂) −𝐶) ≥ 1 − 𝛿 (10)

If 𝜌𝜙 (𝑥̂) > 𝐶 , it implies:

𝑃 (𝜌𝜙 (𝑋) > 0) ≥ 1 − 𝛿 (11)

According to Section 2.3, this further implies:

𝑃 (𝑋 |= 𝜙) ≥ 1 − 𝛿 (12)

because 𝜌𝜙 (𝑋) > 0 directly implies that𝑋 |= 𝜙 . Note that changing
the constraint specification 𝜙 and/or the robust semantics measure
𝜌𝜙 (.) does not require retraining the white-box LQO to obtain valid
guarantees because its prediction decisions, i.e., partial plans, are
agnostic to any constraint specification.

4.1 Framework Overview
Figure 4 presents an overview of our CP-based runtime verification
framework, which detects violations of user-defined performance
constraints 𝜙 in the plans being constructed by white-box LQOs.

2658

Offline Phase. Similar to our bounded latency range framework
(Section 3.3), we start by constructing and sorting a set of non-
conformity scores, obtained from the calibration queries and their
partial plans. However, instead of constructing latency-cost based
scores (Equation 2), we compute scores based on the difference
between the actual robustness 𝜌𝜙 (𝑋) of queries and their estimated
robustness 𝜌𝜙 (𝑥̂) at each partial plan step, assessing compliance
with constraint 𝜙 using robustness measure 𝜌𝜙 (.) (Equation 9).
These scores are then sorted and used to compute any upper bound,
whether 𝐶 in the static case or 𝐶̃ in the distribution shift case, at a
user-defined confidence level 1 − 𝛿 (Equation 8).
Online Phase.When a user submits a testing query, the white-box
LQO starts to incrementally build the plan, adding one partial plan
at a time. At each step 𝜏 , the runtime verification module uses the
upper bound 𝐶 and the estimated robustness 𝜌𝜙 (𝑥̂) (representing
all partial plans constructed up to 𝜏 and the expected one at 𝜏 + 1)
to check if 𝜌𝜙 (𝑥̂) > 𝐶 (Lemma 2). If this condition holds, the LQO
proceeds to construct the next partial plan at step 𝜏 + 1. Otherwise,
a violation is detected (e.g., exceeding a latency threshold). As a
result, the violation handler discards the current plan under con-
struction and sends the query to be re-planned by a traditional
query optimizer (e.g., PostgreSQL [15]). This has been shown to be
an effective solution, as highlighted in earlier works (e.g., [34]) and
confirmed by our experimental evaluation (Section 6). The intuition
here is that re-planning the query with a traditional optimizer and
running it with the resulting average-performance plan incurs less
overhead than executing a worst-case LQO-generated plan. Note
that in case there is a distribution shift in the testing queries from
D0 toD, we construct the adjusted upper bound 𝐶̃ as in the online
phase of our bounded latency range framework (Section 3.3).

5 CP-GUIDED PLAN SEARCH INWHITE-BOX
LQOS

In this section, we provide a simple yet effective approach for using
CP to steer the decision-making process in white-box LQOs. Unlike
sections 3 and 4, which focused on using CP to obtain bounded
latency ranges for generated plans or to detect violations during
the plan construction process (triggering a fallback to traditional
optimizers), this section presents a CP-guided plan search algorithm
designed to improve the quality of generated plans rather than
just verifying them. Specifically, this algorithm utilizes CP-derived
upper bounds on the actual latency of partial plans (Equation 4), to
heuristically guide the plan search space navigation.
Intuition.White-box LQOs, such as Balsa [59] and Neo [35], use
learned cost predictors to search over the space of partial plans,
aiming to identify the plan with the lowest predicted cost. However,
since the space of all partial plans at any step is far too large to
exhaustively search, these LQOs typically find this plan heuristically
by sorting predicted costs and then selecting the plan with the
lowest cost. However, relying on the predicted costs may lead to
sub-optimal plans if these predicted costs do not closely align with
the actual latencies. To address this, we propose leveraging the
CP-bounded upper bounds, which were discussed in Section 3, to
guide the search for optimal partial plans at each step.
CP-Guided Plan Search Algorithm. Recall that for any partial
plan at step 𝜏 , we can compute an upper bound 𝑈𝜏 on its actual

Algorithm 2 CP-Guided Plan Search
Require: Learned cost predictor LCP, Pattern-based upper bounds C =

{𝐶1,𝐶2, . . .} from Algorithm 1, Number of candidate complete plans n,
Basic plan search algorithm BPS.

Ensure: Top-ranked plan final
1: queue← Partial plans initialized with scans over relations
2: complete_plans← []
3: while len(complete_plans) < n and queue is not empty do
4: (state, 𝑐state)← BPS.select_next_plan(queue)
5: if state is a complete plan then
6: complete_plans.add(state)
7: continue
8: end if
9: List of (stateNew, 𝑐stateNew)← Explore(LCP, state)
10: for all pair in List of (stateNew, 𝑐stateNew) do
11: 𝑈stateNew ← LatencyUpperBound (stateNew, 𝑐stateNew, C)
12: BPS.insert_plan(queue, stateNew, 𝑐stateNew,𝑈stateNew)
13: end for
14: end while
15: Sort complete_plans by𝑈state values in an ascending order
16: final← complete_plans[0]
17: return final

latency 𝑡𝜏 as 𝑐𝜏 +𝐶 (right inequality in Equation 4), where 𝑐𝜏 repre-
sents the predict cost of this partial plan and 𝐶 is the upper bound
on the error between 𝑡𝜏 and 𝑐𝜏 , calculated at a user-defined con-
fidence level of 1 − 𝛿 . Based on this latency upper bound 𝑈𝜏 , we
propose a generic CP-guided plan search algorithm that is compati-
ble with basic plan search (BPS) algorithms. Algorithm 2 shows the
details. We first initialize a priority queue with a set of partial plans,
each representing a scan operation over a relation in the user query.
We also initialize complete_plans to store the complete plans as
they are identified (lines 1-2). At each iteration of the while loop,
a partial plan, referred to as state, is retrieved from the priority
queue according to BPS’s logic for selecting the next plan (lines
3-4). This selection logic may involve fetching the partial plan with
the minimum cost (Best-First Search), iterating over each state in
the current queue (Beam Search [32]), or using other strategies.
If state forms a complete plan, it is added to the set of complete
plans (lines 5-8). Otherwise, the search continues from the current
partial plan, state, by calling Explore(.), which generates a new
set of partial plans along with their predicted costs.

For each new partial plan (stateNew), we define one function
(described later) to compute its latency upper bound𝑈stateNew based
on its predicted cost 𝑐stateNew and the corresponding pattern-based
upper bound on the latency-cost scores from C. Then, these new
states, stateNew, along with their corresponding values 𝑐stateNew
and 𝑈stateNew, follow BPS’s logic for inserting new plans (lines 10-
12). This insertion logic may involve directly adding the new plans
to the priority queue (non-optimized plan search). Alternatively, it
may involve shrinking the queue to a specified size after inserting
multiple plans, retaining only several promising plans for further
exploration (Beam Search). The algorithm continues until 𝑛 com-
plete plans are identified. Finally, these complete plans are sorted
based on their latency upper bounds, and the top-ranked plan is
selected as the final plan.

2659

Latency Upper Bound Calculation. We first extract the parent-
children pattern of the input partial plan and then retrieve the cor-
responding upper bound on the latency-cost non-conformity scores
𝐶pat ∈ C, referred to as latencyCostUpperBound. If no bound is
found, latencyCostUpperBound is assigned the maximum value
in C. This guarantees plan selection quality during the search in
Algorithm 2. When a pattern is not found, adding max(C) to the
predicted costmakes the latency upper bound𝑈𝜏 very large. Thus,
its priority in the CP-guided search is low compared to partial plans
with patterns having values in C (i.e., trusted partial plans). More
details of this calculation method can be found in [30].

6 EXPERIMENTAL EVALUATION
We evaluated our CP-based frameworks using different benchmarks
and multiple prototypes to address the following questions: (1) How
effective are the multi-granularity CP-based latency bounds (Sec-
tion 6.2)? (2) How effective does our adaptive CP handle distribution
shift (Section 6.3)? (3) How effective is our runtime verification (Sec-
tion 6.4)? (4) How much performance gain can be achieved through
effective violation detection and handling (Section 6.5)? (5) What
benefits does CP-guided plan search provide in terms of plan quality
and planning time (Section 6.6)? (6) What is the sensitivity of the
hyper-parameters of our CP-based approach and their effects on
the LQO verification process (Section 6.7)?

6.1 Experimental Setup
CP Integration with three LQOs. Balsa [59] is used as white-
box LQO, owing to its leading performance in this category [14,
59, 64]. For bounded latency ranges, we verify both the unified-
based and pattern-based upper bounds. For runtime verification, we
calculate the robustness 𝜌𝜙 (𝑥̂) (see Section 4) and compare it with
the corresponding bound. If a violation is detected, our violation
handler resolves it by reverting to PostgreSQL [15]. Finally, we
perform CP-guided plan search to compare with the original Balsa.
Lero [64] generatesmultiple candidate query plans and uses a learned
oracle to rank them. The oracle applies pairwise comparisons to
predict the more efficient plan, selecting the top-ranked one as
the final output. Since Lero operates as a black-box LQO without
directly accessible cost information, we use PostgreSQL’s predicted
costs as a reference and the actual latency to construct the CPmodel.
In this context, the predicted cost 𝑐 is available, and we use CP to
derive a bounded range for the actual runtime 𝑡 based on 𝑐 . We then
apply CP models at various granularities to estimate the bounded
range for the entire plan, individual levels, and identified patterns.
RTOS [62] focuses on join order selection, leveraging a DRL frame-
work in conjunction with Tree-LSTM [50] to effectively capture the
structural information of query plans. RTOS outputs a join order
hint, which we then inject into PostgreSQL to generate a complete
query plan. As another representative of the black-box LQO, the CP
integration in RTOS is similar to Lero’s, in that we use PostgreSQL’s
predicted cost as a reference. Given that RTOS has less control over
the selection of plan operators, we primarily use RTOS to validate
our CP-based bounded latency range framework.

Notably, existing LQOs face significant limitations in handling
distribution shifts, restricting their ability to generalize across dif-
ferent workloads. They are either hard-coded to specific schemas

in their implementations (e.g., RTOS [62]) or require processing all
training queries upfront to define the model structure, making it
impossible to optimize unseen queries dynamically. Therefore, to
explicitly enable LQOs to operate across distributions, we modified
their prototype frameworks to support changing distributions.

Benchmarks. We evaluate the integration of CP with these LQOs
on four widely used benchmarks - Join Order Benchmark (JOB) [28],
Cardinality Estimation Benchmark (CEB) [39], JOBLight-train [24],
and TPC-H [7]. For the static case evaluation, we use the JOB and
TPC-H workloads. The JOB workload consists of 113 analytical
queries over a real-world dataset from the Internet Movie Database.
These queries involve complex joins and predicates, ranging from
3-16 joins, averaging 8 joins per query. For our experiments, we se-
lect 33 queries for the LQO training, while the remaining 80 queries
are used for calibration and testing. TPC-H features synthetically
generated data under a uniform distribution. We use a scale factor
of 1 and templates for queries 3, 5, 7, 8, 10, 12, 13, and 14 to generate
workloads, creating 130 queries with varying predicates. Of the
generated queries, 60 are used for the LQO training, while the re-
maining 70 are used for calibration and testing. For the distribution
shift case evaluation, we use JOBLight-train and CEB workloads
along with JOB. JOBLight-train consists of synthetically generated
queries with 3-table joins. CEB employs hand-crafted templates
and query generation rules to construct challenging, large queries.

Hardware Settings. The experiments related to Balsa and RTOS
were conducted on an Ubuntu 22 machine with an 8-core Intel Xeon
D-1548 CPU@ 2.0GHz and 64 GB of RAM. The experiments related
to Lero were conducted on an Ubuntu 22 machine with a 10-core
Intel Xeon Silver 4114 @ 2.2GHz and 64 GB of RAM.

Evaluation Metrics. (1) Coverage 𝐸𝐶𝑚 : To empirically validate
the CP marginal guarantees of Equation 1, we conduct the exper-
iment over 𝑀 iterations. For each iteration, we sample 𝐾 calibra-
tion queries, {𝑄 (1) , . . . , 𝑄 (𝐾) }, and𝑁 test queries, {𝑄 (0)1 , . . . , 𝑄

(0)
𝑁
}.

Then, we calculate 𝐸𝐶𝑚 for iteration𝑚 using the following formula:

𝐸𝐶𝑚 =
1
𝑁

𝑁∑︂
𝑛=1

1
(︂
𝑅
(0)
𝑚,𝑛 ≤ 𝐶 (𝑅

(1)
𝑚 , . . . , 𝑅

(𝐾)
𝑚)

)︂
. (13)

This value measures the validity condition on the test set when
applying our constructed 𝐶 , indicating how many test cases are
successfully covered. (2) Frequency Density: Across all sampling
iterations, we calculate the frequency of each coverage level. To
more effectively display the data, we use Kernel Density Estimation
(KDE) for density representation. Intuitively, a higher frequency
density for a specific coverage indicates a greater likelihood of
its occurrence during sampling. (3) CP Upper Bound 𝐶 : We use the
𝐶 value to compare the spans of non-conformity scores across
different hyper-parameter settings. (4) Non-conformity Scores: We
display the distribution of non-conformity scores in the runtime
verification context to visually validate how runtime constraints
are satisfied. (5) Execution Latency: The actual execution latency,
measured in milliseconds (ms), is used to assess the quality of gen-
erated query plans. (6) Planning Time: The time taken to generate
a query plan is used to evaluate the algorithm’s search efficiency
during the planning, measured in milliseconds (ms).

2660

Default Parameters. Unless otherwise mentioned, we run mul-
tiple sampling iterations (𝑀 = 1000) to observe the empirical cov-
erage. We set 𝛿 = 0.1 and the calibration-test split to be 50%-50%.
In each iteration, we randomly select a fixed-size calibration set
to generate non-conformity scores and then construct 𝐶 based on
the given 1 − 𝛿 . When validating a testing query, we evaluate on
each operator 𝑖 in the query for unified-based upper bounds or
each pattern 𝑖 (parent-children structure) for pattern-based upper
bounds. Each instance is treated as a test step 𝑖 , where we have
the predicted cost 𝑐𝑖 and the actual latency 𝑡𝑖 . We normalize the
predicted costs in Lero and RTOS cases with 𝑓 (𝑐) = 𝑐/40 and 𝑐/100,
respectively, to align these costs with actual latencies6.

6.2 Bounded Range of Plan Actual Latency
Unified-based Upper Bound.We treat all the partial plans of a
query plan equally with a single upper bound value for 𝐶 (check
Section 3.3). Figure 5 shows the empirical coverage in this case.
We perform experiments on both the JOB and TPC-H workloads7.
According to Equation 4, the CP theory predicts that the most
frequent coverage should be greater than 1−𝛿 = 0.9, as reflected by
the peak of the curve in both graphs. For both workloads, the peak
of all the curves demonstrates this trend, empirically validating
the correctness of applying CP with LQOs. Besides, if the non-
conformity scores of an LQO span a broader range, they lead to
a relaxed coverage curve with a higher coverage at the peak. We
observe this phenomenon in RTOS with the JOB workload and in
Lero with the TPC-H workload.

60 70 80 90 100
Coverage(%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Fr
eq

ue
nc

y
De

ns
ity

Balsa
Lero
RTOS

(a) JOB

60 70 80 90 100
Coverage(%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fr
eq

ue
nc

y
De

ns
ity

Balsa
Lero

(b) TPC-H

Figure 5: Unified-based Upper Bounds.

Pattern-based Upper Bound. Pattern-based upper bound pro-
vides finer granularity for generating a bounded range. In this
experiment, we examine the top 3 and the least 3 frequently occur-
ring patterns in Balsa on the JOB workload. Figure 6 (a) displays
the top 3 popular patterns: (NL, NL, IS), (NL, HJ, IS), and (HJ, NL,
SS). The peak coverage reaches 0.9, with a mean 𝐶 value of 3056,
indicating that Balsa’s actual latencies vary within a range of ±3056
ms. Figure 6 (b) shows the least 3 popular patterns. Given that they
have fewer appearances, which slightly exceeds the 𝐾∗ threshold
(Lemma 1), the curve is not as symmetric as the previous one. How-
ever, we also observe that the empirical coverage peak surpasses
90%, indicating reliable, bounded latency. This also shows that the
CP theory holds its ground when the value of 𝐾 is low yet greater
than the 𝐾∗ threshold.
6Note that we do not normalize the predicted costs for Balsa as it aims to predict the
expected latency of the generated plan. So costs and latencies are well-aligned.
7For RTOS, we only evaluate on the JOB workload, as its open-source version is
hard-coded to IMDB schemes.

60 70 80 90 100
Coverage(%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fr
eq

ue
nc

y
De

ns
ity

(NL,NL,IS)

(HJ,NL,SS)
(NL,HJ,IS)

(a) Top 3 Popular

40 50 60 70 80 90 100
Coverage(%)

0

1

2

3

4

5

Fr
eq

ue
nc

y
De

ns
ity

(NL,NL,SS)
(HL,SS,SS)
(HL,SS,IS)

(b) Least 3 Popular

Figure 6: Valid Pattern-based Upper Bounds (Balsa on JOB).

6.3 Adaptive CP under Distribution Shift
We perform evaluations on Balsa [59] and RTOS [62] for distribu-
tion shift analysis. Our approach is inspired from existing works
on distribution shift [40, 57, 58], where the LQOs are trained on
one distribution and tested on another. Regarding the selection of
distributions, we follow [40] and use the following distributions:
JOB [28], CEB [39], JOBLight-train [24].
Balsa.We first quantify the total variation distance of calibration
distribution JOB (D0) and test distribution CEB (D): 𝑇𝑉 (D,D0).
Following the computation in Section 3.2, we randomly select 500
plans from JOB and CEB to empirically compute 𝑡𝑣 = 𝑇𝑉 (D,D0) =
0.0736. We then set the allowed distribution shift 𝜖 = 0.08 to ensure
that 𝜖 exceeds the estimated distribution shift 𝑡𝑣 .
Adaptive CP Validation. To maintain the original (1−𝛿) confidence
level for the latency bounds, an adjusted upper bound 𝐶̃ for the new
distribution is obtained by an adjusted uncertainty probability 𝛿̃ .
We set the uncertainty probability 𝛿 = 0.2. We sample 𝐾 = 300
calibration plans from JOB (D0). We then compute the Prob(𝑅 (0) ≤
𝐶 (𝑅 (1) , . . . , 𝑅 (𝐾))) and Prob(𝑅 (0) ≤ 𝐶̃ (𝑅 (1) , . . . , 𝑅 (𝐾))) for the
non-adaptive and adaptive methods. Figure 7 shows the related
results. In Figure 7a (without performing adaptive CP), the conver-
gence is around 0.62, which is less than the expected 1 − 𝛿 = 0.8.
This shows the previously computed upper bound 𝐶 was not suit-
able for the new distribution. However, in Figure 7b (with adaptive
CP), the coverage concentration is around 0.8, which shows our
adjusted 𝐶̃ performs well with the new distribution.

(a) 𝑅 (0) ≤ 𝐶 (𝑅 (1) , . . . , 𝑅 (𝐾))) (b) 𝑅 (0) ≤ 𝐶̃ (𝑅 (1) , . . . , 𝑅 (𝐾))

Figure 7: JOB Distribution Shift with Adaptive CP (𝛿 = 0.2).

RTOS. We train RTOS on JOB (D0) and sample 𝐾 = 300 plans
to construct the calibration set. Then, we introduce a new dis-
tribution, JOB-light (D), for testing. The TV distance between
these two distributions is 𝑡𝑣 = 0.24916, then we set 𝜖 = 0.25.
Figure 8 shows the result for uncertainty levels 𝛿 = 0.45. The
convergence of Prob(𝑅 (0) ≤ 𝐶 (𝑅 (1) , . . . , 𝑅 (𝐾))) is around 0.2 and
Prob(𝑅 (0) ≤ 𝐶̃ (𝑅 (1) , . . . , 𝑅 (𝐾))) is 0.55 which is exactly (1 − 𝛿).

2661

This demonstrates that our adaptive CP methods work well with
different prototypes and different uncertainty conditions.

(a) 𝑅 (0) ≤ 𝐶 (𝑅 (1) , . . . , 𝑅 (𝐾))) (b) 𝑅 (0) ≤ 𝐶̃ (𝑅 (1) , . . . , 𝑅 (𝐾))

Figure 8: RTOS Distribution Shift with Adaptive CP (𝛿 = 0.45).

6.4 Runtime Verification
We conduct runtime verification on the JOBworkload using Balsa as
a white-box LQO to validate Lemma 2, specifically demonstrating:

𝑃 (𝑋 |= 𝜙) ≥ 1 − 𝛿, if 𝜌𝜙 (𝑥̂) > 𝐶
We define our performance constraint with the following STL spec-
ification: 𝜙 = 𝐺 (𝑋 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), where 𝐺 is the always operator
defined in Section 2.2. We use this specification to bound the ac-
tual latency 𝑋 when running an LQO’s plan, whether partial or
complete: the value of 𝑋 is expected to always be less than the
threshold. We set the threshold at 1000 and 2000, which implies
that the cumulative latency of operations should not exceed 1000
ms and 2000 ms in the database context. We use this STL to detect
violations and avoid unexpected long latency in execution. Based
on 𝜙 , we define robust semantics: 𝜌𝜙 (𝑥) = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑥 .

From the calibration queries, we construct the value of 𝐶 and
use this value to verify whether 𝜌𝜙 (𝑥̂) > 𝐶 . If this holds true, the
actual latency adheres to the STL specification. Figure 9 shows
the non-conformity score distribution with different thresholds.
Our unified-based upper bound 𝐶 covers 1 − 𝛿 = 90% of the non-
conformity scores (left side of the red dashed line).

−4000 −2000 0 2000 4000
Non-conformity score

0
10
20
30
40
50
60
70

C=: 41.26

(a) Threshold = 1000

−4000 −2000 0 2000 4000
Non-conformity score

0
10
20
30
40
50
60
70 C=: 31.60

(b) Threshold = 2000

Figure 9: Non-conformity Scores in Runtime Verification.

𝝓 = 𝑮 (𝑿 < 1000): We found that for 27 of the 30 queries (|𝑄 test | =
30), it holds that 𝜌𝜙 (𝑥̂) > 𝐶 implies 𝑋 |= 𝜙 , confirming the correct-
ness of runtime verification (Lemma 2).We also validated Equation 8
and found that 28 of the 30 test queries satisfy 𝜌𝜙 (𝑥̂) − 𝜌𝜙 (𝑋) ≤ 𝐶 ,
which is greater than (1 − 𝛿) = 0.9, verifying the coverage of CP.
𝝓 = 𝑮 (𝑿 < 2000): This is a looser threshold. We found that for
29 of the 30 queries (|𝑄 test | = 30), it holds that 𝜌𝜙 (𝑥̂) > 𝐶 implies
𝑋 |= 𝜙 . A larger threshold demonstrates better coverage. We also

validated Equation 8 and found that 29 of the 30 test queries satisfy
𝜌𝜙 (𝑥̂) − 𝜌𝜙 (𝑋) ≤ 𝐶 , further confirming our method.

6.5 Violation Detection and Handling
Weperform violation detection using the JOBworkload as discussed
in Lemma 2 over the constraint (𝜙 = 𝐺 (𝑋 < 2000)). If violations are
detected, we introduce PostgreSQL to assist in generating a new
query plan for execution. We compare two scenarios: with CP and
without CP, representing CP-based violation detection and normal
LQO planning, respectively. In this section, we focus on comparing
the plan quality between these two methods.
Balsa with Violation Detection. Figure 10 presents the compari-
son results for Balsa. In total, 10 queries were flagged as potential
violations. We trigger PostgreSQL to re-generate the query plans.
Notably, for 7 out of these 10 queries, the query plans generated by
PostgreSQL outperformed the Balsa-generated plans. The overall
latency savings for these 7 queries amounted to 22.12%. For the re-
maining 3 queries, we observed that although Balsa results in better
plans for them, these plans still violate the user constraint. That is
why these queries are still detected by our verification framework.

10a 9d 26c 24b 19c 16a 25c 25a 30c 30b
Query

1000

2000

3000

4000

5000

Ex
ec

ut
io

n
La

te
nc

y
(m

s) With CP
Without CP

Figure 10: Violation Detection (𝜙 = 𝐺 (𝑋 < 2000)): Latency
Comparison With and Without CP for Balsa.

6.6 CP-Guided Actual Latency Upper Bound
Query Optimizer

In this section, we still use Balsa as a representative white-box LQO
to conduct CP-guided plan search experiments. Considering Balsa
uses beam search [32] internally, our discussion revolves around
CP-guided beam search. We evaluated Balsa at different training
epochs: 50, 100, and 150, corresponding to moderately trained, well-
trained, and highly trained Balsa, respectively. To evaluate our
method, we use 33 queries from template b as the test set and the
other 47 queries as the calibration set. The comparison experiments
are conducted five times, and the average is reported to reduce the
impact of system fluctuations on the planning and execution time.

6.6.1 Plan Improvement. Using the CP-guided plan search, we
employ the CP-bounded latency upper bound as a heuristic to
guide the beam search in constructing complete query plans. We
evaluate whether this approach yields better results compared to
the vanilla Balsa. Figure 11 shows the queries where we achieve
improvements. Plan enhancements are observed in 11 out of 33 test
queries while the rest (almost) maintained the same plan quality.

For a well-trained Balsa (100 iterations), our algorithm improves
the plan quality for queries 14b, 28b, 6b and 9b as seen in Figure 12a,
demonstrating consistent plan improvement. Even for the highly

2662

11b 18b 19b 1b 23b 24b 27b 31b 5b 7b 9b
Query

0
500

1000
1500
2000
2500
3000

Ex
ec

ut
io

n
La

te
nc

y
(m

s) CP-Guided
Without CP

Figure 11: Plan Quality Comparison: CP Guided Algorithm
vs. Balsa (50 iterations).

trained Balsa (150 iterations), we also observe several improved
queries as seen in Figure 12b. Although Balsa can reliably and
efficiently generate high-quality query plans at this stage, the CP-
guided algorithm can still achieve better plans, even within this
limited potential improvement search space. This further proves
the effectiveness of our algorithm.

14b 28b 6b 9b
Query

0
500

1000
1500
2000
2500
3000

Ex
ec

ut
io

n
La

te
nc

y
(m

s) CP-Guided
Without CP

(a) Balsa, 100 iterations

11b 18b 26b 7b
Query

0

200

400

600

800

Ex
ec

ut
io

n
La

te
nc

y
(m

s) CP-Guided
Without CP

(b) Balsa, 150 iterations

Figure 12: Plan Quality Comparison: CP Guided Algorithm
vs. Balsa (100 and 150 iterations).

We also observe that our algorithm achieves greater improve-
ments in plan quality during the early training stages of Balsa. This
aligns with the intuition that it is easier to make improvements
within a larger discovery space. As the number of training itera-
tions increases, Balsa becomes progressively more refined, which
naturally narrows the scope for further improvement.

We perform a deep-dive analysis for the querieswherewe achieve
significant improvements: Query 27b in Figure 11 and Query 6b in
Figure 12 (a). When we closely compare the query plans generated
by CP-Guided and those without CP guidance, we observe that in
Query 6b, Balsa originally selects a pattern of (NL, NL, IS). How-
ever, in the CP-guided plan search algorithm, we instead select a
pattern of (HJ, NL, SS). The (HJ, NL, SS) pattern aligns with the
valid patterns established for our reliable CP construction, whereas
(NL, NL, IS) is not among them. By following our algorithm and
being guided by CP, Query 6b achieves 48.52% latency reduction
by replacing this pattern. For Query 27b, our CP-guided approach
has an even greater impact. Without CP guidance, Balsa generates
a left-deep tree; however, under CP guidance, it produces a bushy
tree, resulting in a 9.84x improvement in latency. Query-level anal-
ysis reveals that our algorithm not only favors reliable patterns to
construct the entire query plan but can also systematically optimize
the structure of query plan, significantly enhancing the overall
query plan quality.

6.6.2 Planning Time Comparison. For a moderately trained Balsa,
we observe an improvement in planning time. Without CP assis-
tance, the total planning time of all test queries is 6178.60 ms; how-
ever, with our CP-guided algorithm, it is reduced to 5563.40 ms,

achieving an overall improvement of 9.96%. This shows that our
approach can mitigate suboptimal LQO behaviors and accelerate
the plan search. For the single query level, we can also observe
Query 4b in Figure 13 reduces 74.40% planning time. This effect
can be attributed to the optimization target of the CP-guided al-
gorithm, the actual latency upper bound, which acts as a stricter
heuristic than previously cost itself. This leads to a more direct
search path within the search space. Compared to a moderately
trained Balsa, our algorithm constrains the search scope, thereby
reducing planning time.

14b 22b 25b 29b 33b 3b 4b 5b 6b 7b 8b
Query

0
25
50
75

100
125
150
175
200
225

Pl
an

ni
ng

 T
im

e
(m

s)

CP-Guided
Without CP

Figure 13: Planning Time Comparison: CP Guided Algorithm
vs. Balsa (50 iterations).

Figure 14 illustrates that even with a highly trained Balsa, our
algorithm improves planning time for 17 out of 33 queries. We also
observe that as the number of LQO training iterations increases,
the overall planning time for both CP-guided and without CP meth-
ods decreases. Comparing Figure 13 and Figure 14, we can see
that the impact of our CP-guided algorithm on planning time is
more pronounced at lower training iterations. This is because, with
more extensive training, the LQO has a more refined initial search
direction, resulting in a relatively smaller search space for our algo-
rithm. Notably, for Queries 7b and 18b, we achieve improvements
in both plan quality and planning time. These observations further
demonstrate the effectiveness of our CP-guided algorithm.

Figure 14: Planning Time Comparison: CP Guided Algorithm
vs. Balsa (150 iterations).

6.7 Hyperparameter Microbenchmarking
In this section, we discuss two types of hyperparameter and observe
their impact on the coverage. More evaluations can be found in [30].
Impact of Changing the Sampling Iterations. We begin by ex-
amining how the first hyper-parameter—sampling iterations—affects
empirical coverage. We test with 100, 500, and 1000 sampling it-
erations. For each sampling iteration setting, we plot the density
of each coverage. Figure 15 (a) and Figure 15 (b) illustrate Balsa’s
performance on the JOB and TPC-H workloads, respectively. When

2663

the number of sampling iterations is low, the curve appears less
smooth due to limited sampling. Since empirical coverage approxi-
mates the inherent coverage properties of CP, insufficient sampling
fails to capture the expected behavior according to CP theory. With
more iterations, the curve smooths, more accurately reflecting the
intrinsic coverage properties of CP theory. Additionally, the curve
displays a sharper peak shape. We also observe that the JOB work-
load exhibits a higher frequency density than the TPC-H workload.
This is because JOB contains more joins, leading to a greater number
of validation data points, which increases the frequency density.

(a) Balsa on JOB (b) Balsa on TPC-H

Figure 15: Impact of Changing the Sampling Iterations.

Impact ofUncertainty Probability𝛿 .The second hyper-parameter
is the uncertainty probability 𝛿 . We varied 𝛿 across four values: 0.1,
0.2, 0.3, and 0.4. Similar to the previous discussion, we expect the
peaks of the coverage curve to align with 1 − 𝛿 , meaning the cor-
responding peaks should align with 0.9, 0.8, 0.7, and 0.6. Figure 16
illustrates this trend. Additionally, we observe that as 𝛿 decreases,
the area under the curve becomes sharper and narrower, indicating
a more concentrated coverage distribution. This suggests that with
smaller values of 𝛿 (e.g., 𝛿 = 0.1 in our graph), obtaining 𝐶 values
in a single sampling iteration is more likely to yield values centered
around the expected confidence level of 1 − 𝛿 .

30 40 50 60 70 80 90 100
Coverage(%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Fr
eq

ue
nc

y
De

ns
ity

0.1
0.2
0.3
0.4

(a) Balsa on JOB

30 40 50 60 70 80 90 100
Coverage(%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Fr
eq

ue
nc

y
De

ns
ity

0.1
0.2
0.3
0.4

(b) Balsa on TPC-H

30 40 50 60 70 80 90 100
Coverage(%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Fr
eq

ue
nc

y
De

ns
ity

0.1
0.2
0.3
0.4

(c) Lero on JOB

30 40 50 60 70 80 90 100
Coverage(%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fr
eq

ue
nc

y
De

ns
ity

0.1
0.2
0.3
0.4

(d) Lero on TPC-H

Figure 16: Impact of Choice of 𝛿 .

7 RELATEDWORK
Learned Query Optimization (LQO). In recent years, numerous
ML-based methods have been proposed to enhance query optimiza-
tion. One line of work uses ML to improve cardinality estimates and
predict query plan costs [25, 37, 39, 48, 49, 60, 61], but these gains

have not been shown to yield better plans [39]. Consequently, re-
search has shifted to directly learning plan optimization [18, 26, 34–
36, 59, 62, 62, 64], either by constructing plans from scratch (e.g.,
Neo [35], Balsa [59]) or by selecting among candidates generated by
traditional optimizers (e.g., Bao [34], Lero [64]). Although all LQOs
have demonstrated improved query performance, they typically do
not consider the robustness issues (no guarantees on stability or re-
gression avoidance). Kepler [18] and Roq [23] are the closest works
to our objective. Kepler employs robust neural network prediction
techniques to reduce tail latency and minimize query regressions.
Specifically, it utilizes Spectral-normalized Neural Gaussian Pro-
cesses [31] to quantify its confidence in plan prediction and falls
back to the traditional optimizer when uncertain. Roq introduces
robustness notions in the context of query optimization and in-
corporates a ML pipeline to predict plan cost and risk. However,
neither method provides theoretical guarantees or formally for-
mulates LQO verification. To our knowledge, our work is the first
to address the verification problem in LQOs by providing formal
guarantees and using them to guide the plan construction process.

Conformal Prediction (CP). CP is introduced to provide a ro-
bust statistical framework for quantifying prediction uncertainty
(e.g., [2, 46, 55]). Extensive research has explored the application
of CP in distribution-agnostic settings, delivering reliable perfor-
mance guarantees even in non-stationary environments (e.g., [1,
21, 27, 44, 63]). Additionally, extensions of CP have been applied to
time-series data [13, 52] and STL-based runtime verification in real-
time systems (e.g., autonomous cars [29], autonomous robots [41],
aircraft simulation [29, 44]). Recently, several work discuss applying
CP within different distribution shift conditions [4, 22, 52, 63]. Be-
sides, CP has been adapted for policy evaluation in reinforcement
learning [20, 51], time-series forecasting [47], and outlier detec-
tion [5]. It has also been employed to monitor risks in evolving data
streams [42] and detect change points in time-series data [53, 54].

8 CONCLUSION
To the best of our knowledge, we are the first to introduce Confor-
mal Predication for verifying learned database components, with a
focus on the learned query optimization. Our framework encom-
passes CP-based latency bounds across multiple granularities. Our
CP-based runtime verification handles long-latency query plans
even before their construction is complete. Our framework also
employs an adaptive CP approach for handling distribution shifts.
Further, we introduce a generic CP-guided plan search algorithm
capable of enhancing LQOs. We have demonstrated that CP pro-
vides a flexible, lightweight verification approach that establishes
trustworthy prediction boundaries. Our methods can be deployed
in real-world production environments, achieving formal verifica-
tion without significant computational overhead. Our evaluation
shows that CP can be used to achieve tight upper bounds on actual
latency using predicted cost. Adaptive CP maintains the confidence
levels even under distribution shift. CP-guided LQOs produce plans
with up to 9.84x better actual latency, over the entire workload
CP-guided LQOs show a 9.96% reduction in actual latency. Our
CP framework also lays the groundwork for broader applications
across various learned components within database systems.

2664

REFERENCES
[1] Anastasios N. Angelopoulos and Stephen Bates. 2022. A Gentle Introduc-

tion to Conformal Prediction and Distribution-Free Uncertainty Quantification.
arXiv:2107.07511 [cs.LG] https://arxiv.org/abs/2107.07511

[2] Anastasios N. Angelopoulos and Stephen Bates. 2023. Conformal Prediction:
A Gentle Introduction. Found. Trends Mach. Learn. 16, 4 (mar 2023), 494–591.
https://doi.org/10.1561/2200000101

[3] Brian Babcock and Surajit Chaudhuri. 2005. Towards a Robust Query Optimizer:
A Principled and Practical Approach. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data. 119–130.

[4] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, et al. 2023. Conformal
Prediction Beyond Exchangeability. The Annals of Statistics 51, 2 (2023), 816–845.

[5] Stephen Bates, Emmanuel Candès, Lihua Lei, et al. 2023. Testing for outliers
with conformal p-values. The Annals of Statistics 51, 1 (Feb. 2023). https:
//doi.org/10.1214/22-aos2244

[6] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime Verifi-
cation for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20, 4, Article 14 (sep
2011), 64 pages. https://doi.org/10.1145/2000799.2000800

[7] TPC-H Benchmark. [n. d.]. http://www.tpc.org/tpch/.
[8] Luca Bortolussi, Francesca Cairoli, Nicola Paoletti, et al. 2019. Neural Predictive

Monitoring. In Runtime Verification, Bernd Finkbeiner and Leonardo Mariani
(Eds.). Springer International Publishing, Cham, 129–147.

[9] Simin Cai, Barbara Gallina, Dag Nyström, et al. 2016. A Formal Approach
for Flexible Modeling and Analysis of Transaction Timeliness and Isolation.
In Proceedings of the 24th International Conference on Real-Time Networks and
Systems (Brest, France) (RTNS ’16). Association for Computing Machinery, New
York, NY, USA, 3–12. https://doi.org/10.1145/2997465.2997495

[10] Simin Cai, Barbara Gallina, Dag Nyström, et al. 2019. Statistical Model Checking
for Real-Time Database Management Systems: A Case Study. In 2019 24th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA)
(Zaragoza, Spain). IEEE Press, 306–313. https://doi.org/10.1109/ETFA.2019.
8869326

[11] Simin Cai, Barbara Gallina, Dag Nyström, et al. 2018. Specification and Formal
Verification of Atomic Concurrent Real-Time Transactions. In 2018 IEEE 23rd
Pacific Rim International Symposium on Dependable Computing (PRDC). 104–114.
https://doi.org/10.1109/PRDC.2018.00021

[12] Francesca Cairoli, Nicola Paoletti, and Luca Bortolussi. 2023. Conformal Quan-
titative Predictive Monitoring of STL Requirements for Stochastic Processes.
In Proceedings of the 26th ACM International Conference on Hybrid Systems:
Computation and Control (San Antonio, TX, USA) (HSCC ’23). Association
for Computing Machinery, New York, NY, USA, Article 1, 11 pages. https:
//doi.org/10.1145/3575870.3587113

[13] M. Cauchois, S. Gupta, A. Ali, et al. 2020. Robust validation: Confident predictions
even when distributions shift. arXiv preprint arXiv:2008.04267 (2020).

[14] Xu Chen, Zhen Wang, Shuncheng Liu, et al. 2023. BASE: Bridging the Gap
between Cost and Latency for Query Optimization. Proc. VLDB Endow. 16, 8
(April 2023), 1958–1966. https://doi.org/10.14778/3594512.3594525

[15] PostgreSQL DBMS. [n. d.]. PostgreSQL DBMS. https://www.postgresql.org/.
[16] Luc Devroye, László Györfi, and Gábor Lugosi. 2013. A Probabilistic Theory of

Pattern Recognition. Vol. 31. Springer Science & Business Media.
[17] Alexandre Donzé and Oded Maler. 2010. Robust Satisfaction of Temporal Logic

over Real-Valued Signals. In Proceedings of the 8th International Conference on
Formal Modeling and Analysis of Timed Systems (Klosterneuburg, Austria) (FOR-
MATS’10). Springer-Verlag, Berlin, Heidelberg, 92–106.

[18] Lyric Doshi, Vincent Zhuang, Gaurav Jain, et al. 2023. Kepler: Robust Learning
for Parametric Query Optimization. Proceedings of the ACM on Management of
Data 1, 1 (2023), 1–25.

[19] Georgios E. Fainekos and George J. Pappas. 2009. Robustness of Temporal Logic
Specifications for Continuous-Time Signals. Theoretical Computer Science 410,
42 (2009), 4262–4291. https://doi.org/10.1016/j.tcs.2009.06.021

[20] Daniele Foffano, Alessio Russo, and Alexandre Proutiere. 2023. Conformal Off-
Policy Evaluation in Markov Decision Processes. arXiv:2304.02574 [cs.LG]
https://arxiv.org/abs/2304.02574

[21] M. Fontana, G. Zeni, and S. Vantini. 2023. Conformal prediction: A unified review
of theory and new challenges. Bernoulli 29, 1 (2023), 1–23.

[22] Isaac Gibbs and Emmanuel J. Candès. 2021. Adaptive Conformal Inference Under
Distribution Shift. In Proceedings of the 35th International Conference on Neural
Information Processing Systems (NIPS ’21). Curran Associates Inc., Red Hook, NY,
USA, Article 128, 13 pages.

[23] Amin Kamali, Verena Kantere, Calisto Zuzarte, et al. 2024. Roq: Robust Query Op-
timization Based on a Risk-aware Learned Cost Model. arXiv:2401.15210 [cs.DB]
https://arxiv.org/abs/2401.15210

[24] Andreas Kipf, Michael Freitag, Dimitri Vorona, et al. 2019. Estimating Filtered
Group-By Queries is Hard: Deep Learning to the Rescue. In 1st International
Workshop on Applied AI for Database Systems and Applications.

[25] Andreas Kipf, Thomas Kipf, Bernhard Radke, et al. 2019. Learned Cardinalities:
Estimating Correlated Joins with Deep Learning. In 9th Biennial Conference on

Innovative Data Systems Research (CIDR ’19).
[26] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, et al. 2018. Learning to Optimize

Join Queries With Deep Reinforcement Learning. arXiv preprint arXiv:1808.03196
(2018).

[27] J. Lei, M. G’Sell, A. Rinaldo, et al. 2018. Distribution-Free Predictive Inference
for Regression. J. Amer. Statist. Assoc. 113, 523 (2018), 1094–1111.

[28] Viktor Leis, Andrey Gubichev, Atanas Mirchev, et al. 2015. How Good Are
Query Optimizers, Really? Proc. VLDB Endow. 9, 3 (nov 2015), 204–215. https:
//doi.org/10.14778/2850583.2850594

[29] Lars Lindemann, Xin Qin, Jyotirmoy V. Deshmukh, et al. 2023. Conformal
Prediction for STL Runtime Verification. In Proceedings of the ACM/IEEE 14th
International Conference on Cyber-Physical Systems (with CPS-IoT Week 2023)
(San Antonio, TX, USA) (ICCPS ’23). Association for Computing Machinery, New
York, NY, USA, 142–153. https://doi.org/10.1145/3576841.3585927

[30] Hanwen Liu, ShashankGiridhara, and Ibrahim Sabek. 2025. Conformal Prediction
for Verifiable Learned Query Optimization. arXiv:2505.02284 [cs.DB] https:
//arxiv.org/abs/2505.02284

[31] Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, et al. 2020. Simple and Principled Uncer-
tainty Estimation with Deterministic Deep Learning via Distance Awareness. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS’20). Curran Associates Inc., Red Hook,
NY, USA, Article 629, 15 pages.

[32] Bruce P Lowerre and B Raj Reddy. 1976. Harpy, a connected speech recognition
system. The Journal of the Acoustical Society of America 59, S1 (1976), S97–S97.

[33] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of
Continuous Signals. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, Yassine Lakhnech and Sergio Yovine (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 152–166.

[34] R. Marcus et al. 2021. Bao: Making Learned Query Optimization Practical. In
SIGMOD.

[35] Ryan Marcus, Parimarjan Negi, Hongzi Mao, et al. 2019. Neo: A Learned Query
Optimizer. Proc. VLDB Endow. 12, 11 (jul 2019), 1705–1718. https://doi.org/10.
14778/3342263.3342644

[36] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning
For Join Order Enumeration. In Proceedings of the First International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management. 1–4.

[37] Ryan Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(July 2019), 1733–1746. https://doi.org/10.14778/3342263.3342646

[38] Alnur Ali Maxime Cauchois, Suyash Gupta et al. 2024. Robust Validation: Confi-
dent Predictions Even When Distributions Shift. J. Amer. Statist. Assoc. 119, 548
(2024), 3033–3044.

[39] Parimarjan Negi, Ryan Marcus, Andreas Kipf, et al. 2021. Flow-Loss: Learn-
ing Cardinality Estimates That Matter. Proc. VLDB Endow. 14, 11 (July 2021),
2019–2032. https://doi.org/10.14778/3476249.3476259

[40] Parimarjan Negi, Ziniu Wu, Andreas Kipf, et al. 2023. Robust Query Driven
Cardinality Estimation Under Changing Workloads. Proceedings of the VLDB
Endowment 16, 6 (2023), 1520–1533.

[41] Baptiste Pelletier, Charles Lesire, Christophe Grand, et al. 2023. Predictive
Runtime Verification of Skill-based Robotic Systems using Petri Nets. In 2023
IEEE International Conference on Robotics and Automation (ICRA). 10580–10586.
https://doi.org/10.1109/ICRA48891.2023.10160434

[42] Aleksandr Podkopaev andAaditya Ramdas. 2022. Tracking the Risk of a Deployed
Model and Detecting Harmful Distribution Shifts. arXiv:2110.06177 [stat.ML]
https://arxiv.org/abs/2110.06177

[43] PostgreSQL. [n. d.]. PostgreSQL Explain Analyze. https://www.postgresql.org/
docs/current/sql-explain.html.

[44] Xin Qin, Yuan Xia, Aditya Zutshi, et al. 2022. Statistical Verification of Cyber-
Physical Systems using Surrogate Models and Conformal Inference. In 2022
ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS). 116–
126. https://doi.org/10.1109/ICCPS54341.2022.00017

[45] P Griffiths Selinger, MortonMAstrahan, Donald DChamberlin, et al. 1979. Access
Path Selection in a Relational Database Management System. In Proceedings of
the 1979 ACM SIGMOD international conference on Management of data. 23–34.

[46] Glenn Shafer and Vladimir Vovk. 2007. A Tutorial on Conformal Prediction.
arXiv:0706.3188 [cs.LG] https://arxiv.org/abs/0706.3188

[47] Kamile Stankeviciute, Ahmed M. Alaa, and Mihaela van der Schaar.
2021. Conformal Time-series Forecasting. In Advances in Neural In-
formation Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates,
Inc., 6216–6228. https://proceedings.neurips.cc/paper_files/paper/2021/file/
312f1ba2a72318edaaa995a67835fad5-Paper.pdf

[48] Ji Sun and Guoliang Li. 2019. An End-To-End Learning-Based Cost Estimator.
Proc. VLDB Endow. 13, 3 (Nov. 2019), 307–319. https://doi.org/10.14778/3368289.
3368296

[49] Ji Sun, Jintao Zhang, Zhaoyan Sun, et al. 2021. Learned Cardinality Estimation:
A Design Space Exploration and a Comparative Evaluation. Proc. VLDB Endow.
15, 1 (sep 2021), 85–97. https://doi.org/10.14778/3485450.3485459

2665

https://arxiv.org/abs/2107.07511
https://arxiv.org/abs/2107.07511
https://doi.org/10.1561/2200000101
https://doi.org/10.1214/22-aos2244
https://doi.org/10.1214/22-aos2244
https://doi.org/10.1145/2000799.2000800
http://www.tpc.org/tpch/
https://doi.org/10.1145/2997465.2997495
https://doi.org/10.1109/ETFA.2019.8869326
https://doi.org/10.1109/ETFA.2019.8869326
https://doi.org/10.1109/PRDC.2018.00021
https://doi.org/10.1145/3575870.3587113
https://doi.org/10.1145/3575870.3587113
https://doi.org/10.14778/3594512.3594525
https://www.postgresql.org/
https://doi.org/10.1016/j.tcs.2009.06.021
https://arxiv.org/abs/2304.02574
https://arxiv.org/abs/2304.02574
https://arxiv.org/abs/2401.15210
https://arxiv.org/abs/2401.15210
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/3576841.3585927
https://arxiv.org/abs/2505.02284
https://arxiv.org/abs/2505.02284
https://arxiv.org/abs/2505.02284
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342646
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.1109/ICRA48891.2023.10160434
https://arxiv.org/abs/2110.06177
https://arxiv.org/abs/2110.06177
https://www.postgresql.org/docs/current/sql-explain.html
https://www.postgresql.org/docs/current/sql-explain.html
https://doi.org/10.1109/ICCPS54341.2022.00017
https://arxiv.org/abs/0706.3188
https://arxiv.org/abs/0706.3188
https://proceedings.neurips.cc/paper_files/paper/2021/file/312f1ba2a72318edaaa995a67835fad5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/312f1ba2a72318edaaa995a67835fad5-Paper.pdf
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.14778/3485450.3485459

[50] Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. arXiv preprint arXiv:1503.00075 (2015).

[51] M. F. Taufiq, J.-F. Ton, R. Cornish, et al. 2022. Conformal Off-Policy Prediction
in Contextual Bandits. arXiv preprint arXiv:2206.04405 (2022).

[52] Ryan J. Tibshirani, Rina Foygel Barber, Emmanuel J. Candès, et al. 2019. Con-
formal Prediction under Covariate Shift. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems. Curran Associates Inc., Red
Hook, NY, USA, Article 227, 11 pages.

[53] Denis Volkhonskiy, Evgeny Burnaev, Ilia Nouretdinov, et al. 2017. Inductive
Conformal Martingales for Change-Point Detection. In Proceedings of the Sixth
Workshop on Conformal and Probabilistic Prediction and Applications (Proceedings
ofMachine Learning Research, Vol. 60), Alex Gammerman, Vladimir Vovk, Zhiyuan
Luo, and Harris Papadopoulos (Eds.). PMLR, 132–153. https://proceedings.mlr.
press/v60/volkhonskiy17a.html

[54] Vladimir Vovk. 2021. Testing Randomness Online. Statist. Sci. 36, 4 (Nov. 2021).
https://doi.org/10.1214/20-sts817

[55] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. 2005. Algorithmic Learning
in a Random World. Springer-Verlag, Berlin, Heidelberg.

[56] Cristina M. Wilcox and Brian C. Williams. 2010. Runtime Verification of Sto-
chastic, Faulty Systems. In Proceedings of the First International Conference on
Runtime Verification (St. Julians, Malta) (RV’10). Springer-Verlag, Berlin, Heidel-
berg, 452–459.

[57] Peizhi Wu and Zachary G. Ives. 2024. Modeling Shifting Workloads for Learned
Database Systems. Proc. ACMManag. Data 2, 1, Article 38 (March 2024), 27 pages.
https://doi.org/10.1145/3639293

[58] Peizhi Wu, Ryan Marcus, and Zachary G. Ives. 2023. Adding Domain Knowledge
to Query-Driven Learned Databases. arXiv:2312.01025 [cs.DB] https://arxiv.
org/abs/2312.01025

[59] Z. Yang et al. 2022. Balsa: Learning a Query Optimizer Without Expert Demon-
strations. In SIGMOD.

[60] Zongheng Yang, Amog Kamsetty, Sifei Luan, et al. 2020. NeuroCard: One
Cardinality Estimator for All Tables. arXiv:2006.08109 [cs] (June 2020).
arXiv:2006.08109 [cs]

[61] Zongheng Yang, Eric Liang, Amog Kamsetty, et al. 2019. Deep Unsupervised
Cardinality Estimation. Proc. VLDB Endow. 13, 3 (nov 2019), 279–292. https:
//doi.org/10.14778/3368289.3368294

[62] Xiang Yu, Guoliang Li, Chengliang Chai, et al. 2020. Reinforcement Learn-
ing With Tree-LSTM for Join Order Selection. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1297–1308.

[63] Yiqi Zhao, Bardh Hoxha, Georgios Fainekos, et al. 2024. Robust Conformal Pre-
diction for STL Runtime Verification Under Distribution Shift. In 2024 ACM/IEEE
15th International Conference on Cyber-Physical Systems (ICCPS). IEEE, 169–179.

[64] Rong Zhu, Wei Chen, Bolin Ding, et al. 2023. Lero: A Learning-To-Rank Query
Optimizer. Proceedings of the VLDB Endowment 16, 6 (2023), 1466–1479.

2666

https://proceedings.mlr.press/v60/volkhonskiy17a.html
https://proceedings.mlr.press/v60/volkhonskiy17a.html
https://doi.org/10.1214/20-sts817
https://doi.org/10.1145/3639293
https://arxiv.org/abs/2312.01025
https://arxiv.org/abs/2312.01025
https://arxiv.org/abs/2312.01025
https://arxiv.org/abs/2006.08109
https://doi.org/10.14778/3368289.3368294
https://doi.org/10.14778/3368289.3368294

	Abstract
	1 Introduction
	2 Background
	2.1 Granularity Levels of Decisions to be Verified in Learned Query Optimizers
	2.2 Standard Conformal Prediction (CP)
	2.3 Formal Representation of Performance Constraints to be Verified with CP

	3 CP-based Latency Bounds for LQOs
	3.1 Latency Bounds in Static Cases
	3.2 Latency Bounds in Distribution Shift Cases
	3.3 Framework Overview

	4 CP-based Runtime Verification for White-Box LQOs Plan Construction
	4.1 Framework Overview

	5 CP-Guided Plan Search in White-Box LQOs
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Bounded Range of Plan Actual Latency
	6.3 Adaptive CP under Distribution Shift
	6.4 Runtime Verification
	6.5 Violation Detection and Handling
	6.6 CP-Guided Actual Latency Upper Bound Query Optimizer
	6.7 Hyperparameter Microbenchmarking

	7 Related Work
	8 Conclusion
	References

