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ABSTRACT
With the breakthrough of Transformer-based pre-trained models,
the demand for fine-tuning (FT) to adapt the base pre-trained mod-
els to downstream applications continues to grow, so it is essential
for service providers to reduce the cost of processing FT requests.
Low-rank adaption (LoRA) is a widely used FT technique that only
trains small-scale adapters and keeps the base model unaltered,
conveying the possibility of processing multiple FT tasks by jointly
training different LoRA adapters with a shared base model.

Nevertheless, through in-depth analysis, we reveal the efficiency
of joint FT is dampened by two heterogeneity issues in the training
data — the sequence length variation and skewness. To tackle these
issues, we develop LobRA, a brand new framework that supports
processing multiple FT tasks by jointly training LoRA adapters.
Two innovative designs are introduced. Firstly, LobRA deploys the
FT replicas (i.e., model replicas for FT) with heterogeneous resource
usages and parallel configurations, matching the diverse workloads
caused by the sequence length variation. Secondly, for each training
step, LobRA takes account of the sequence length skewness and
dispatches the training data among the heterogeneous FT replicas
to achieve workload balance. We conduct experiments to assess the
performance of LobRA, validating that it significantly reduces the
GPU seconds required for joint FT by 45.03%-60.67%.
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1 INTRODUCTION
Transformer-based [59] pre-trained models, represented by Large
Language Models (LLMs) [46, 47, 58, 65], have fueled an ever-
increasing demand for their deployment in various applications
such as chatbot assistants [50, 69], machine translation [17, 80],
summarization [35, 68], database tuning [31, 77, 78], and more [12,
32, 67, 70]. Since pre-trained models are mostly trained with gen-
eral data, it is a common practice to leverage a fine-tuning (FT)
process [14, 49, 54], which further trains the pre-trained model with
domain-specific data to adapt the model to the target applications.

Driven by the advancement of LLMs, many technology compa-
nies are enhancing their business strategies through the adoption
of the Model as a Service (MaaS) paradigm [19]. To this end, pro-
viding FT services becomes essential. For example, a technology
company may own a closed-source pre-trained model and allow
users to upload their private or domain-specific datasets for FT [48].
For another example, cloud service providers would also offer FT
services using popular open-source pre-trained models [10, 55]. As
a result, given the diverse downstream applications, there would
be many FT requests on the basis of the same pre-trained model,
and consequently, it is of great value to reduce the cost associated
with the FT requests over the same base model.

Meanwhile, FT services exhibit specific characteristics that are
divergent from other kinds of services like model inference. For one
thing, each user can submit multiple FT requests simultaneously,
in order to build various domain-specific models with the same
base model or to evaluate different dataset mixtures to see which
gives the best performance [15, 60]. For another, compared to the
inference scenario, FT requests arrive far less frequently (e.g., [2]
reported an average of around 8.5 FT tasks per hour and some of
them arrive simultaneously), and it takes significantly longer to
process an FT request (tens of minutes to hours in practice), so
both the request arrival rate and departure rate are much lower.
Consequently, there would be a batch of FT requests that co-exist
for long durations, and the batch does not change frequently. Given
these characteristics, this work focuses on how to reduce the cost of
jointly executing a batch of FT tasks over the same base model.

Owing to the astonishing model sizes and the scarcity of hard-
ware accelerators (typically, GPUs), low-rank adaptation (LoRA) [21,
37] has become one of the most widely used and effective FT tech-
niques. In essence, LoRA only trains small-scale adapters that con-
sist of much fewer parameters than the base model, significantly
reducing the FT cost. Since LoRA keeps the base model unaltered, it
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Figure 1: An illustration of the fusion of different LoRA adapters.

conveys the opportunity to share the same base model across mul-
tiple FT tasks rather than maintaining individual model replica(s)
for each one. As shown in Figure 1, in each training step, we can
fuse the input data from different tasks so that the computation of
the base model can be fused into a batched operation whilst the
computation of multiple LoRA adapters can be supported by cus-
tomized operations. In fact, co-serving multiple LoRA adapters has
been widely investigated for LLM inference [7, 51, 64, 79]. Inspired
by this, this work focuses on how to efficiently carry out multiple
FT tasks as a joint FT task by fusing multiple LoRA adapters.

Nevertheless, we experienced unsatisfactory efficiency when we
naïvely leveraged the batch fusion idea to support joint FT. After
an in-depth investigation, we found that this is because of two
heterogeneity issues of the training data for joint FT.

The first is the sequence length variation among tasks. Specifically,
since Transformer models take sequences as input, the training data
(sequences) inevitably vary in length. As shown in Figure 2, the
sequence length distributions are substantially divergent across
FT tasks. This is reasonable as the training data of a few tasks
(e.g., summarization) are usually much longer than the others (e.g.,
question answering). Meanwhile, since the memory consumption of
FT is linear w.r.t. the lengths [8, 9, 72], it requires different numbers
of GPUs to support the processing of sequences with different levels
of lengths. Nevertheless, existing works overlook the discrepancy
in resource demands, and straightforwardly deploy the FT replicas
(i.e., model replicas for FT) in the same way for all training data,
which conforms to the number of GPUs required for the highest
sequence length. This would lead to efficiency degradation as the
communication cost becomes higher for most training data.

To cope with this problem, this work proposes the idea of het-
erogeneous FT replicas, which deploys the FT replicas with varying
resource usages and parallel configurations. Thus, we accelerate the
processing of short sequences with FT replicas with low model par-
allel degrees, whilst avoiding out-of-memory errors by dispatching
the long sequences to FT replicas with high model parallel degrees.

However, the skewness in sequence lengths, the second hetero-
geneity issue of FT data, raises another hurdle. As shown in Figure 2
again, most of the training data (sequences) are relatively short,
which is a natural characteristic of human texts [11]. If we simply
dispatch the training data to FT replicas according to their lengths,
the workloads would be extremely imbalanced among the replicas.
That is to say, FT replicas with low model parallel degrees must
process muchmore training data, leading to heavier workloads com-
pared to those with high parallel degrees. Since FT replicas must
synchronize the parameters of LoRA adapters for every training
step, it inevitably results in idle periods for some FT replicas.
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Figure 2: Cumulative distributions of sequence lengths of three FT
datasets. The “𝑛 GPU(s)” indicates that we need 𝑛 A100-40GB GPU(s)
to process data with the corresponding sequence length without
out-of-memory errors when fine-tuning the Llama2-7B model.

We address this issue by developing aworkload-balanced data dis-
patching technique. This is inspired by the fact that short sequences
can also be processed by FT replicas with high model parallel de-
grees. Thus, we adjust the data dispatching so that the workloads
of FT replicas with low model parallel degrees can be migrated to
those with high parallel degrees, achieving workload balance.

Putting them together, this work presents LobRA, a multi-tenant
FT framework by manufacturing multiple LoRA adapters concur-
rently. To tackle the data heterogeneity issues, LobRA innovatively
introduces the deployment of heterogeneous FT replicas andworkload-
balanced data dispatching to accelerate the joint FT process. In
summary, this work makes the following contributions.

• We first anatomize different design choices of joint FT over het-
erogeneous training data, revealing the necessity of supporting
heterogeneous model deployment and workload-balanced data
dispatching. Based on the anatomy, we formulate a joint opti-
mization problem to co-optimize these two factors.

• Subsequently, we propose a two-stage decomposition of the joint
optimization problem for practical joint FT. On instantiation, the
first-stage problem determines the heterogeneous model deploy-
ment plan that is optimal in expectation. Then, for each training
step of the joint FT process, we derive the workload-balanced
data dispatching plan by solving the second-stage problem.

• We evaluate the performance of LobRA by fine-tuning LLMs
with up to 70B parameters and more than 10 tasks over 64 GPUs.
Empirical results demonstrate that LobRA effectively reduces the
GPU seconds required for joint FT by 45.03%-60.67%.

2 BACKGROUND AND RELATEDWORKS
2.1 Fine-tuning over Variable-length Data
Fine-tuning based on LoRA. Fine-tuning (FT) is an essential pro-
cess to adapt the pre-trained model to the target domain [14, 49, 54].
Low-rank adaption (LoRA) and its variants [21, 37] only fine-tune
small-scale adapters rather than the base model itself, reducing
resource demands substantially. For a model weight matrix𝑊 ∈
R𝑖𝑛×𝑜𝑢𝑡 , LoRA trains two low-rank matrices 𝐴 ∈ R𝑟×𝑜𝑢𝑡 , 𝐵 ∈ R𝑖𝑛×𝑟

(𝑟 ≪ 𝑖𝑛, 𝑜𝑢𝑡 ) and computes𝑋𝑊 +𝑋𝐵𝐴. By doing so, it approximates
the change to the weight matrix as Δ𝑊 ≈ 𝐵𝐴.

As LoRA does not alter the base model, previous works have
proposed the co-serving of multiple LoRA adapters for inference [7,
51, 64, 79], and Miao et al. [39] further considered the scenario of
inference and FT simultaneously. However, processing multiple
FT tasks is not their primary focus. Ye et al. [66] and Zheng et al.
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same length. Sequence packing concatenates sequences together and
uses the block-diagonal casual masks to avoid cross-contamination.

[75] considered fusing multiple LoRA adapters for joint FT. Nev-
ertheless, they carry out the joint FT task by naïvely batching the
input data, overlooking the data heterogeneity mentioned in §1.
There are also many works that compose LoRA adapters for better
performance [22, 56, 62, 63, 76], which is orthogonal to our work.
Processing Variable-length Data. In each training step, given a
batch (a.k.a. mini-batch) of data, they are with diverse lengths due to
the variable-length nature of sequences. Meanwhile, as GPU mem-
ory is limited, it is usually infeasible to process the batch at once.
Thus, it is common to re-organize the batch into smaller chunks
(a.k.a. micro-batches), process each sequentially, and accumulate
model gradients computed from all chunks for model update.

Figure 3 shows two commonly used data re-organization tech-
niques. Sequence padding sorts the data according to their lengths
and takes those with similar lengths when crafting each chunk.
Within each chunk, it adds special tokens (i.e. ⟨PAD⟩) to ensure
a unique length. Sequence packing concatenates sequences for
each chunk, eliminating the need for padding tokens. Meanwhile,
it adjusts the casual mask to be block-diagonal to avoid cross-
contamination among the sequences that are packed together [29].

In theory, packing provisions better training efficiency. However,
Bai et al. [5] conducted experiments on FT tasks and observed
that padding and packing exhibit comparable training efficiency,
whilst training with padding usually achieves better model quality,
which is because packing introduces biases to the contributions of
different data. Thus, padding and packing have their pros and cons,
and the choice between them is an open question. In this work, we
assume padding is employed. Nevertheless, it is noteworthy that the
proposed designs can also be applied when packing is employed.

Given the variable-length phenomenon, there are also several
works investigating more variants of packing and padding [13, 30,
52]. However, none of these works have considered processing
data of different lengths with different resource usages and parallel
configurations. As a result, they are orthogonal to our work.

2.2 Parallel Configurations in Model Training
Model Parallel. There are two prevalent forms of model parallel,
namely tensor parallel (TP) [28, 53] and pipeline parallel (PP) [20, 23,
41, 42]. Since TP and PP have different pros and cons, it is common
to combine them for better efficiency, which is also known as hybrid
model parallel [25, 40, 43, 57, 61, 71, 74]. In essence, model parallel
distributes the model across GPUs to reduce the memory occupied
by the model itself, sparing the space for intermediate results in
training. Since the memory consumed by intermediate results is

Table 1: Frequently used notation throughout this work.
𝑁 The number of available GPUs.
𝑅 The number of sequence length ranges, i.e., the training data

of each batch are divided into 𝑅 buckets.
𝑆 The number of candidate parallel configurations.
S𝑖 The 𝑖-th candidate parallel configuration.
𝑛𝑖 The number of GPUs needed by S𝑖 to deploy one FT replica.
𝑝𝑖 The number of FT replicas deployed with S𝑖 .
𝑟𝑖 The number of sequence length ranges that S𝑖 supports,

i.e., FT replicas with S𝑖 support processing sequences
in the first 𝑟𝑖 ranges without out-of-memory errors.

𝑑𝑖,𝑗 The number of training data (sequences) in the 𝑗-th range
that are assigned to the FT replicas with S𝑖 .

linear w.r.t. the summed lengths in each chunk [8, 9, 72], if we wish
to support longer sequences, we usually need to increase the model
parallel degree, yet at the price of larger communication overhead.
Model Replication (Data Parallel). Besides model parallel, a
model can be replicated into multiple replicas. The input data are
usually evenly dispatched to these replicas for concurrent process-
ing (a.k.a. data parallel [6, 18, 26, 34, 44, 73]). To ensure the consis-
tency of model parameters, it is necessary to synchronize the model
gradients (or parameters) among the replicas for every training step,
so balancing the workload across replicas is important.
Cost Model of Fine-tuning Replicas. In this work, we call each
model replica a fine-tuning (FT) replica. Each replica is associated
with a parallel configuration that describes how it is parallelized.

Given a training task, previous works generally develop cost
modeling for running time and memory consumption, so that they
can deduce how to parallelize themodel [24, 25, 40, 61, 74]. However,
they only support the same parallel configuration for all model
replicas and do not consider fine-tuning with variable-length data.

Fortunately, we can borrow ideas from previous works to build
the cost model for variable-length data, which involves profiling
the time cost of essential modules and estimating the running time
according to the critical path of the training workflow. In addi-
tion, since the memory consumption is linear w.r.t. the summed
lengths in each chunk [8, 9, 72], we can easily profile the maximum
supported sequence length for each kind of parallel configuration.

Throughout this work, we divide the sequence length into 𝑅

non-overlapping ranges so that the variable-length data can be
sorted into 𝑅 buckets. We assume there are 𝑆 candidate parallel
configurations {S𝑖 }𝑆𝑖=1, where the 𝑖-th candidate requires𝑛𝑖 GPUs to
deploy one FT replica and supports processing sequences in the first
𝑟𝑖 ranges (𝑟𝑖 ≤ 𝑅) without out-of-memory errors. Subsequently, we
denote 𝑇 ({𝑑 ·, 𝑗 }𝑟 ·𝑗=1;S·) as the time cost1 of an FT replica associated
with S· , where 𝑑 ·, 𝑗 represents how many sequences in the 𝑗-th
range are dispatched to this FT replica. Due to the space constraint,
we leave the details of our cost model in Appendix D [4].

3 DESIGN ANATOMY
This section anatomizes several design choices for joint FT, aim-
ing to minimize the total GPU seconds needed to run one training
step per task. To help readers better understand, we provide an

1Note that our work is applicable as long as the time cost function is linear w.r.t. 𝑑 ·, 𝑗 .
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Figure 4: An example of 4 FT tasks with four different approaches, where (a) denotes fine-tuning the 4 tasks sequentially, whilst (b)-(d) present
three different designs discussed in §3. We focus on the total GPU seconds required to run one training step for each task. (e) illustrates the
inputs and decision variables of Equation (1) based on (d).

example of four FT tasks in Figure 4. Figure 4(a) depicts a sequen-
tial FT process that executes the four FT tasks one by one, whilst
Figure 4(b)-(d) illustrates three different design choices of joint FT.
Naïve Design: Homogeneous FT Replicas and Uniform Data
Dispatching. As shown in Figure 4(b), an intuitive solution for
joint FT is to instantiate the FT replicas with the same parallel
configuration, fuse the data batches from all tasks together, and
evenly dispatch them to these homogeneous FT replicas. By doing
so, it is obvious that the training workloads are balanced across the
replicas. However, the end-to-end performance of such an approach
is unsatisfactory due to the sequence length variation among tasks.

Specifically, unlike well-structured tabular datasets, sequences
inherently have diverse lengths. Moreover, the sequence lengths of
different tasks are significantly divergent. Such a variation results in
different memory consumption, thereby calling for different trade-
offs between memory reduction and training efficiency. As a result,
for tasks with long sequences, since their memory consumption
is high, it is common to increase the model parallel degree (which
requires more GPUs for one replica) to avoid out-of-memory errors,
whilst incurring higher communication costs. In contrast, for tasks
with short sequences, we can leverage a lower model parallel degree
(which requires fewer GPUs for one replica) for better efficiency.

Since the naïve approach uses the same parallel configuration
for all replicas, the configuration must be able to accommodate
the memory consumption of the longest sequences to avoid out-of-
memory errors. For instance, each FT replica in Figure 4(b) occupies
8 GPUs, whilst only 2 GPUs are necessary if we consider the first
two FT tasks individually in Figure 4(a). Thus, their processing time
would be significantly prolonged, making this approach ineffective.
Better Design: Heterogeneous FT Replicas and Length-based
DataDispatching.Based on the discussion above, a better design is
to leverage heterogeneous FT replicas for variable-length sequences.

As exemplified in Figure 4(c), we can instantiate the replicas with
non-unique parallel configurations, classify the training data into
buckets according to their lengths, and dispatch each bucket to the
most suitable replica(s). By this means, from the perspective of each
sequence, it can be processed by the most efficient configuration.
Nevertheless, such a solution suffers from the workload imbalance
problem caused by the skewness in sequence lengths.

To elaborate, in real-world corpora, most sequences are relatively
short, and there are very few sequences that are significantly longer
than others. Figure 2 presents the sequence length distributions of
several FT datasets — more than half of the sequences are shorter
than 2K, whilst only a few are longer than 8K. In fact, this is rea-
sonable in human texts and similar observations have also been
reported on extremely large-scale pre-training corpora [11, 16].

Back to the discussion about Figure 4(c), given the skewness
issue, the replicas with low model parallel degrees would receive
a large portion of training data, whilst the other replicas would
receive very few. As synchronization is needed for model update,
replicas must idly wait for the slowest one(s). Worse still, a higher
model parallel degree requires more GPUs for each replica, so there
is a huge waste of computational resources. For the example in
Figure 4(c), the 8 GPUs in the third replica sit idle for approximately
42% of the time during the joint FT process (10.47 vs. 18.20 seconds).
Optimized Design: Heterogeneous FT Replicas and Workload-
Balanced Data Dispatching. Inspired by this, we propose to
adopt the combination of heterogeneous FT replicas and workload-
balanced data dispatching. The rationale is that replicas with high
model parallel degrees can also process short sequences, so we can
dispatch short sequences to more kinds of replicas. As depicted in
Figure 4(d), by doing so, we can strike a good balance among the
heterogeneous FT replicas and improve end-to-end efficiency.

Given a batch of training data, let 𝐵 𝑗 be the number of sequences
fallen into the 𝑗-th bucket ( 𝑗 ∈ [1, 𝑅]). There are two key factors.
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Firstly, to deploy the heterogeneous FT replicas, we need to select
the suitable parallel configurations and the number of replicas for
each selected configuration. Secondly, for each batch, we need to
dispatch the training data to minimize the running time of the
slowest replica. We formulate the following optimization problem:

argmin
𝑝𝑖 ,𝑑𝑖,𝑗 ∈N0 for 𝑖∈ [1,𝑆 ], 𝑗 ∈ [1,𝑟𝑖 ]

max
𝑖∈ [1,𝑆 ]

𝑇


𝑑𝑖,𝑗 /𝑝𝑖

𝑟𝑖
𝑗=1 ; S𝑖


s.t.

∑︁
𝑖∈{𝑖 |𝑟𝑖 ≥ 𝑗 }

𝑑𝑖,𝑗 = 𝐵 𝑗 for ∀ 𝑗 ∈ [1, 𝑅 ]

𝑑𝑖,𝑗 ≤ 𝐵 𝑗 × 𝑝𝑖 for ∀𝑖 ∈ [1, 𝑆 ], 𝑗 ∈ [1, 𝑟𝑖 ]
𝑆∑︁
𝑖=1

𝑝𝑖 × 𝑛𝑖 ≤ 𝑁

(1)

where 𝑝𝑖 represents the number of FT replicas that are deployed
with S𝑖 (i.e., the 𝑖-th parallel configuration, and 𝑝𝑖 = 0 indicates
S𝑖 is not selected for deployment), and 𝑑𝑖, 𝑗 represents how many
sequences in the 𝑗-th bucket are assigned to the 𝑝𝑖 replica(s) withS𝑖

for processing. 𝑇 (·; ·) denotes the running time of the 𝑝𝑖 replica(s)
with S𝑖 given the dedicated sequences. The first constraint ensures
all sequences are processed. The second constraint requires no
sequences will be assigned if a configuration is not selected (i.e.,
𝑑𝑖, 𝑗 = 0 as long as 𝑝𝑖 = 0). The third constraint ensures the FT
replicas can be instantiated using the available GPUs.

We illustrate an example of the optimization problem with Fig-
ure 4(d). There are 𝑁 = 16 GPUs and we divide the sequences into
𝑅 = 4 buckets based on their lengths. To deploy one replica, there
are 𝑆 = 4 candidate configurations, requiring {𝑛𝑖 }𝑆𝑖=1 = {1, 2, 4, 8}
GPU(s) and supporting sequences in the first {𝑟𝑖 }𝑆𝑖=1 = {1, 2, 3, 4}
bucket(s), respectively. In the current fused batch, the numbers
of sequences fallen into the buckets are {𝐵 𝑗 }𝑅𝑗=1 = {196, 62, 16, 4}.
Then, by solving the optimization problem, the numbers of de-
ployed replicas with the configurations are {𝑝𝑖 }𝑆𝑖=1 = {4, 2, 0, 1},
and the data dispatching is shown in Figure 4(e).

4 LOBRA

4.1 Overview
Although Equation (1) co-optimizes the model deployment and data
dispatching, solving it for every training step is impractical. For one
thing, across different steps, the best model deployment plan may
vary, which implies that we would need to reconfigure the model
partitioning. Given the substantial model sizes, this is prohibitively
time-consuming. For another, solving the problem takes longer than
the training of one step (as evaluated in §5.3), making it infeasible

to solve it for every step. To tackle these obstacles, we propose a
two-stage decomposition as depicted in Figure 5.
• The first stage (§4.2) produces the deployment plan of heteroge-

neous FT replicas. It is only done once at the initialization of the
joint FT task, eliminating the need for reconfiguration of model
deployment as well as the expensive solving cost for every step.

• Given the deployed FT replicas, the second stage (§4.3) only
deduces the optimal data dispatching, which is fast and can be
invoked for every step. This enables us to dynamically adapt the
data dispatching to the randomly drawn batches during training.

4.2 Deployment of Heterogeneous FT Replicas
Problem Formulation. To instantiate the joint FT task, it is es-
sential to determine how to deploy the heterogeneous FT replicas.
However, according to Equation (1), the optimal deployment plan
is relevant to how the sequences are distributed across the buckets
(i.e., {𝐵 𝑗 }𝑅𝑗=1). To address the discrepancy, we manage to utilize
the overall distribution of sequence lengths of the FT datasets. In
particular, we re-write Equation (1) as follows:

argmin
𝑝𝑖 ,𝑑𝑖,𝑗 ∈N0 for 𝑖∈ [1,𝑆 ], 𝑗 ∈ [1,𝑟𝑖 ]

max
𝑖∈ [1,𝑆 ]

𝑇


𝑑𝑖,𝑗 /𝑝𝑖

𝑟𝑖
𝑗=1 ; S𝑖


s.t.

∑︁
𝑖∈{𝑖 |𝑟𝑖 ≥ 𝑗 }

𝑑𝑖,𝑗 ≥ 𝐵 × 𝑓𝑗 for ∀ 𝑗 ∈ [1, 𝑅 ]

𝑑𝑖,𝑗 ≤ 𝐵 𝑗 × 𝑝𝑖 for ∀𝑖 ∈ [1, 𝑆 ], 𝑗 ∈ [1, 𝑟𝑖 ]
𝑆∑︁
𝑖=1

𝑝𝑖 × 𝑛𝑖 ≤ 𝑁

(2)

where 𝐵 denotes the batch size of the joint FT task, and 𝑓𝑗 denotes
the percentage of sequences fallen into the 𝑗-th bucket. Solving
Equation (2) returns the model deployment plan (𝑝𝑖 ) and data dis-
patching plan (𝑑𝑖, 𝑗 ) that is optimal in expectation. Then, LobRA
instantiates the FT replicas based on the model deployment plan
(whilst the data dispatching plan will be omitted).

Note that since 𝑓𝑗 ’s are not integers, we have inequality con-
straints on 𝑑𝑖, 𝑗 in Equation (2). Formally speaking, the solutions
to Equation (2) may have


𝑗


𝑖 𝑑𝑖, 𝑗 = 𝐵 + 𝑅, whilst the solutions

to Equation (1) follow


𝑗


𝑖 𝑑𝑖, 𝑗 = 𝐵, implying a difference. Nev-

ertheless, after solving Equation (2), only 𝑝𝑖 ’s are used for model
deployment, whilst 𝑑𝑖, 𝑗 ’s are omitted. Combining with the fact that
𝐵 ≫ 𝑅, the difference between Equation (1) and Equation (2) is
minor, and it does not affect the effectiveness of our work.
Configuration Pruning. Due to the term 𝑑𝑖, 𝑗/𝑝𝑖 , Equation (2) is a
mixed-integer non-linear programming (MINLP) problem, which is
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Figure 6: Illustration of dynamic bucketing.

a notorious combinatorial optimization problem. Although libraries
like SCIP [3] support solving MINLP problems, it is very time-
consuming, especially when there are many decision variables
(i.e., 𝑑𝑖, 𝑗 and 𝑝𝑖 ). Specifically, the number of decision variables of
Equation (2) is 𝑆 + 𝑆

𝑖=1 𝑟𝑖 ≤ 𝑆 + 𝑆 × 𝑅. Thus, the solving cost of
Equation (2) is highly related to 𝑆 , as 𝑅 is not large in practice (e.g.,
we set 𝑅 = 16 in our experiments). To speed up the solving process,
we introduce two heuristics to filter the candidate configurations.
Due to the space constraint, we briefly introduce the rationale below
and refer interested readers to Appendix A [4] for more details.
• Firstly, we only consider a small set of configurations (rather

than covering all possible ones) for problem-solving. In essence,
if two configurations consume the same number of GPUs (i.e.,
same 𝑛) and one of them is consistently less efficient than the
other, then it will never be selected for deployment. Besides,
since the model architecture of each pre-trained model is fixed,
we conduct offline benchmarking and propose the candidates in
advance, without affecting the online problem-solving.

• Secondly, although there is no closed-form solution for MINLP
problems, it is possible to heuristically estimate the lower bound
of training efficiency given a deployment plan (i.e., {𝑝𝑖 }𝑆𝑖=1). The
reason is that, given the aforementioned benchmarking, we can
estimate how the running time of two FT replicas would change
after we migrate some training data between them. Thus, given a
deployment plan, we treat the length-based dispatching as a start-
ing point and estimate the lower bound of workload-balanced
dispatching. Then we filter out deployment plans that are pre-
dicted to be inefficient, which shrinks the solution space.

Based on these two heuristics, Equation (2) can be solved efficiently
and accurately. For one thing, when the number of GPUs is rel-
atively small (e.g., 16-32 GPUs), the heuristics do not affect the
achieved solutions (i.e., the achieved solutions are the same as those
achieved without pruning), yet accelerate the solving process sub-
stantially. For another, when there are more GPUs, solving without
pruning fails to finish within an hour, whilst solving with pruning
only takes several minutes. Since Equation (2) is only solved at
initialization, the solving time is worthwhile given the speedup in
the joint FT process. In Appendix A and Appendix B.2 [4], we have
provided more details and empirical results.

4.3 Workload-Balanced Data Dispatching
Problem Formulation. After the heterogeneous FT replicas are de-
ployed, each training step of the joint FT process involves randomly
drawing a batch of training data, and feeding them to the FT replicas.
Due to the randomness in batch sampling, the number of sequences
that fall into each bucket may be divergent across different steps.
Denote 𝑝∗𝑖 as the optimal solution achieved by Equation (2), which
describes the model deployment plan of the heterogeneous FT repli-
cas, we formulate the following optimization problem to minimize

the time cost of each training step.

argmin
𝑑𝑖,𝑗 ∈N0 for 𝑖∈ [1,𝑆 ], 𝑗 ∈ [1,𝑟𝑖 ]

max
𝑖∈ [1,𝑆 ]

𝑇


𝑑𝑖,𝑗 /𝑝∗

𝑖

𝑟𝑖
𝑗=1 ; S𝑖


s.t.

∑︁
𝑖∈{𝑖 |𝑟𝑖 ≥ 𝑗 }

𝑑𝑖,𝑗 = 𝐵 𝑗 for ∀ 𝑗 ∈ [1, 𝑅 ]

𝑑𝑖,𝑗 ≤ 𝐵 𝑗 × 𝑝∗
𝑖 for ∀𝑖 ∈ [1, 𝑆 ], 𝑗 ∈ [1, 𝑟𝑖 ]

(3)

Since {𝑝∗𝑖 }𝑆𝑖=1 are constants rather than decision variables, the opti-
mization problem in Equation (3) is an integer linear programming
(ILP) problem, which can be efficiently solved via existing libraries
like PuLP [1] and SCIP [3]. The number of decision variables in
Equation (3) is

𝑆
𝑖=1 𝑟𝑖 ≤ 𝑆 × 𝑅. However, since we can remove the

configurations that are not selected for deployment (i.e., whose 𝑝∗𝑖
is zero), there are very few decision variables in practice. (For in-
stance, there are only 3-5 selected configurations in our evaluation.)
Thus, as we will evaluate in §5.3, the solving process is fast and can
be fully overlapped by the training of previous step(s).
Dynamic Bucketing. Till now, we assume that the boundaries of
buckets, denoted as {𝑠𝑖 }𝑅𝑖=1, are pre-defined and fixed throughout the
joint FT process. However, due to the randomness in batch sampling,
the optimal boundaries vary across different training steps — as
each sequence must be padded to the closest boundary, using fixed
boundaries would lead to undesirable padding. To address this
problem, we develop a dynamic bucketing approach to facilitate
the adaption to the sequence length distribution during training.

As depicted in Figure 6, our approach starts from𝑈 pre-defined
boundaries {𝑢𝑖 }𝑈𝑖=1, which partition the range of sequence length
into 𝑈 intervals (in practice, we consider equal-length division
{256, 512, · · · }). Given a batch of 𝐵 sequences, our approach bucket
sorts them by lengths and determines 𝑅 boundaries (𝑅 ≤ 𝑈 ) to form
𝑅 buckets that minimize the padding via dynamic programming.

Denote I𝑖 as the set of indices of sequences fallen into the 𝑖-th
interval, and State𝑖, 𝑗 as the minimized padding when bucketing the
first 𝑖 intervals into 𝑗 buckets. We have the following initial state
and state transition expressions for dynamic programming:

State0, 𝑗 = 0, ∀ 𝑗 ∈ [0, 𝑅 ], State𝑖,0 = +∞, ∀𝑖 ∈ [1,𝑈 ],

State𝑖+1, 𝑗+1 = min
𝑖′∈ [0,𝑖 ]


State𝑖′, 𝑗 +

𝑖∑︁
𝑖′′=𝑖′+1

( |I𝑖′′ | × (𝑢𝑖+1 − 𝑢𝑖′′ ) )


(4)

By computing State𝑈 ,𝑅 , we achieve the optimal boundaries for a
given batch of data2. The time complexity of the dynamic program-
ming is merely 𝑂 (𝐵 + 𝑅𝑈 2), introducing negligible overhead.3

Note that the bucketing approach is also applied when solving
the deployment of FT replicas in Equation (2). In particular, at the
initialization of the joint FT task, we randomly sample a large num-
ber (100 × 𝐵 by default) of training data and perform the bucketing
to determine the boundaries for solving Equation (2).

5 EXPERIMENTS
5.1 Implementation and Experimental Setup
We implement LobRA on top of Hetu [33, 38], a distributed deep
learning framework for large-scale models. We utilize SCIP [3] to

2The total number of padding tokens is State𝑈 ,𝑅 +𝑈
𝑖=1


𝑘∈I𝑖 (𝑢𝑖 − 𝑠𝑘 ) , where the

second term denotes the padding needed inside each interval, which is a constant.
3We default 𝑅 as 16 (sensitivity experiment provided in Appendix B.2 [4]) and ignore
empty intervals in our implementation, so the term 𝑅𝑈 2 is small in practice.
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Figure 7: End-to-end evaluation.

Table 2: Parallel configurations used by Task-Fused and LobRA in
end-to-end evaluation. (Those used by Task-Sequential and LobRA-
Sequential are provided inAppendix B.3 [4].) Each ⟨𝛼, 𝛽 ⟩×𝛾 indicates
there are 𝛾 FT replica(s) with a TP degree of 𝛼 and a PP degree of 𝛽 .

Task-Fused LobRA

7B ⟨8,1⟩×2 ⟨1,1⟩×6, ⟨2,1⟩×1, ⟨8,1⟩×1
32B ⟨8,1⟩×8 ⟨1,6⟩×4, ⟨2,2⟩×4, ⟨4,1⟩×2, ⟨8,1⟩×2
70B ⟨16,1⟩×4 ⟨2,4⟩×4, ⟨4,2⟩×1, ⟨8,1⟩×1, ⟨16,1⟩×1

solve the MINLP and ILP problems. Our framework incorporates
libraries like FlashAttention [8, 9] for efficient computation of LLMs
and NCCL [45] for communication. Even when training with homo-
geneous FT replicas, LobRA achieves state-of-the-art FT efficiency.
More details are provided in Appendix C [4].

Although LobRA focuses on co-optimizing a given batch of FT
tasks, it also supports dynamic batches. In practice, when the batch
of FT tasks changes (e.g., some tasks exit earlier than others or new
FT requests arrive), we simply re-generate a newmodel deployment
plan with the updated sequence length distribution. If the new plan
differs from the current one, we save checkpoints for LoRA adapters
and restart the joint task to meet the new plan. (We do not need to
save checkpoints for the base model.) The overhead of deployment
adjustment is consistently less than 3 minutes in practice, which is
worthwhile as the FT tasks would take hours to finish.

Experimental Environments.We use two environments for
evaluation. The first consists of 2 servers equipped with 8 A100-
40GB GPUs (16 GPUs in total). The GPUs within the same server are
connected via 600GB/s NVLink and the servers are connected via
100GB/s InfiniBand. The second consists of 8 servers equipped with
8 A800-80G GPUs (64 GPUs in total). The intra- and inter-server
communication bandwidths are 400GB/s and 200GB/s, respectively.

Competitors. The primary goal of our evaluation is to evalu-
ate the effectiveness of heterogeneous FT replicas and workload-
balanced data dispatching. Since none of the existing works have
supported such designs for joint FT, we consider two baselines,
termed Task-Fused and Task-Sequential, that employ homogeneous
FT replicas and uniform dispatching. The first naïvely fuses the
FT tasks (i.e., Figure 4(b)) whilst the second executes the FT tasks
sequentially (i.e., Figure 4(a)). We tune their deployment plan to
achieve the best efficiency. To further evaluate the effectiveness of
batch co-optimization, we also consider a variant of LobRA, termed
LobRA-Sequential, which also runs the FT tasks sequentially but
optimizes each FT task by employing heterogeneous FT replicas
and workload-balanced data dispatching.

Workloads.We consider three popular LLMs, which are Llama2-
7B, Qwen2.5-32B, and Llama2-70B. We fine-tune the 7B model with
the first environment and the other two models with the second
environment. We consider 12 FT datasets, regarding each as one FT

Homo FT Replicas

(Task-Fused)
Hetero FT Replicas

Len-based w/o Dynamic Bucketing
Hetero FT Replicas

Balance w/o Dynamic Bucketing
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Figure 8: Ablation Studies (7B model, 16 A100-40GB GPUs).

task. The detailed descriptions of the FT datasets and the batch size
settings are provided in Appendix B.1 [4]. By default, we consider
6 tasks for the 7B model and 12 tasks for the other two models. We
use the Adam optimizer [27, 36] for all experiments.

Protocols. Since our goal is to improve the efficiency of joint
FT, we focus on the GPU seconds required to train one step for
all involved tasks. For all experiments, we report the mean of 100
training steps, and the standard deviation is within 10%.

5.2 End-to-End Evaluation
We first assess the end-to-end joint FT efficiency of LobRA. The
results are shown in Figure 7, and we provide the parallel configu-
rations used for deployment in Table 2.

In general, LobRA outperforms Task-Fused significantly for all
three experiments, reducing 45.03%-60.67% GPU seconds. LobRA
achieves greater improvement when fine-tuning larger models over
64 GPUs. This is reasonable since LobRA is able to explore a larger
space of deployment plans — LobRA deploys 11 and 7 heterogeneous
FT replicas for the 32B and 70B models, respectively, whilst Task-
Fused can only deploy 8 and 4 homogeneous FT replicas. This
allows more short sequences to get accelerated. Moreover, owing
to the substantial size of the 70B model, Task-Fused must utilize a
TP degree of 16 to accommodate the high memory consumption,
which is extremely inefficient due to the slow communication across
servers. In contrast, most of the FT replicas in LobRA do not need to
span across servers, delivering much better efficiency. Thus, LobRA
achieves the highest performance gain on the 70B model.

Task-Sequential performs better than Task-Fused. As analyzed
in §3, Task-Fused must employ a high model parallel degree for all
training data. Task-Sequential, however, can employ a lower model
parallel degree for datasets that contain only short sequences (e.g.,
question-answering datasets), so the total GPU seconds are shorter.
The smaller performance gap in the 7B model is primarily because
the smaller GPU memory capacity (40GB) restricts Task-Sequential
from choosing more efficient parallel configurations for most tasks.
Nevertheless, Task-Sequential is still less efficient than LobRA. Al-
though LobRA-Sequential outperforms Task-Sequential, LobRA still
achieves 1.32-1.44× of speedup compared to LobRA-Sequential. This
is not surprising for two reasons. Firstly, the data heterogeneity is
milder within certain tasks, so the gain of using heterogeneous FT
replicas is lower. Secondly, the batch size for each FT task is usually
small, making it difficult to achieve workload balance by routing
the data across the replicas. In practice, we find that some tasks
would even experience an efficiency drop when employing LobRA-
Sequential (detailed in Appendix B.2 [4]). Last but not least, it is
noteworthy that Task-Sequential and LobRA-Sequential necessitate
running the FT tasks individually, either requiring extra GPUs or
unfairly forcing some tasks to queue for a long time. Consequently,
LobRA is more efficient and suitable for processing FT requests.
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step time. Right: Comparison of estimated running time for solving
the original problem (𝑇𝑜𝑟𝑖𝑔𝑖𝑛), the two-stage decomposition (𝑇𝑑𝑒𝑐𝑜𝑚𝑝 ),
and the actual running time (𝑇𝑎𝑐𝑡𝑢𝑎𝑙 ).

5.3 Effectiveness of the Proposed Techniques
Ablation and Case Studies. We assess the effectiveness of hetero-
geneous model deployment and workload-balanced data dispatch-
ing, respectively. The results are shown in Figure 8 and Figure 9.

When heterogeneous FT replicas are deployed and the data are
directly dispatched via their lengths (i.e., Figure 4(c)), we can reduce
the GPU seconds by 18.94% compared to the naïvely fused approach.
As shown in Table 2, the naïve approach needs to employ a high
model parallel degree (resulting in 2 replicas with ⟨TP=8, PP=1⟩) to
support long sequences, yet it is unsuitable for short sequences. In
contrast, with the heterogeneous model deployment, we can deploy
7 replicas with low model parallel degrees (6 replicas with ⟨TP=1,
PP=1⟩ and 1 replica with ⟨TP=2, PP=1⟩).

By further enabling the workload-balanced data dispatching and
dynamic bucketing, the reduction in GPU seconds improves to
36.65% and 45.03%. Figure 9 visualizes the data dispatching and
workload balance. When the data are simply assigned via their
lengths (left-most of Figure 9), we observe severe imbalance across
the replicas due to the skewness issue. Workload-balanced data
dispatching (middle of Figure 9) strikes a good balance among the
replicas by routing the data. With dynamic bucketing (right-most of
Figure 9), the running time can be further reduced, particularly for
replicas with a higher model parallel degree, since dynamic bucket-
ing is more effective in reducing the padding of longer sequences.
Effectiveness of Planning. As discussed in §4.1, we employ a two-
stage decomposition to Equation (1). One reason is that its solving
is time-consuming. To examine this, we measure its solving time
and compare it with the per-step running time. As shown on the left
side of Figure 10, solving Equation (1) is slower than one training
step, even if we have applied the configuration pruning heuristics
introduced in §4.2 (the effectiveness of the two heuristics is eval-
uated in Appendix B.2 [4]). On the contrary, with the two-stage

decomposition, we only need to perform the dynamic bucketing
and solve Equation (3) for each step, which is extremely efficient
and can be fully overlapped by the training of previous step(s).

In addition, we assess how the two-stage decomposition impacts
the efficiency of the achieved solutions. To do so, we record the
estimated running time given by solving the original problem, the
estimated running time after the two-stage decomposition, and the
actual running time in practice, denoted as 𝑇𝑜𝑟𝑖𝑔𝑖𝑛,𝑇𝑑𝑒𝑐𝑜𝑚𝑝 ,𝑇𝑎𝑐𝑡𝑢𝑎𝑙 ,
respectively. The right side of Figure 10 presents 𝑇𝑑𝑒𝑐𝑜𝑚𝑝/𝑇𝑜𝑟𝑖𝑔𝑖𝑛
and 𝑇𝑎𝑐𝑡𝑢𝑎𝑙/𝑇𝑜𝑟𝑖𝑔𝑖𝑛 across 100 steps. Overall, 𝑇𝑑𝑒𝑐𝑜𝑚𝑝 and 𝑇𝑜𝑟𝑖𝑔𝑖𝑛 are
extremely close in most steps. In occasional steps, the sampled
batch does not contain long sequences, so solving the original
problem produces a better deployment plan, leading to several
spikes. However, the performance gap is still small (within 15%).
These results verify the robustness and effectiveness of our two-
stage decomposition. Besides,𝑇𝑎𝑐𝑡𝑢𝑎𝑙 is also close to𝑇𝑑𝑒𝑐𝑜𝑚𝑝 (within
10%) across all steps, demonstrating the accuracy of our cost model.
More Experiments. We have conducted more experiments, in-
cluding the scalability w.r.t. the number of GPUs and tasks, the
sensitivity w.r.t. the sequence bucketing, and the effectiveness of
our configuration pruning. Due to the space constraint, we leave
more results and details of our experiments in Appendix B [4].

6 CONCLUSION
This work studies the processing of multiple FT requests by jointly
training multiple LoRA adapters with the same base model. We
conducted an anatomy on the efficiency of joint FT, showing that
two data heterogeneity issues, i.e., the sequence length variation
and skewness, pose significant challenges. Then, we developed a
brand new joint-FT framework, namely LobRA, with two innovative
designs. The first is the deployment of heterogeneous FT replicas,
which addresses the sequence length variation and accelerate the
processing of short sequences. The second is workload-balanced
data dispatching, which eliminates the idle period of some FT repli-
cas caused by skewness. Empirical results show that LobRA greatly
reduces the GPU seconds required for joint FT by 45.03%-60.67%.
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