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ABSTRACT
The problem of estimating the size of a query result has a long

history in data management. When the query performs entity reso-

lution (aka record linkage or deduplication), the problem is that of

estimating the number of distinct entities, referred to as the entity
count. This problem has received attention from the statistics com-

munity but it has been largely overlooked in the data management

literature. In this work, we formally define the entity count prob-

lem from a data management perspective and decompose it into

a framework of fundamental steps. We explore approaches from

both statistics and data management, systematically identifying a

design space for different pipelines that address this problem. Fi-

nally, we provide extensive experiments to highlight the strengths

and weaknesses of these approaches on real-world benchmarks.
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1 INTRODUCTION
The problem of estimating the size of a query has a long history

in data management, ranging from early works on selectivity es-

timation (e.g., [29]) to more recent approaches for join query size

estimation (e.g., [4]). In particular, the literature is rich with meth-

ods to estimate the size of a select or a join query. When applications

need to work with the set of distinct entities contained in a dataset,

the query performs entity resolution (aka record linkage or dedu-

plication) on the dataset [47]. In this case, the query size estimation

problem is that of estimating the number of distinct entities, re-

ferred in the following as the entity count.
Datasets often contain duplicate records that refer to the same

entity, making the number of rows a poor estimate of its entity

count. Consider the example dataset in Table 1: the number of

rows is 6 but it only contains 2 distinct songs. The problem of

recognizing duplicates, also known as Entity Resolution (ER), has

received extensive attention from the the statistics, machine learn-

ing, NLP, and data management communities, from the seminal
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ID Title Length Artist Year

A Astronomy Domine - The

Piper at the Gates of Dawn

4.202 Pink Floyd ’87

B The Jimi Hendrix Experience

- Ain’t No Telling

112 NaN 10

C Astronomy Domine 252093 Pink Floyd 1987

D Ain’t No Telling (Axis: Bold

as Love)

01:52 Jimi Hendrix

Experience

2010

E 001-Astronomy Domine 4m

12sec

Pink Floyd NaN

F Pink Floyd - Astronomy

Domine

252 NaN 87

Table 1: Exemplary set of records from the Music Brainz
20k dataset [39]

work of Fellegi-Sunter [12] to the recent breakthroughs based on

language models [25], showing an unprecedented ability to identify

how humans represent and misrepresent information. On the other

hand, the problem of estimating the entity count has only received

attention from the statistics community, with a variety of works

such as capture-recapture methods [13] and Bayesian population

estimation techniques [43].

Motivation. Estimating the number of distinct entities in a dataset

has several practical applications. One key use case is query plan-

ning, where knowing the approximate entity count helps guide

execution strategies. Similar to techniques in approximate query

processing [38], entity count estimation could provide a compu-

tationally efficient way to assess dataset characteristics without

performing full ER. This can assist query optimizers in deciding

whether to apply aggressive blocking strategies when redundancy

is high or opt for lighter deduplication when entity counts are close

to the total number of records. Another important application is

data cleaning. Many datasets contain varying levels of duplication,

and knowing the approximate entity count allows users to estimate

dataset quality before applying expensive ER. A high estimated

duplication level suggests the need for targeted cleaning, while a

low-duplication estimate may indicate that ER is unnecessary. An

analogy can be drawn from unseen species estimation in statistics,

where the goal is to infer the number of undiscovered species from a

limited sample. Similarly, entity count estimation provides insights

into dataset structure without explicitly resolving all duplicates.

Despite its practical benefits, this problem has received limited at-

tention outside the statistics community, leaving space for efficient

solutions tailored to data management applications.

Challenges. A natural baseline for entity count is to pipeline ER

and cluster counting. For example, ER might return the match-

ing pairs𝑀 = {(𝐴,𝐶), (𝐴, 𝐸), (𝐶, 𝐸), (𝐵, 𝐷)}, yielding the clustering
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{{𝐴,𝐶, 𝐸}, {𝐵, 𝐷}}, and cluster countingwould return “2”. This base-
line can be extended by sampling 𝑠 records for ER and applying

upscaling techniques [15] in the counting step. However, it requires

up to 𝑂 (𝑠2) matching queries, which must be issued to a machine

learning classifier [44], a human crowd [46], or a large language

model [25], incurring substantial latency and cost. Even progres-

sive ER methods [34], while designed for low-latency high-F-score

results, still need to be run exhaustively before the entity count can

be derived.

Entity count approaches from the statistics community take a

different route, relying on probabilistic and Bayesian models for

ER—such as the frameworks of Fellegi and Sunter [12], Blink [42],

and d-Blink [27]. These methods estimate matching probabilities,

which can inform entity count. However, they are less compatible

with modern ML-based matching, as they leave most matching

decisions to statistical inference. As a result, efficient and practical

solutions for entity count remain an open challenge, with significant

room for improvement.

Our contribution. In this work we formally define the entity count

problem from a data management perspective and decompose it

into a framework of fundamental steps. Then, we consider works

in both the statistics and data management literature, and system-

atically identify a design space for pipelines that can solve this

problem. Finally, we provide extensive experiments to highlight

their strengths and weaknesses on popular real-world benchmarks.

Specifically,

• We propose a framework that integrates key steps for entity

count estimation, combining methods from ML-based entity

resolution (ER), statistical approaches and clustering;

• We introduce a sampling-based variant of the entity count

pipeline, which reduces computational overhead by computing

entity counts from a sampled subset and upscaling the result to

approximate the full dataset;

• We systematically evaluate pipelines from both the data manage-

ment and statistical literatures, testing their effectiveness and

efficiency on real-world datasets. Our experiments show that

clustering-based and efficient ER approximation-based methods

achieve strong accuracy and efficiency on smaller datasets but

struggle with scalability as the data size increases. Additionally,

incorporating sampling into the pipeline improves scalability

for larger datasets, though the accuracy can vary significantly,

depending on the proportion of duplicate records and errors

from the upscaling procedure.

The remainder of this paper is structured as follows. In Section 2,

we review related work on tasks related to the entity count problem.

Section 3 defines the entity count problem and Section 4 introduces

the general framework. Section 5 describes a taxonomy of pipelines

for entity count. Section 6 describes the proposed sampling-based

approach and its implementation. We present experimental results

in Section 7, evaluating the performance of different pipelines across

several datasets. Finally, Sections 8 and 9 summarize the results and

conclude the paper, outlining future directions for research.

2 RELATED WORK
In this section, we identify methods that are strongly related to

the entity count problem and discuss how they can be leveraged to

address our problem.

Join size estimation. Represents a key task for query optimiza-

tion [21], and involves predicting at query time the size of the join

between two tables after applying selection predicates to each. Sev-

eral sampling-based approaches have been developed to address

this task. For instance, Correlated Sampling [45] constructs small

space synopses for quick join size estimates subject to dynamically

specified predicate filter conditions. We mention also [5], which

introduces a sampling algorithm called two-level sampling, which

combines advantages of previous sampling methods, outperforming

them on various join types.

Entity Resolution. Entity resolution (ER) aims at identifying

records that refer to the same real-world entity. The task has been

widely studied for over 50 years, beginning with the seminal proba-

bilistic model by Fellegi and Sunter [12], and later extended through

Bayesian approaches such as Blink [42] and its scalable variant d-

Blink [27]. In recent years, several Machine Learning (ML) and

Deep Learning (DL) methods have achieved state-of-the-art results.

DeepER [8] combines GloVe [35] embeddings with an LSTM [20]-

based DL model. DeepMatcher [44] generalizes this framework,

supporting multiple embedding options. Ditto [25] integrates pre-

trained BERT [7] models with domain-specific features and data

augmentation to generate synthetic training instances. ZeroER [48]

proposes an unsupervised method based on Gaussian Mixture Mod-

els that performs competitively with supervised approaches.

Clustering. Clustering is closely related to estimating the number

of unique entities in a dataset. It aims to group similar objects

together, with high intra-cluster similarity and low inter-cluster

similarity. Assuming each cluster corresponds to one entity, the

entity count task can be seen as counting the number of clusters.

Common techniques include correlation clustering [2], BIRCH [50],

and DBSCAN [10], all of which assume full access to the dataset in

an offline setting. In contrast, streaming clustering algorithms [49]

process data in a single pass using limited memory, adapting to

evolving input and dynamically forming new clusters.

Number of connected components estimation. This problem is

closely related to entity count and involves estimating the number

of connected components in a so-called parent graph, using only

a sampled subgraph. In this context, the entity count task can be

framed as estimating the number of connected components in a

graph where nodes represent records and edges link records that

refer to the same entity. These edges are not known in advance

and must be inferred. The problem dates back to the seminal work

by Frank [15], and has since been extended in several directions.

For example, [22] introduces an estimator based on network motif

counts, with guarantees on the mean squared error for graphs with

bounded spectral gaps. Another line of work [23] focuses on chordal

graphs, characterizing optimal sample complexity in the sublinear

regime, and providing linear-time estimators along with minimax

lower bounds.
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2.1 Discussion
The above works can be broadly classified along two key dimen-

sions: duplication type and sampling usage. Duplication type refers

to whether methods assume exact duplicates (identical records) or

support approximate duplicates (with typos, schema mismatches,

or missing values). Sampling usage captures whether methods use

sampling for efficiency or operate on the full dataset. We observe

that none of the above lines of work focus on a setting where ap-

proximate duplicates are present and sampling is used for efficiency.

For instance, join size estimation assumes exact duplicates, mak-

ing it unsuitable for datasets with approximate duplicates. ER and

clustering methods can handle approximate duplicates but do not

employ sampling. Even scalable approaches like d-Blink [27] rely

on partitioning and parallelism rather than estimation from sam-

ples. Our work fills this gap by (i) introducing a general framework

for entity count estimation under sampling and (ii) empirically

evaluating ML and statistical methods to assess their accuracy and

efficiency across datasets with varying characteristics.

3 PROBLEM STATEMENT
Let 𝐷 be a dataset of record entries 𝑟 . Records can be either struc-

tured (e.g. set of key-value pairs describing the technical specs of

a mobile phone) or unstructured data entries (e.g. reviews about

that same mobile phone model). Each record 𝑟 ∈ 𝐷 is associated

to a specific real-world entity 𝑒 ∈ 𝐸. Let 𝑓 (𝑟 ) ∈ 𝐸 denote the

underlying entity 𝑒 ∈ 𝐸 associated to 𝑟 . The entity count of 𝐷 , de-
noted with 𝑐 (𝐷), is the number of unique entities present in 𝐷 , i.e.

𝑐 (𝐷) = |{𝑓 (𝑟 ) | 𝑟 ∈ 𝐷}|.

Example 3.1. Table 1 contains a set of exemplary records from

the Music Brainz 20k dataset [39]. Each record in Table 1 represents

a specific song, with some noticeable (noisy) duplicated records.

For instance, records A, C, E and F refer to the song “Astronomy
Domine” from Pink Floyd, while records B and D refer to the song

“Ain’t No Telling” from Jimi Hendrix Experience. The underlying

number of unique entities in Table 1 is thus 𝑐 (𝐷) = 2.

We now introduce the entity count estimation problem.

Problem 1. Given a dataset 𝐷 , the entity count estimation (ECE)
problem consists in providing an estimate 𝑐 (𝐷) of the true entity count
𝑐 (𝐷).

Note that the problem formulation only takes into account the

entities featured in the input dataset, thus 1 ≤ 𝑐 (𝐷) ≤ |𝐷 |, i.e. the
estimate cannot be larger that the input dataset.

Given an ECEmethod 𝑐 (·), its accuracy can be evaluated in terms

of approximation error 𝛿 , which is defined as follows:

𝛿 (𝐷) = 𝑐 (𝐷) − 𝑐 (𝐷)
𝑐 (𝐷) (1)

where an approximation error of 0 implies a perfect estimate,

while large negative or positive values denote substantial underes-

timation or overestimation of the result respectively.

Discussion. While ER methods can be used for ECE, they are

typically optimized for F-score rather than entity count accuracy.

This misalignment can result in ER models achieving high F-scores

while still producing poor entity count estimates.

Evaluating Ditto for ECE. To illustrate the challenges in en-

tity count estimation, we evaluate Ditto [25], a state-of-the-art ER

model, using benchmark datasets (Table 2) with DistilBERT [40]

and RoBERTa [26]. To improve efficiency, we apply token blocking,

discard low-similarity pairs, and prioritize the most similar pairs

using edge ordering [14]. Transitivity is used to infer matches and

reduce redundant Ditto queries. Entity counts are estimated by

clustering records based on predicted matches. Experiments were

conducted on an NVIDIA GeForce RTX 3090 GPU. Figure 1 presents

the results: the left plot shows the relationship between F-score and

approximation error, the center compares precision and approxi-

mation error, and the right shows execution time across dataset

sizes.

Observation 1 (Underestimation bias). Across all datasets, Ditto

systematically underestimates entity count, as indicated by neg-

ative approximation errors. This bias stems from the asymmetry

in how false positives and false negatives affect clustering. In fact,

false positives merge clusters, reducing the count, while false neg-

atives do not necessarily increase it, since clusters remain intact

if sufficient connectivity exists. The effect is particularly strong

in high-duplication datasets (Cars, WDC-xlarge-computers, and

Alaska-monitor), where merging errors have a greater impact (Fig-

ure 1, left). Precision, which reflects the rate of correctly identified

matches, is lowest in WDC-xlarge-computers and Alaska-monitor,

leading to more false positives and worsening underestimation

(Figure 1, center). Interestingly, while RoBERTa achieves similar

precision and F-score on Cars and Music-Brainz-200k, the approxi-

mation errors differ. The higher duplication ratio in Cars leads to

more severe underestimation, whereas in Music-Brainz-200k, fewer

duplicates limit the impact of false positives.

Observation 2 (Impact of duplication rate). A high F-score can

correspond to low approximation error, as seen with RoBERTa on

Music-Brainz-20k (f-score 0.98, error 0). However, this is not always

the case. DistilBERT achieves an F-score of 0.92 on DBLP-Scholar

with an approximation error of -0.19, but a slight drop in F-score to

0.88 on Carsmore than doubles the error to -0.46. Datasets with high

duplication rates are more sensitive to false positives. In Cars, where

∼99% of records are duplicates, entity count depends on the number

of clusters, so merging even a few clusters drastically lowers the

count. In contrast, RoBERTa onMusic-Brainz-200k, despite a similar

F-score and slightly lower precision than DistilBERT on Cars, has

a moderate error (-10%) due to its lower duplication rate. With

more unique entities, false positives are distributed across many

clusters, minimizing their impact. Conversely, in Cars, where most

records belong to a handful of entities, even a few false positives

significantly lower the estimate.

Observation 3 (Scalability). Figure 1 (right) shows execution time

as a function of dataset size. For datasets under 20k records, exe-

cution remains under 30 minutes. However, scalability becomes

a concern for larger datasets. On Music-Brainz-200k, execution

time jumps to nearly 6 hours with DistilBERT and ∼18 hours with
RoBERTa, highlighting the computational burden of Ditto. This

raises concerns about applying such models to even larger datasets,

where execution times could become prohibitive.

In this work we study several families of methods for efficiently

estimating the entity count of a dataset by using samples 𝐷′ ⊆ 𝐷
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Figure 2: Overview of the main stages in our ECE framework

of the original dataset 𝐷 . Note that this also includes the case

where the original dataset is fully sampled. We unify these meth-

ods under a common framework by modeling 𝐷 as an underlying

(unknown) parent graph, a union of cliques where each clique rep-

resents records referring to the same entity. Given one or more

samples 𝐷′ ⊆ 𝐷 , the goal is to estimate the total number of con-

nected components in the parent graph using the observed number

of components in the sampled subgraph. This framework enables

scalable techniques that balance accuracy and computational cost,

particularly for large datasets. For a sampled subset 𝐷′
, we de-

note the entity count estimate as 𝑐 (𝐷′ |𝐷), where 𝑐 represents the
estimation method.

4 A GENERAL FRAMEWORK FOR ECE
We illustrate in Figure 2 a general framework to estimate the entity

count of a dataset𝐷 using samples of records𝐷′ ⊆ 𝐷 . Conceptually,

the framework consists of three main steps. The first step consists in

sampling a set of records 𝐷′ ⊆ 𝐷 . The following step is estimating

the number of unique entities in 𝐷′
, which we frame as estimating

the number of connected components induced by the subgraph

associated by 𝐷′
. Finally the last step is estimating the number of

unique entities in 𝐷 , which we frame as upscaling the number of

connected components found in the subgraph.

We now describe the individual steps in the devised framework

for ECE below:

Record sampling. This step consists of selecting a representative

sample𝐷′ ∈ 𝐷 of the dataset to be used to estimate the entity count

of the original dataset𝐷 . Note that this also includes the case where

the entire dataset is sampled. This step aims at providing a trade-off

between accurate and efficient estimation of the entity count of

a dataset. In fact, small sample sizes can provide fast estimation

of the entity count but the accuracy might be low. On the other

hand, larger samples can lead to more accurate results but can be

expensive in terms of running time andmight suffer from scalability

issues when it comes to large datasets.

Record representation. This step consists of processing the

records in 𝐷′
and modeling them in a meaningful format for the

subsequent step of generating a graph from 𝐷′
. In general, differ-

ent techniques can be used to model the records, ranging from

standard bag-of-words (BoW) model to more recent dense vector

(embedding) based approaches. Ideally the selected format should

capture the similarity between records, such that the records that

are similar to each other have similar representations.

Noisy graph generation. This step uses the sampled records and

their representations to generate a weighted graph 𝐺 (𝑉 , 𝐸) where
each node 𝑣 ∈ 𝑉 corresponds to a record 𝑟 ∈ 𝐷′

and edge weights

measure the similarity of pairs of records, based on their represen-

tation. Ideally, this graph should result in a union of disjoint cliques,

where only records referring to the same underlying entities are

linked to each other. However, since records are approximate dupli-

cates instead of exact duplicates, the resulting graph might contain

spurious edges that link records associated with different entities,

as well as missing links between records that refer to the same en-

tity. These errors can result in overlapping maximal cliques, where

records incorrectly belong to multiple clusters, or in fragmented

clusters, where records that should be connected remain isolated

or form smaller disconnected subgroups. To address these inconsis-

tencies, the subsequent Graph cleaning step can refine the structure

of the graph, ensuring a more accurate clustering of records.

Graph cleaning. This step refines the noisy graph to better approx-
imate a union of disjoint cliques. The goal is to remove incorrect

edges and reconstruct missing ones, ensuring that the cleaned graph

aligns more closely with an induced subgraph of the unknown par-

ent graph associated with 𝐷 , given the set of sampled records 𝐷′
.

Graph cleaning can be implemented using a range of techniques,

includingML-based ERmodels to statistical ER and clustering meth-

ods. For instance, an ML-based ER method can classify edges as
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matching or non-matching, removing spurious connections while

retaining correct ones. Similarly, clustering-based methods can help

separate mistakenly merged cliques or merge smaller clusters that

should be connected, addressing the issue of overlapping maximal

cliques.

Entity count estimation. In this step, we use the union of cliques

generated in the previous phase to estimate the number of enti-

ties in the original dataset, 𝐷 , by scaling the number of cliques.

Various scaling techniques have been proposed in the literature,

particularly for estimating the number of connected components

in a graph based on an induced subgraph, such as [15, 23]. These

techniques involve statistical estimators, which can be either biased

or unbiased, and aim to estimate the total number of connected

components in the original graph by analyzing the number of nodes

within each clique in the induced subgraph.

Among the steps in the pipeline illustrated in Figure 2, we iden-

tify the combination of Record representation,Noisy graph generation
and Graph cleaning as being the core components in estimating the

entity count of 𝐷 . In fact, those three steps can be readily run to

estimate the entity count of the dataset without the need to sample

the original dataset. Moreover, these steps allow space for a variety

of techniques, ranging from ER-based ones to possibly new tech-

niques for ECE. We will call the combination of those three steps

base pipeline. The joint use of Record sampling and Entity count
estimation on top of a base pipeline allow to scale to larger datasets

and offer a trade-off between accuracy and efficiency.

In this work, we focus on four main families of base pipelines and

study their performance in terms of accuracy and efficiency for ECE.

These pipelines draw from established methods in entity resolution

(ER), clustering, and statistics, as well as recent advancements in

machine learning and embedding models.

i) ML ER This base pipeline represents the adaptation of ER meth-

ods for the entity count task. This pipeline uses popular blocking

algorithms (e.g. [3, 17]) to generate a noisy graph followed by

the use of ML-based ER methods (e.g. [25]) to filter out noisy

edges and generate a union of cliques.

ii) Simulation This base pipeline provides a faster approximation

of the ML ER approach by simplifying the ER process for entity

count estimation. Instead of exhaustively applying the ML ER

model, it approximates the model’s output by mapping record

pair similarities to calibrated matching probabilities. These prob-

abilities are derived by querying the ML ER model on a subset

of records to speed up the process while still grouping similar

records into cliques for entity counting.

iii) Statistical ER This base pipeline allows traditional statistical

ER approaches (e.g. [12, 27, 42]) to be repurposed for the ECE

task by using the linkage structure provided by these methods

to induce a union of cliques that groups records that refer to the

same entity.

iv) LLM embeddings This family frames the entity count task as a

clustering problem. It utilizes large language models (LLMs) (e.g.,

[30]) to embed the records into dense vector representations.

These embeddings are then fed into clustering algorithms (e.g.,

[10]) to form a union of cliques, where each clique corresponds

to records representing the same entity.

The family of base pipelines that we consider in our study rep-

resent a comprehensive set of methods that can be used to ad-

dress the ECE problem. In general, the outlined framework can

be extended with new methods for ECE as long as they generate

a union of cliques from a (sample of) records. Additionally, in all

of these pipelines, sampling and upscaling techniques can be ap-

plied to improve efficiency and scalability, allowing for quicker

approximations of the entity count without the need for exhaustive

computation.

5 BASE PIPELINES
We now describe in more detail the base pipelines by breaking

down their inner workings in terms of their implementation of the

Record representation, Noisy graph generation and Graph cleaning
steps.

5.1 ML ER pipeline
The ML ER pipeline adapts machine learning-based ER techniques

to address the entity count estimation task.

Record representation. A common approach in ER is to represent

records using a Bag-of-Words (BoW) model, where the semantic

similarity between records is measured based on shared tokens.

Techniques like TF-IDF weighting are frequently employed to give

more weight to informative terms, helping to distinguish between

similar records. Other methods, such as embedding-based repre-

sentations can also be applied when deeper semantic similarities

are required to handle more complex data relationships.

Noisy graph generation. In ER, reducing the number of pairwise

comparisons is crucial, particularly for large datasets. Blocking

algorithms, such as adaptive blocking [3], are commonly used to

group records into blocks and limit the number of record pairs that

need to be compared. From the output of blocking, a noisy graph can

be constructed by connecting records within the same block, with

edges representing potential matches. Alternatively, metablocking

techniques [33] can be employed to directly create a metablocking
graph, where edges between records are weighted based on their

co-occurrence across multiple blocks. These approaches allow for a

significant reduction in the number of comparisons while ensuring

that relevant record pairs are retained for further analysis. Similarity

between records can then be measured using metrics like cosine

similarity, depending on the chosen blocking approach and assigned

as weights to the edges.

Graph cleaning. The final step groups records referring to the

same entity by classifying edges in the noisy graph as matches

or non-matches using an ER model. To improve efficiency, edges

can be processed in a prioritized order such as node ordering [14],

ensuring the most promising ones are evaluated first. Transitivity

can also be applied to infer additional matches (e.g., if 𝐴 matches 𝐵

and 𝐵 matches 𝐶 , then 𝐴 matches 𝐶), reducing redundant queries.

Finally, to further refine entity groupings, additional queries can

be made for matching edges to improve robustness [16]. The result

is a union of cliques, where each clique represents a unique entity.
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5.2 Simulation pipeline
The Simulation pipeline provides an approximation of theML-based

ER process for entity count estimation, focusing on improving com-

putational efficiency by simulating the edge classification process.

The Record Representation and Noisy Graph Generation steps are the

same as in the ML ER pipeline, where records are represented and

a noisy graph is constructed based on blocking techniques.

Graph cleaning. The Simulation pipeline approximates edge clas-

sification by mapping similarity scores to calibrated matching prob-

abilities, avoiding explicit classification for every edge. Similarity

scores are partitioned into bins (e.g., equiwidth histogram with 10

bins of size 0.1), and a sample of edges from each bin is classified

using an ER model. The observed match rate within each bin de-

fines its calibrated matching probability, which is then applied to

all edges in that range. For example, if 80 of 100 sampled edges in

the 0.8–0.9 similarity range are matches, the bin’s probability is

set to 0.8, and remaining edges in that bin are assigned matching

outcomes by sampling from a Bernoulli distribution. This process

reduces computational overhead while maintaining fidelity to the

ER model’s decision patterns. Key hyperparameters, including bin

width, sample size, and probability aggregation method, can be

adjusted to optimize trade-offs between accuracy and efficiency.

Once probabilities are established, edges are processed similarly to

ML ER, iterating in a predefined or random order [14], with tran-

sitivity applied to infer additional matches and minimize queries.

To enhance robustness, edges within the same cluster as previ-

ously matched pairs may be queried [16], ensuring consistency in

classification.

5.3 Statistical ER pipeline
The Statistical pipeline uses ER techniques from the statistical lit-

erature to derive the linkage structure of records and generate a

union of cliques.

Record representation. In this pipeline, records are treated as

raw textual representations without requiring preprocessing steps,

such as transforming them into vectorized formats. Statistical ER

methods like Blink [42], d-Blink [27], and other Bayesian models

grounded in Fellegi and Sunter’s record linkage theory [12] are

capable of working with the original records while computing sim-

ilarities internally. These models can incorporate embedding-based

similarities or rely on empirical priors, as described by Steorts [42],

to estimate the likelihood of records belonging to the same entity.

Noisy graph generation. Unlike the previous pipelines, the Statis-
tical ER pipeline does not explicitly construct a noisy graph. Instead,

the statistical ER model directly generates a union of cliques based

on probabilistic assignments. Methods like Fellegi and Sunter’s [12]

model assign a matching status to record pairs based on likelihood

ratios, while d-Blink and Bayesian models use empirically moti-

vated priors to probabilistically assign entity identifiers to records.

Although the graph is not explicitly constructed, it is implicitly

represented through the computation of similarity scores between

records. For instance, Blink precomputes similarity matrices for

each attribute, where each matrix can be viewed as an independent

noisy graph, encoding pairwise similarities between records based

on a specific similarity function. These per-attribute graphs con-

tribute to the overall linkage process, where statistical models infer

relationships without directly filtering edges. Instead of applying

a classifier to filter edges, statistical models probabilistically infer

entity assignments using techniques such as Gibbs sampling or

expectation-maximization.

Graph cleaning. The statistical models treat records as input and

assign entity identifiers (e.g., integers) probabilistically, based on the

likelihood of records representing the same entity. Once records are

assigned to entities, the union of cliques is generated by grouping

records with the same identifier into the same clique. Statistical

methods such as Blink and d-Blink apply Bayesian principles to

estimate the linkage structure, making the process highly adaptable

to different datasets and priors.

5.4 LLM embedding pipeline
The LLM Embedding pipeline uses embeddings generated by LLMs

and clustering techniques to estimate entity counts. In this ap-

proach, records are transformed into dense vector representations,

which are then clustered to identify distinct entities. Depending on

the clustering algorithm used, a similarity graph may be computed

explicitly or implicitly.

Record representation. Each record is transformed into a dense

vector using LLM-based embedding models, such as BERT [7] or

other large language models. These embeddings capture the se-

mantic content of the records in a high-dimensional vector space,

enabling more accurate comparisons between records than tradi-

tional vector-based methods.

Noisy graph generation. In this pipeline, the generation of a noisy
graph is sometimes implicit, depending on the clustering algorithm.

While some clustering algorithms may rely on the computation

of pairwise similarities (resulting in an explicit similarity graph),

others may cluster records directly based on their distances in

the embedding space without materializing a graph. For example,

algorithms such as DBSCAN [10] or OPTICS [1] do not require a

prior graph, but still effectively group records based on their relative

proximity in the embedding space. A critical feature of the chosen

clustering algorithm is that it should not require the number of

clusters to be specified in advance, as the purpose of the pipeline is

to estimate this value (the entity count).

Graph cleaning. The result of clustering the records based on their
embeddings is treated as a union of cliques, where each cluster

corresponds to a set of records representing the same entity. High-

dimensional clustering techniques, such as DBSCAN or OPTICS,

are particularly suited for this task, as they can handle varying

densities and do not require pre-specifying the number of clusters.

The clusters produced by these algorithms form the union of cliques,

implicitly grouping records that are similar in the embedding space.

6 SAMPLING-BASED PIPELINES FOR ECE
While the previously mentioned pipelines can estimate the entity

count of 𝐷 , their computational complexity may limit scalability

for datasets containing millions of records. For instance, the ML ER

pipeline exhibits a time complexity that is quadratic in the number

of records in the worst case, making it impractical for large-scale

datasets. To address this, the framework in Figure 2 introduces

two steps: Record sampling and Entity count estimation. These steps
improve the efficiency of the core method by (i) selecting a subset
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of records 𝐷′ ⊆ 𝐷 and (ii) scaling the number of cliques detected

in 𝐷′
to estimate the total entity count in 𝐷 . We focus on Bernoulli

sampling paired with the Klusowski Bernoulli estimator. Bernoulli
sampling selects each record independently with probability 𝑝 < 1,

resulting in an expected sample size of 𝑁 · 𝑝 , where 𝑁 = |𝐷 |. After
obtaining the sample, the Klusowski Bernoulli estimator is applied

to upscale the result. The Klusowski Bernoulli estimator [23] refines
the Frank Bernoulli estimator [15]. The Frank Bernoulli estimator

provides an unbiased estimate of the number of connected compo-

nents in the parent graph based on an induced subgraph sampled

via Bernoulli sampling. However, the Frank estimator, while un-

biased, exhibits high variance and can yield negative estimates

due to its alternating series formulation. The Klusowski estimator,

while slightly biased, reduces variance and ensures more stable

estimates, particularly on large datasets. Although we primarily

focus on Bernoulli sampling, other methods such as Simple Ran-

dom Sampling (SRS) can also be used. SRS selects a fixed number

of records 𝐷′
, where every subset of size 𝑘 has equal probability of

being chosen. The Frank SRS estimator can upscale entity counts

from SRS samples but, like the Frank Bernoulli estimator, can suffer

from high variance and yield negative estimates.

7 EXPERIMENTS
7.1 Datasets
We conducted experiments using a total of 10 datasets, which are

listed in Table 2. We classify these datasets based on their number

of rows and the number of unique entities. Given that the number

of unique entities can vary significantly across different datasets,

we compute a score to measure the duplication level of each dataset,

defined as follows, where 𝐷′
is the sample dataset:

Duplication factor(𝐷) = |𝐷 | − 𝑐 (𝐷)
|𝐷 | − 1

To distinguish between datasets with low and high levels of

duplication, we use a 50% threshold. Datasets with a duplication

factor above 0.50 are classified as high-duplication, where a major-

ity of records correspond to duplicate entities, while those below

this threshold are classified as low-duplication, indicating relatively

sparse duplication. Based on this categorization and dataset size,

we classify datasets into four different groups, which are further

described below.

Small datasets with few duplicates. For this category we con-

sider the Music-Brainz-20k, a dataset of roughly 20.000 records

from [24] which contains song records from the MusicBrainz data-

base. This dataset spans five sources and includes duplicates for

half of the original records. Each variant is generated using the

DAPO data generator [19] to create records with modified attribute

values.

Small dataset with multiple duplicates. We consider 4 datasets

for this category. DBLP-Scholar is a dataset from the ER bench-

mark [24] and consists of entries from the DBLP and Google Scholar

bibliographic sources. WDC xlarge (computers) is a dataset from

the WDC benchmark [36] and contains duplicated computer list-

ings from several web sources. Alaska (monitor) is a dataset from
the Alaska benchmark [6] and consists in duplicated specification of

monitors from more than 20 data sources. Since the set of attributes

can significantly vary among records from different sources, we

attached each record an additional synthetic attribute consisting

of the concatenation of its original attributes. Finally, Cars is a

dataset generated by scraping textual descriptions of vehicles, such

as make and model, from various online sources [16].

Large datasetswith fewduplicates. For this categorywe consider
two splits of the Music-Brainz dataset, containing 200,000 and 2

million records respectively. We also consider the 5 million split of

the North Carolina Voters dataset, from [24], which is based on

real records from the North Carolina voter registry. The datasets

comprises records from 5 sources and contains both exact duplicates

and noisy duplicates across all sources.

Large datasets with multiple duplicates. For this category, we
augmented the Cars dataset and the WDC xlarge (computers)
dataset with synthetic records until they reached at least 1 million

records. Each synthetic record was generated by combining dif-

ferent attribute values from records referring to the same entity,

while also randomly dropping tokens from both the original and

synthetically generated records.

7.2 Metrics
We evaluate ECE approaches in terms of accuracy and efficiency. Ac-

curacy is measured using approximation error (Equation 1), which

for sampling-based pipelines is:

𝛿 (𝐷′) = 𝑐 (𝐷 |𝐷′) − 𝑐 (𝐷)
𝑐 (𝐷)

Efficiency is measured in terms of sample size |𝐷′| and running

time to compute 𝑐 (𝐷 |𝐷′) , reflecting two aspects: sample efficiency

and computational efficiency. A method is sample-efficient if it

achieves low approximation error even with a small fraction of the

dataset, i.e., |𝐷′ | = 𝑜 ( |𝐷 |). Computational efficiency considers how

runtime scales with dataset size—an ideal approach should not only

work with small samples but also maintain reasonable execution

time as datasets grow.

7.3 Implementation details
We now describe the implementation details of the four base

pipelines used in our experiments. For each pipeline, we evaluate

twomodel variants to assess their impact on entity count estimation.

These pipelines follow the core steps outlined in Figure 2.

MLER. TheML ER pipeline consists of record representation, noisy

graph generation, and graph cleaning. Records are modeled using

a TF-IDF-weighted Bag-of-Words (BoW) representation, where to-

kens are extracted from attributes, and informative terms receive

higher weights. A noisy graph is generated via token blocking,

grouping records sharing at least one token while filtering large

blocks (>10% of the dataset). Records in the same block are con-

nected in a blocking graph, with edges weighted by TF-IDF-based

Jaccard similarity. Since block cleaning may separate matching

records into different connected components, potentially overes-

timating the entity count, we measure this effect using sparsity,
defined as

∑𝑛
𝑖 𝑐 (𝐶𝐶𝑖 )/𝑐 (𝐷). For example, a sparsity of 1.20 indi-

cates an overestimation of 20% by an oracle method. To improve

efficiency, edges with Jaccard similarity below 0.1 are filtered out,

though this may further contribute to overestimation by removing
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Category Name Num attributes Split Num records Num matches Num entities
Duplication
score

Small dataset with

few duplicates

Music Brainz 20k [39] 5 20k 19,375 16,250 10,000 48.39%

Small dataset with

multiple duplicates

DBLP-Scholar [28] 2 N/A 7,626 13,760 2352 69.17%

WDC xlarge (computers)
*

4 N/A 4,676 9,990 1,080 76.92%

Alaska (monitor) [6] 1 N/A 2,273 12,949 231 89.88%

Cars [18] 6 N/A 16,185 5,954,651 48 99.71%

Large dataset with

few duplicates

Music Brainz 200k [39] 5 200k 193,750 162,500 100,000 48.39%

Music Brainz 2M [39] 5 2M 1,937,500 1,624,503 1,000,000 48.39%

North Carolina Voters 5M [39] 4 5M 5,000,000 3,331,384 3,500,840 29.98%

Large dataset with

multiple duplicates

Cars 1M 6 1M 1,000,024 22,762,570,161 48 99.99%

WDC xlarge (computers) 1M
*

4 1M 1,042,500 5,462,382,825 1,080 99.90%

*
http://webdatacommons.org/largescaleproductcorpus/v2

Table 2: List of datasets used for the experiments

Dataset Max len
Green
edges

Red
edges

Music-Brainz-20k 256 2000 2000

DBLP-Scholar 256 1000 1000

WDC-xlarge-computers 512 4000 7000

Alaska-monitor 256 2500 2500

Cars 256 15000 15000

Music-Brainz-200k 256 5000 5000

Music-Brainz-2M 256 5000 5000

North Carolina Voters-5M 256 5000 5000

Cars-1M 256 20000 20000

WDC-xlarge-computers-1M 256 20000 20000

Table 3: Training hyperparameters and dataset-specific set-
tings for Ditto

additional matching edges. For graph cleaning, we use Ditto [25],

evaluating both DistilBERT [40] and RoBERTa [26]. To enhance

efficiency, record pairs are processed in batches of 1024, and tran-

sitivity is applied to infer matches from classified pairs, reducing

redundant queries. Ditto is trained consistently across datasets with

20 epochs, a batch size of 32, and a learning rate of 3 ·10−5 (AdamW

optimizer). Datasets are split into 70% training, 20% testing, and 10%

validation, with a fixed number of sampled matching/non-matching

edges. Dataset-specific parameters, such as sequence length and

the number of sampled edges, are listed in Table 3.

Simulation. The Simulation pipeline approximates the ML ER

pipeline by replacing direct ER model queries with a calibration

process. We construct an equiwidth histogram with 10 bins cov-

ering similarity values from 0 to 1. For each bin, we sample up to

100 record pairs (small datasets) or 1000 pairs (large datasets) and

classify them using Ditto, with separate calibration for DistilBERT

and RoBERTa. The matching probability for each bin is computed

as the average outcome of sampled pairs. When processing an edge,

its probability is determined by its bin, and a matching outcome

is sampled from a Bernoulli distribution. This avoids invoking the

ER model for every edge, improving efficiency. To enhance robust-

ness, additional edges within the same cluster as matched edges are

queried [16]. Edges are processed randomly with a fixed seed, and

transitivity is applied to maintain consistency in inferred matches.

Statistical ER. For this pipeline, we use Blink [42], an unsuper-

vised Bayesian ER method that operates on strings and categorical

features. In our implementation, all features across the datasets

were treated as string attributes to ensure compatibility with Blink.

We consider two variants of the pipeline, differing in the similar-

ity function used: one based on an MPNet-based Sentence Trans-

former [37, 41] and the other using an edit distance-based similarity

function (the default in Blink). The MPNet variant processes string

features into dense representations, while the edit distance variant

directly computes pairwise similarities based on character-level

differences. The model processes these string features and han-

dles both the record representation and noisy graph generation

steps. Instead of explicitly constructing a graph, Blink assigns en-

tity identifiers probabilistically during a Gibbs sampling process

[42], which estimates posterior probabilities for linking records to

latent entities. We used the same hyperparameters as in the original

Blink paper (𝑎 = 1, 𝑏 = 99). The output is a union of cliques, where

records sharing the same entity identifier are grouped together.

LLM embedding. For this pipeline, we leverage two variants. The

first variant uses OpenAI’s text-embedding-3-large [31] to generate

dense vector representations of records, while the second variant re-

lies on an edit distance-based similarity function. For the clustering

step, we use DBSCAN [10], a density-based algorithm that does not

require the number of clusters to be pre-specified. In the OpenAI

embedding variant, clustering is performed on the cosine distances

between the generated embeddings, whereas in the edit distance

variant, clustering operates on pairwise similarity scores derived

from edit distance computations. The LLM Embedding pipeline

does not explicitly construct a noisy graph. Instead, the clustering

process operates directly on the computed distances. As DBSCAN

groups records based on their relative distances, it implicitly gener-

ates a union of cliques, with each clique corresponding to a unique

entity. We set the min sample parameter to 1 and used 𝑒𝑝𝑠 = 0.65

for the OpenAI variant and 𝑒𝑝𝑠 = 0.35 for the edit variant.

7.4 Methodology
We ran experiments on multiple datasets to evaluate the perfor-

mance of the base and sampling pipelines in terms of both efficiency

(running time) and accuracy (approximation error). The reported

execution times exclude Ditto training and Simulation calibration,
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Figure 3: Base pipeline performance on small-sized datasets for low and high duplication factor datasets

as these are pre-inference steps specific to each dataset, and includ-

ing them would blur the distinction between training and inference,

making runtime comparisons with other pipelines misleading. For

the LLM Embedding pipeline, embeddings were not precomputed,

and their computation time is included in the total execution time.

Requests to the OpenAI embedding model were batched with a

batch size of 512, with an average time cost of 0.006 seconds per

record. Sampling pipelines were evaluated at four sampling ratios:

1%, 5%, 10%, and 20%. Each was run five times with different random

seeds. After each run, we applied the estimator from [23] to upscale

the entity count, and calculated the average approximation error

over the five runs. For datasets with over 1 million records, we ap-

plied embedding binarization in the base LLM Embedding pipeline

to mitigate memory issues. For the statistical approach, in both the

baseline and sampling pipelines, and across both similarity function

variants, we introduced a time-based stopping condition. Specifi-

cally, Blink runs for at most the same duration as the ER pipeline

with RoBERTa, ensuring that its execution remains within a compa-

rable computational budget. In addition to that, Blink requires that

records are organized into “files” (tables), where duplicated records

are spread across different tables. Each record was assigned a file

ID to separate duplicates. Since Blink requires at least two records

per file, we resampled when the sample resulted in files with only

one record, ensuring all tables had at least two records.

7.5 Experimental results
We evaluate the accuracy and efficiency of the base and sampling

pipelines across datasets, running experiments on a server with

an AMD Ryzen 9 5950X, 64 GB RAM, and an NVIDIA RTX 3090.

Overall, LLM Embedding and Simulation pipelines perform well on

small datasets, while Statistical and ML ER pipelines face scalability

issues on larger ones. Sampling-based pipelines significantly reduce

runtime, but their accuracy depends on the dataset’s duplication

rate and the upscaling process. Furthermore, we observe that while

sampling-based pipelines offer considerable improvements in com-

putational time, their accuracy is influenced by both the dataset’s

duplication factor and the upscaling process.

On small datasets simulation and LLM embedding perform
better compared to the other base pipelines. Figure 3 shows
that across small datasets, Simulation (RoBERTa, DistilBERT) and

LLM Embedding (OpenAI) consistently achieve the lowest approxi-

mation errors. For instance, on Music-Brainz-20k, Simulation with

DistilBERT has no error (0%), followed by LLM Embedding (Ope-

nAI) and Simulation with RoBERTa at –1%. A similar trend holds

for DBLP-Scholar, where Simulation (DistilBERT) remains at 0%

error, with RoBERTa close behind at 3%, suggesting that similarity-

based clustering works well even in moderately duplicated datasets.

For highly duplicated datasets, however, results shift. On Alaska-

monitor and WDC-xlarge-computers, Simulation with RoBERTa

performs best, while LLM Embedding (OpenAI) struggles with

errors of -97% and -81%. These datasets contain lengthy product

descriptions (121 and 200 tokens on average, using cl100k_base en-
coding), whereas other datasets have at most 90 tokens per record.

The increased text length makes it harder for OpenAI’s model

to generate effective representations. On the other hand, for the

Cars dataset, where nearly all records are duplicates, LLM Em-

bedding (OpenAI) provides the best estimate (10% error), while

Simulation performs worse due to low precision (∼36%), leading to

excessive merging of clusters and errors of -27% (DistilBERT) and

-35% (RoBERTa). LLM Embedding (edit) is omitted from Figure 4

due to its high error (72%) and long runtime (1.71 hours). Compar-

ing pipeline types, Simulation consistently outperforms ER in both

accuracy and runtime. The ER pipeline, though closer in accuracy

to LLM Embedding (OpenAI), is significantly slower, particularly

with RoBERTa. Still, all pipelines complete within 30 minutes on

small datasets. The Statistical pipeline, however, performs the worst,

often overestimating due to the limited number of Gibbs iterations

(e.g., 5 on Music-Brainz-20k with MPNet), whereas prior work [42]

suggests a large number of iterations (e.g. 10,000) are needed for

reliable results. Pipeline variants also show clear differences. LLM

Embedding (OpenAI) consistently outperforms its edit distance

variant, reinforcing the advantage of embeddings over token-based

approaches. Similarly, RoBERTa performs better than DistilBERT

in both ER and Simulation, at the cost of longer runtimes. Finally,

while MPNet and edit distance Statistical pipelines yield similar

results on DBLP-Scholar, the edit variant fails to run within the

time cap on other datasets due to its higher computational cost,

highlighting its scalability limitations.
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Figure 4: Sampling-based pipeline results on a selection of small datasets

Dataset name Sampling ratio
1% 5% 10% 20%

DBLP-Scholar 1.67 9.02 15.43 25.77

Alaska-monitor 4.69 24.85 42.19 60.47

Music-Brainz 2M 0.78 4.03 7.91 14.83

North Carolina Voters 5M 0.66 3.2 6.12 11.21

Cars 1M 99.53 99.91 99.95 99.98

WDC-xlarge-computers 94.22 98.5 99.17 99.54

Table 4: Average sample data duplication factor across differ-
ent sampling ratios for various datasets

Base pipelines fail to scale for million-scale datasets. We

assess the base pipelines on larger datasets, starting with Music-

Brainz 200k, where most pipelines run successfully except for the

Statistical pipeline, which fails due to Blink’s memory-intensive

similarity matrix computation. The same performance patterns

observed in small datasets hold: Simulation (RoBERTa) achieves

the most accurate estimate (-2% error in ∼70 min), followed by

Simulation (DistilBERT) (-9% in ∼70 min) and LLM Embedding

(OpenAI) (-11% in 39 min). The ER pipeline (RoBERTa) performs

comparably to LLM Embedding (OpenAI) but is far slower, while

DistilBERT-based ER completes faster but with lower accuracy. The

LLM Embedding (Edit) variant is the slowest, requiring ∼33 hours
and yielding a high error of -65%. For the million-scale datasets,

scalability remains a significant challenge across all pipelines. The

ER and Simulation pipelines fail due to the sheer size of the noisy

graph, particularly for high-duplication datasets where the number

of edges reaches hundreds of millions, making it infeasible to store

and process within memory constraints. The Statistical pipeline

does not scale due to Blink’s reliance on precomputing similarity

matrices for each attribute, which leads to prohibitive memory re-

quirements. The LLM Embedding pipeline also encounters memory

limitations, as embeddings for large datasets are stored in memory,

quickly consuming available resources and causing the pipeline to

run out of memory before clustering can be completed.

The upscaling estimator can introduce errors and is sensi-
tive to the duplication factor. Before evaluating the sampling

pipelines, we analyze the impact of the Klusowski Bernoulli esti-

mator on entity count estimation. To isolate upscaling errors, we

use an oracle sampling pipeline that assumes perfect clustering,

meaning any discrepancy in entity count stems solely from the

upscaling process. The results in Figures 4 and 5 reveal that up-

scaling introduces errors, particularly at smaller sampling ratios

(e.g., 1% and 5%) on large datasets. The only exception was the Cars

1M dataset, consistently showing 0% approximation error even

with just 1% sampling (∼10,000 records). Since the dataset contains
only 48 entities, even a small sample is likely to include at least

one record per entity, which may help upscaling remain accurate.

In contrast, low-duplication datasets are more prone to errors at

small sampling ratios because the sampled data may cover only a

fraction of the actual entities. As shown in Table 4, the duplication

factor in the sample is often much lower than in the full dataset,

making estimation more challenging. This is reflected in Figure 4,

where the oracle pipeline shows higher approximation errors in

low-duplication datasets like Music-Brainz-200k. Increasing the

sampling ratio helps mitigate this issue, and in cases like DBLP-

Scholar and WDC-xlarge-computers, the error approaches zero

at 20% sampling. Interestingly, in high-duplication datasets like

WDC-xlarge-computers-1M and Alaska, the upscaling error shifts

from underestimation at low sampling ratios to overestimation at

20%, suggesting that duplication characteristics play a crucial role

in upscaling accuracy.

Sampling-based pipelines can perform comparably to base
pipelines on small datasets in significantly less time. Figure 4
presents the performance of sampling-based pipelines on small

datasets. Due to high errors at lower sampling ratios, we focus

on 10% and 20% sampling. For the ER pipeline, we focus on the

RoBERTa variant, while for LLM Embedding, we consider the Ope-

nAI variant. The statistical sampling pipeline did not complete

within the time cap, set to match the execution time of the ER

pipeline (RoBERTa). All sampling pipelines completed within two

minutes across small datasets, with Simulation (RoBERTa) perform-

ing best in both accuracy and runtime. On low-duplication datasets

like Music-Brainz-20k, the ER (RoBERTa), Simulation (RoBERTa),

and LLM Embedding (OpenAI) pipelines had comparable approxi-

mation errors. At 20% sampling, Simulation (RoBERTa) had a -13%

error in 14 seconds, while its base counterpart achieved near-zero er-

ror in 68 seconds (5× slower). Similarly, the ER pipeline (RoBERTa)

at 20% sampling had a -15% error in 2.5 minutes, compared to its

base pipeline, which also achived a near-zero error but required 19

minutes (7.6× slower). On DBLP-Scholar (20% sampling), the ER

(RoBERTa), Simulation, and LLM Embedding (OpenAI) pipelines
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performed comparably to their base counterparts. ER (RoBERTa)

and LLM Embedding (OpenAI) achieved -3% error, compared to

-10% for their base versions, with 21× and 6× speedups, respec-

tively. The Simulation pipeline had a slightly higher error (-9% vs.

-3%) but ran 11× faster. On high-duplication datasets, results var-

ied. While increasing the sampling ratio to 20% improved accuracy

on Music-Brainz-20k by reducing upscaling errors, the opposite

was observed on Alaska. For this specific dataset, Simulation with

DistilBERT performed best at 10% sampling, achieving 0% error in

3 seconds, whereas its base version had 10% error and took 1.71

minutes. On WDC-xlarge-computers and Cars, Simulation with

RoBERTa (20% sampling) performed best, yielding 15% and 0% er-

ror in 7 and 30 seconds, respectively. The base counterparts were

slower, with WDC-xlarge-computers taking 103 seconds (-2% error)

and Cars requiring 8 minutes with -35% error.

Sampling-based pipelines can scale but can provide reason-
able estimates only on very highly duplicated datasets.We

evaluate the performance of sampling-based pipelines on large

datasets in Figure 5. To handle large-scale datasets, we focus on the

1% and 5% sampling levels and limit our evaluation to the to the

Simulation (DistilBERT and RoBERTa), ER (RoBERTa), and LLM

Embedding (OpenAI) pipelines. On low-duplication datasets, we

see significant underestimation at the 1% sampling level, with ap-

proximation errors approaching -100%, driven by both the small

sample size and errors introduced by the oracle. Increasing the

sampling ratio to 5% mitigates some of the underestimation but

still results in substantial errors, ranging from -60% to -70% on

Music-Brainz-200k and Music-Brainz-2M. In terms of efficiency,

sampling-based approaches are significantly faster but at the cost

of accuracy. For instance, the ER pipeline with RoBERTa completes

in 2.5 minutes with an approximation error of -63%, while its base

counterpart achieves a much lower approximation error of -12% but

requires nearly 18 hours to complete. For North Carolina Voters-5M,

only LLM Embedding with OpenAI was able to run at 5% sampling,

yielding an approximation error of -93%. The Simulation and ER

pipelines encountered memory errors due to the large size of the

blocking graph, which exceeded available memory capacity. On

high-duplication datasets, such as Cars-1M andWDC-1M, sampling

pipelines perform significantly better. The reduced impact of up-

scaling errors contributes to this improvement. On Cars-1M, LLM

Embedding with OpenAI at 5% sampling achieves an approxima-

tion error of -12% in just 6 minutes, outperforming both ER and

Simulation pipelines, which struggle due to the high sparsity of

the blocking graph. For instance, with 5% of the data, the blocking

graph of Cars-1M had an average sparsity of over 40, meaning that

even with the oracle sampling pipeline, the entity count would

be overestimated by a factor of 40 due to the fragmentation of

true entities across multiple disconnected components. On WDC-

1M, similarly to North Carolina Voters-5M, the ER and Simulation

pipelines encountered memory errors at the 5% sampling level

due to the excessive size of the blocking graph. Nevertheless, the

best-performing approach was Simulation with DistilBERT using

1% of the data, which achieved an approximation error of -42%.

LLM Embedding with OpenAI struggled despite using 5% of the

data, yielding an approximation error of -58%. This is likely due

to the lengthy record representations in WDC-1M, which contain

detailed product descriptions, making it challenging for OpenAI

embeddings to effectively differentiate records belonging to distinct

entities.

Impact of sampling strategies on ECE. We examine how differ-

ent sampling strategies affect entity count estimation. Our previous

experiments use the estimator from [23], which assumes Bernoulli

sampling. While SRS (simple random sampling) could be used in-

stead, it would break these assumptions, making direct comparison

difficult. To explore this, we turn to [15], which introduces sepa-

rate estimators for Bernoulli sampling and SRS. These estimators,

though unbiased, suffer from high variance, often producing inac-

curate or even negative entity count estimates. For this reason, they

were not included in our main experiments. Rather than focusing

on accuracy, we use these estimators to compare the impact of

sampling strategies. We evaluate the Oracle, ER (RoBERTa), and

LLM Embedding pipelines on Music-Brainz-20K and DBLP-Scholar,

using Bernoulli sampling ratios of 10% and 20% and selecting N in

SRS to match these proportions (Table 5). Both estimators lead to

high approximation errors and large standard deviations, making

comparisons difficult. In some cases, mean approximation errors

vary significantly (e.g., ER with RoBERTa on Music-Brainz-20K, all

pipelines on DBLP-Scholar), while in others, they remain close (e.g.,

Oracle pipeline on Music-Brainz-20K). A promising direction for

future work is adapting [23] to develop an estimator specifically

for SRS, allowing for direct comparisons with its Bernoulli-based

counterpart.

8 KEY TAKEAWAYS
Our experiments show that sampling-based pipelines scale well for

entity count estimation, particularly in high-duplication datasets

like Cars and Cars 1M. However, accuracy depends on factors such

as the upscaling method, sampling ratio, and dataset characteristics.

In low-duplication datasets (e.g., Music Brainz 200k), errors were

higher, suggesting the need for refined sampling or adaptive up-

scaling. Table 6 summarizes the best-performing pipelines across

different dataset conditions. Simulation (RoBERTa, DistilBERT) con-

sistently achieved high accuracy. LLM Embedding (OpenAI) also

performed well, providing accurate results on small datasets re-

gardless of duplication levels, though with slightly lower accuracy

than Simulation. It was particularly effective on large datasets with

multiple duplicates (e.g., Cars 1M), except in cases where datasets

contained very long records, such as WDC-xlarge-computers-1M.

The ML ER pipeline (DistilBERT, RoBERTa) showed accuracy com-

parable to LLM Embedding (OpenAI) on some small datasets with

both few and multiple duplicates (e.g., Music-Brainz-20k, DBLP-

Scholar), but performed poorly on large datasets, regardless of their

duplication score (e.g., Music-Brainz-2M, Cars 1M). The Statistical

ER pipeline consistently overestimated, struggling to model duplica-

tion patterns when samples lacked diversity. Alternative estimators

like Berg [15] showed extreme variance, leading to unreliable re-

sults despite being theoretically unbiased. While all pipelines are

adapted from ER methodologies, their underlying strategies differ:

ML ER explicitly resolves entities before counting, Simulation esti-

mates counts via similarity-based probability mapping, Statistical

ER probabilistically infers entity identifiers, and LLM Embedding

clusters records via learned representations. These variations lead
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Figure 5: Sampling-based pipeline results on large datasets.

Pipeline Music-Brainz-20k
Bernoulli (10%) SRS (10%) Bernoulli (20%) SRS (20%)

Oracle 49.89 ± 8.56 23.59 ± 0.75 42.25 ± 5.83 36.01 ± 0.79

ER (RoBERTa) 47.12 ± 19.85 100.38 ± 107.54 9.88 · 105 ± 1.83 · 106 6.20 · 103 ± 8.71 · 103
LLM embedding (openai) −2.20 · 108 ± 5.04 · 108 −2.30 · 108 ± 5.25 · 108 −9.97 · 108 ± 1.89 · 109 −1.06 · 109 ± 2.01 · 109

Pipeline DBLP-Scholar
Bernoulli (10%) SRS (10%) Bernoulli (20%) SRS (20%)

Oracle 3.79 · 103 ± 8.59 · 103 6.41 ± 0.37 · 10−1 3.49 · 103 ± 7.32 · 103 9.14 ± 0.52

ER (RoBERTa) 2.45 · 107 ± 5.60 · 107 −2.07 · 1014 ± 3.58 · 1014 4.03 · 109 ± 7.52 · 109 −3.02 · 1016 ± 5.23 · 1016
LLM embedding (openai) −2.35 · 106 ± 6.42 · 106 3.16 · 105 ± 7.37 · 105 −3.99 · 106 ± 7.31 · 106 −6.66 · 107 ± 1.36 · 108

Table 5: Approximation errors using the Bernoulli and SRS estimators in [15] for Music-Brainz-20k (top) and DBLP-Scholar
(bottom)

Dataset
size

Duplicates
Small duplication (≤ 0.5) High duplication (> 0.5)

Small Simulation (RoBERTa)

Simulation (DistilBERT)

Simulation (RoBERTa)

Large

LLM Embedding (OpenAI),

Simulation (DistilBERT)

Simulation (RoBERTa)

LLM Embedding (OpenAI),

Simulation (DistilBERT)

Simulation (RoBERTa)

Table 6: Best-performing pipelines across different dataset
conditions

to different accuracy-efficiency trade-offs, as reflected in our em-

pirical findings.

Discussion. Most pipelines relied on in-memory techniques, limit-

ing scalability on large datasets. TheMLER and Simulation pipelines

used standard token-blocking, but adopting metablocking tech-

niques [9, 32, 33] could improve scalability. Similarly, the LLM

clustering pipeline required in-memory embeddings and clustering,

which could be mitigated by scalable clustering algorithms [11].

The Statistical ER pipeline also faced in-memory issues with Blink.

9 CONCLUSIONS AND FUTURE WORK
This paper presents the entity count estimation problem from a

data management perspective and proposes a general framework

that unifies techniques from machine learning-based ER, statistical

record linkage, and clustering. A key contribution is the exploration

of a sampling-based approach that estimates entity counts from a

subset and upscales the result to the full dataset, improving scalabil-

ity on large data. Our findings show that while sampling pipelines

greatly improve efficiency, especially on high-duplication datasets

like Cars 1M, accuracy suffers on low-duplication datasets due to up-

scaling errors. In some cases, these errors counterbalanced sample

inaccuracies, highlighting both strengths and limitations. There are

several directions for future work. Developing new estimators for

Bernoulli sampling could enhance robustness. Adapting upscaling

methods for alternative sampling strategies, such as subgraph-based

sampling, would require new estimators with tailored statistical

guarantees. Expanding the study to advanced statistical ER meth-

ods like d-Blink could improve generalizability. Beyond sampling,

parallelism and distributed processing could further enhance scal-

ability. Lastly, addressing memory constraints through streaming

algorithms could extend applicability to even larger datasets.
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