Fair Transaction Processing for Multi-Tenant Databases

Aaron Kabcenell
Meta
akabcenell@meta.com

Audrey Cheng
UC Berkeley
accheng@berkeley.edu

Peter Bailis
Stanford, Workday
pbailis@cs.stanford.edu

ABSTRACT

Multi-tenant transactional databases frequently observe contention
on shared data, leading to a need for performance isolation. Data-
bases typically provide performance isolation via a request rate
limit or quota per tenant, but this approach can lead to system
underutilization. Traditionally, fair sharing has been applied to
achieve both performance isolation and high utilization in other
domains. In this paper, we address the problem of fair sharing
for transactions, which introduces new challenges because client
requests do not acquire resources all at once. We propose DRFT,
the first fair transaction scheduling algorithm that ensures both the
share guarantee and strategy-proofness by accurately accounting
for transactional resource usage. We evaluate DRFT on a range of
standard benchmarks and real-world workloads, showing that it
ensures fairness with less than a 5% throughput overhead compared
to state-of-the-art scheduling policies.

PVLDB Reference Format:

Audrey Cheng, Aaron Kabcenell, Xiao Shi, Jolene Huey, Peter Bailis,
Natacha Crooks, Ion Stoica. Fair Transaction Processing for Multi-Tenant
Databases. PVLDB, 18(8): 2602 - 2615, 2025.
doi:10.14778/3742728.3742751

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/audreyccheng/fair-txn-scheduler.

1 INTRODUCTION

With the rapid growth of data-intensive applications and cloud-
based services [76], databases must increasingly support multi-
tenant workloads, especially ones that share data. For instance,
modern data lakes now support both transactional and analytical
access by different tenants to the same tables [14, 48, 65]. Further-
more, multi-tenant shared databases, such as Meta’s social graph
data store TAO [15] and Databricks SQL [29], serve a variety of
applications (e.g., Facebook, Instagram) that operate on shared data.
As aresult, contention between the transactions of different applica-
tions affects both individual tenant and overall system performance.

Accordingly, a key concern of multi-tenant systems is perfor-
mance isolation—each tenant should be guaranteed some portion of
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742751

Natacha Crooks
UC Berkeley
ncrooks@berkeley.edu

2602

Xiao Shi
Unaffliated
xiao.shi@aya.yale.edu

Jolene Huey
UC Berkeley
jolenehuey@berkeley.edu

Ion Stoica
UC Berkeley
istoica@berkeley.edu

the resource regardless of the demand of other tenants. This issue
is exacerbated by data sharing between applications. For instance,
a client (tenant) can compromise performance isolation by sending
a disproportionate number of transactions that access a “hot” (pop-
ular) data item, decreasing the throughput of all the other clients
accessing the same data. Our interviews with several companies
operating multi-tenant databases confirm that interference due to
transactional contention is a prominent issue in practice (Section 2).

A popular strategy to achieve performance isolation in databases
is to impose a request rate limit (e.g., Cloudflare rate limiting [24])
or resource quota per client (e.g., Amazon RDS quotas [10]). While
this approach provides some protection against cross-application
interference, it can lead to system underutilization: even if there is
only one client sending requests to certain data items, it will still
be restricted by its rate limit, resulting in low overall throughput.

To address this issue, fair sharing has been widely applied to
achieve both performance isolation and high utilization in other
domains, such as networking [38] and job processing [39]. The core
tenet of fair sharing is that each client should receive its “fair share”
(i.e., some guaranteed portion) of its desired resources. Any unused
portion of a client’s share is dynamically made available to others,
leading to higher resource utilization. In the transactional setting,
we consider data items to be the logical resources that the database
must manage contention over (in contrast to physical resources,
such as CPU, disk, memory). These items are often exclusively
allocated (e.g., under two-phase locking [13], only one transaction
can hold the write lock at a time). Moreover, transactions access
multiple data items in the same request. Given this model, we aim
to equalize item usage, or the time that a transaction makes an item
inaccessible to other requests. To provide fairness across multiple
resources, we take as a starting point Dominant Resource Fairness
(DRF) [39], which ensures that each client gets an equal share of
its dominant (i.e., most used) resource.

While promising, adopting fair sharing for transactions requires
addressing two challenges: (i) incremental resource acquisition and
(ii) the tension between fairness and high throughput. First, most
prior fair schedulers assume that all resources are acquired at the
beginning of a request (e.g., sufficient CPU and memory are simul-
taneously available to execute a compute task). In contrast, trans-
actions acquire resources dynamically throughout execution (e.g.,
under two-phase locking [13], locks are usually acquired piecewise
as the transaction proceeds), leading to potential resource wastage.
For instance, if a transaction T accesses item x and later needs to
access y, but y is being locked by another transaction, then T will
hold the lock on x while it waits for y to become available. Thus,
transaction T wastes resource x without making progress while

https://doi.org/10.14778/3742728.3742751
https://github.com/audreyccheng/fair-txn-scheduler
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742751
https://www.acm.org/publications/policies/artifact-review-and-badging-current

blocking other transactions from accessing x. Such usage should
be taken into account by a fair scheduler. Second, the system must
navigate between achieving fairness and maximizing throughput.
If several transactions need to be scheduled and one of the requests
can run without conflicting with the current workload, the sched-
uler would increase throughput by allowing it to execute first, even
though this may unfairly increase the resource share of its client.

In this work, we introduce the Dominant Resource Fair Trans-
action (DRFT) scheduler to provide fair sharing for transactions.
We describe how DRFT tackles each of these challenges in turn to
ensure both performance isolation and high throughput.

First, DRFT addresses the challenge of incremental resource ac-
quisition by accurately accounting for how transactions can delay
subsequent requests in the schedule. The catch-22 in the transac-
tional setting is that a client’s workload dictates the resulting con-
tention, so item usage depends on the order in which future requests
are executed. To handle this, DRFT first charges each transaction,
independently of other requests, a baseline usage that is based on
the concurrency control protocol. It then retroactively updates each
transaction’s schedule-dependent usage after subsequent conflicting
requests have been scheduled.

Second, DRFT introduces a A parameter to enable system opera-
tors to smoothly trade off between fairness and high throughput.
On one hand, we want to equalize usage without delay to achieve
fairness as fast as possible. On the other hand, we aim to increase
system throughput by executing transactions in schedules that max-
imize concurrency. Therefore, if clients can tolerate delays between
periods of service, the system can achieve higher throughput. As
such, we make this delay configurable via our A parameter, which
bounds how much usage can differ between clients.

We implement DRFT on RocksDB and evaluate this policy on a
range of standard benchmarks and OLTP workloads. DRFT matches
the performance of a state-of-the-art transaction scheduling policy
(less than 5% difference in throughput) while ensuring fairness.
Furthermore, we demonstrate through extensive experiments that
DRFT provides performance isolation, in contrast to other baseline
methods. Finally, our algorithm imposes minimal overheads, show-
ing less than a 4% drop in throughput on low contention workloads.

In summary, we make the following three contributions:

e We characterize the problem of fair scheduling for trans-
actions, which differs from traditional fair sharing in that
resource acquisition occurs incrementally.

e We propose and analyze DRFT, the first fair scheduling
algorithm for transactions that provides standard fairness
properties: the share guarantee and strategy-proofness.

e We evaluate DRFT on a range of workloads and confirm that
our algorithm provides fair sharing without significantly
harming overall database throughput.

2 MOTIVATION

As multi-tenant database deployments become increasingly com-
mon, these systems must carefully manage contention on shared
data—a challenge widely acknowledged in industry [20]. In this
section, we present case studies drawn from several production
systems on performance interference due to logical contention be-
tween diverse application requests. These scenarios often involve

2603

Workload Usage of x CPU Usage Usage of x CPU Usage
C1:4,C2:8 C1:14,C2: 8 C1:6,C2: 4 C1:21,C2: 4
Client 1
C1 2 C1 2
r(x) w(x) \ \
Cc2 4 C1 2
5 2 \ \
Client 2 C1 2) C1 2 |
r(x) ... w(x) C2 4 Cc2 4
o Time Time
(a) (b)

Figure 1: Logical contention differs from physical contention.

common application functionality and are hard to avoid. Despite
their prevalence, most systems rely on static per-tenant request rate
limits or quotas, which can lead to severe system underutilization
(up to a 2.0x throughput disparity as we show in Section 7.3).

2.1 Unfairness in Practice

In this paper, we consider the problem of performance isolation
on logical resources (i.e. data items). Prior work has largely fo-
cused on the isolation of physical resources (e.g., CPU, disk, mem-
ory) [44, 51, 64]. However, even if a client is guaranteed a share of
CPU or bandwidth, its isolation can still be compromised due to
transactional contention on data items. Figure 1 highlights how con-
tention can prevent logical resource isolation and how this differs
from physical resource contention. Two clients send transactions
to a database that uses two-phase locking (2PL) [13] to ensure se-
rializability. For simplicity, we assume each operation takes one
unit of time. Furthermore, we assume both clients send requests
at equal rates and are backlogged (i.e., at least one of its requests
is queued) on item x. C1 sends longer transactions, acquiring read
locks on five non-conflicting items (represented by the gray box)
before holding the lock on item x for two units of time while C2
sends shorter transactions that hold the lock on x for four time
units. Since both clients contend on x, access time (e.g., lock hold
time) on this item is the performance bottleneck. Thus, for perfor-
mance isolation on logical resources, each client should have equal
access time on contended items.

However, standard policies and techniques fail to equalize access
time. Databases typically execute transactions in first-in, first-out
(FIFO) order. Under FIFO in Figure 1a, C1’s and C2’s requests would
execute consecutively, leading to C1 having less access time on x. A
physical resource scheduler would also de-prioritize C1’s requests.
From a physical resource standpoint, C1 is using more (CPU, I/O,
etc.) resources since it sends more operations per transaction, so
fewer of its requests should execute. From the logical resource per-
spective, C1’s requests actually hold x’s lock for less time than that
of C2’s. Thus, we should execute two C1 transactions for every C2
transaction to equalize access time on x for performance isolation.

Case studies. Our conversations with engineers at Databricks,
Meta, and Neo4j reveal that performance interference due to logical
contention is a pervasive and growing issue for real-world systems.
This problem is exacerbated by increasingly diverse workloads (e.g.,
cloud traffic [76]) as well as the convergence of transactional and
analytical processing on shared data (e.g., Snowflake’s Unistore [65]
provides hybrid tables to serve both OLAP and OLTP requests).
Logical contention has led to significant incidents in production,
ranging from end-user delays to database outages [20]. Broadly,
we classify problematic access patterns into two categories: large
transactions and bursty workloads.

(1) Large transactions. A frequent source of logical contention
between tenants is large transactions on shared data. At Databricks
(a data analytics platform), data purging tasks, which involve many
reads and writes that touch large portions of data, are one such
example. These requests must be transactional to avoid inconsistent
results while the deletions occur. As a result, a task locking a range
of data to decide what to delete slows down the progress of many
concurrent requests trying to access the same data. Engineers often
attempt to mitigate this issue by moving larger requests to the
background, but this can result in starvation, forcing application
developers to manually monitor and intervene in these requests.
Data migration tasks at Databricks, which acquire exclusive access
to items for extended periods of time, can unfairly stall concur-
rent user requests accessing the same data. Furthermore, mammoth
transactions (i.e., large read-write requests that are especially preva-
lent on graph data [21]) present further examples of performance
interference. For instance, pattern matching queries (e.g., large-
scale authorization queries) observed at Neo4j [2] often conflict
with shorter transactions. Balancing larger transactions with the
rest of the workload without starvation or underutilizing system
resources is a significant challenge in practice.

(2) Bursty workloads. Bursty workloads are also problematic
for data contention. At Meta, many product teams operate on the
same social graph data (e.g., user profiles) stored in TAO [15]. Un-
expected high traffic periods (e.g., caused by viral videos, posts
by celebrities, etc.) by one application can severely impact others.
A recurring pattern observed at Meta and Databricks is that ap-
plication developers often fail to foresee future contention issues
when initially designing the data model of a product. For example,
a new social media application can quickly gain traction, leading
this application to send a high volume of requests that conflict with
the existing workload. While some systems provide mechanisms
to manage cross-application interference (e.g., TAO’s higher-level
query language [20]), building bespoke infrastructure to ensure
scalability in the face of contention is expensive. As a result, many
engineers start with “ad-hoc” implementations [69] of transactions
that lead to contention bottlenecks as products grow. At this point,
developers need to manually intervene and redesign parts of the
application, which can have significant engineering and monetary
costs. These examples highlight the need for a dynamic mechanism
to fairly serve transactions from different tenants.

2.2 The Status Quo

Despite the prevalence of unfairness due to logical contention, no
database solutions, to the best of our knowledge, provide both per-
formance isolation and high throughput. Most production systems
simply impose a request rate limit or enforce a quota to minimize the
impact of worst-case behavior. For instance, TAO [15] deprioritizes
requests from high QPS clients once they exceed a pre-specified
threshold. However, these static mechanisms can lead to system
underutilization—if a client does not use its reservation, no one
else can, so the system cannot run at full capacity. Furthermore,
request rate limits/quotas often require careful tuning and manual
intervention when client requests exceed these thresholds (e.g.,
companies carefully allocate quotas among various applications on
internal infrastructure [23]). Indeed, we find that the problem of

2604

performance isolation under logical contention is undercharacter-
ized in industry: there are no formal metrics to measure unfairness
of item access, though application developers observe the effects of
this issue through unexpected drops in performance.

Towards this end, our goal in this paper is to provide a mecha-
nism to deliver both performance isolation and high throughput
in the face of transactional contention. Specifically, we aim to en-
sure that each client is guaranteed a minimum share of resources,
regardless of the demand of other clients. Furthermore, a client
should not be able to increase its service to the detriment of others.
Finally, the system should be able to balance between prioritizing
individual client and overall system performance. We achieve these
goals via a trusted scheduler, which we expand upon next.

3 FAIRNESS FOR TRANSACTIONS

To address the challenges caused by logical contention, we start
with fair sharing, a well-known mechanism used in other domains
to provide both performance isolation and high utilization [41]. This
technique ensures that each client is guaranteed a “fair” share of
resources regardless of the demand of other clients (for performance
isolation) and allows these resources to be redistributed when the
client is not active (for high utilization). In this section, we first
describe the properties needed in a fair transaction scheduler in
the context of a single resource before extending them to the multi-
resource setting with Dominant Resource Fairness. We then explain
the challenges in providing a fair scheduler for transactions.

3.1 A Fair Scheduler for One Resource

When client transactions conflict over shared data, one client can
cause others to receive unfair service. To see this, we revisit the
workload in Figure 1 assuming 2PL. We consider two scenarios to
illustrate what properties a fair scheduler should provide.

Share guarantee. First, we consider how logical resources should
be shared among clients. We denote each item to be a logical re-
source, equivalent to how CPU and memory are treated as physical
resources [39, 55]. Subsequently, we use the term item usage (IU) to
refer to the period of time during which an item is inaccessible by
other requests due to execution constraints (we describe how to cal-
culate IU for different concurrency control protocols in Section 4).
Figure 1a shows the item usage of x for two clients under FIFO.
Since the clients send requests at equal rates, their requests execute
roughly in consecutive order, leading to C1 having less usage of x.

Intuitively, it would be “fair” to give each client equal access time
on x (e.g., C1 executes at twice the rate of C2). This requirement
is captured by the share guarantee, which ensures that each of n
clients should be guaranteed at least a % fraction of the resource,
regardless of the demand of other clients [55]. This guarantee pro-
vides performance isolation: C1 receives an appropriate amount of
item usage on x, regardless of C2’s workload.

Strategy-proofness. Another concern for a fair scheduler is its
vulnerability to manipulation: clients can exploit the scheduler to
receive better service by artificially inflating their demand for re-
sources they do not need (i.e., adding extraneous operations and/or
transactions). Figure 1b shows how FIFO can be manipulated: if C1
increases its demand by sending three times as many requests as C2,

Workload Schedule: {T1,T2,T3
Client 1 2
2 X
T1 1(%y) w(x,y) Z T1
0| y T3
4 1
. 8 Time ———————+——————+——
Client 2 -0 1 3 4 5 6 7 8
2 T1r(xy) - wxy)
Client 3 z
il ¥
. =
T3 r(x) w(x) 0 T3 1(x) w(x)
2 & Time —————+—+——+—+——1+—1
1 3 4 5 6 7 8

(2)

Workload Schedule: {T1,T2,T3}
Wasted resource: 2
Client 1 2
2 T1
T1 I 1) W) W) g0 b
1 E y
Client 2 E’ Time + + + + + + + +
3 4 5 6 7 8
R Yl T
Client 3 z ’ \4
T3 1(x) w(x) 5 T3 1) w(x)
2 &’Timeitt““t

2 3 8

(b)

Figure 2: Two workloads under 2PL. DRF is insufficient for transactions, which do not access all items at once. In (b), T1 holds
the lock on x (due to its conflict with T2) without making any progress, causing additional delays for T3.

C1 receives disproportionately more item usage on x. A fair sched-
uler should be resistant to such manipulation, which incentivizes
clients to waste resources and lead to lower overall throughput.

Specifically, the scheduler should ensure strategy-proofness: a
client should not be able to finish faster by lying about its resource
demands. While malicious clients are less likely in databases (with
proper authorization and security measures), unintentional sched-
uler manipulation can still occur. For instance, one client may send
many retries for transactions involving hot items, causing feedback
loops that impact the throughput of other clients [46]. Furthermore,
database clients usually monitor only their own applications, so
they are unaware of how their workload affects others.

A fair scheduler. When there is only one contended item, en-
suring both the share guarantee and strategy-proofness is simple:
the scheduler should equalize item usage over time across client
transactions. For the workload in Figure 1, a fair scheduler would
schedule two C1 requests for every C2 request to provide equal item
usage of x. Even if C1 sends more requests than C2, it cannot manip-
ulate the scheduler as long as the scheduler tracks the item usage of
each client. As a result, the fair scheduler can ensure performance
isolation between clients while maintaining high utilization.

3.2 Scheduling Over Multiple Resources

In practice, most transactions require more than one resource (i.e.,
item) at a time. The canonical solution to ensure fairness in the pres-
ence of multiple resources is dominant resource fairness (DRF) [39].
DRF equalizes each client’s dominant share, which is the maximum
share that the client has been allocated of any resource. By defini-
tion, a client is bottlenecked by the dominant resource since it uses
this resource the most. Thus, performance depends only on the
dominant share—other resources are irrelevant for fairness because
they are not the bottleneck. In our setting, each item is an exclusive
resource (e.g., only one transaction can write to an item at a time),
so the dominant share of a transaction is its maximum item usage.
DRF ensures both the share guarantee (each client is guaranteed at
least some share of its dominant resource) and strategy-proofness
(artificially increasing the demand for any resource other than the
dominant one has no impact on this client’s service).

Crucially, DRF assumes that each request acquires all resources it
needs before starting execution. For instance, a compute job cannot
begin until sufficient CPU and memory are simultaneously available.
However, this assumption does not hold in our setting. Transactions
acquire resources incrementally as a function of program order and
isolation level guarantees. For example, under 2PL [13], transactions
do not grab all locks before execution but acquire locks gradually.

2605

As a result, we cannot apply DRF directly to transactions. In the rest
of this section, we show several examples to first provide intuition
for DRF before demonstrating why it fails for transactions.

DRF examples. To illustrate how DRF applies to multiple re-
sources, we consider the example workload in Figure 2a. First, we
assume transactions grab exclusive locks for all items they access
simultaneously. Thus, the usage of each item in a given transaction
is the same (and trivially equal to the dominant usage). For instance,
T1’s usage for x and for y is four time units. Similarly, T2 has a
dominant usage of three units on y, and T3 has two units on x. As
both the per-item and per-transaction views of the schedule show,
T1 occupies x and y for four time units, conflicting with both T2
and T3. DRF would equalize each client’s dominant usage, which is
based on the individual item usages of each transaction.

Next, we show how DRF can be unfair for standard transactions
that access items incrementally. In Figure 2b, transactions obtain
locks as execution proceeds. Here, T1’s operations on y begin after
its r(x). When T1 and T2 start simultaneously in this example, T2
occupies the lock on y for three units, so T1 must wait until T2
completes before it can proceed. Consequently, T1 occupies the
lock on x for six units of time due to its conflict with T2 on y. For
two of these six units, T1 holds the lock on x without making any
progress, wasting this resource and decreasing system throughput.
However, DRF assumes that T1’s dominant usage on x is four units
of time because it only considers transactions in isolation. Thus,
DRF underestimates T1’s usage, leading to unfair service.

3.3 Challenges in Fair Transaction Scheduling

As the previous example shows, DREF fails because it does not ac-
count for incremental resource acquisition in transactions. The
main implication of this behavior is that item usage can vary as a
function of the schedule. In the remainder of this section, we high-
light the challenges in scheduling transactions fairly and describe
a performance tradeoff we must navigate.

Share guarantee. This property requires dominant item us-
age to be equalized across clients. Since item usage depends on
the schedule, we cannot determine it only based on an individual
transaction’s operations but also must consider its conflicts with
other requests. Specifically, we need to account for how subsequent
transactions conflict with and are delayed by a given transaction.
However, we do not know which requests will be scheduled in the
future in most databases. Accordingly, we need a way to retroac-
tively account for item usage to ensure fairness between clients.

Strategy-proofness. To guarantee that a client cannot increase
its dominant resource usage by lying about its demand (i.e., adding

Legend: D =BU ‘r:’

BU,(x)=[1,3] SDU,(x, {T1,T2})=[2]

BUy,(x)=[1-2]

1 =SDU

BU,,(x)=[1,3] SDUy(x, {T1,T2",T3})=[2]

T1fw)

o e @ TEE-{6)] @y 2@
T2 — T2 — T3 r(b)—

Time | { f f Time | | } 1 | Time | { f f

0o 1 2 3 0 1 2 3 4 0 1 2 3

Figure 3: BU and SDU for T1 under 2PL for different schedules.

extraneous operations and/or transactions), a fair scheduler should
carefully account for how each client’s requests contribute to re-
source wastage. Specifically, a client should not be able to deliber-
ately cause conflicts that increase the item usage of other clients.
This is unaddressed by previous schedulers [38, 39, 55] because
they assume all resources are acquired before request execution.
Tradeoff between fairness and throughput. Achieving fair-
ness can cause overall system throughput to drop, and the database
must handle this tradeoff. At a high level, a scheduler prioritizing
fairness can constrain execution order, while higher throughput
is possible with more flexibility to order transactions in ways that
reduce conflicts. This tradeoff is especially pronounced in transac-
tional workloads for which the schedule can greatly impact perfor-
mance (e.g., up to 3.9x based on prior work [18]). On one hand, we
want to equalize usage across clients as fast as possible to ensure
fairness without delay. This is typically achieved through memory-
less scheduling, where a client’s current share of resources should
be independent of its share in the past. This approach avoids pe-
nalizing clients that were active in the past and reduces workload
burstiness to provide fairness quickly. On the other hand, maximiz-
ing system throughput is essential for high-performance database
systems. However, schedules that maximize concurrency to im-
prove throughput can delay equalizing usage between clients. An
effective scheduling policy should enable system administrators to
balance between these goals depending on workload needs.

4 ACCOUNTING FOR ITEM USAGE

To ensure fairness, we first need to accurately account for each
transaction’s item usage. Since usage depends not only on a trans-
action’s own operations but also its conflicts with other requests,
we measure it in two parts: (i) baseline usage (BU), which is known
once a transaction finishes execution and is determined based on
the concurrency control protocol and (ii) schedule-dependent usage
(SDU), which reflects how conflicts from subsequent transactions
may increase a transaction’s usage beyond its baseline.

Transactions, schedules, and time. We consider a transaction
to be a set of read and write operations on items with ordering
constraints. Traditionally, database literature discusses transaction
history as the post-facto execution order [7, 12]. We instead define
the transaction schedule, following prior work [18], to be a par-
tially ordered set constrained by (i) operation dependencies within
a transaction and (ii) operation dependencies across transactions,
which are the result of enforcing a given level of isolation via a
specific concurrency control protocol during execution. This en-
ables us to quantify how long schedules take to execute, which we
measure by applying the notion of virtual time from the networking
literature [83]. Virtual time is an abstraction that measures logical
work performed by the system. For simplicity, we assume in this
section that each operation on an item takes one unit of virtual time
(multiple reads can occur during the same time unit). We explain
how we measure real time in Section 6.

2606

Baseline usage. We define baseline usage (BU) as the minimal
possible usage of a given item by a transaction based on the con-
currency control protocol, regardless of the schedule. Specifically,

Definition 1. Baseline usage BU7(x). For item x in transaction
T, the virtual time interval during which the concurrency control
protocol disallows any other transaction from writing to x.

Concurrency control protocols traditionally disallow writes at
two moments: (i) during the physical act of modifying an item and
(ii) when operations to that item by another transaction violate
serializability. For pessimistic protocols, BU begins with lock ac-
quisition and ends when locks are released, representing the time
during which the lock is occupied. For optimistic protocols, we
model BU as the time during which another transaction can cause
an abort to capture the effects of contention. In the former case, we
assign BU to the transaction occupying the lock while in the latter,
we assign it to the transaction that is aborted due to contention. This
asymmetry enables us to remain consistent in charging higher BU
for transactions with greater potential to conflict. We give examples
for several popular protocols below:

e In 2PL [13], transactions acquire locks as they read/write items
and release those locks after committing. Thus, BU starts when
the lock is acquired and ends when the transaction commits.

In OCC [54], BU encompasses the period between a write to an
item and the end of the validation phase (operations from other
transactions are not allowed since they would cause aborts).

In MVTSO [12], reads are non-blocking, and operations from
other transactions with higher timestamps can proceed imme-
diately after writes. BU is one unit of time for these operations.
For transactions that read and write to the same item in a single
request, MVTSO would abort other transactions accessing this
item between these operations, so this duration represents BU.
In contrast, MV2PL acquires locks that are held for the duration
of the entire transaction, so BU would end at commit time.

As a concrete example of BU, consider the workload in Figure 3ii
assuming 2PL. Here, BUT(x) is the time interval [1 — 2] since T1
holds the exclusive lock on x for this period while BUT(y) is [2].

Schedule-dependent usage. In contrast to BU, which is de-
termined solely by the concurrency control protocol, we define
schedule-dependent usage (SDU) to account for additional delays
that result from a given schedule. Specifically, we calculate the time
interval for which each subsequent conflicting operation is delayed
and take the union of these intervals as the SDU. This value captures
the effects of dependencies across multiple items. Precisely calcu-
lating it requires care: overestimating or underestimating SDU can
misrepresent a transaction’s usage and violate the share guarantee.

First, we identify the relevant data dependencies in the schedule.
Namely, for a given item x of a given transaction T, we determine
the set of transactions scheduled after T that contain operations
which conflict on x (i.e., two transactions conflict when they access
the same item and at least one of them writes to the item [7]). We
term Ts access to x as a succeeding conflicting operation (SCO) if

T is ordered after T in the schedule and conflicts on x. Note that
there can be multiple SCOs for x as schedules are partially ordered
(e.g., if x is a write, there can be several read SCOs). In effect, the
data dependency between T’s operation on x and its SCOs blocks
the SCOs from executing until T completes its operation.

Next, we define several intermediate notions that quantify the
delay imposed on each SCO:

e Transaction start time (Tszqrt): the virtual time at which
transaction T begins execution in the schedule.

Ideal operation time (0;rime): the earliest time at which op-
eration o can begin execution when considering only a
transaction’s individual operations, calculated as Ts¢qr+ plus
duration of operations that precede o in T. For example, if
an operation o is the fifth operation in T and T starts at
virtual time three, then 0j;ime is virtual time eight.

Actual operation time (04time): the virtual time at which o
actually begins execution when accounting for execution
constraints that arise in the schedule.

Operation delay (delay,): the time for which an SCO is
delayed, calculated as the time interval [0jzime — Oatime—1]
if 0itime < Oatime and an empty interval otherwise.

Finally, we define SDU based on the delays of all SCOs:

Definition 2. Schedule-dependent usage SDUT(x, S). For item
x in transaction T under schedule S, SDU equals:

e For pessimistic protocols, the union of each SCO’s delay,
(i-e., Uoesco delayo) of subsequent items in T
e For optimistic ones, the union of each SCO’s delay, on x

We note that SDU is calculated only based on the transactions
succeeding T that directly conflict with T’s operations (this follows
from the definition of SCO). The benefit of this approach is that we
do not need to maintain the history of transactional conflicts—once
the set of SCOs is scheduled, we only need to calculate SDU once
for this item, enabling us to minimize memory overheads. Further-
more, we take the union across SCOs to avoid double-counting:
this ensures we do not overcharge for the usage of a given request.

Figure 3 provides several examples of SDU calculations. Each
subfigure shows BU (solid boxes) and SDU (dashed boxes) for T1
in different schedules under 2PL. In (i), we have BUT(x)=[1, 3]
since the transaction needs to hold the lock on x until commit. We
have SDU7 (x, {T1, T2})=[2] since T1’s progress is delayed by T2
when waiting for the lock on y (0sime for y is at time unit two but
Oatime 1S at time unit three). As a result, it holds the lock on x for an
additional time unit. Finally, BU7 (y)=[3] since T1 needs to write
to y before commit. In (ii), there is no SDU for T1 since 0;sime is
equal to 04¢ime for all operations. In (iii), both T2’ and T3 cause T1
to be delayed, leading to SDUTq (x, {T1,T2’, T3})=[2].

Item usage. Taking BU and SDU together, we define item usage
to represent the delay imposed by a transaction on a given item:

Definition 3. Item usage IUT(x, S). For item x in transaction
T under schedule S, the virtual time interval from the union of
BU7(x) and SDU7(x, S) (i.e., BUT(x) U SDUT(x, S)).

Our definition of item usage captures the difference between
applying fairness for physical resources and for transactions. Specif-
ically, with SDU, we account for how acquiring resources as a re-
quest executes (rather than all at the start) impacts other requests,

2607

enabling us to quantify any resource wastage. We leverage our
notion of item usage in the next section to design a fair scheduler.

5 ACHIEVING FAIRNESS

We now present our fair scheduler for transactions, DRFT, which
ensures both the share guarantee and strategy-proofness to achieve
performance isolation with high throughput. DRFT schedules re-
quests using client virtual times, which are calculated based on
dominant item usages. DRFT first accounts for the baseline usage
and retroactively adds schedule-dependent usage once subsequent
conflicting transactions are scheduled. Furthermore, DRFT navi-
gates the tradeoff between memoryless scheduling and improving
throughput by providing a tunable A parameter. We begin by intro-
ducing memoryless DRFT before describing the complete algorithm.

5.1 Memoryless DRFT

In this section, we provide an overview of virtual time fair sched-
ulers before describing how memoryless DRFT adapts virtual time
to schedule transactions in a way that quickly achieves fairness.

Background: virtual time fair schedulers. Virtual time sched-
ulers are a well-established mechanism to ensure fairness on re-
sources that are shared over time (i.e., exclusively accessed re-
sources) [31, 41, 55]. At a high level, the scheduler computes a vir-
tual time per client and uses this value to determine which client’s
requests to execute next. Consider, for example, n clients that share
one exclusive resource, and assume each client request acquires
this resource for one unit of time. The scheduler increments each
client’s virtual time as each request executes. To ensure the share
guarantee, the scheduler equalizes virtual time across clients (i.e.,
by choosing the client with the lowest virtual time to run next).
The scheduler guarantees strategy-proofness by accounting for the
virtual time of the dominant resource of each request.

Memoryless scheduling. Memoryless DRFT is a virtual time
fair scheduler for transactions that achieves fairness with minimal
delay by quickly equalizing virtual times between clients. For each
transaction, the scheduler assigns a virtual start time upon its arrival
and later uses this value to calculate a virtual finish time. The finish
time is then used to determine the client’s virtual time. Accordingly,
we schedule at the granularity of transactions (not operations) and
account for resource usage after each transaction has been executed.
For memoryless scheduling, the scheduler picks the client with the
lowest virtual time to be scheduled next: this ensures that usage is
equalized as quickly as possible across clients. We also ensure that
a client is not penalized for using more resources in the past when
fewer clients were active to prevent starvation [55].

We adapt standard definitions and assumptions from fair sharing
literature [38]. We assume a set of n clients that share a set of m
items k, (1 < k < m). A client c issues a sequence of transactions
Te1, Te 2, Te 3, ..., and the client is backlogged during a time interval
if it has at least one outstanding request queued at any time. We
assume work-conservation: as long as there are requests in the queue,
the system is notidle. Let T j be the j’ h transaction of client c. Upon
Te,j’s arrival, the scheduler will assign a virtual start time S(T¢, ;)
and finish time F(T¢,;) to this request. The client’s virtual time
at real time ¢ is given by V(c, t). For simplicity, we assume each
operation takes one unit of time and explain how we measure real

Table 1: Main notation for DRFT algorithm.

Notation | Description

T, Jj jth transaction of client ¢
ac,j Arrival time of transaction T j
be ik Baseline usage of T¢ ; on item k
¢.jk Schedule-dependent usage of T j on item k
V(e t) Virtual time of client c at time ¢
S(Te,j) Virtual start time of transaction T¢
F(T.j) Virtual finish time of transaction T ;

time in Section 6. We also support weighted workloads: if a client c is
given weight w, it takes - L virtual time units to execute each of its
operations [31]. Welghted workloads are useful in the transactional
context because certain applications may have business-critical
tasks that require higher priority.

Transaction virtual start time. Under memoryless scheduling,
a client’s current usage should not depend on its past usage to avoid
starving existing clients when new ones enter the system. We cal-
culate virtual times accordingly. Specifically, we determine a trans-
action’s virtual start time based on whether the client that issues
the transaction is backlogged (i.e., active). For a non-backlogged
client, the start time of its transaction is based on the virtual time
of the request currently being executed by the system [41]. As a
result, this newly active client will not receive preferential service
just because it was not active in the past. For a backlogged client,
a transaction’s virtual start time is simply the virtual finish time
of the previous transaction of this client (we discuss how to com-
pute finish time next) since this request must wait for preceding
requests from this client to complete. Formally, the virtual start of
transaction T j is calculated as:

S(T.,;j) = max (A(ac,j),F(Tc,j—l))

where ac ; is the real arrival time of the transaction and A(ac,;) is
the virtual start time of the transaction currently being executed
by the system at real time ac, ;. Using real arrival time is a standard
choice for fair schedulers [38, 41].

Transaction virtual finish time. A transaction’s virtual fin-
ish time is determined by its item usage. To ensure fairness, we
equalize usage of dominant resources (i.e., the resource that each
transaction requires the most time on) across clients. Since the
dominant resource can change across transactions, we calculate it
on a per-request basis, inline with prior work [38]. The primary
challenge in our setting is that item usage (and thus, the dominant
resource) can change as a function of the schedule. To deal with
this, we first account for the baseline usage and then retroactively
update its schedule-dependent usage (potentially multiple times)
as subsequent transactions are scheduled. Accordingly, the finish
time is determined after transaction execution. Once each trans-
action has executed, we first calculate the baseline usage, denoted
be jx = |BUr,; (k)|, for each item that transaction T, j accesses. As
conflicting transactions are scheduled after transaction T in the
schedule H, we calculate the schedule-dependent usage, denoted

de jx = Ut ; (k, H)| = b j k., for each conflicting item.
de jk 1

F(Te;) = S(T..j) + {b< ”’}x—

(C,j) (C,j) m]?X c.j, I we

where [is the number of transactions that conflict on item k.

2608

After the dominant resource is determined for this transaction,

L]k

we also add to the virtual times of its conflicting transac-

tions (i.e., requests corresponding to the SCOs of this item). By dis-
tributing SDU across all involved requests, DRFT ensures strategy-
proofness: even if a client tries to add extraneous operations/trans-
actions to increase the usage of other clients, it will not be better
off because it would observe an identical increase in virtual time.
We note that since SDU cannot be computed until after conflicting
transactions are scheduled, there can be a delay until the usage of a
given transaction is fully accounted for. We discuss why this delay
is unavoidable and its implications at the end of this section.

Client virtual time. Finally, we define a client’s virtual time,
denoted V(c, t) for client ¢ as the virtual finish time of its most
recently committed transaction at real time ¢. Formally,

V(c, t) = F(argmax(C(T,j) < t))
J

where C(T¢, j) returns the commit time of transaction T ;.

DRFT uses client virtual times to decide which request to sched-
ule: it picks the client with the lowest virtual time to execute next
to keep usages across clients as equal as possible.

Scheduling based on virtual time. We discuss the implications
of using virtual time in DRFT. The primary advantage of how we
compute this value (following prior work [38, 41]) is that the system
does not need to know the operations of a transaction a priori.
The virtual start time of transaction T ; depends only on the start
times of the currently executing transactions and the finish time
of the previous transaction, F(T¢, j—1), of this client. This makes
DRFT suitable for interactive transactions (i.e., data accesses are
not known beforehand), which are the default in most databases.

The retroactive nature of SDU calculation means that a client’s
virtual time may not immediately reflect the final usage of some
transactions and may be adjusted multiple times as subsequent
conflicting requests are scheduled. This delay in fully accounting for
usage is unavoidable: unless we know precisely which transactions
will arrive and be scheduled in the future, we cannot calculate SDU
a priori. While we cannot achieve instantaneous fairness, we ensure
the share guarantee as quickly as possible with DRFT.

5.2 Generalized DRFT

While memoryless scheduling achieves fairness quickly, it often
does not result in schedules that maximize throughput. To balance
between memoryless scheduling and improving overall utilization,
we now introduce the full version of DRFT. This refinement enables
system operators to control the degree to which we can delay
fairness through a A parameter. Such customization is important
in practice to cater to diverse workload requirements (Section 2).

The A parameter bounds the maximum allowable divergence
between virtual times of active clients in the system. Specifically,
the virtual time of any client can never differ by more than A:

n;a),({V(c) -V} <A

This grants the system flexibility in choosing what to schedule
while ensuring that client virtual times will be eventually equalized:
the scheduler can defer serving a client with the lowest virtual
time if choosing another client’s transaction would lead to better

Algorithm 1: DRFT

1 Data structures
2 A: delta parameter
3 txn_sched: schedule of transactions

client_item_usages: item usages, per client

procedure SCHED_NEXT_TXN():

7 if GET_MAX_VT_DIFF() < A then
txn_sched.add(SMF_SCHEDULER())

else
txn_sched.add(GET_TXN_WITH_MIN_VT())

procedure UPDATE_BU(txn : transaction, c : client):
// Update baseline usage of this txn
s_time < GET_START_TIME(c)
f_time « GET_FINISH_TIME(s_time, txn)
client_item_usages|c] « f_time

procedure UPDATE_SDU(txn : transaction, c : client):
// Update usages of txns earlier in the schedule
conflict_items <— GET_CONFLICTS(txn, txn_sched)
for k € conflict_items do
prev_txn,s_time, client_j < GET_PREV_TXN(k)
sdu « GET_SDU(prev_txn, txn, txn_sched)
client_item_usages|client_j].update_ft(sdu)

22
23
24
25 client_item_usages|c].update_ft(sdu)
26
27 procedure COMMIT_TXN(txn : transaction, c : client):

UPDATE_BU(txn, c)

UPDATE_SDU(txn, c)

success «— DB_COMMIT (¢txn)

return success

28

29

30

31

throughput. A larger A means clients may need to tolerate longer
delays between periods of service.

As an example, we consider Figure 4, which shows two schedules
from the workload in Figure 2b. We assume the current virtual times
of clients C1, C2, and C3 are 0, 1, and 2, respectively. If A = 0, then
DRFT must schedule T1 first since C1 has the lowest virtual time,

leading to a schedule that executes in eight units of time (Figure 4a).

However, if A > 2, then DRFT can run T3 before T1, leading to a
schedule that finishes in only six units of time (Figure 4b). While
C1’s transaction executes later in Figure 4b, C1 eventually gets its
fair share, and the system observes higher throughput since the
same number of transactions execute in a shorter period of time.

To select transactions that enhance throughput, DRFT integrates
the Shortest Makespan First (SMF) algorithm [18], a state-of-the-art
scheduling policy that minimizes the delays caused by conflicts
for fast schedules. DRFT uses SMF to schedule transactions unless
there is a client with a virtual time A less than any other client. In
this case, this client’s transaction is automatically scheduled next
to ensure bounded fairness. We note that memoryless DRFT is a
special case of the full policy when A = 0 since this algorithm
always chooses the client with the smallest virtual time.

2609

Starting client virtual times: C1=0, C2=1, C3=2
A = 0. Schedule: {T1,T2,T3} A > 2. Schedule: {T2,T3,T1}
6 »Wasted resource: 2 4

Z H

2 hvi (3

§ «mia I mom

E v . E v

S| Time S 5| Time S
= 1 2 3 4 5 6 7 8§ @™ 2 3 4 5 6 7 8
2 2 T1

g 11 R wewe) - g S0 x{y) wly) w(x)

£ 7 g 72

g T2 [10) = W) g T2 1) - we)

3| Time —t 5| Time —
[1 2 3 4 5 6 7 8§ @& 2 3 4 5 6 7 8

(a) (b)

Figure 4: Two schedules of the workload in Figure 2b. The
schedule in (b) provides higher throughput compared to (a).

Setting A. Determining an appropriate A value depends on how
much a system administrator prioritizes overall system performance
compared to client tail latencies. A higher A typically leads to higher
throughput but also increased latencies since clients can be delayed
for longer periods of time. In general, setting A depends mainly
on the average transaction duration (e.g., if requests take 10ms
on average, then A=100ms means that DRFT has the flexibility to
choose among roughly 10 different clients at a time). We find that
tuning A to allow the system to choose among five or more clients
enables us to attain high throughput (Section 7.2).

DRFT walkthrough. We provide an overview of the transaction
lifecycle under DRFT in Algorithm 1. When a transaction arrives
in the system, it is queued to be scheduled. To pick the next trans-
action to execute (line 6), DRFT checks if the difference between
the maximum and minimum virtual times among clients exceeds A
(line 7). If so, the transaction from the client with the lowest virtual
time is automatically scheduled next (line 10). Otherwise, DRFT
uses SMF to choose the next transaction to run (line 8). After each
transaction executes, we update usages at commit time (line 27).
Specifically, we update the baseline usage of this transaction (line
12) and the schedule-dependent usages of transactions earlier in
the schedule that conflict with this transaction (line 18).

5.3 Fairness Properties

We present the formal properties (share guarantee and strategy-
proofness) provided by DRFT. We also discuss the bounds on fair-
ness under our policy. Due to space constraints, we defer the proofs
to the extended version of our paper [4].

THEOREM 1. DRFT provides the share guarantee (a backlogged
client should receive an equal share, i.e., item usage, of one of the
resources it uses, regardless of the demand of other clients.).

The share guarantee is essential for performance isolation. DRFT
provides it for transactions, ensuring that every client makes progress.

THEOREM 2. DRFT ensures strategy-proofness (a client cannot
increase its dominant resource usage by lying about its demand, i.e.,
by adding extraneous operations and/or transactions).

Strategy-proofness prevents clients from “gaming” the sched-
uler [39]. As detailed in Section 5.1, DRFT achieves this by distribut-
ing SDU across all transactions involved in a conflict. As a result,
any increased item usage a client attempts to cause via conflicts
also impacts its own virtual time. Thus, it is impossible for a client
to improve its own performance at the detriment of others.

T, started
A

OT;:x(0)
RocksDB

value of x
A

start T,

@ hints

Scheduler: DRFT

Client
Virtual
Times

Concurrency Control:
MVSchedO, Lock, OCC

Scheduling

g Policy

Storage

AT, ! w(y) w(y) cm‘npleted
Figure 5: Overview of DRFT implementation in RocksDB.

DRFT also provides theoretical bounds on (i) the maximum dif-
ference in usage between any two backlogged clients and (ii) the
maximum delay a client can observe. These bounds are standard
for fair schedulers in other domains [38] and prevent starvation.
We present them in the extended version of our paper [4].

5.4 Discussion

We discuss the implications of applying fairness in the transactional
setting for two performance properties.

Sharing incentive. In prior work, fair schedulers typically pro-
vide (via the share guarantee) sharing incentive: each client is better
off sharing the resource rather than taking turns exclusively using
the entire resource. For example, each of n clients should receive
at least as much service as if it were the only client sending re-
quests to the resource for % of the time. However, guaranteeing
the sharing incentive is not always possible in the transactional
setting because some schedules lead to worse overall throughput
due to conflicts. For example, Figure 4a shows a schedule in which
C1’s transaction is delayed due to its conflict with another client’s
request, leading to worse performance than if C1 had exclusive
access to x and y for one-third of the time. If client workloads are
arbitrarily delayed, we can control what share each client will have,
so we can asymptotically achieve the sharing incentive with DRFT
as A goes to infinity. More generally, DRFT’s A parameter enables
system administrators to determine how much delay clients can
tolerate to achieve a guaranteed level of service.

Performance predictability. As is true in prior work [39, 55],
ensuring fairness does not automatically provide predictable per-
formance, which is often a desirable goal for multi-tenant systems
(e.g., database SLAs [22]). To understand why, we consider a simple
example: if the current number of clients are receiving a guaran-
teed level of service and the system has no additional capacity, we
cannot admit another client into the system without impacting the
performance of existing clients. For predictability, we need not only
the share guarantee but also admission control (which we discuss
further in Section 8) to limit the number of clients in the system.

6 IMPLEMENTATION

We implement DRFT in RocksDB, an open-source transactional
key-value store [32] from Meta that is used in a number of produc-
tion systems [62]. Figure 5 illustrates how DRFT schedules requests
before passing them to the concurrency control and storage. We
require minimal changes to existing database architectures to en-
hance DRFT’s potential for adoption.

DRFT. Our scheduler requires several pieces of metadata. First,
DRFT needs a client identifier for each transaction. We assume
that this information is available and note that, in practice, most
database requests contain application identifiers (e.g., via metadata,
routing information, etc.) even if connection pooling or DB proxies

2610

are used [63, 70]. In RocksDB, we modify the transaction START
function to take a clientID. Second, we must measure item usages
for transactions and update client usages with these values. To
reduce overheads, we optimize DRFT to only track the usage of
items that observe many conflicts (i.e., hot items). We dynamically
track hot items with a count min-sketch [26], a probabilistic data
structure with bounded error. Most transactional workloads have a
small group of hot items [18], so this optimization reduces the over-
heads of tracking item usages. To quantify item usage in an online
system (given variance in the system and workload), we record the
real time of operations. In RocksDB, we store this information in
each transaction’s metadata.

SMF. DRFT integrates SMF [18], which is a scheduler that orders
requests to maximize throughput. SMF consists of two main com-
ponents: a KNN classifier and a scheduling policy. The classifier is
trained on a trace of requests for each workload to predict the set
of hot items that input transactions will access. For inference, the
classifier takes application metadata (the transaction type and any
items available upon instantiation) for each transaction. It then out-
puts a label corresponding to a set of hot items (labels are mapped to
sets of hot items during training) that this request is likely to access.
SMF’s scheduling policy estimates the makespan (i.e., overall exe-
cution time) impact of different candidate transactions. Specifically,
it samples a number of unscheduled transactions and computes
the projected incremental makespan increase if each is added to
the schedule. This accounts for the cost of potential conflicts that
the unscheduled transaction would have with the current ordering.
DRFT passes transaction metadata to SMF and uses it to choose
transactions that improve performance when A > 0.

Concurrency control. We demonstrate DRFT’s versatility by
combining it with three concurrency control protocols. First, we sup-
port MVSchedO, a scheduling-optimized concurrency control [18]
that augments MVTSO by queuing operations to follow the order
established by the scheduler. We also layer our scheduler on top
of the Locking and OCC protocols in RocksDB via a “bolt-on” ap-
proach with minimal modifications. Transactions are queued upon
arrival and begin execution once they are scheduled by DRFT.

7 EVALUATION

In this section, we evaluate DRFT on a range of workloads. Specifi-
cally, we aim to answer the following questions:
e What is the impact of fair scheduling on performance?
e What are the tradeoffs between memoryless scheduling and
maximizing throughput?
o What are the overheads of fair scheduling?

7.1 Experimental Setup

We implement various baselines in RocksDB (8.5) [34]. We run our
database and clients on separate c5ad.16xlarge EC2 instances with
64 vCPUs, 128GB RAM, and local NVMe-based SSDs in the same
region. Clients run in a closed-loop fashion with exponential back-
off (accounting for aborts and retries when measuring latency), and
we report the average of three 90 second runs with 30 seconds of
warm-up each. For each workload, we tune the number of client and
worker threads to ensure system saturation. For RocksDB param-
eters [6], we change several default values: we set the LRU (read)

0
~

I MVTSO B MVSchedO [ZZA DRFT (A=0)
1 SMF-MVSchedO .74 DRFT (A=100)

)
~

'
~

Throughput (txns/s)

YCSB

Epinions SmallBank TAOBench TPC-C

Figure 6: DRFT performance on application benchmarks.

cache to 16GB, write buffer size to 64MB, level 0 compaction trigger

to 4, level 1 buffer size to 256MB, and level 0 stop writes trigger to 36.

We evaluate the following baselines (other than SMF-MVSchedO,

all baselines use FIFO scheduling):

1. RocksDB Optimistic Concurrency Control (OCC). Rocks-
DB’s Optimistic transactions [34] provide up to Snapshot Isola-
tion (SI) using optimistic concurrency control.

. RocksDB Locking (Lock). RocksDB’s Pessimistic transactions
use a locking protocol [34] that only holds write locks and reads
from snapshots to provide SI.

. RocksDB Multi-Version Timestamp Ordering (MVTSO).
We implement MVTSO [12] in RocksDB to provide serializability.

. MVSchedO. We implement MVSchedO, a state-of-the-art con-
currency control protocol that provides serializability [18].

. Shortest Makespan First (SMF-MVSchedO). We implement
SMF [18], a high-performance transaction scheduling policy.
Benchmarks. We evaluate the performance of our schedulers

on a diverse set of standard benchmarks and real-world workloads.

Our benchmarking implementation consists of 7K lines of Java.

Epinions [30] consists of nine transaction types (78% reads) for a

consumer reviews website. We run the benchmark with 2M users

and 1M items (total data size of 50GB) with a Zipfian distribution

(0 = 0.90). SmallBank [71] contains six types of transactions (75%

reads) that model a simple banking application. We configure it

to run with 1M accounts (total data size of 50GB) with a Zipfian
distribution (6 = 0.90). TPC-C [27], a standard OLTP benchmark,
simulates the business logic of e-commerce suppliers with five types

of transactions. We run the workload under high contention with 10

Warehouses (total data size of 2GB, 68% reads). TAOBench [19] is

a social network benchmark based on Meta’s production traces. We

run Workload T (>90% reads), which captures the full transactional

workload on TAO, Meta’s social graph database. We configure this
benchmark to run with 10M objects (total data size of 100GB). YCSB
is a microbenchmarking suite that generates read and write oper-
ations, which we group into sets of 16 for transactions following
past work [17]. We use Workload B (95% reads, 5% writes) with a
Zipfian distribution, and load 1M objects (total data size of 10GB).

7.2 Fairness on Application Benchmarks

We evaluate DRFT on the five application benchmarks (Figure 6)
and find that it provides high throughput while ensuring fairness
between clients. For this set of experiments, we assume that each
thread is a distinct client, ranging from 12 to 32 clients on these
benchmarks to reach saturation due to contention (CPU usage
and disk bandwidth remain low for all benchmarks). Each client
sends the same workload per benchmark. As observed in prior
work [31, 38, 39, 41], ensuring fairness can result in lower perfor-
mance since fair schedules do not always maximize throughput.
The key benefit of DRFT is that it provides the crucial fairness
properties (share guarantee and strategy-proofness) with minimal

2611

BN OCC B DRFT-OCC (A=0)
[SMF-OCC [ZZ DRFT-OCC (A=100)

T

Epinions SmallBank TAOBench TPC-C YCSB
Figure 7: Bolt-on performance on application benchmarks.

Throughput (txns/s)

0

throughput degradation. On all benchmarks, memoryless DRFT
(A = 0) has less than a 3% throughput difference with MVSchedO,
which executes requests under FIFO. This is expected as memory-
less DRFT approximates FIFO order since it picks the transaction of
the client with lowest virtual start time, which alternates between
all clients. DRFT has higher performance than MVTSO since it is
implemented on top of MVSchedO, which prevents unnecessary
aborts [18]. DRFT with A = 100ms has less than a 5% throughput
difference with SMF-MVSchedO. With a larger A, DRFT has the
flexibility to schedule transactions that maximize concurrency. We
find that DRFT’s performance does not change significantly for A
values beyond 100ms on these workloads, indicating this bound is
sufficient for DRFT to attain throughput gains via SMF.

7.2.1 Bolt-on Results. To demonstrate DRFT’s extensibility, we
evaluate it layered on top of RocksDB’s OCC (DRFT-OCC) and
Lock (DRFT-Lock) protocols (Figure 7). This set of experiments also
assumes each thread is a distinct client, ranging from 10 to 28 clients
for system saturation. Across all benchmarks, OCC and Lock have
the same performance because they encounter similar conflicts
when processing requests in FIFO order and abort at nearly equal
rates (DRFT-OCC and DRFT-Lock also have equal performance).
Accordingly, we omit Lock results from Figure 7 due to space con-
straints. Memoryless DRFT-OCC has similar performance to the
OCC baseline since OCC follows FIFO order, and DRFT-OCC mostly
does as well while ensuring fairness across clients. DRFT-OCC with
A = 100ms has nearly identical performance with SMF-OCC. Both
show throughput improvements over the baseline (ranging from
2.0x for SmallBank to 3.3% for TAOBench) since they prevent many
conflicts and aborts. Both DRFT-OCC and SMF-OCC have lower
throughput than SMF-MVSchedO because they only delay the trans-
action start while SMF-MVSchedO utilizes fine-grained operation
scheduling to extract bigger wins. Overall, these results confirm
that DRFT can be directly applied to existing concurrency control
protocols with minimal changes to ensure fairness.

7.3 Fairness Properties

Next, we evaluate DRFT’s ability to provide performance isolation
and high utilization. We also test its performance under weighted,
bursty, and mammoth workloads. Since OLTP benchmarks gener-
ally do not specify different clients, we construct client delineations
without changing workloads. Specifically, we assign different re-
quest rates of the same underlying benchmark to clients.
Performance isolation. First, we demonstrate that DRFT en-
sures performance isolation. For this set of experiments, we have
each client send a constant stream of requests from the Epinions
benchmark, which has contention bottlenecks on popular users
and items. We configure 16 clients (one thread per client), and we
have half the clients send twice as many requests. Figure 8 shows
the throughput of all clients over time (the aggregate throughput is

— C1 C2 —— Other clients
- 1K - 1K
g g
g | 5
2 500 2 500 e
fﬁ AR R e e AR —ED
= =
2 2
E o E o
0 30 60 90 0 30 60 90
Time (s) Time (s)
(a) FIFO (MVSchedO) (b) DRFT (A=0)
Figure 8: DRFT ensures equal usage across clients.
—— C1 C2
- 3K 3K
g :
£ 2K £ 2K
E E
T e N
w 1K 51K
= =
2 2
E o E o0
0 30 60 90 0 30 60 90
Time (s) Time (s)

(a) Request Rate Limit (SMF) (b) DRFT (A=100)

Figure 9: DRFT ensures high resource utilization.

identical to the results in Section 7.2). We highlight the performance
of two clients, where C1 sends twice the number of requests as
C2. Since more of C1’s requests arrive and queue in the system,
the baseline protocol (MVSchedO) executes more of C1’s requests
than C2’s under FIFO, leading to C1 having double the throughput
of C2. In contrast, the clients have equal throughput under DRFT
(A = 0); this is fair because the item usage of each client’s trans-
actions is equal. These results show that FIFO is unable to ensure
performance isolation while DRFT provides the share guarantee.

High utilization. Next, we show that DRFT provides high uti-
lization. We perform experiments on the TPC-C workload, which
mainly conflicts on the Warehouse and District items in the New-
Order and Payment transactions. We have two clients, C1 and C2,
which are bottlenecked on conflicts to these items. We compare
the performance of a request rate limit baseline using SMF, where
each client is allocated half of the maximum possible throughput
to ensure performance isolation (Figure 9). When C2 stops sending
requests after 45s, DRFT (A = 100) dynamically adjusts C1’s share
to maximize usage of the hot items. On the other hand, the request
rate limit is brittle: once C2 stops sending requests, C1 still has the
same throughput since each client is assigned a static rate limit,
leading to 50% lower overall system throughput. These results show
that request rate limits can lead to severe resource underutilization
while DRFT ensures high utilization while serving requests fairly.

Weighted workloads. In production, multi-tenant databases
often need to prioritize certain application requests. DRFT supports
this functionality via weighted workloads. We demonstrate this
on YCSB with two clients, C1 and C2, sending the same workload.
C1 is assigned a weight twice that of C2. Figure 10 shows that
DRFT (A = 0) respects the weights of each client’s workload: since
C1 has twice the weight of C2, its throughput is twice as high.
In contrast, MVSchedO executes an equal number of C1 and C2
requests, resulting in identical throughput for the clients, since it
uses FIFO and does not account for weighted workloads.

Bursty workloads. Real-world applications frequently exhibit
bursty workloads that often lead to logical contention (Section 2).
We model this scenario with the SmallBank workload, which has

2612

Total C1 (weight=2) C2 (weight=1)

g 2K g 2K
E E]
o |G —— . 21K
=) oD
= =
2 2
E o E 0
0 30 60 90 0 30 60 90
Time (s) Time (s)
(a) FIFO (MVSchedO) (b) DRET (A=0)
Figure 10: DRFT respects request weights.
—— C1 C2 —— C3
— 6K - 6K
2 2
£ 4K £ 4K
Pl o~ | E
Sgo 2K EO’ 2K
o o
- -
E o E 0 I I
0 30 60 90 0 30 60 90
Time (s) Time (s)
(a) SMF (b) DRFT (A=100)
Figure 11: DRFT dynamically adjusts each client’s share.
Total C1 Cc2
g 2K R S nea————
B i
< IK < 1K
3 S
2 2
E o E o
0 30 60 90 0 30 60 90
Time (s) Time (s)
(a) FIFO (MVSchedO) (b) DRFT (A=0)

Figure 12: DRFT ensures that mammoths execute fairly.

contention on “hot” accounts. In this set of experiments, there
is initially one active client (C1). Two other clients, C2 and C3,
then join the system but send requests at half the rate of C1. The
workload mixture of all clients is identical, and their requests are
backlogged on the hot items. Figure 11 shows the results of DRFT
(A = 100) and SMF. DRFT ensures that C2 and C3 get their fair
shares. When C2 becomes active at 15s, the throughput of C1 drops
by half; this is fair since each client’s workload has equal hot item
usage. C3 also gets its fair share when it joins at 30s. In contrast, SMF
does not ensure the share guarantee, so C1 has twice the throughput
of the other clients when they are active. Notably, DRFT’s total
throughput is nearly equal to that of SMF. Since A = 100, DRFT
has sufficient flexibility to schedule transactions that maximize
throughput while still providing fairness.

Mammoth transactions. To evaluate DRFT under long-running
requests, we measure performance on mammoth transactions (>60
operations) from TAOBench. Specifically, C1 sends the benchmark
workload excluding mammoths while C2 sends only mammoths,
with both at equal rates. Under FIFO, C2 requests run more fre-
quently (though C1 still has higher throughput since its requests
are shorter and conflict less), leading to lower overall system per-
formance since mammoths block the progress of other requests.
In contrast, DRFT (A = 0) fairly accounts for the usage of mam-
moths and reduces the rate at which C2’s requests execute (by 42%)
in equalizing client usage. As a result, the system has 56% higher
overall throughput when each client gets its fair share.

@
2 - B FIFO (MVSchedO) [SMF [ZZJ DRFT (A=100)
=
a 2K
)
3 1K
2
=H
0 20 40 60 80 100
A (ms)

Figure 13: DRFT’s performance increases with A.

7.4 The Impact of A

To quantify the tradeoff between fairness and throughput, we vary
A on the TAOBench benchmark (Figure 13). We assume each thread
is a separate client (12 clients total), and client workloads are iden-
tical. Since item accesses are drawn from probability distributions
in this workload, hot items are not requested in a fixed order, as in
many of the other benchmarks. Consequently, naively ordering re-
quests in arrival order (as the baselines do) results in slow schedules
and many aborts. However, intelligently scheduling these transac-
tions can substantially increase performance. We compare DRFT
with FIFO and SMF; all scheduling policies use MVSchedO as the
underlying concurrency control protocol to isolate the impact of
scheduling. Under memoryless DRFT (A = 0), scheduling proceeds
in roughly FIFO order since all clients have the same workload, so
we observe a similar throughput to FIFO. As we increase A, DRFT’s
throughput increases until it is less than 5% different from that of
SMEF. As we allow DRFT more flexibility in scheduling (and longer
delays in achieving fairness), we observe higher overall throughput.

7.5 Fairness Overheads

To understand the overheads of ensuring fairness, we measure
DRFT’s performance under low (6 = 0.10), medium (6 = 0.50), and
high (6 = 0.90) contention on the YCSB workload (Figure 14). We
assume each thread is a separate client, and we compare a read-
dominant workload (95% reads) as well as a write-intensive work-
load (80% writes). Overall, DRFT has throughput no lower than 4%
compared to the MVSchedO baseline across all workloads, regard-
less of 8. DRFT’s overheads are more apparent under low contention
(for which scheduling does not materially affect performance), but
they are minimal: these overheads result from scheduling based
on client usages and SMF computational costs from considering
different candidate transactions to find fast schedules [18]. Once
there is some contention (6 = 0.5), both DRFT (A = 100) and SMF
show throughput improvements compared to the baseline. The
memory overheads of DRFT are minimal (and bounded) since we
maintain only a small amount of metadata per client for item us-
age. The overheads of our scheduler are mitigated by the fact that
we operate in a disk-based system; we view extending DRFT to
in-memory databases as an interesting avenue for future work.

8 RELATED WORK

Fair scheduling. This paper builds on a long line of work on fair
scheduling, including start-time fair queuing (SFQ) [41], weighted
fair queuing (WFQ) [31, 55], and many other algorithms [11, 40].
For multi-resource settings, DRF [39] is a widely adopted standard,
offering both the share guarantee and strategy-proofness. Other
algorithms, such as Competitive Equilibrium from Equal Incomes
(CEEI) [75], have been proposed, but they are not strategy-proof.

2613

I MVTSO B MVSchedO [ZZA DRFT (A=0) [SMF-MVSchedO 24 DRFT (A=100)

&
=~

Write-heavy

=

w

o

o]

< 10K

B

& 5K

=)

8 ”

= K

0.10 0.50 0.90 0.10 0.50 0.90
Skew (6)

Figure 14: DRFT’s overheads are minimal.

Dominant Resource Fair Queuing (DRFQ) [38] extends DRF princi-
ples to ensure fair allocation over multiple (exclusive) resources for
network packets and shares several features with DRFT. However,
both DRFQ and DREF fall short for transactional workloads because
they do not account for incremental resource acquisition.

DB resource allocation. A range of work [8, 42, 44, 51, 52, 59,
64, 72, 77] addresses multi-resource allocation for databases. Prior
research concentrates on physical resource isolation [51, 64], intra-
application interference [44], and fixed resource reservations for
SQL stores [52]. However, these do not address logical resource
contention and how transactions acquire resources gradually. Other
related efforts aim for performance isolation via latency SLAs [22]/
SLOs [9]. Predictable performance [47, 68], often via admission
control techniques [25, 80], is another area of focus that is comple-
mentary to the problem we address with fair sharing.

Transaction scheduling. Transaction scheduling has predomi-
nantly been tackled through the lens of concurrency control [12, 13,
54, 57] to improve performance. Most of these techniques operate
within the (often implicit) constraint of arrival order (FIFO) and
react to conlflicts as they appear [1, 3, 5, 43, 45, 49, 53, 66, 67, 74,
78,79, 81]. Some methods address the transaction schedule more
explicitly by reordering the schedule after transaction commit [50]
and/or abort [16, 33] but do not address performance isolation. De-
terministic databases, which assume access to the full read-write
sets of transactions, also schedule batches of requests explicitly
via FIFO order [35-37, 73] or by partitioning workloads based on
hot items [28, 56, 58, 60, 61, 82] for performance rather than fair-
ness. DRFT complements these approaches by ensuring fair sharing
for transactions. In particular, DRFT integrates a state-of-the-art
scheduling policy, SMF [18], to achieve high throughput.

9 CONCLUSION

In this paper, we formalize the problem of fair sharing for transac-
tions and highlight the unique challenges in this setting. We then
propose the Dominant Resource Fair Transaction (DRFT) sched-
uler, which accurately accounts for the item usage of each request
to provide fairness between clients. DRFT navigates the tradeoff
between fairness and throughput, offering system operators the
flexibility to adapt to diverse workload needs. We evaluate DRFT
on a range of workloads, showing that it ensures fairness with high
performance and minimal overheads.

ACKNOWLEDGMENTS

We thank Dave Cecere, Shilpa Lawande, Harald Ng, members of the
Sky Lab, and the VLDB anonymous reviewers for their insightful
feedback. This work is supported by gifts from Accenture, AMD,
Anyscale, Google, IBM, Intel, Mohamed Bin Zayed University of
Artificial Intelligence, Samsung SDS, SAP, and VMware.

REFERENCES

(1]
(2]
(3]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[22]

[23]

[24]

[25]

[26]

2020. MySQL Transactional and Locking Statements. https://dev.mysql.com/
doc/refman/8.0/en/sql-transactional-statements.html

2021. Sharding Graph Data with Neo4j Fabric. https://neo4j.com/developer/
neo4j-fabric-sharding/

2024. CockroachDB Transaction Layer. https://www.cockroachlabs.com/docs/
stable/architecture/transaction-layer

2024. Extended Paper. https://github.com/audreyccheng/fair-txn-scheduler
2024. PostgreSQL. https://www.postgresql.org/

2024. RocksDB Tuning Guide. https://github.com/facebook/rocksdb/wiki/
RocksDB-Tuning-Guide

Atul Adya, Barbara Liskov, and Patrick O’Neil. 2000. Generalized Isolation Level
Definitions. (2000), 67-78.

Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, and Eno
Thereska. 2014. End-to-end performance isolation through virtual datacenters.
In Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation (Broomfield, CO) (OSDI'14). USENIX Association, USA, 233-248.
Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J. Franklin,
and David A. Patterson. 2011. PIQL: success-tolerant query processing in the
cloud. Proc. VLDB Endow. 5, 3 (nov 2011), 181-192.

AWS. 2024. Quotas and constraints for Amazon RDS. https://docs.aws.amazon.
com/AmazonRDS/latest/UserGuide/CHAP_Limits.html

Jon C. R. Bennett and Hui Zhang. 1996. WF2Q: worst-case fair weighted fair
queueing. In Proceedings of the Fifteenth Annual Joint Conference of the IEEE
Computer and Communications Societies Conference on The Conference on Com-
puter Communications - Volume 1 (San Francisco, California) (INFOCOM’96). IEEE
Computer Society, USA, 120-128.

Philip A Bernstein and Nathan Goodman. 1983. Multiversion concurrency
control—theory and algorithms. ACM Transactions on Database Systems (TODS)
8, 4 (1983), 465-483

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

BigQuery. 2024. BigQuery Multi-statement Transactions. https://cloud.google.
com/bigquery/docs/transactions

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.
TAO: Facebook’s distributed data store for the social graph. In 2013 USENIX
Annual Technical Conference (USENIX ATC ’13). 49-60.

Matthew Burke, Florian Suri-Payer, Jeffrey Helt, Lorenzo Alvisi, and Natacha
Crooks. 2023. Morty: Scaling Concurrency Control with Re-Execution. In Pro-
ceedings of the Eighteenth European Conference on Computer Systems (Rome,
Italy) (EuroSys 23). Association for Computing Machinery, New York, NY, USA,
687-702.

Yang Cao, Wenfei Fan, Weijie Ou, Rui Xie, and Wenyue Zhao. 2023. Transaction
Scheduling: From Conflicts to Runtime Conflicts. Proc. ACM Manag. Data 1, 1,
Article 26 (may 2023), 26 pages.

Audrey Cheng, Aaron Kabcenell, Xiao Shi, Jason Chan, Peter Bailis, Natacha
Crooks, and Ion Stoica. 2024. Towards Optimal Transaction Scheduling. Proc.
VLDB Endow. 17, 4 (jul 2024).

Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa Lawande, Hamza Qadeer, Jason
Chan, Harrison Tin, Ryan Zhao, Peter Bailis, Mahesh Balakrishnan, Nathan
Bronson, Natacha Crooks, and Ion Stoica. 2022. TAOBench: An End-to-End
Benchmark for Social Network Workloads. Proc. VLDB Endow. 15, 9 (may 2022),
1965-1977.

Audrey Cheng, Xiao Shi, Lu Pan, Anthony Simpson, Neil Wheaton, Shilpa
Lawande, Nathan Bronson, Peter Bailis, Natacha Crooks, and Ion Stoica. 2021.
RAMP-TAO: Layering Atomic Transactions on Facebook’s Online TAO Data
Store. Proceedings of the VLDB Endowment 14, 12 (2021), 3014-3027.

Audrey Cheng, Jack Waudby, Hugo Firth, Natacha Crooks, and Ion Stoica. 2024.
Mammoths are Slow: The Overlooked Transactions of Graph Data. Proc. VLDB
Endow. 17, 4 (mar 2024), 904-911.

Yun Chi, Hyun Jin Moon, and Hakan Hacigiimiis. 2011. iCBS: incremental cost-
based scheduling under piecewise linear SLAs. Proc. VLDB Endow. 4, 9 (jun 2011),
563-574.

Google Cloud. 2024. Strategic Cloud Capacity Planning Using the Google
Cloud Architecture Framework. https://www.googlecloudcommunity.com/
gc/Community-Blogs/Strategic- Cloud- Capacity-Planning-Using-the-Google-
Cloud/ba-p/178296

Cloudflare. 2024. Introducing Advanced Rate Limiting. https://blog.cloudflare.
com/advanced-rate-limiting/

CockroachDB. 2024. Admission Control in CockroachDB: How It Protects
Against Unexpected Overload. https://www.cockroachlabs.com/blog/admission-
control-unexpected-overload/

Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58-75

2614

[27]

(28]

[29

[30

S
=

[41

[42

[43]

[44]

[45

[46

The Transaction Processing Performance Council. 2021. TPC-C. http://www.
tpc.org/tpec/

Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: A
Workload-Driven Approach to Database Replication and Partitioning. Proc.
VLDB Endow. 3, 1-2 (sep 2010), 48-57.
Databricks. 2024. Databricks SQL.
databricks-sql

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. Oltp-bench: An Extensible Testbed for Benchmarking Relational
Databases. Proceedings of the VLDB Endowment 7, 4, 277-288.

Danny Dolev, Dror G. Feitelson, Joseph Y. Halpern, Raz Kupferman, and Nathan
Linial. 2012. No justified complaints: on fair sharing of multiple resources. In
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference
(Cambridge, Massachusetts) (ITCS ’12). Association for Computing Machinery,
New York, NY, USA, 68-75.

Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor,
and Michael Strum. 2017. Optimizing Space Amplification in RocksDB.. In CIDR,
Vol. 3. 3.

Zhiyuan Dong, Zhaoguo Wang, Xiaodong Zhang, Xian Xu, Changgeng Zhao,
Haibo Chen, Aurojit Panda, and Jinyang Li. 2023. Fine-Grained Re-Execution
for Efficient Batched Commit of Distributed Transactions. Proc. VLDB Endow. 16,
8 (apr 2023), 1930-1943.

Facebook. 2023. RocksDB Github. https://github.com/facebook/rocksdb

Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Multiversion
Concurrency Control. Proc. VLDB Endow. 8, 11 (jul 2015), 1190-1201.

Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. 2017. High performance
transactions via early write visibility. Proceedings of the VLDB Endowment 10, 5
(2017).

Jose M Faleiro, Alexander Thomson, and Daniel] Abadi. 2014. Lazy evaluation
of transactions in database systems. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. 15-26.

Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. 2012. Multi-resource
fair queueing for packet processing (SIGCOMM ’12). Association for Computing
Machinery, New York, NY, USA, 1-12.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. 2011. Dominant resource fairness: fair allocation of multiple
resource types. In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation (Boston, MA) (NSDI'11). USENIX Association, USA,
323-336.

S Jamaloddin Golestani. 1994. A self-clocked fair queueing scheme for broadband
applications. In Proceedings of INFOCOM 94 Conference on Computer Communi-
cations. IEEE, 636-646.

Pawan Goyal, Harrick M. Vin, and Haichen Chen. 1996. Start-time fair queue-
ing: a scheduling algorithm for integrated services packet switching networks.
SIGCOMM Comput. Commun. Rev. 26, 4 (aug 1996), 157-168.

Ajay Gulati, Arif Merchant, and Peter J. Varman. 2010. mClock: handling through-
put variability for hypervisor IO scheduling. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (Vancouver, BC,
Canada) (OSDI’10). USENIX Association, USA, 437-450.

Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. 2021. Releasing locks as early
as you can: Reducing contention of hotspots by violating two-phase locking. In
Proceedings of the 2021 International Conference on Management of Data. 658-670.
Yigong Hu, Gongqi Huang, and Peng Huang. 2023. Pushing Performance Isola-
tion Boundaries into Application with pBox. In Proceedings of the 29th Symposium
on Operating Systems Principles (Koblenz, Germany) (SOSP "23). Association for
Computing Machinery, New York, NY, USA, 247-263.

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: A Raft-Based HTAP
Database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072-3084.
Lexiang Huang, Matthew Magnusson, Abishek Bangalore Muralikrishna, Salman
Estyak, Rebecca Isaacs, Abutalib Aghayev, Timothy Zhu, and Aleksey Charapko.
2022. Metastable Failures in the Wild. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad,
CA, 73-90.

Virajith Jalaparti, Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Antony
Rowstron. 2012. Bazaar: Enabling predictable performance in datacenters. Mi-
crosoft Res., Cambridge, UK, Tech. Rep. MSR-TR-2012-38 (2012).

Delta Lake. 2024. Delta Lake Transactions. https://delta-io.github.io/delta-
rs/how-delta-lake-works/delta-lake-acid-transactions/

Hyeontaek Lim, Michael Kaminsky, and David G Andersen. 2017. Cicada: De-
pendably fast multi-core in-memory transactions. In Proceedings of the 2017 ACM
International Conference on Management of Data. 21-35.

Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A Fast and Practical
Deterministic OLTP Database. Proc. VLDB Endow. 13, 12 (jul 2020), 2047-2060.
Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. 2015.
Retro: Targeted resource management in multi-tenant distributed systems. In
Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (Oakland, CA) (NSDI'15). USENIX Association, USA, 589-603.

https://www.databricks.com/product/

https://dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html
https://neo4j.com/developer/neo4j-fabric-sharding/
https://neo4j.com/developer/neo4j-fabric-sharding/
https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer
https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer
https://github.com/audreyccheng/fair-txn-scheduler
https://www.postgresql.org/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Limits.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Limits.html
https://cloud.google.com/bigquery/docs/transactions
https://cloud.google.com/bigquery/docs/transactions
https://www.googlecloudcommunity.com/gc/Community-Blogs/Strategic-Cloud-Capacity-Planning-Using-the-Google-Cloud/ba-p/178296
https://www.googlecloudcommunity.com/gc/Community-Blogs/Strategic-Cloud-Capacity-Planning-Using-the-Google-Cloud/ba-p/178296
https://www.googlecloudcommunity.com/gc/Community-Blogs/Strategic-Cloud-Capacity-Planning-Using-the-Google-Cloud/ba-p/178296
https://blog.cloudflare.com/advanced-rate-limiting/
https://blog.cloudflare.com/advanced-rate-limiting/
https://www.cockroachlabs.com/blog/admission-control-unexpected-overload/
https://www.cockroachlabs.com/blog/admission-control-unexpected-overload/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
https://www.databricks.com/product/databricks-sql
https://www.databricks.com/product/databricks-sql
https://github.com/facebook/rocksdb
https://delta-io.github.io/delta-rs/how-delta-lake-works/delta-lake-acid-transactions/
https://delta-io.github.io/delta-rs/how-delta-lake-works/delta-lake-acid-transactions/

[52]

[53]

[54

[55]

[56]

[57]

[58]

[59]

[60

[61

[62]

[63]

[65]

[66]

[67]

[68]

Vivek Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, and Sura-
jit Chaudhuri. 2013. SQLVM: Performance Isolation in Multi-Tenant Relational
Database-as-a-Service. In CIDR 2013 (cidr 2013 ed.). 6th Biennial Conference on
Innovative Data Systems Research.

Thomas Neumann, Tobias Miihlbauer, and Alfons Kemper. 2015. Fast serializ-
able multi-version concurrency control for main-memory database systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. 677-689.

Christos H Papadimitriou. 1979. The Serializability of Concurrent Database
Updates. Journal of the ACM (JACM) 26, 4 (1979), 631-653.

Abhay K. Parekh and Robert G. Gallager. 1992. A generalized processor sharing
approach to flow control in integrated services networks—the single node case.
In Proceedings of the Eleventh Annual Joint Conference of the IEEE Computer
and Communications Societies on One World through Communications (Vol. 2)
(Florence, Italy) (IEEE INFOCOM ’92). IEEE Computer Society Press, Washington,
DC, USA, 915-924.

Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP systems. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data. 61-72.
Dan R. K. Ports and Kevin Grittner. 2012. Serializable snapshot isolation in
PostgreSQL. Proc. VLDB Endow. 5, 12 (aug 2012), 1850-1861.

Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling highly contended
OLTP workloads using fast dynamic partitioning. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 527-542.

Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica. 2016. FairRide:
near-optimal, fair cache sharing. In Proceedings of the 13th Usenix Conference
on Networked Systems Design and Implementation (Santa Clara, CA) (NSDI’16).
USENIX Association, USA, 393-406.

Thamir M Qadah and Mohammad Sadoghi. 2018. Quecc: A queue-oriented,
control-free concurrency architecture. In Proceedings of the 19th International
Middleware Conference. 13-25.

Dai Qin, Angela Demke Brown, and Ashvin Goel. 2021. Caracal: Contention
management with deterministic concurrency control. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. 180-194.

RocksDB. 2025. RocksDB Users and Use Cases. https://github.com/facebook/
rocksdb/wiki/RocksDB-Users-and-Use-Cases

Yangjun Sheng, Anthony Tomasic, Tieying Zhang, and Andrew Pavlo. 2019.
Scheduling OLTP Transactions via Learned Abort Prediction. In Proceedings of
the Second International Workshop on Exploiting Artificial Intelligence Techniques
for Data Management (Amsterdam, Netherlands) (aiDM ’19). Association for
Computing Machinery, New York, NY, USA, Article 1, 8 pages.

David Shue, Michael]J. Freedman, and Anees Shaikh. 2012. Performance Isolation
and Fairness for Multi-Tenant Cloud Storage. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12). USENIX Association,
Hollywood, CA, 349-362.

Snowflake. 2024. Snowflake Unistore.
cloud/workloads/unistore/

Chunzhi Su, Natacha Crooks, Cong Ding, Lorenzo Alvisi, and Chao Xie. 2017.
Bringing modular concurrency control to the next level. In Proceedings of the
2017 ACM International Conference on Management of Data. 283-297.

Chunzhi Su, Natacha Crooks, Cong Ding, Lorenzo Alvisi, and Chao Xie. 2017.
Bringing modular concurrency control to the next level. In Proceedings of the
2017 ACM International Conference on Management of Data. 283-297.

Zilong Tan and Shivnath Babu. 2016. Tempo: robust and self-tuning resource
management in multi-tenant parallel databases. Proc. VLDB Endow. 9, 10 (jun
2016), 720-731.

https://www.snowflake.com/en/data-

2615

[69

(81

(82]

(83]

Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang, Qianmian Yu, Binyu Zang, Haib-
ing Guan, and Haibo Chen. 2022. Ad Hoc Transactions in Web Applications: The
Good, the Bad, and the Ugly. In Proceedings of the 2022 International Conference
on Management of Data (Philadelphia, PA, USA) (SIGMOD °22). Association for
Computing Machinery, New York, NY, USA, 4-18.

Dixin Tang, Hao Jiang, and Aaron J. Elmore. 2017. Adaptive Concurrency Control:
Despite the Looking Glass, One Concurrency Control Does Not Fit All. In CIDR,
Vol. 2.

The H-Store team. 2013. SmallBank Benchmark. http://hstore.cs.brown.edu/
documentation/deployment/benchmarks/smallbank/

Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony Row-
stron, Tom Talpey, Richard Black, and Timothy Zhu. 2013. IOFlow: a software-
defined storage architecture. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13). Associa-
tion for Computing Machinery, New York, NY, USA, 182-196.

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned
Database Systems (SIGMOD ’12). Association for Computing Machinery, New
York, NY, USA, 1-12.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In Proceedings of

the Twenty-Fourth ACM Symposium on Operating Systems Principles. 18-32.
Hal R Varian. 1973. Equity, envy, and efficiency. (1973).

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD °17). Association for Computing Machinery, New York, NY, USA,
1041-1052.

Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy Katz, and Ion
Stoica. 2012. Cake: enabling high-level SLOs on shared storage systems. In Pro-
ceedings of the Third ACM Symposium on Cloud Computing (San Jose, California)
(SoCC ’12). Association for Computing Machinery, New York, NY, USA, Article
14, 14 pages.

Jia-Chen Wang, Ding Ding, Huan Wang, Conrad Christensen, Zhaoguo Wang,
Haibo Chen, and Jinyang Li. 2021. Polyjuice: High-Performance Transactions
via Learned Concurrency Control. In OSDI. 198-216.

Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, and Jinyang Li. 2016.
Scaling multicore databases via constrained parallel execution. In Proceedings of
the 2016 International Conference on Management of Data. 1643-1658.
Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Calton Pu, and
Hakan Hacigimi$. 2011. ActiveSLA: a profit-oriented admission control frame-
work for database-as-a-service providers. In Proceedings of the 2nd ACM Sym-
posium on Cloud Computing (Cascais, Portugal) (SOCC ’11). Association for
Computing Machinery, New York, NY, USA, Article 15, 14 pages.

Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. Tic-
toc: Time traveling optimistic concurrency control. In Proceedings of the 2016
International Conference on Management of Data. 1629-1642.

Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim Kraska. 2020. Chiller:
Contention-centric transaction execution and data partitioning for modern net-
works. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 511-526.

L. Zhang. 1990. Virtual clock: a new traffic control algorithm for packet switching
networks. In Proceedings of the ACM Symposium on Communications Architectures
& Protocols (Philadelphia, Pennsylvania, USA) (SIGCOMM ’90). Association
for Computing Machinery, New York, NY, USA, 19-29.

https://github.com/facebook/rocksdb/wiki/RocksDB-Users-and-Use-Cases
https://github.com/facebook/rocksdb/wiki/RocksDB-Users-and-Use-Cases
https://www.snowflake.com/en/data-cloud/workloads/unistore/
https://www.snowflake.com/en/data-cloud/workloads/unistore/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Unfairness in Practice
	2.2 The Status Quo

	3 Fairness for Transactions
	3.1 A Fair Scheduler for One Resource
	3.2 Scheduling Over Multiple Resources
	3.3 Challenges in Fair Transaction Scheduling

	4 Accounting for Item Usage
	5 Achieving Fairness
	5.1 Memoryless DRFT
	5.2 Generalized DRFT
	5.3 Fairness Properties
	5.4 Discussion

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Fairness on Application Benchmarks
	7.3 Fairness Properties
	7.4 The Impact of
	7.5 Fairness Overheads

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

