
Efficient and Adaptive Estimation of Local Triadic Coefficients
Ilie Sarpe

KTH Royal Institute of Technology
Stockholm, Sweden

ilsarpe@kth.se

Aristides Gionis
KTH Royal Institute of Technology

Stockholm, Sweden
argioni@kth.se

ABSTRACT
Characterizing graph properties is fundamental to the analysis and
to our understanding of real-world networked systems. The local

clustering coefficient, and the more-recent, local closure coefficient,
capture powerful properties that are essential in a large number of
applications, ranging from graph embeddings to graph partitioning.
Such coefficients capture the local density of the neighborhood of
each node, considering incident triangle structures and paths of
size 2. For this reason, we refer to these coefficients collectively as
local triadic coefficients.

In this work, we consider the novel and fundamental problem
of efficiently computing the average of local triadic coefficients,
over a given partition of the nodes of the input graph into a set of
disjoint buckets. The average local triadic coefficients of the nodes
in each bucket provide a better insight into the interplay of graph
structure and the properties of the nodes associated to each bucket.
Unfortunately, exact computation, which requires listing all trian-
gles in a graph, is infeasible for large networks. Hence, we focus
on obtaining highly-accurate probabilistic estimates.

We develop Triad, an adaptive algorithm based on sampling,
which can be used to estimate the average local triadic coefficients
for a partition of the nodes into buckets. Triad is based on a
new class of unbiased estimators, and non-trivial bounds on its
sample complexity, enabling the efficient computation of highly
accurate estimates. Finally, we show how Triad can be efficiently
used in practice on large networks, and we present a case study
showing that average local triadic coefficients can capture high-
order patterns over collaboration networks.

PVLDB Reference Format:
Ilie Sarpe and Aristides Gionis. Efficient and Adaptive Estimation of Local
Triadic Coefficients. PVLDB, 18(8): 2561 - 2574, 2025.
doi:10.14778/3742728.3742748

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/iliesarpe/Triad.

1 INTRODUCTION
Graphs are a ubiquitous data abstraction used to study complex
systems in different domains, such as social networks [17], protein
interactions [8], information networks [56], and more [35]. A graph
provides a simple representation: entities are represented by nodes

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742748

𝑢 ?

Local Clustering

𝑢

?

Local Closure

(A)

𝑣1 𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝑣9

𝑣10

𝑣11

𝑣12

(B)

Figure 1: 1A: the local clustering coefficient of a node𝑢 consid-
ers the fraction of connected pairs of neighbors of 𝑢, while
the local closure coefficient of 𝑢 considers the fraction of
neighbors of 𝑢’s neighbors to which 𝑢 is connected. 1B: a
graph with its nodeset partitioned in three different sets.

and their relations are represented by edges, enabling the analysis
of structural properties and giving unique insights into the function
of various systems [63]. For example, flow analysis in transport
graphs can be used for better urban design [20], subgraph patterns
can improve recommenders [28]; and dense subgraph identification
captures highly collaborative communities [31].

The local clustering coefficient [60] is among the most impor-
tant structural properties for graph analysis, and is used in many
applications related to databases [13], social networks [18], graph
embeddings [9], and link prediction [62]. The local clustering co-
efficient measures the fraction of connected pairs of neighbors of
a given node 𝑢, e.g., see Figure 1A (left), providing a simple and
interpretable value on how well the node is “embedded” within
its local neighborhood. On an academic collaboration network, for
example, the local clustering coefficient of an author 𝑢 corresponds
to the fraction of the coauthors of 𝑢 collaborating with each other,
capturing a salient coauthorship pattern of author 𝑢.

Recently, Yin et al. [65] introduced the local closure coefficient,
a new coefficient capturing the fraction of paths of length two,
originating from a node 𝑢 that is closed by 𝑢, e.g., see Figure 1A
(right). This novel definition directly accounts for the connections
generated by 𝑢 in the graph, differently from the local clustering
coefficient that only depends on connections in 𝑢’s neighborhood.
The local closure coefficient is a simple concept that is gaining
interest in the research community, as it provides additional and
complementary insights to existing coefficients, and has applica-
tions in anomaly detection [68] and link prediction [65]. In this
paper, we refer collectively to the local clustering coefficient and
the local closure coefficient as local triadic coefficients. Both local
triadic coefficients are fundamental quantities for graph analysis, as
they capture structural properties of graphs on a local level [64–66].

In several applications, we are interested in the average local
triadic coefficient of a subset of nodes [22, 32, 58]. The most typical

2561

https://doi.org/10.14778/3742728.3742748
https://github.com/iliesarpe/Triad
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742748
https://www.acm.org/publications/policies/artifact-review-and-badging-current

example is to consider the average over all nodes in the graph, e.g.,
the average local clustering coefficient: a standard graph statistic
available in popular graph libraries [29, 43]. In general, comput-
ing the average local triadic coefficients of a subset of nodes based
on graph properties can yield unique insights. For example, such
properties may be associated with node metadata (e.g., in typed
networks [52]), node similarities (e.g., from structural properties
such core number and degrees, or role similarity [21]), or graph
communities [23]. As a concrete example, in an academic collabora-
tion network, we can compute the average local triadic coefficient
of all authors who publish consistently in certain venues. For exam-
ple, database conferences or machine learning—and average local
coefficients could reveal interesting patterns for each community
of interest, such as different trends in collaboration patterns.

The average local clustering coefficient is also exploited as a
measure for community detection or clustering algorithms [36],
with good quality clusters achieving high average local clustering
coefficients, e.g., compared to random partitions. Hence, analyzing
the average local triadic coefficient for different buckets can provide
us with powerful insights for various applications, ranging from
analyzing structural properties of specific groups of users with
similar metadata, to community detection. Furthermore, average
local triadic coefficients can also be employed to empower machine
learning models, e.g., GNNs, for tasks such as graph classification
or node embeddings [9].

Motivated by the previous settings requiring to compute the
average local triadic coefficients over (given) sets of nodes, in this
paper, we study the following problem: given a partition of the
nodes of a graph into 𝑘 sets, efficiently compute the average local
triadic coefficient (clustering or closure) for each set of the partition.

Unfortunately, to address this problem, we cannot rely on exact
algorithms, since exact computation of the local triadic coefficients
for all graph nodes is an extremely challenging task and requires ex-
haustive enumeration of all triangles in a graph. Despite extensive
study of exact algorithms for triangle counting [4, 5, 30], enumera-
tion requires time Θ(𝑚3/2), i.e., Θ(𝑛3) on dense graphs, which is
extremely inefficient and resource-demanding for massive graphs.1

To overcome this challenge, we develop an efficient adaptive
approximation algorithm: Triad (average local triadic adaptive
estimation), which can break the complexity barrier at the expense
of a small approximation error. Similar to other approximation
algorithms for graph analysis, Triad relies on random sampling [11,
59, 70]. Where, triangles incident to randomly sampled edges are
used to update an estimate of the average triadic coefficient for each
set of the partition of the nodes of a graph, through a novel class
of unbiased estimators. Triad can approximate both the average
local clustering and closure coefficients of arbitrary partitions of
the graph nodes. Surprisingly, to the best of our knowledge, Triad
is also the first algorithm specifically designed to estimate average
local closure coefficients.

Our design of Triad is guided by two key properties, essen-
tial for many sampling schemes: (𝑖) provide accurate estimates
that are close to the unknown values being estimated; (𝑖𝑖) pro-
vide high-quality adaptive probabilistic guarantees on the distance

1We use 𝑛 and𝑚 for the number of nodes and edges respectively.

between the estimates and the values being estimated. In fact, dif-
ferently from existing approaches Triad quantifies the deviation
between the probabilistic estimates reported in output and the un-
derlying unknown average coefficients through a data-dependent
approach [26, 27, 48, 69]. This results in an extremely efficient
algorithm, which can adapt to the input graph since it is based
on empirical quantities computed over the collected samples. Our
contributions are as follows.

• We study the problem of efficiently obtaining high-quality
estimates of the average local closure and average local
clustering coefficients for each set in a partition of the
nodes of a graph.

• We develop Triad, an efficient and adaptive algorithm pro-
viding high-quality estimates with controlled error proba-
bility. Triad is based on: a novel class of estimators that we
optimize to achieve provably small variance—and a novel
bound on the sample size obtained through the notion of
pseudo-dimension. Triad also leverages state-of-the-art
variance-aware concentration results to quantify the devia-
tion of its estimates to the unknown estimated values, by
the means of adaptive data-dependent bounds.

• We extensively assess Triad performances on large graphs
showing that it provides high-quality probabilistic esti-
mates and strong theoretical guarantees, not matched by
existing state-of-the-art algorithms. We also show how the
estimates of Triad can be used to study publication pat-
terns among research fields over time on a DBLP graph.

2 PRELIMINARIES
Let 𝐺 = (𝑉 , 𝐸) be a simple and undirected graph with node-set
𝑉 = {𝑣1, . . . , 𝑣𝑛} and edge-set 𝐸 = {{𝑢, 𝑣} : 𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉 and 𝑢 ≠ 𝑣},
where |𝑉 | = 𝑛 and |𝐸 | =𝑚.

For a node 𝑣 ∈ 𝑉 we denote its neighborhood withN𝑣 = {𝑢 ∈ 𝑉 :
it exists {𝑢, 𝑣} ∈ 𝐸} and its degree with 𝑑𝑣 = |N𝑣 |. Similarly, given
an edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 we define N𝑒 = {𝑤 ∈ 𝑉 : 𝑤 ∈ (N𝑢 ∩ N𝑣)},
i.e., the neighborhood of an edge 𝑒 ∈ 𝐸 is the set of nodes from 𝑉
that are neighbors to both incident nodes of 𝑒 .

A wedge is a set of two distinct edges sharing a common node, i.e.,
w = {𝑒1, 𝑒2} ⊆ 𝐸 such that |𝑒1 ∩ 𝑒2 | = 1; a wedge also corresponds
to a path of length two. We let W = {w : w is a wedge in 𝐺} be the
set of all wedges in the graph 𝐺 . Given a node 𝑣 ∈ 𝑉 we say that
a wedge w = {𝑒1, 𝑒2} is centered at 𝑣 if {𝑣} = 𝑒1 ∩ 𝑒2. The set of all
such wedges is denoted with Wc

𝑣 . Note that, for each node 𝑣 ∈ 𝑉 , it
holds |Wc

𝑣 | =
(︁𝑑𝑣

2
)︁
. A wedge w = {𝑒1, 𝑒2} is headed at a node 𝑣 ∈ 𝑉

if 𝑣 ∈ w and 𝑣 ∉ 𝑒1 ∩ 𝑒2.2 The set of wedges headed at 𝑣 ∈ 𝑉 is
denoted with Wh

𝑣 . Note that |Wh
𝑣 | =

∑︁
𝑢∈N𝑣

(𝑑𝑢 − 1).
Example 2.1. Consider node 𝑣8 from Figure 1B then {{𝑣6, 𝑣8},

{𝑣8, 𝑣11}} is a wedge centered at 𝑣8, and, |Wc
𝑣8 | = 6 since 𝑑𝑣8 = 4.

While {{𝑣2, 𝑣9}, {𝑣9, 𝑣8}} is to a wedge headed at 𝑣8 and |Wh
𝑣8 | = 13.

Next, given a graph 𝐺 = (𝑉 , 𝐸) we define a triangle as a set of
three edges that pairwise share an edge, i.e., 𝛿 = {{𝑢, 𝑣}, {𝑣,𝑤},
{𝑤,𝑢}} ⊆ 𝐸 and 𝑢, 𝑣,𝑤 ∈ 𝑉 are three distinct nodes. The set of all
triangles in 𝐺 is denoted by Δ = {𝛿 : 𝛿 is a triangle in 𝐺}, while

2We write 𝑣 ∈ w = {𝑒1, 𝑒2 } to denote that 𝑣 ∈ 𝑒1 or 𝑣 ∈ 𝑒2 .

2562

𝑢

𝑣1 𝑤

𝑣2 𝑣𝑛

𝑣4

𝑣3

. . .

(A)

𝑢 𝑣

𝑧2
𝑧1 𝑧3

.

N𝑒

𝑒 = {𝑢, 𝑣}
(B)

Figure 2: 2A: Discussion in Section 2. For node𝑢 it holds𝛼𝑢 = 1
and𝜙𝑢 = O(1/𝑛). For node𝑤 it holds 𝛼𝑤 = O(1/𝑛2) and𝜙𝑤 = 1.
Thus, the local clustering and local closure coefficients can
differ significantly. 2B: Discussion in Section 3. Consider
a sampled edge 𝑒 ∈ 𝐸. For each node 𝑤 ∈ 𝑉 in the graph,
our estimate for |Δ𝑤 | is |Δ𝑤 | = 𝑞 |Δ𝑒 |/𝑝, if 𝑤 ∈ {𝑢, 𝑣}, and
|Δ𝑤 | = (1 − 2𝑞) |Δ𝑒 |/𝑝, if𝑤 = 𝑧𝑖 ∈ N𝑒 .

Δ𝑣 = {𝛿 ∈ Δ : 𝑣 ∈ 𝛿} ⊆ Δ,3 corresponds to the set of triangles
containing 𝑣 ∈ 𝑉 . Similarly Δ𝑒 = {𝛿 ∈ Δ : 𝑒 ∈ 𝛿} corresponds to
the set of all triangles containing an edge 𝑒 ∈ 𝐸.

We are now ready to introduce the fundamental triadic coeffi-
cients studied in this paper and introduced in earlier work [60, 65].

Definition 2.2. Given a graph 𝐺 = (𝑉 , 𝐸) and a node 𝑣 ∈ 𝑉 we
define the local clustering coefficient of 𝑣 , denoted by 𝛼𝑣 , and the
local closure coefficient of 𝑣 , denoted by 𝜙𝑣 , respectively as

𝛼𝑣 =
|Δ𝑣 |
|Wc

𝑣 |
=
|Δ𝑣 |(︁𝑑𝑣

2
)︁ and 𝜙𝑣 =

2|Δ𝑣 |
|Wh

𝑣 |
=

2|Δ𝑣 |∑︁
𝑢∈N𝑣

(𝑑𝑣 − 1) .

As an example, consider 𝑣9 in Figure 1B. Then 𝛼𝑣9 = 2/(2 · 3) =
1/3 and 𝜙𝑣9 = (2 · 2)/10 = 2/5.

Observe that the values of 𝛼𝑣 and 𝜙𝑣 for a node 𝑣 ∈ 𝑉 can differ
significantly, as illustrated in the example of Figure 2A.

Next, given a subset of nodes𝑉 ′ ⊆ 𝑉 we define the average local
clustering coefficient (respectively, average local closure coefficient)
as the average of the local clustering (respectively, local closure) co-
efficient of the nodes in the subset𝑉 ′, that is 𝛼 (𝑉 ′) = 1

|𝑉 ′ |
∑︁

𝑣∈𝑉 ′ 𝛼𝑣
(respectively, 𝜙 (𝑉 ′) = 1

|𝑉 ′ |
∑︁

𝑣∈𝑉 ′ 𝜙𝑣).
Given a set𝐴 ≠ ∅, then𝐴1, . . . , 𝐴𝑘 is a partition of𝐴 if𝐴𝑖∩𝐴 𝑗 = ∅

for 𝑖 ≠ 𝑗 with 𝑖, 𝑗 ∈ [𝑘], 𝐴𝑖 ≠ ∅ for all 𝑖 ≥ 1, and
⋃︁

𝑖≥1𝐴𝑖 = 𝐴.
For ease of notation we denote a partition of 𝑉 into 𝑘 sets asV . In
Figure 1B we illustrate a network and a partition of the set of nodes.
For ease of notation we use𝜓𝑣 to refer to a local triadic coefficient
of a node 𝑣 ∈ 𝑉 (that is, either clustering coefficient or closure
coefficient) and Ψ(𝑉 ′) = 1

|𝑉 ′ |
∑︁

𝑣∈𝑉 ′ 𝜓𝑣 .
Following standard ideas in the literature for controlling the

quality of an approximate estimate [24, 41, 42], we consider two
key properties: (𝑖) the estimate should be close to the actual value;
and (𝑖𝑖) there should exist rigorous guarantees quantifying the
distance of the estimate to the unknown coefficient. These desirable
properties are captured by the following problem formulation.

Problem 1. Given a graph 𝐺 = (𝑉 , 𝐸), a partitionV of the node-

set 𝑉 , a local triadic coefficient𝜓 ∈ {𝛼, 𝜙}, and parameters (𝜀 𝑗)𝑘𝑗=1 ∈
(0, 1) and 𝜂 ∈ (0, 1), obtain:
3We write 𝑣 ∈ 𝛿 to denote that there exists an edge 𝑒 ∈ 𝛿 such that 𝑣 ∈ 𝑒 .

(A) Estimates 𝑓 (𝑉𝑗), for 𝑗 = 1, . . . , 𝑘 , such that

P

⎡⎢⎢⎢⎢⎣
sup

𝑗=1,...,𝑘

|︁|︁|︁|︁|︁|︁𝑓 (𝑉𝑗) −
1
|𝑉𝑗 |

∑︂
𝑣∈𝑉𝑗

𝜓𝑣

|︁|︁|︁|︁|︁|︁ ≥ 𝜀 𝑗
⎤⎥⎥⎥⎥⎦
≤ 𝜂 .

(B) Tight confidence intervals𝐶 𝑗 as possible, where𝐶 𝑗 = [𝑓 (𝑉𝑗)−ˆ︁𝜀 𝑗 , 𝑓 (𝑉𝑗) +ˆ︁𝜀 𝑗], for 𝑗 = 1, . . . , 𝑘 , with |𝐶 𝑗 | = 2ˆ︁𝜀 𝑗 ≤ 2𝜀 𝑗 , such
that over all 𝑘 partitions it holds

P

⎡⎢⎢⎢⎢⎣
1
|𝑉𝑗 |

∑︂
𝑣∈𝑉𝑗

𝜓𝑣 ∈ 𝐶 𝑗

⎤⎥⎥⎥⎥⎦
≥ 1 − 𝜂 .

To simplify our notation and when it is clear from the context
we write 𝑓𝑗 instead of 𝑓 (𝑉𝑗) and Ψ𝑗 instead of Ψ(𝑉𝑗), for 𝑗 ∈ [𝑘].

In the remaining of this section we discuss the formulation of
Problem 1. In particular, Problem 1 takes as input a graph 𝐺 and
a node partition V . The goal is to obtain accurate estimates 𝑓𝑗 ,
within at most 𝜀 𝑗 additive error (i.e., |𝑓𝑗 − Ψ𝑗 | ≤ 𝜀 𝑗) for the local
triadic coefficients Ψ𝑗 with controlled error probability (𝜂) over all
sets 𝑗 ∈ [𝑘] of the partitionV . This requirement is enforced with
condition (A) in Problem 1.

Furthermore, condition (B) ensures that the confidence inter-
vals 𝐶 𝑗 (i.e., the ranges in which the values Ψ𝑗 are likely to fall)
centered around 𝑓𝑗 are small. This requirement provides a rigorous
guarantee on the proximity of 𝑓𝑗 ’s to the corresponding Ψ𝑗 ’s.

Note that Problem 1 allows the user to provide non-uniform
error bounds 𝜀 𝑗 , 𝑗 = 1, . . . , 𝑘 . Such flexibility is highly desirable
since (𝑖) there may be partitions for which estimates are required
with different levels of precision (as controlled by 𝜀 𝑗), e.g., in certain
applications the user may require higher precision on the value of
Ψ𝑗 for some 𝑗 ’s, and (𝑖𝑖) different values of 𝜀 𝑗 may be required to
distinguish between the values of Ψ𝑗 for different sets inV [10, 39].

To clarify point (𝑖𝑖) above, consider 𝑉 = 𝑉1 ∪ 𝑉2 with Ψ1 =
10−2 and Ψ2 = 10−5. If 𝜀 = 𝜀1 = 𝜀2 = 5 · 10−2 then both 𝑓1, 𝑓2 ∈
[0, 𝜀] satisfy the guarantees of Problem 1 but this does not allow to
distinguish between the very large value difference of Ψ1 and Ψ2
(i.e., three orders of magnitude). On the other hand, by allowing
different accuracy levels, e.g., 𝜀1 = 10−3 and 𝜀2 = 10−4, we can
address the issue. The acute reader may notice in this example we
assume that we know the values of Ψ1 and Ψ2 in advance, and we
set the values 𝜀 𝑗 ’s accordingly, while in practice this is rarely the
case. However, as we show in Section 3, our algorithm Triad can
adaptively address the case of unknown Ψ𝑗 ’s.

An alternative approach would be to require relative error guar-

antees, i.e., |𝑓𝑗 − Ψ𝑗 | ≤ 𝜀 𝑗Ψ𝑗 , for all 𝑗 ∈ [𝑘]. Unfortunately this
problem cannot be solved efficiently. First, it requires a lower bound
on each value Ψ𝑗 , and second it requires an impractical number of
samples even for moderate values of Ψ𝑗 and 𝜀 𝑗 . In particular, state-
of-the-art methods [14, 27, 48, 69] have shown that Ω(1/(𝜀Ψ𝑗)2)
samples may be needed. Thus, if, say, Ψ = 10−3 and 𝜀 = 10−2, then
Ω(1010) samples would be needed, resulting in an extremely high
and impractical running time.

3 METHODS
Our algorithm Triad consists of several components. At its core,
it is based on a new class of unbiased estimators, which can be
of independent interest for local triangle count estimation. We

2563

discuss such estimators in Section 3.1. We then introduce Triad, in
Section 3.2. We present Triad’s analysis in Section 3.3, and some
practical optimizations in Section 3.4. We analyze the time and
memory complexity of Triad in Section 3.5. Finally, in Section 3.6
we discuss the adaptive behavior of Triad. Missing proofs are
reported in our extended version [46].

3.1 New estimates for local counts
We introduce a new class of estimators to approximate, for each
node 𝑣 ∈ 𝑉 , the number of triangle counts |Δ𝑣 | (i.e., locally to
𝑣), based on a simple sampling procedure that uniformly selects
random edges. Such estimators stand at the core of the proposed
method Triad, enabling a small variance of the estimates in output.

To compute the estimators for |Δ𝑣 |, for 𝑣 ∈ 𝑉 , first we sample
uniformly an edge 𝑒 ∈ 𝐸, and then collect the set of triangles Δ𝑒 .
The total number of triangles |Δ𝑒 | is then used to estimate |Δ𝑣 |, for
each node 𝑣 ∈ 𝑉 . The key, is in how the value |Δ𝑒 | is distributed
over all nodes 𝑣 ∈ 𝑒 ∪ N𝑒 , to obtain an unbiased estimators of |Δ𝑣 |.

In particular, our estimators distribute the weight |Δ𝑒 | asymmet-

rically across the nodes 𝑣 ∈ 𝑒 (where 𝑒 ∈ 𝐸 is the sampled edge) and
the nodes 𝑣 ∈ N𝑒 . This asymmetric assignment can be made before
evaluating the estimates of |Δ𝑣 |, enabling us to obtain estimates
with extremely small variance, as we show in Section 4.4.2, and
discuss theoretically in Section 3.3.3.

Example 3.1. Consider Figure 2B, fix 𝑞 ∈ [0, 1/2], and suppose
that 𝑒 = {𝑢, 𝑣} is sampled. Then the estimators of |Δ𝑧𝑖 | assign value
(1−2𝑞)/𝑝 for all nodes 𝑧𝑖 ∈ N𝑒 , and value𝑞 |Δ𝑒 |/𝑝 for nodes𝑢, 𝑣 ∈ 𝑒 ,
where 𝑝 is the sampling probability of edge 𝑒 .4

We will now show that the proposed estimates are unbiased with
respect to |Δ𝑣 |, for all 𝑣 ∈ 𝑉 , and any value 𝑞 ∈ [0, 1/2],

Lemma 3.2. For any value of the parameter 𝑞 ∈ [0, 1/2],

𝑋𝑞 (𝑣) =
∑︂

𝑒∈𝐸:𝑣∈𝑒

𝑞 |Δ𝑒 |𝑋𝑒
𝑝

+ (1 − 2𝑞)
∑︂

𝑒∈𝐸:𝑣∈N𝑒

𝑋𝑒
𝑝

(1)

is an unbiased estimator of |Δ𝑣 | for 𝑣 ∈ 𝑉 . That is, E[𝑋𝑞 (𝑣)] = |Δ𝑣 |,
where the expectation is taken over a randomly sampled edge 𝑒 ∈ 𝐸,
and 𝑋𝑒 is a 0–1 random variable indicating if 𝑒 ∈ 𝐸 is selected.

Note that the estimator in Lemma 3.2 allows to flexibly select
the parameter 𝑞, to minimize the variance of the estimates 𝑋𝑞 (𝑣),
for 𝑣 ∈ 𝑉 , leading to very accurate estimates with small variance
when 𝑞 is selected properly (see Section 3.3.3). We next use the
result of Lemma 3.2 to obtain estimates 𝑓𝑖 (𝑒) : 𝐸 ↦→ R+0 of Ψ𝑖
for each set 𝑉𝑖 , with 𝑖 ∈ [𝑘], of the partition V by sampling a
random edge 𝑒 ∈ 𝐸. First, to unify our notation, given a node 𝑣 ∈ 𝑉
let |W∗𝑣 | = |Wc

𝑣 | if ∗ = c, and |W∗𝑣 | = |Wh
𝑣 |/2 if ∗ = h. We can

then write 𝜓𝑣 = |Δ𝑣 |/|W∗𝑣 |, i.e., 𝜓𝑣 = 𝛼𝑣 corresponds to the local
clustering coefficient if ∗ = c and 𝜓𝑣 = 𝜙𝑣 otherwise. Using this
notation, we have the following.

Lemma 3.3. Let 𝑒 ∈ 𝐸 be an edge sampled uniformly from 𝐸. Then,
the random variable 𝑓𝑗 (𝑒) : 𝐸 ↦→ R+0 defined by

𝑓𝑗 (𝑒) =
∑︂
𝑒∈𝐸

𝑋𝑒
𝑝

1
|𝑉𝑗 |

∑︂
𝑣∈𝑉𝑗

𝑎𝑞 (𝑣, 𝑒)
|W∗𝑣 |

,

4In our analysis we consider 𝑝 = 1/𝑚, but any importance sampling probability
distribution 𝑝𝑒 over 𝑒 ∈ 𝐸 can be used, provided that 𝑝𝑒 > 0 if |Δ𝑒 | > 0.

Algorithm 1: Triad
Input: 𝐺 = (𝑉 , 𝐸), (𝜀 𝑗)𝑘𝑗=1, 𝜂, partitionV ,𝜓 ∈ {𝛼, 𝜙}.
Output: Estimates 𝑓𝑗 and bounds ˆ︁𝜀 𝑗 s.t. |𝑓𝑗 − Ψ𝑗 | ≤ ˆ︁𝜀 𝑗 ≤ 𝜀 𝑗

for each 𝑗 ∈ [𝑘] w.p. > 1 − 𝜂.
1 if 𝜓 = 𝛼 then |W∗𝑣 | ← |Wc

𝑣 | for 𝑣 ∈ 𝑉 ;
2 else |W∗𝑣 | ← |Wh

𝑣 |/2 for 𝑣 ∈ 𝑉 ;
3 𝑓𝑗 ← 0 for each 𝑗 ∈ [𝑘];
4 𝑞 ← Fixq(𝐺,V); 𝜀 ← min{𝜀 𝑗 };
5 𝜁 , 𝑅1, . . . , 𝑅𝑘 ← UpperBounds(𝐺,V, |W∗𝑣 |𝑣∈𝑉 , 𝑞);
6 𝑖 ← 0; S ← ∅ ; 𝑠 ← 0; 𝜂0 ← 𝜂/2; 𝑅 ← max{𝑅 𝑗 , 𝑗 ∈ [𝑘]};
7 𝑠max ← 𝑅2

𝜀2 (𝜁 + log(1/𝜂)); 𝑠0 ← ⌈𝑅 3 log(4𝑘/𝜂0)
𝜀 + 1⌉;

8 while not StoppingCondition(𝑠max, 𝑠, (𝑓𝑗) 𝑗≥1, 𝜀) do
9 S𝑖 ← UniformSample(𝐸, 𝑠𝑖);

10 foreach 𝑒 = (𝑢, 𝑣) ∈ S𝑖 do
11 foreach𝑤 ∈ N𝑒 do
12 𝑓𝑗 (𝑒) ← 𝑓𝑗 (𝑒) + (1−2𝑞)

|W∗𝑤 | such that𝑤 ∈ 𝑉𝑗 ;
13 𝑓𝑗 (𝑒) ← 𝑓𝑗 (𝑒) + 𝑞 |Δ𝑒 |

|W∗𝑢 | such that 𝑢 ∈ 𝑉𝑗 ;
14 𝑓𝑗 (𝑒) ← 𝑓𝑗 (𝑒) + 𝑞 |Δ𝑒 |

|W∗𝑣 | such that 𝑣 ∈ 𝑉𝑗 ;
15 𝑠 ← 𝑠 + 𝑠𝑖 ; S ← S ∪ S𝑖 ;
16 𝑓𝑗 ← 𝑚

𝑠 |𝑉𝑗 |
∑︁
𝑒∈S 𝑓𝑗 (𝑒) for each 𝑗 = 1 . . . , 𝑘 ;

17 ˆ︁𝜀 𝑗 ← ComputeEmpiricalBound(F ,S, 𝜂𝑖);
18 𝑖 ← 𝑖 + 1; 𝜂𝑖 ← 𝜂𝑖−1/2;
19 return (𝑓𝑗 ,ˆ︁𝜀 𝑗) for each 𝑗 = 1 . . . , 𝑘 ;

where

𝑎𝑞 (𝑣, 𝑒) = 𝑞 |Δ𝑒 |1[𝑣 ∈ 𝑒] + (1 − 2𝑞)1[𝑣 ∈ N𝑒] , (2)
is an unbiased estimate of Ψ𝑗 for each set 𝑉𝑗 ∈ V, 𝑗 ∈ [𝑘], i.e.,
E[𝑓𝑗 (𝑒)] = Ψ𝑗 . Here, 𝑋𝑒 is a 0–1 random variable indicating if 𝑒 ∈ 𝐸
is sampled, and |W∗𝑣 | = |Wc

𝑣 | for𝜓 = 𝛼 , and |W∗𝑣 | = |Wh
𝑣 |/2 if𝜓 = 𝜙 .

The proof can be found in the full version [46].
Lemma 3.3 shows that by sampling a single random edge 𝑒 ∈ 𝐸

we can obtain an unbiased estimate of multiple coefficients Ψ𝑗

associated sets 𝑉𝑗 ∈ V , by accurately weighting the triangles in
Δ𝑒 . This allows to simultaneously update the estimates of multiple
buckets 𝑉𝑗 , for 𝑗 ∈ [𝑘], differently from existing approaches [24,
48, 69], where each triangle identified by the algorithm is used to
estimate the coefficient of a single partition.

3.2 The Triad algorithm
Algorithm 1 presents Triad. The algorithm first initializes |W∗𝑣 | for
each 𝑣 ∈ 𝑉 according to the coefficients𝜓 to be estimated (lines 1–2).
Triad then proceeds to initialize the variables 𝑓𝑗 , for 𝑗 = 1, . . . , 𝑘 ,
corresponding to the estimates of Ψ𝑗 to be output (line 3). It then
sets 𝜀 to the smallest 𝜀 𝑗 , for 𝑗 ∈ [𝑘] (i.e., 𝜀 is the smallest upper
bound 𝜀 𝑗 required by the user, see Problem 1). Triad then selects
the best value of the parameter 𝑞 ∈ [0, 1/2] to guarantee a fast
termination of Triad by solving a specific optimization problem
(line 4, subroutine Fixq, see Section 3.3.3). Intuitively, the value of 𝑞
is fixed such that the maximum variance of 𝑓𝑗 , 𝑗 ∈ [𝑘] is minimized,
yielding a fast convergence of Triad. In fact, as we will show, the

2564

termination condition of Triad considers the empirical variance
of the estimates 𝑓𝑗 , over the sampled edges.

The function UpperBounds (line 5) computes 𝑅 𝑗 , for 𝑗 = 1, . . . , 𝑘 ,
corresponding to bounds to the maximum value that a random
variable 𝑓𝑗 (𝑒) can take over a randomly sampled edge 𝑒 ∈ 𝐸, i.e.,
𝑓𝑗 (𝑒) ≤ 𝑅 𝑗 almost surely, for each 𝑗 ∈ [𝑘]. In addition UpperBounds
computes 𝜁 , an upper bound on the pseudo-dimension of the func-
tions 𝑓𝑗 (𝑒), 𝑗 ∈ [𝑘]. We use 𝜁 and 𝑅 = max𝑗 𝑅 𝑗 (line 6) to obtain a
bound on the maximum number of samples 𝑠max to be explored by
Triad (line 7). We discuss the function UpperBounds, and prove the
bound on the sample-size in Sections 3.3.4 and 3.3.1, respectively.

Auxiliary variables are then initialized (line 6): index 𝑖 keeps track
of the iterations, S maintains the bag of sampled edges processed,
𝑠 counts the number of samples processed, and 𝜂0 is used to obtain
the probabilistic guarantees of Triad. Finally, 𝑠0 corresponds to the
initial sample size, i.e., the minimum sample size for which Triad
can provide tight guarantees (line 7), that we discuss in Section 3.3.2.

The main loop of Triad is entered in line 8. At the 𝑖-th iter-
ation of the loop, Triad samples a bag of 𝑠𝑖 edges uniformly at
random (line 9), and for each edge it computes 𝑓𝑗 (𝑒) as defined in
Lemma 3.3 (lines 12-14). Then Triad updates the sample size and
the bag of edges processed (line 15) together with estimates 𝑓𝑗 , for
𝑗 ∈ [𝑘] (line 16) invoking the function ComputeEmpiricalBound
to compute non-uniform bounds ˆ︁𝜀 𝑗 on the deviations |𝑓𝑗 − Ψ𝑗 | such
that |𝑓𝑗 −Ψ𝑗 | ≤ ˆ︁𝜀 𝑗 with controlled error probability (line 17). These
bounds are empirical, tight, and adaptive to the samples in S, lever-
aging the variance of the estimates 𝑓𝑗 (𝑒), 𝑒 ∈ S, and the upper
bounds 𝑅 𝑗 , 𝑗 ∈ [𝑘] (see Sec. 3.3.2). Finally, a set of variables is
computed for the next iteration, if the stopping condition of the
main-loop is not met (line 18). The call to StoppingCondition in
Triad returns “true” if one the following two conditions holds,
which depend on the processed samples S:
(1) if 𝑠 ≥ 𝑠max, then with probability at least 1 − 𝜂/2 it holds:
|𝑓𝑗 − Ψ𝑗 | ≤ 𝜀 ≤ 𝜀 𝑗 ; (2) if ˆ︁𝜀 𝑗 ≤ 𝜀 𝑗 , then with probability at least
1 − 𝜂/2 it holds: |𝑓𝑗 − Ψ𝑗 | ≤ ˆ︁𝜀 𝑗 ≤ 𝜀 𝑗 , for each 𝑗 ∈ [𝑘].

When the main loop terminates Triad outputs (𝑓𝑗 , 𝜀 𝑗) in case (1),
or (𝑓𝑗 ,ˆ︁𝜀 𝑗) in case (2), for each set𝑉𝑗 ∈ V . Note that our estimation
addresses both requirements of Problem 1 as we guarantee that
all the estimates 𝑓𝑗 are within 𝜀 𝑗 distance to Ψ𝑗 , and furthermore,
we report accurate error bounds ˆ︁𝜀 𝑗 ≤ 𝜀 𝑗 , for all 𝑗 ∈ [𝑘], as Ψ𝑗 ∈
[𝑓 (𝑉𝑗) −ˆ︁𝜀 𝑗 , 𝑓 (𝑉𝑗) +ˆ︁𝜀 𝑗] with high probability. For example, even
for as small 𝜀 𝑗 as 10−2 the reported adaptive guarantees of Triad
can be at most ˆ︁𝜀 𝑗 ≈ 10−3 in a few tens of seconds (see Section 4.3).

3.3 Analysis
In this section we present in more detail all the components of Triad,
and we analyze its accuracy. The next lemma states that the esti-
mates of Algorithm 1 are unbiased, which is important to prove
tight concentration.

Lemma 3.4. For the output 𝑓𝑗 , 𝑗 = 1, . . . , 𝑘 , of Algorithm 1, it holds:

E[𝑓𝑗] = 1
|𝑉𝑗 |

∑︂
𝑣∈𝑉𝑗

𝜓𝑣 = Ψ𝑗 ,

that is, the estimates of Algorithm 1 are unbiased, for both local triadic

coefficients𝜓 ∈ {𝛼, 𝜙}.
The proof can be found in the extended version [46].

Next we provide a bound for the variance of the estimates 𝑓𝑗 ,
𝑗 ∈ [𝑘], returned by Triad.

Lemma 3.5. For the estimates 𝑓𝑗 , 𝑗 = 1, . . . , 𝑘 , of Algorithm 1, it is

Var[𝑓𝑗] ≤ 1 − 𝑝
𝑠𝑝

⎛⎜⎝
1
|𝑉𝑗 |

∑︂
𝑣∈𝑉𝑗

𝜓𝑣
⎞⎟⎠

2

,

for both local triadic coefficients𝜓 ∈ {𝛼, 𝜙}.
The proof can be found in the extended version [46].

3.3.1 Bounding the sample size. To present the bound on the sam-
ple size (i.e., 𝑠max), we first introduce the necessary notation. Given
a finite domainX and Q ⊆ 2X a collection of subsets ofX,5 a range-
space is the pair (X,Q). We say that a set 𝑋 ⊆ X is shattered by the
range-set Q, if it holds {𝑄 ∩ 𝑋 : 𝑄 ∈ Q} = 2𝑋 . The VC-dimension

VC(X,Q) of the range-space is the size of the largest subset 𝑋 ⊆ X
such that 𝑋 can be shattered by Q. Given a family of functions F
from a domainH with range [𝑎, 𝑏] ⊆ R, for a function 𝑓 ∈ F we
define the subset 𝑄 𝑓 of the spaceH × [𝑎, 𝑏] as

𝑄 𝑓 = {(𝑥, 𝑡) : 𝑡 ≤ 𝑓 (𝑥)}, 𝑓 ∈ F .

We then define F + = {𝑄 𝑓 , 𝑓 ∈ F } as the range-set over the set
H × [𝑎, 𝑏]. With these definitions at hand, the pseudo-dimension

PD(F) of the family of functions F is defined as PD(F) = VC(H×
[𝑎, 𝑏], F +). For illustrative examples we refer the reader to the
literature [41, 42, 50]. In our work, the domainH corresponds to
the set of edges to be sampled by Triad to compute the estimators
𝑓𝑗 = 𝑓S, 𝑗 , 𝑗 = 1, . . . , 𝑘 , that is, H = 𝐸.6 We also define the set of
functions F = {𝑓S, 𝑗 : 𝑗 = 1, . . . , 𝑘}, which corresponds to the set
containing all functions 𝑓𝑗 , 𝑗 = 1, . . . , 𝑘 in output to Triad.

Theorem 3.6. Let F be the set of functions defined above with

PD(F) ≤ 𝜁 , and let 𝜀, 𝜂 ∈ (0, 1) be two parameters. If

|S| ≥ (𝑏 − 𝑎)
2

𝜀2

(︃
𝜁 + log 1

𝜂

)︃
,

then with probability at least 1 − 𝜂 over the randomness of the set S
it holds that

|︁|︁𝑓𝑗 − Ψ𝑗
|︁|︁ ≤ 𝜀, for each 𝑗 = 1, . . . , 𝑘 .

Note that we cannot compute PD(F) from its definition as this
requires exponential time in general, hence we now prove a tight
and efficiently computable upper bound 𝜁 such that PD(F) ≤ 𝜁 .
This enables us to use Theorem 3.6 and obtain a deterministic upper
bound on the sample size of Triad (i.e., 𝑠max in line 7).

First, let 𝜒𝑣 = |{𝑉𝑗 ∈ V : exists 𝑢 ∈ (N𝑣 ∪ {𝑣}), 𝑢 ∈ 𝑉𝑗 }|, i.e., 𝜒𝑣
is the number of distinct sets 𝑉𝑗 , for 𝑗 ∈ [𝑘] fromV containing a
node in the set N𝑣 ∪ {𝑣} for a given node 𝑣 ∈ 𝑉 .

Example 3.7. In the following extreme cases: (𝑖) when every node
is in a distinct bucket (i.e., 𝑘 = 𝑛) then 𝜒𝑣 ≤ 𝑑max + 1, for 𝑣 ∈ 𝑉 ,
with 𝑑max being the maximum degree of a node in 𝑉 ; (𝑖𝑖) when
each node is in the same bucket then 𝜒𝑣 = 1 for every node 𝑣 ∈ 𝑉 .

Now let

ˆ︁𝜒 = max
𝑒={𝑢,𝑣}∈𝐸

{𝜒𝑧 : 𝑧 = arg min{𝑑𝑢 , 𝑑𝑣}} . (3)

5The set containing all possible subsets of X.
6We write 𝑓S, 𝑗 to explicit that a function depends on the bag of samples S.

2565

Intuitively ˆ︁𝜒 corresponds to the largest number of buckets for which
a sampled edge 𝑒 ∈ 𝐸 yields a non-zero value for the estimate 𝑓𝑗 (𝑒).
Clearly, a trivial bound is ˆ︁𝜒 ≤ min{𝑘, 𝑑max + 1}, which can be
very loose. We next present the bound on the pseudo-dimension
associated to PD(F), recall that F corresponds to set of estimates
𝑓𝑗 , 𝑗 = 1, . . . , 𝑘 , of Triad.

Proposition 3.8. The pseudo-dimension PD(F) = 𝜁 is bounded

as 𝜁 ≤ ⌊log2 ˆ︁𝜒⌋ + 1.

The proof can be found in the extended version [46].
As an example of the powerful result of Theorem 3.8 consider

the following corollary.

Corollary 3.9. Fix 𝑞 = 0 and take each node in a different set

in V (i.e., 𝑘 = 𝑛). Let 𝐺 be a star graph. Then by Theorem 3.8 it

holds 𝜁 ≤ 1.

The proof can be found in the extended version [46].
Corollary 3.9 shows that our result provides a tight bound on

the pseudo-dimension associated to the family of functions F . For
comparison, under the setting of Corollary 3.9, then our setting
maps to the one of de Lima et al. [14]. In their work, the authors
prove 𝜁 ≤ O(log𝑛) for the graph in Corollary 3.9, while our result
states 𝜁 ≤ 1 yielding a O(log𝑛) improvement, which is the max-
imum attainable. Clearly, a smaller upper bound for 𝜁 implies a
significantly smaller sample size required to guarantee the desired
accuracy when such bound is used for Theorem 3.6.

We can refine the bounds on 𝜁 for the values of 𝑞 = 0 or 𝑞 = 1/2.
We discuss such refinement in our extended manuscript [46].

We conclude by noting that ˆ︁𝜒 can be efficiently computed in
O(𝑚) time complexity with a linear scan of the edges of the graph.

3.3.2 Computing adaptive error bounds. We detail how Triad
leverages adaptive and variance-aware bounds to determine the
distance of 𝑓𝑗 from Ψ𝑗 , for 𝑗 ∈ [𝑘]. We need a key concentration
inequality.

Theorem 3.10 (Empirical Bernstein bound [33, 34]). Let 𝑋1,
. . . , 𝑋𝑠 be 𝑠 independent random variables such that for all 𝑖 = 1, . . . , 𝑠 ,
E[𝑋𝑖] = 𝜇 and P[𝑋𝑖 ∈ [𝑎, 𝑏]] = 1, andˆ︁v = 1

𝑠

∑︁𝑠
𝑖=1 (𝑋𝑖 −𝑋𝑠)2 where

𝑋𝑠 = 1
𝑡

∑︁𝑠
𝑖=1 𝑋𝑖 . Then,|︁|︁|︁|︁|︁1𝑠
𝑠∑︂
𝑖=1

𝑋𝑖 − 𝜇
|︁|︁|︁|︁|︁ ≤

√︃
2ˆ︁v log(4/𝜂)

𝑠
+ 7(𝑏 − 𝑎) log(4/𝜂)

3(𝑠 − 1) .

The above theorem connects the empirical variance over the
samples 𝑓𝑗 (𝑒) with the distance of 𝑓𝑗 to Ψ𝑗 , providing a power-
ful result. Therefore we can use Theorem 3.10 to obtain the func-
tion ComputeEmpiricalBound. That is, given a partition 𝑉𝑗 and a

bag of edges S sampled so far, we obtain ˆ︁𝜀 𝑗 =
√︂

2ˆ︁v𝑗 log(4𝑘/𝜂𝑖)
𝑠 +

7(𝑅 𝑗) log(4𝑘/𝜂𝑖)
3(𝑠−1) at iteration 𝑖 ≥ 0. Note that ˆ︁v𝑗 = 1

𝑠

∑︁
𝑒∈S (𝑓𝑗 (𝑒) −

𝑓𝑗)2, which can be obtained in linear time (i.e., |S|), assuming the
values of 𝑓𝑗 (𝑒) are retained over the iterations. Note that the above
result provides also a criterion on how to set 𝑠0. That is, 𝑠0 should
be at least ⌈𝑅 3 log(4𝑘/𝜂0)

𝜀 + 1⌉ (see Triad in line 6) in the very opti-
mistic case that the empirical variance ˆ︁v𝑗 = 0, for each 𝑗 ∈ [𝑘]. We
can now prove the guarantees offered by Triad.

Theorem 3.11. The output of Triad (𝑓𝑗 ,ˆ︁𝜀 𝑗), for 𝑗 ∈ [𝑘], is such
that with probability at least 1 − 𝜂 it is |𝑓𝑗 − Ψ𝑗 | ≤ ˆ︁𝜀 𝑗 ≤ 𝜀 𝑗 , simulta-

neously for all sets 𝑉𝑗 , for 𝑗 ∈ [𝑘].
The proof can be found in the extended version [46].

3.3.3 Minimizing the variance. The value of the parameter 𝑞 (in
the estimator from Lemma 3.3) plays a key role for Triad, enabling
extremely accurate estimates if set properly (see Section 4.4.2).
There are many criteria to select the value of 𝑞, the most natural one
would be to fix 𝑞 such that Triad processes the minimal possible
sample-size to terminate its main loop. Unfortunately, we cannot
optimize directly for such property.

Instead, to select the value of 𝑞 we minimizing the maximum
variance of the functions 𝑓𝑗 over all 𝑗 ∈ [𝑘]. In fact, a smaller
variance of 𝑓𝑗 allows Triad to terminate its loop by processing a
small number of samples. To do so, we first sample a very small
bag S of edges from 𝐸, and estimate the variance of the functions
𝑓𝑗 over S for each possible value of 𝑞 (see [46]). The variance of 𝑓𝑗
can, in fact, be expressed as a quadratic equation in the parameter
𝑞, i.e., there exist efficiently computable values 𝐴 𝑗 , 𝐵 𝑗 ,𝐶 𝑗 such thatˆ︁𝑉𝑞 (𝑓𝑗) = 𝐴 𝑗 + 𝐵 𝑗𝑞 +𝐶 𝑗𝑞

2. We detail in our extended version how
such values are computed. Using such formulation, we can solve a
quadratic optimization problem, minimizing the maximum variance
over ˆ︁𝑉𝑞 (𝑓𝑗) over all possible values of 𝑞 ∈ [0, 1/2] and for each
𝑗 ∈ [𝑘]. We first show that a sufficiently small bag of samples can
yield a good estimate of the variance ˆ︁𝑉𝑞 (𝑓𝑗).

Lemma 3.12. There exist values𝐴 𝑗 , 𝐵 𝑗 , and𝐶 𝑗 obtained over 𝑐 ≥ 2
sampled edges such that E[ˆ︁𝑉𝑞 (𝑓𝑗)] = Var[𝑓𝑗] for

ˆ︁𝑉𝑞 (𝑓𝑗) = 𝑚2

(𝑐 − 1) |𝑉𝑗 |2

(︄∑︂
𝑒∈S

𝐴 𝑗 + 𝑞𝐵 𝑗 +𝐶 𝑗𝑞
2
)︄
.

The proof can be found in the extended version [46].
The above lemma tells us that the estimates ˆ︁𝑉𝑞 (𝑓𝑗) provide an un-

biased approximation of the variance Var[𝑓𝑗] for each function 𝑓𝑗 .
The next lemma tells us that such estimates are also a good approx-
imation, for each value of 𝑞 ∈ [0, 1/2].

Lemma 3.13. There exist a small value 𝜀′ > 0 such that ˆ︁𝑉𝑞 (𝑓𝑗) ∈
[Var[𝑓𝑗] − 𝜀′,Var[𝑓𝑗] + 𝜀′] for each partition 𝑗 = 1, . . . , 𝑘 and value

of 𝑞 ∈ [0, 1/2], with high probability.

The proof can be found in the extended version [46].
To find the optimal value of𝑞, given that we have a good estimate

of Var[𝑓𝑗], for each 𝑗 ∈ [𝑘], we solve the following convex problem,
minimizing the largest estimated variance ˆ︁𝑉𝑞 (𝑓𝑗) over 𝑗 ∈ [𝑘].

Problem 2 (Optimization of 𝑞). Let 𝐴 𝑗 , 𝐵 𝑗 and 𝐶 𝑗 be the co-

efficients contributing to estimate the variance ˆ︁𝑉𝑞 (𝑓𝑗) then solv-

ing the following quadratic program yields 𝑥∗ = 𝑞alg such thatˆ︁𝑉𝑞alg (𝑓𝑗) ∈ ˆ︁𝑉𝑞∗ (𝑓𝑗) ± 𝜀′ for small 𝜀′, and controlled error probability,
where 𝑞∗ is the optimal value 𝑞 minimizing the variance of functions

𝑓𝑗 , 𝑗 = 1, . . . , 𝑘 .

minimize 𝑡

subject to 𝑡 ≥ 𝐴 𝑗 + 𝐵 𝑗𝑥 +𝐶 𝑗𝑥
2, for all 𝑗 = 1, . . . , 𝑘,

and 𝑥 ∈ [0, 1/2] .

2566

Solving this quadratic problem with state-of-the-art solvers is
efficient: 𝑥 is in R, the sample size 𝑐 used to compute the terms
𝐴 𝑗 , 𝐵 𝑗 ,𝐶 𝑗 is a small constant, the objective function and the con-
straints are convex, and in practice 𝑘 is small, yielding an overall
efficient procedure (see Section 4.4). Note that in Triad we denote
collectively with Fixq the procedure that computes both ˆ︁𝑉𝑞 (𝑓𝑗),
for 𝑗 ∈ [𝑘], and identifies 𝑥∗ = 𝑞alg.

3.3.4 UpperBounds. A detailed description of the UpperBounds
subroutine, which requires linear time complexity in𝑚, is reported
our extended version [46].

The next lemma shows that UpperBounds outputs an upper
bound on the ranges of 𝑓𝑗 (𝑒), 𝑒 ∈ 𝐸, and 𝜁 as from Proposition 3.8.

Lemma 3.14. The output of UpperBounds is such that 𝑓𝑗 (𝑒) ≤ 𝑅 𝑗
almost surely, for each 𝑒 ∈ 𝐸, and partition 𝑉𝑗 , 𝑗 = 1, . . . , 𝑘 , where 𝜁
corresponds to the pseudo-dimension bound from Proposition 3.8.

3.4 Practical optimizations
In this section we introduce some practical optimizations to improve
the performances of Triad, with minimal complexity overhead.

3.4.1 Improved empirical bounds. We can further refine the empiri-
cal bounds for terms ˆ︁𝜀 𝑗 , for 𝑗 ∈ [𝑘] (in line 17) computed by Triad
by leveraging the following result.

Theorem 3.15 (Predictable Plugin-Empirical Bernstein Con-
fidence Interval (PrPl-EB-CI) [51, 61]). Let 𝑋1, . . . , 𝑋𝑠 be 𝑠 i.i.d.
random variables such that for all 𝑖 = 1, . . . , 𝑠 , it is E[𝑋𝑖] = 𝜇 and
P[𝑋𝑖 ∈ [𝑎, 𝑏]] = 1, with 𝑅 = |𝑏 − 𝑎 |, and let

𝜔 (𝜆) = − log(1 − 𝑅𝜆) − 𝑅𝜆
4 for 𝜆 ∈ [0, 1/𝑅), ˆ︁𝜇 𝑗 = 1

𝑗

𝑗∑︂
𝑖=1

𝑋𝑖 ,

ˆ︁𝜎 𝑗 = 𝑅2/4 +∑︁𝑗
𝑖=1 (𝑋𝑖 − ˆ︁𝜇𝑖−1)2
𝑗

, 𝜆 𝑗,𝑠 = min
{︄√︄

2 log(2/𝜂)
𝑠ˆ︁𝜎 𝑗−1

,
1

2𝑅

}︄

for 𝑗 = 1, . . . , 𝑠 , where ˆ︁𝜇0 = 0 and ˆ︁𝜎0 = 𝑅2/4. Then it holds that|︁|︁|︁|︁
∑︁𝑠
𝑖=1 𝜆𝑖,𝑠𝑋𝑖∑︁𝑠
𝑖=1 𝜆𝑖,𝑠

− 𝜇
|︁|︁|︁|︁ ≤ log(2/𝜂) + (2/𝑅)2 ∑︁𝑠

𝑖=1 [𝜔 (𝜆𝑖,𝑠) (𝑋𝑖 − ˆ︁𝜇𝑖−1)2]∑︁𝑠
𝑖=1 𝜆𝑖,𝑠

with probability at least 1 − 𝜂.
While similar in spirit to Theorem 3.10, the above bound often

yields a sharper empirical bound on the values ˆ︁𝜀 𝑗 . Note that the
above estimator yields a slightly more complicated formulation,
i.e., the output of Triad corresponds to 𝑓𝑗 =

∑︁𝑠
𝑖=1 𝜆𝑖,𝑠 𝑓𝑗 (𝑒𝑖)∑︁𝑠

𝑖=1 𝜆𝑖,𝑠
where

𝑓𝑗 (𝑒𝑖) is the estimate associated to bucket 𝑉𝑗 , for 𝑗 ∈ [𝑘] evaluated
for the 𝑖-th sample from S.

In addition, the stopping condition is evaluated using the bounds
log(2/𝜂)+(2/𝑅)2 ∑︁𝑠

𝑖=1 [𝜔 (𝜆𝑖,𝑠) (𝑋𝑖−ˆ︁𝜇𝑖−1)2]∑︁𝑠
𝑖=1 𝜆𝑖,𝑠

= ˆ︁𝜀 𝑗 ≤ 𝜀 𝑗 , for 𝑗 ∈ [𝑘], and
𝑓𝑗 = 1

𝑠

∑︁
𝑓𝑗 (𝑒𝑖) if 𝑠 ≥ 𝑠max. In Section 4, we leverage Theorem 3.15,

but for ease of notation and presentation we introduced Triad
with the results of Theorem 3.10.

3.4.2 Fixed sample size variant. In this section we briefly describe
a variant that we call Triad-f, which leverages a fixed sample size
schema. That is, in many applications, concentration bounds (e.g.,
Theorem 3.10), even if tight and empirical, can still be conservative.

Hence we modify Triad to leverage the novel estimators discussed
in Lemma 3.4, and the adaptive procedure to select the value of 𝑞
as described in Section 3.3.3, but we modify the stopping condition
of Triad. That is, we only require Triad-f to process at most

a number 𝑠 ≥ 1 samples as provided in input by the user. This
is of interest in many applications where strictly sublinear time
complexity is required. In fact, such modification strictly enforces a
small number of samples to be processed. We show that such variant
outputs highly accurate estimates of each bucket, by processing
only 1‰ edges on most graphs (see Section 4.2).

3.4.3 Filtering very small degree-nodes. To enable better perfor-
mance for Triad, we process the graph 𝐺 by removing the nodes
with small degree obtaining a graph 𝐺 ′ where all the nodes’ de-
grees, in𝐺 , are above a certain threshold. This step decreases the
variance of the estimates computed by Triad, as small degree
nodes can have high values for their metric𝜓 (i.e., close to 1), but
sampling may perform poorly in approximating the values𝜓 , when
computing the estimate 𝑓𝑗 , for 𝑗 ∈ [𝑘], similarly to what noted
by de Lima et al. [14], Kutzkov and Pagh [26]. The key challenge is
to bound the overall total work to Θ(𝑛) time complexity, making
such processing negligible, and retaining the correct information
to recover the solution to Problem 1 on 𝐺 .

Our approach identifies a threshold over the node degree distribu-
tion, namely 𝛽 , for which computing all the nodes’ triangles under
such threshold requires at most linear time in 𝑛, i.e., bounded by
𝐶𝑛 for a small fixed constant𝐶 . Obtaining Δ𝑣 for a node 𝑣 ∈ 𝑉 with
degree 𝑑𝑣 requires at most O(𝑑2

𝑣) time. Therefore we first identify
the value 𝛽 such that 𝛽 = max𝑖=1,...,𝑑max such that

∑︁𝑖
𝑗=1 𝑗

2𝐷 𝑗 ≤ 𝐶𝑛,
where𝐷𝑖 denotes the number of nodes in𝐺 such that their degree is
exactly 𝑖 , that is 𝐷𝑖 = |{𝑣 ∈ 𝑉 : 𝑑𝑣 = 𝑖}|. Clearly, 𝛽 can be computed
in linear time Θ(𝑛) by iterating all nodes, assuming constant access
to their degrees 𝑑𝑣 . Given the threshold 𝛽 , for each node 𝑣 ∈ 𝑉 with
degree less than 𝛽 we compute exactly the triangles Δ𝑣 , keeping
track for all the nodes 𝑣 ∈ 𝑉 ′ that have degree higher than 𝛽 of
the triangles containing at least one removed node. We show that
our approach is efficient and yields no additional estimation error
for Triad in the extended version of the manuscript [46].

3.5 Time and memory complexity
Time complexity. We recall that the filtering step requires O(𝑛)
total work, and the routine UpperBounds requires O(𝑘𝑚), while
Fixq requires O(𝑑max+TQP). Note that TQP, the complexity of solv-
ing the convex minimax problem, is negligible as the optimization
is over 𝑘 total convex non-integer constraints, and for our problem
formulation we consider 𝑘 as a (possibly large) constant.

Finally, the largest time complexity to perform the adaptive
loop over 𝑇 = 𝑠max total iterations of Triad, can require up to
O(𝑇 (𝑑max +𝑇)) time since: (1) each edge can be incident to 𝑑max
nodes; (2) the additional 𝑇 2 term is from computing the empiri-
cal variance at each iteration.7 Hence the worst case complexity
is O(𝑅2𝜀−2 (𝜁 + log 1/𝜂) (𝑑max + 𝑇) + 𝑚). Note that such analy-
sis is extremely pessimistic, in fact, in practice the complexity
of Triad is instead close to O(𝑅𝜀−1 (log𝑘/𝜂)𝑑max + 𝑘𝑚), as we

7This complexity can be reduced to𝑇 by relying on the wimpy variance.

2567

often observe Triad to terminate after a small number of itera-
tions of its main loop, implying that the processed edges are at
most O(𝑅𝜀−1 (log𝑘/𝜂)). Hence, when O(𝑅𝜀−1 (log𝑘/𝜂)) is a small
fraction 𝜔 ≪ 1 of 𝑚 (e.g., 1% of 𝑚) then the total complexity is
bounded as O(𝑚(𝑑max𝜔 + 𝑘)), capturing the efficiency of Triad.
Memory complexity. The memory complexity of Triad is com-
parable to existing state-of-the-art methods [48] for estimating the
local clustering coefficient, requiring O(𝑚) memory. In more de-
tail, Triad requires memory O(𝑚+ |S|𝑘 +𝑘𝑛), where |S| is the size
of the samples processed by Triad. Clearly |S| = 𝑠 for Triad-f.
When processing very large graphs with limited resources such
complexity can be prohibitive, hence in such cases, we should rely
on a (semi-)streaming or distributed (e.g., MPC) implementation of
Triad [7, 24], an interesting future direction.

3.6 Adaptive guarantees
We briefly discuss the main advantages and limitations of Triad in
the adaptive case. We observe that Triad has a significant advan-
tage to solve Problem 1. Given a input graph 𝐺 and a partitionV ,
Triad selects its estimators 𝑓𝑗 , 𝑗 ∈ [𝑘], by properly fixing the pa-
rameter𝑞 adaptively. That is, the parameter𝑞 is optimized by Triad
directly on𝐺 , leading to estimators 𝑓𝑗 , 𝑗 ∈ [𝑘], with small variance
as captured by our theoretical results in Lemma 3.13 and in practice
in Section 4.2. Triad also adapts the number of processed samples
(|S|) by leveraging the results from Theorem 3.15. Such bounds
involve the empirical variance ˆ︁𝜎 𝑗 , 𝑗 ∈ [𝑘] optimized by Triad
through the parameter 𝑞—and the upper bounds 𝑅 𝑗 on the range of
𝑓𝑗 (𝑒), 𝑗 ∈ [𝑘], 𝑒 ∈ 𝐸. Where each 𝑅 𝑗 depends on the node distribu-
tion overV and𝐺 . Obtaining a non-trivial characterization of 𝑅 𝑗 is
extremely challenging, but we observe the following. When the val-
ues 𝑅 𝑗 are large in practice the obtained empirical boundsˆ︁𝜀 𝑗 may be
loose with respect to the actual deviations |𝑓𝑗 − Ψ𝑗 |. Instead, when
𝑅 𝑗 ∈ O(1) then Triad processes ˜︁O(1/𝜀) samples (a significant
improvement over ˜︁O(1/𝜀2)).8 This is an inherent trade-off, when
𝑅 ∈ O(1) then the runtime of Triad is almost constant providing
tight bounds ˆ︁𝜀 𝑗 ≤ |𝑓𝑖 − Ψ𝑖 |, which depend on 𝐺 andV .

4 EXPERIMENTAL EVALUATION
In this section we present our extensive experimental evaluation.
We start by first describing the setup, and then we discuss the
results of our research questions.

4.1 Setting
Implementation details. We implemented our algorithms in
C++20, and compiled it under gcc 9.4, with optimization flags. To
solve the variance optimization problem (Section 3.3.3) we used
Gurobi 11 under academic license. All the experiments were per-
formed on a 72-core machine Intel Xeon Gold, running Ubuntu
20.04. The code to reproduce our results is publicly available.9

Datasets and partitions into buckets. For our experiments we
consider multiple datasets available online, from medium to large
sized, which are reported together with a summary of their statistics

8In ˜︁O(·) we ignore logarithmic factors.
9https://github.com/iliesarpe/Triad.

Table 1: Datasets used in the experimental evaluation. Sta-
tistics show: 𝑛 the number of nodes,𝑚 the number of edges,
𝑑max the maximum degree, 𝛼̄ (resp. 𝜙̄) the average local clus-
tering (resp. closure) coefficient over all nodes.

Dataset 𝑛 𝑚 𝑑max 𝛼̄ 𝜙̄

fb-CMU 6.6𝐾 0.3𝑀 8 · 102 0.27 0.12
SP 1.6𝑀 22𝑀 1 · 104 0.11 0.03
FR 12𝑀 72𝑀 3 · 103 0.08 0.01
OR 3.1𝑀 0.1𝐵 3 · 104 0.17 0.06
LJ 4.8𝑀 43𝑀 2 · 104 0.27 0.08
BM 43𝐾 14𝑀 8 · 103 0.51 0.19
G500 4.6𝑀 0.1𝐵 3 · 105 0.06 0.0
GP 0.1𝑀 12𝑀 2 · 104 0.49 0.05
PT 43𝐾 44𝐾 2 · 101 0.12 0.1
HW 1.1𝑀 56𝑀 1 · 104 0.77 0.16
HG 0.5𝑀 13𝑀 5 · 104 0.19 0.01
BNH 0, 7𝑀 0.2𝐵 2 · 104 0.5 0.3
TW 0.2𝑀 6.8𝑀 4 · 104 0.16 0.01

in Table 1. Details on the datasets including URLs are available in
our extended version [46].

For each dataset we considered three main different node par-
titions V: (𝑖) V𝑐𝑜𝑟𝑒 is obtained by grouping nodes with similar
core-number over a total of 𝑘 = 30 buckets; (𝑖𝑖)V𝑑𝑒𝑔 is obtained by
grouping together nodes with similar degrees over a total of 𝑘 = 25
buckets; (𝑖𝑖𝑖)V𝑙𝑜𝑔𝐷𝑒𝑔 assigns each node to a bucket as function of
its degree [24], i.e., a node with degree 𝑑 is assigned to the bucket
with index ⌊log(1 + (𝑑 − 2)/log 2)⌋ + 2, hence it holds 𝑘 = O(log𝑛).

Note that all the above partition schemes place nodes with sim-
ilar degree in the same bucket. This is often the case in practical
applications, where nodes with similar degree are associated to
similar structural functions [24].

In addition, To test a general input to Problem 1 we also consider
two other partitionsV . PartitionV

rnd
assigns nodes at random into

𝑘 = 30 buckets andVmet is obtained by clustering with 𝑘 = 10 each
graph using METIS [23]. We report the results obtained on these
partitions in our extended version as they follow similar trends to
the ones discussed below. We do not discuss the memory usage
as it is similar to all algorithms (Triad uses slightly more space
compared to baselines as from our analysis in Section 3.5).

Finally we use Triad-𝛼 (resp. Triad-𝜙) to denote Triad when
used to approximate the average local clustering (resp. local closure)
coefficient.
Research questions. Our experimental evaluation investigated
the following research questions.
Q1. How Triad performs in terms of accuracy and efficiency when
varying its sample size 𝑠? (Section 4.2)
Q2. How tight are the adaptive guarantees provided by Triad,
compared to state-of-the-art approaches? (Section 4.3)
Q3. What is the runtime of Triad; what is the impact of parame-
ter 𝑞, and what is the quality of our optimization of 𝑞? (Section 4.4)
Q4. Which patterns are captured by triadic coefficients and Triad
over collaboration networks? (Section 4.5)

2568

https://github.com/iliesarpe/Triad

Bucket

0.3

0.4

0.5

0.6

Su
p-

er
ro

r
(|5
8
−
Ψ
8|) B = <

1000 , r̂ : 0.01, avg-time:101.2

Bucket

0.3

0.4

0.5

0.6
B = <

500 , r̂ : 0.01, avg-time:163.8

Bucket

0.3

0.4

0.5

0.6
B = <

200 , r̂ : 0.01, avg-time:349.6
Dataset: BNH, coe�icient: clustering (U), partition: V2>A4

Bucket

0.00

0.02

0.04

0.06

0.08

Su
p-

er
ro

r
(|5
8
−
Ψ
8|) B = <

1000 , r̂ : 0.02, avg-time:154.7

Bucket

0.00

0.02

0.04

0.06

0.08

B = <
500 , r̂ : 0.0, avg-time:202.4

Bucket

0.00

0.02

0.04

0.06

0.08

B = <
200 , r̂ : 0.0, avg-time:283.4

Dataset: G500, coe�icient: clustering (U), partition: V;>6�46

Bucket

0.00

0.05

0.10

0.15

0.20

Su
p-

er
ro

r
(|5
8
−
Ψ
8|) B = <

1000 , r̂ : 0.02, avg-time:54.1

Bucket

0.00

0.05

0.10

0.15

0.20

B = <
500 , r̂ : 0.01, avg-time:52.9

Bucket

0.00

0.05

0.10

0.15

0.20

B = <
200 , r̂ : 0.01, avg-time:62.9

Dataset: OR, coe�icient: closure (q), partition: V346

Bucket

0.00

0.02

0.04

Su
p-

er
ro

r
(|5
8
−
Ψ
8|) B = <

1000 , r̂ : 0.0, avg-time:90.5

Bucket

0.00

0.02

0.04

B = <
500 , r̂ : 0.0, avg-time:89.8

Bucket

0.00

0.02

0.04

B = <
200 , r̂ : 0.0, avg-time:92.0

Dataset: FR, coe�icient: closure (q), partition: V2>A4

Figure 3: Value Ψ𝑖 and its maximum error (|𝑓𝑖 − Ψ𝑖 |) over five runs. We also report, the supremum error 𝜚 = sup𝑖∈[𝑘] |𝑓𝑖 − Ψ𝑖 | and
the average runtime over five independent runs across all buckets, for varying sample size (𝑠 ∈ {1, 2, 5}‰ of the total edges𝑚).

4.2 Accuracy of estimates and efficiency
In this section we answer Q1, i.e., we study Triad’s accuracy and
efficiency by varying the sample size 𝑠 . This setting is fundamen-
tal to show that Triad is both efficient and provides extremely
accurate estimates by processing a small number of edges.
Setting. We consider Triad-f, which retains the adaptive selection
of the parameter 𝑞 while terminating Triad’s main loop after pro-
cessing exactly 𝑠 samples (see Section 3.4.2). To set 𝑠 we considered
three different values: 𝑠 = 1‰, 𝑠 = 2‰, and 𝑠 = 5‰ of the total
edges𝑚 of each dataset. We then run each configuration (dataset,
value of 𝑠 , and bucket partition) for five independent runs. We then
measure for each bucket the supremum error |𝑓𝑖 − Ψ𝑖 | over the five
runs, and ˆ︁𝜚 the supremum of such errors across all buckets ofV . In
addition, we measure the average runtime to process 𝑠 samples over
the five runs. Some representative results are presented in Figure 3.
Results. First, over almost all configurations tested we note that
Triad’s estimates are very accurate and tightly concentrated for
each bucket of the various partitions. This is reflected by the supre-
mum error ˆ︁𝜚 , which is small and almost negligible even for very
small sample sizes 𝑠 such 𝑠=1‰. This holds in particular for datasets
BNH and FR, while Triad requires a slightly higher sample size (i.e.,
𝑠=2‰) to provide extremely accurate estimates for datasets G500
and OR. Note that the supremum error with a sample size of 𝑠=2‰·𝑚
tends to 0 on the considered configurations on all datasets. This
supports the fact that Triad requires only a very small number of
samples to obtain highly accurate estimates for Problem 1.

In addition, Triad’s runtime is limited by at most a few hun-
dred of seconds on very large datasets, yielding estimates almost
comparable to the exact unknown values, showing that Triad is
both efficient and highly accurate on both triadic coefficients. We
report additional results under this setting in our extended version.
Summary. A very small sample size (of 1‰ total edges) is often
sufficient to obtain highly accurate estimates for Triad, simultane-

ously over all buckets and different partitions for both the average
local triadic coefficients, which is remarkable and extremely useful
for highly-scalable network analysis.

4.3 Comparison with state-of-the-art
In this section we address Q2, i.e., we evaluate Triad and its adap-
tive guarantees with respect to existing state-of-the-art approaches.
Setting. We consider the state-of-the-art approach to approximate
the local clustering coefficient values [48] (see Section 5), denoted
with WedgeSampler-𝛼 (or WS-𝛼 for short). We extend the idea of
wedge sampling to approximate the local closure coefficient, as
there are no algorithms tailored for the local closure coefficient. This
baseline, denoted with WedgeSampler-𝜙 , is detailed in our extended
version [46]. We fix 𝜀 𝑗 = 𝜀 = 0.075 for all datasets and all buckets
inV for Triad and 𝜂 = 0.01, additional parameters are reported
in our extended version. For each configuration we run Triad and
obtain ˆ︁𝜀 𝑗 , i.e., the adaptive upper bounds on the distance between
the estimates 𝑓𝑗 and the unknown values Ψ𝑗 for each bucket𝑉𝑗 ∈ V .
We then use such values as input for WedgeSampler, such that both
algorithms provide the same guarantees. For each configuration
we compute the estimation error as the supremum error |𝑓𝑗 − Ψ𝑗 |,
averaged over all buckets, our results will show the maximum of
such supremum error over five runs. In addition, we report the
average runtime for each algorithm on the various configurations,
which was time-limited for all algorithms.
Results. Key results are summarized in Figure 4. We first observe
that Triad reports very accurate estimates for Ψ𝑗 on most con-
figurations, which are much more precise than the ones provided
by WedgeSampler. In particular, the supremum error, as desired, is
of the order of 10−2 and on some configurations up to 10−3 (e.g., for
datasets HG and OR). The baselines on most configurations achieve
higher errors than Triad. We observe that this is especially the
case for WedgeSampler-𝜙 achieving higher error than Triad. Im-
portantly, we observe that the range of improvement in accuracy
over the baseline is up to one order of magnitude.

Remarkably, such results are obtained with a comparable or
significantly smaller runtime with respect to the state-of-the-art
baseline WedgeSampler (up to one order of magnitude on datasets
HG, LJ and OR). In fact, our experiments confirm that Triad provides
tighter bounds on the deviation between its estimates (𝑓𝑗) and the
unknown values (Ψ𝑗), significantly better than existing approaches,

2569

WedgeSampler-q triad-q WedgeSampler-U triad-U

V;>6�46 V346 V2>A4

10−2

10−1

Av
g-

su
p

er
ro

r

V;>6�46 V346 V2>A4
Partition

102

103

Av
g-

rt
(s

ec
)

Dataset: BNH

V;>6�46 V346 V2>A4

10−3

10−2

10−1

Av
g-

su
p

er
ro

r

V;>6�46 V346 V2>A4
Partition

101

102

Av
g-

rt
(s

ec
)

Dataset: HG

V346 V;>6�46 V2>A4

10−2

10−1

Av
g-

su
p

er
ro

r

V346 V;>6�46 V2>A4
Partition

102

103

Av
g-

rt
(s

ec
)

Dataset: HW

V;>6�46 V2>A4 V346
10−3

10−2

10−1

Av
g-

su
p

er
ro

r

V;>6�46 V2>A4 V346
Partition

101

102

Av
g-

rt
(s

ec
)

Dataset: GP

V346 V2>A4 V;>6�46

10−3

10−2

10−1

Av
g-

su
p

er
ro

r

V346 V2>A4 V;>6�46
Partition

101

102

103

Av
g-

rt
(s

ec
)

Dataset: LJ

V346 V;>6�46 V2>A4

10−3

10−2

10−1

Av
g-

su
p

er
ro

r

V346 V;>6�46 V2>A4
Partition

102

103

104

Av
g-

rt
(s

ec
)

Dataset: OR

Figure 4: Comparison of Triad and the baselines WedgeSampler. For each dataset we show, (top plot): the average supremum
error over all buckets over the various runs. (bottom): average runtime to perform an execution.

Small-degree processing Fixq UpperBounds Adaptive step

V;>6�46V2>A4 V346
Partition

0.00

0.25

0.50

0.75

1.00

Fr
ac

ti
on

of
R

un
ti

m
e

closure (q)

V;>6�46V2>A4 V346
Partition

0.00

0.25

0.50

0.75

1.00
clustering (U)

Dataset: OR

V346 V2>A4V;>6�46
Partition

0.00

0.25

0.50

0.75

1.00

Fr
ac

ti
on

of
R

un
ti

m
e

closure (q)

V346 V2>A4V;>6�46
Partition

0.00

0.25

0.50

0.75

1.00
clustering (U)

Dataset: GP

Figure 5: Fine grained runtime analysis. We show the average
fraction of time spent in each step by Triad, the setting is
from Section 4.3.

@ = 0.001
@ = 0.01

@ = 0.1
@ = 0.25

@ = 0.3
@ = 0.35

@ = 0.4
@ = 0.45

@ = 0.5

0.0001 0.001 0.01
Fraction of edges sampled (B/<)

10−1

100

Su
pr

em
um

er
ro

r

Dataset: fb-CMU,V346,k = q , @alg = 0.03 ± 0.02

0.0001 0.001 0.01
Fraction of edges sampled (B/<)

10−1

Su
pr

em
um

er
ro

r

Dataset: PT,V;>6�46,k = U , @alg = 0.3 ± 0.06

Figure 6: Supremum error over ten runs over different parti-
tions, sample size 𝑠, coefficient𝜓 , and values of 𝑞.

while being more efficient. Unfortunately, in practice, such bounds
may still be loose—this can noted by observing that we provided in
input to Triad 𝜀 𝑗 = 0.075 and under various datasets (e.g., HG, OR
and LJ) the maximum errors for Triad are much smaller.
Summary. Our algorithm Triad provides better bounds on the de-
viation between the estimates 𝑓𝑗 and the unknown coefficients Ψ𝑗 ,
compared to existing approaches. While being tighter, such guaran-
tees may still be loose for some settings, leaving an open question
for future directions.

4.4 Runtime and parameter sensitivity
4.4.1 Runtime analysis. In this section we analyze Triad’s run-
time. In particular, we split the runtime into the following steps:
(𝑖) the practical optimization over the small-degree nodes; (𝑖𝑖) the
optimization of the variance through Fixq; (𝑖𝑖𝑖) the execution of
the routine UpperBounds; and (𝑖𝑣) the adaptive loop.

Figure 5 reports the average fraction of time spent by Triad
in the various steps over the experiments from Section 4.3. We
report two very different behaviors. On dataset OR, except forVdeg,
the time of performing the adaptive loop is negligible compared
with all the other steps. This is in contrast with dataset GP, where
most of Triad’s runtime is spent in its adaptive loop, highlighting
that Triad effectively adapts to the complexity of the graph in
input. In other words, when the variance of the coefficients𝜓𝑣 is
small, then the adaptive loop can terminate by processing a small
amount of samples 𝑠 as captured by Theorem 3.15.

Interestingly, we note that the procedure to optimize the variance
(that we denote with Fixq) is often negligible, especially compared
with UpperBounds, as captured by our analysis in Section 3.3.3.

Our results show that Triad’s runtime depends on the complex-
ity of the input graph i.e., the distribution of the unknown coeffi-
cients across buckets inV , which allows Triad to compute highly
accurate estimates very efficiently through its adaptive bounds.

4.4.2 Assessing the impact of 𝑞. In this section we investigate the
impact of the parameter 𝑞 on the quality of the estimates computed
by Triad. Recall that 𝑞 controls how the estimates 𝑓𝑗 are computed,
affecting the variance of the results. To evaluate such parameter, we
selected two of our smallest datasets, for computational efficiency,
and a fixed grid of nine values for the parameter 𝑞. For each value
of 𝑞 we then tested different sample sizes, i.e., using Triad-f with
a sample size 𝑠 such that 𝑠/𝑚 ∈ {0.0001, 0.001, 0.01}. For each
combination of dataset, partitionV , value of 𝑞, and sample size 𝑠 ,
we performed ten runs over both triadic coefficients𝜓 ∈ {𝜙, 𝛼}.

Some representative results are shown in Figure 6 reporting the
supremum error (i.e., sup𝑗 |𝑓𝑗 − Ψ𝑗 |) over the various configura-
tions. We observe that the impact of 𝑞 on the estimates 𝑓𝑗 , over
all sample sizes, can be from negligible (on the bottom-left plot)
to very significant (bottom-right plot). In general, we observe a
significant reduction in the supremum error by a proper selection

2570

19
70

-19
75

19
75

-19
80

19
80

-19
85

19
85

-19
90

19
90

-19
95

19
95

-20
00

20
00

-20
05

20
05

-20
10

20
10

-20
15

20
15

-20
20

20
20

-20
25

Years of publications

0.2

0.3

0.4

0.5

Av
er

ag
e

C
lo

su
re
(q
)

19
70

-19
75

19
75

-19
80

19
80

-19
85

19
85

-19
90

19
90

-19
95

19
95

-20
00

20
00

-20
05

20
05

-20
10

20
10

-20
15

20
15

-20
20

20
20

-20
25

Years of publications

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

C
lu

st
er

in
g
(U
)

Data-management
Data-mining

Machine-learning
TCS

Comput. Bio.
So�. Eng.

Other

Figure 7: Average local clustering and local closure coefficient
over the DBLP graph snapshots, for various computer science
communities.

Comput. Bio., years: 1990-1995 Data-management, years: 1975-1980

Figure 8: Induced subgraphs by communities. (Left): compu-
tational biology; (Right): data-management.

of the value of 𝑞—up to one order of magnitude in several settings
(such as the top-left or bottom-right plots). This behavior confirms
the importance of properly selecting the value of 𝑞. We note that
the supremum error tends to be minimized with a specific value of
𝑞 over the different settings, but this value is, in general, different
on most configurations (e.g., top- and bottom-right plots).

Summarizing, a proper selection of the value of 𝑞 can have a
significant impact on the estimates of Triad leading to up to one
order of accuracy in the estimates. The next section assesses how
well our optimization aligns with a good value of the parameter 𝑞.

4.4.3 Optimization of 𝑞. We now briefly assess how well the value
of 𝑞alg (as optimized by Triad) aligns with a good choice for the
parameter 𝑞. Results are shown in Figure 6, where we report the
average 𝑞alg and its standard deviation over ten runs. The size of
the bag of samples used to compute 𝑞alg is set to 500.

As captured by our analysis, the value of 𝑞alg well-aligns with
a good value of 𝑞 obtained from the grid of tested values, on each
configuration. In fact, 𝑞alg often overlaps with the 𝑞 yielding the
minimum supremum error from the grid. For example, on the top-
left plot the best value on the grid is𝑞 = 0.01 while𝑞alg = 0.03±0.02,
highlighting that our method properly selects a good value for 𝑞,
yielding small estimation variance.

4.5 Case study—academic collaborations
In this section we analyze collaboration patterns in different com-
munities of the DBLP network using Triad, answering Q4.
Setting. DBLP collects bibliographic information about all ma-
jor computer science journals and proceedings publications.10 For

10https://dblp.org/

each time-period of five consecutive years from 1970 to 2024, we
collected the respective set of publications over DBLP. On each
time period 𝑡1 = [1970, 1975], 𝑡2 = [1975, 1980], . . . we build a
graph 𝐺𝑡𝑖 = (𝑉𝑡𝑖 , 𝐸𝑡𝑖), with 𝑉𝑡𝑖 consisting of authors, and edges
corresponding to authors sharing a common publication. We then
classified the authors, on each graph 𝐺𝑡𝑖 , according to their re-
search community. The resulting categories are reported in the
legend of Figure 7, additional details on the classification are in in
our extended version [46].

For each graph we computed the average triadic coefficients
over each category. We then investigated if the analysis of the
coefficients 𝑓𝑗 , 𝑗 ∈ [𝑘], provides us insights into similarities and
differences of collaboration patterns over different communities.
Results. We observe in Figure 7 some interesting trends. For most of
the communities, the average local clustering coefficient increases
or remains stable over the years. Instead, the average local closure
coefficient mostly decreases, for all but the computational-biology
community. This can be explained by the fact that, new nodes over
the network, are likely to have a small local closure coefficient
when they collaborate with an author having many coauthors (e.g.,
students publishing with their advisor). Instead, it is easier for novel
nodes on the network to a have higher local clustering coefficient,
e.g., by collaborations within research groups. In addition, it is also
easier for authors already belonging to the network to increase
their local clustering coefficient over time, e.g., by publishing more.

There is a, perhaps surprising, increase in the average local clo-
sure coefficient for the computational-biology community over time.
This could be explained by the fact that publications in this area
require the joint effort of many authors, which likely increases the
density of the connections of the authors in the graphs. Such an as-
pect can be observed in Figure 8, where we see that the structure of
collaborations over the computational biology category forms many
cliques. On the other hand, the structure of the graph of the data
management community is more sparse, containing some chain
structures. We further visualize the subgraph of other categories
in our extended manuscript [46]. We conclude by noting that the
average local clustering coefficient is significantly higher (ranging
from 0.4 to more than 0.6) than the average local closure coefficient
(which does not exceed 0.35) over all communities. This may be
related to the nature of academic collaborations, where publishing
with established researchers decreases the local closure coefficient
of novel researchers on average. We further discuss that the above
results cannot be uniquely explained by the degree distribution of
the various nodes, in our extended version [46].
Summary. We analyzed the average local clustering (and closure)
coefficients over different computer science communities across
time. We observed that the values of the triadic coefficient can cap-
ture different collaboration patterns. For example, capturing highly
collaborative (computational biology) and more sparse (data man-
agement) communities. Our findings show an example of a simple
analysis using Problem 1 to gain better insights into publication
and collaboration patterns in different research communities.

5 RELATED WORK
The problems addressed in this paper are closely related to counting
triangles in graphs, which has been studied extensively. Thus, an

2571

https://dblp.org/

Table 2: Comparison of Triad and existing state-of-the-art
approaches. Ψ: if the algorithm can estimate 𝛼 , 𝜙 , or both.
“Adaptive” denotes if the estimates adapt to the partitionsV.
“Number of samples” denotes the number of samples pro-
cessed. Finally “Processing complexity” denotes the time to
process a sample, assuming O(1) time complexity to check
the existence of an edge. For ThinkD, 𝑟 denotes the number
of retained edges, which depends on 𝜀−2.

Algorithm Ψ Adaptive Number of Processing
samples complexity

Triad 𝛼, 𝜙 ! Ω
(︂
𝑅 log𝑘/𝜂

𝜀

)︂
and O

(︂
𝑅2 (𝜁+log 1/𝜂)

𝜀2

)︂
O(𝑑max)

WS-𝛼 [48] 𝛼 % Θ
(︁
𝑘𝜀−2 log𝑘/𝜂)︁ O(1)

WS-𝜙 𝜙 % Θ
(︁
𝑘𝜀−2 log𝑘/𝜂)︁ O(𝑑max)

LCE [14] 𝛼 % Θ
(︁
𝑚2𝜀−2 (log𝑑max + log 1/𝜂))︁ O(𝑑max)

ECC [26] 𝛼 % O(𝜀−2 log𝑛/𝜂) O(𝑚 log 𝜀−1)
ThinkD [54] 𝛼 % O(𝑟) Θ(𝑚)

extensive review is outside the scope [3, 49], instead, we focus only
on discussing the most relevant problem settings and techniques.
Clustering and closure coefficient algorithms. The local clus-
tering coefficient was first introduced by Watts and Strogatz [60].
Since their seminal work, many algorithms have been developed
to efficiently compute related graph statistics. Many approaches
consider both the approximation of the global clustering coeffi-
cient [12, 47], which is the local clustering coefficient averaged over
all nodes in the graph, and the transitivity coefficient, which is the
fraction of closed triangles over all the wedges in the graph [16],
or weighted versions [27]. Interestingly, Triad can be adapted to
compute all those coefficients with minimal modifications.

Many algorithms have been designed for computing the local
clustering coefficient in restricted access models, such as (𝑖) when
the graph can be explored only through random walks [18]; (𝑖𝑖) when
the graph is accessed in a (semi-)streaming fashion [7, 26]; or
(𝑖𝑖𝑖) distributed environments [24]. Given that these works focus
on restrictive scenarios, they require a large number of samples
and often do not offer accurate guarantees.

The works most related to our formulation are by Etemadi and Lu
[16], and Seshadhri et al. [48] who developed wedge-sampling algo-
rithms, which, for each partition, sample wedges (i.e., our baseline
considered in Section 4.3). These algorithms require a significantly
high sample size, i.e., Θ(𝑘𝜀−2 log(𝑘/𝜂)), which is tight [6]. There-
fore these algorithms become impractical for small values of 𝜀, as
also demonstrated in our experiments.

Recently, de Lima et al. [14] developed an algorithm based on
sampling edges and collecting their incident triangles, to approx-
imate the local clustering coefficient of nodes with high-degree.
The authors prove an upper bound on the sample complexity using
VC-dimension. While their approach is similar in spirit to ours, it
is significantly less general, i.e., their approach can be obtained by
our class of estimators setting 𝑞 = 0 in Equation (1). Their approach
is also significantly less efficient, as their algorithm is based on
data-independent bounds. In addition, our bound, as captured by
Corollary 3.9, is significantly tighter than theirs.

Surprisingly, not much work has been done on algorithms for the
closure coefficient. Recent works only quantify how this coefficient
evolves in random networks [67].

Triangle-counting algorithms. As already noted, triangle count-
ing is a wide area of research [4, 15, 25, 30, 57]. Most existing works
address the problem of computing global triangle counts, and can-
not therefore be used in our setting. Several works have been instead
developed for local triangle counting. Exact methods [30, 37] are
prohibitive for large networks, and sampling methods are designed
for streaming settings [1, 53–55]. Those algorithms can provide
accurate estimates for the local clustering coefficient when nodes
have very high degree, while they are highly inaccurate for nodes
with small degree. Note that this is a significant limitation for the
setting we consider in this paper, where partitions may contain a
large number of nodes with small degree.
Subgraph-counting algorithms. Another related problem is the
one of counting subgraph occurrences, for which many different
methods have been proposed [11, 19, 30, 40, 44, 45]. While these
algorithms can be effectively used to count subgraph occurrences
with respect to specific or multiple subgraph patterns, they cannot
be easily adapted to extract high-quality local subgraph counts and
average local triadic coefficients, as considered in Problem 1. Finally,
Ahmed et al. [2] develop methods to estimate local subgraph counts,
but compute exactly all triangles in the graph.

A summary of the key differences with most related works is
reported in Table 2. Note that the last two algorithms are for stream-
ing settings [26, 54], hence we did not consider them in Section 4,
as they are designed for a more restrictive data-access model, yield-
ing more inefficient methods. We observe from Table 2 that de-
pending on the evaluation of the adaptive bounds on the given
datasets Triad can be highly efficient (i.e., when 𝑅 is small), im-
proving significantly over existing methods as shown in Section 4.

6 CONCLUSION
We studied the problem of efficiently computing the average of local
triadic coefficients. We designed Triad, an efficient and adaptive
sampling algorithm. Triad estimates both the average local clus-
tering coefficient and the recently-introduced average local closure
coefficient, for which no algorithmic techniques were previously
known. We showed that Triad is efficient and reports extremely
accurate estimates, especially compared with existing methods.

There are several interesting directions for future work, such
considering Triad for averages of local coefficients, which depend
on the given partitions (e.g., a triangle is weighted differently if
it contains nodes from different buckets), and weighted variants
of the clustering and closure coefficients [27]. Another interesting
direction is to adapt Triad for a multi-pass streaming setting [7, 26].
Finally, it will be interesting to study whether it is possible to design
tighter bounds on the sample complexity, e.g., based on Rademacher
complexity [38, 39].

ACKNOWLEDGMENTS
We thank Fabio Vandin for providing us the computing infrastruc-
ture. This research is supported by the ERC Advanced Grant RE-
BOUND (834862), the EC H2020 RIA project SoBigData++ (871042),
and the Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wallenberg Foundation.

2572

REFERENCES
[1] Nesreen K. Ahmed, Nick Duffield, Theodore L. Willke, and Ryan A. Rossi. 2017.

On sampling from massive graph streams. Proceedings of the VLDB Endowment

10, 11 (Aug. 2017), 1430–1441. https://doi.org/10.14778/3137628.3137651
[2] Nesreen K. Ahmed, Theodore L. Willke, and Ryan A. Rossi. 2016. Estimation of

local subgraph counts. In 2016 IEEE International Conference on Big Data (Big

Data). IEEE. https://doi.org/10.1109/bigdata.2016.7840651
[3] Mohammad Al Hasan and Vachik S. Dave. 2017. Triangle counting in large

networks: a review. WIREs Data Mining and Knowledge Discovery 8, 2 (Oct. 2017).
https://doi.org/10.1002/widm.1226

[4] David A. Bader. 2023. Fast Triangle Counting. In 2023 IEEE High Performance

Extreme Computing Conference (HPEC). IEEE, 1–6. https://doi.org/10.1109/
hpec58863.2023.10363539

[5] David A. Bader, Fuhuan Li, Zhihui Du, Palina Pauliuchenka, Oliver Alvarado
Rodriguez, Anant Gupta, Sai Sri Vastav Minnal, Valmik Nahata, Anya Ganeshan,
Ahmet Gundogdu, and Jason Lew. 2024. Cover Edge-Based Novel Triangle
Counting. https://doi.org/10.48550/ARXIV.2403.02997

[6] Thomas Baignères, Pascal Junod, and Serge Vaudenay. 2004. How Far Can We

Go Beyond Linear Cryptanalysis? Springer Berlin Heidelberg, 432–450. https:
//doi.org/10.1007/978-3-540-30539-2_31

[7] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2010. Efficient
algorithms for large-scale local triangle counting. ACM Transactions on Knowl-

edge Discovery from Data 4, 3 (oct 2010), 1–28. https://doi.org/10.1145/1839490.
1839494

[8] Sourav S. Bhowmick and Boon Siew Seah. 2016. Clustering and Summarizing
Protein-Protein Interaction Networks: A Survey. IEEE Transactions on Knowledge
and Data Engineering 28, 3 (March 2016), 638–658. https://doi.org/10.1109/tkde.
2015.2492559

[9] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. 2019. Spectral
Clustering with Graph Neural Networks for Graph Pooling. https://doi.org/10.
48550/ARXIV.1907.00481

[10] Michele Borassi and Emanuele Natale. 2019. KADABRA is an ADaptive Algo-
rithm for Betweenness via Random Approximation. ACM Journal of Experimental

Algorithmics 24 (Feb. 2019), 1–35. https://doi.org/10.1145/3284359
[11] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. 2019. Motivo: fast

motif counting via succinct color coding and adaptive sampling. Proceedings of
the VLDB Endowment 12, 11 (July 2019), 1651–1663. https://doi.org/10.14778/
3342263.3342640

[12] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, and Christian Sohler. [n.d.].
Estimating Clustering Indexes in Data Streams. Springer Berlin Heidelberg, 618–
632. https://doi.org/10.1007/978-3-540-75520-3_55

[13] Marek Ciglan, Alex Averbuch, and Ladialav Hluchy. 2012. Benchmarking Traver-
sal Operations over Graph Databases. In 2012 IEEE 28th International Conference

on Data Engineering Workshops. IEEE, 186–189. https://doi.org/10.1109/icdew.
2012.47

[14] Alane M. de Lima, Murilo V. G. da Silva, and André L. Vignatti. 2022. Estimating

the Clustering Coefficient Using Sample Complexity Analysis. Springer Interna-
tional Publishing, 328–341. https://doi.org/10.1007/978-3-031-20624-5_20

[15] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. 2017. Approximately Count-
ing Triangles in Sublinear Time. SIAM J. Comput. 46, 5 (Jan. 2017), 1603–1646.
https://doi.org/10.1137/15m1054389

[16] Roohollah Etemadi and Jianguo Lu. 2017. Bias correction in clustering coefficient
estimation. In 2017 IEEE International Conference on Big Data (Big Data). IEEE,
606–615. https://doi.org/10.1109/bigdata.2017.8257976

[17] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,
and Xuemin Lin. 2019. A survey of community search over big graphs. The VLDB
Journal 29, 1 (July 2019), 353–392. https://doi.org/10.1007/s00778-019-00556-x

[18] Stephen J. Hardiman and Liran Katzir. 2013. Estimating clustering coefficients and
size of social networks via random walk. In Proceedings of the 22nd international

conference on World Wide Web (WWW ’13). ACM, 539–550. https://doi.org/10.
1145/2488388.2488436

[19] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. Path Sampling. In Proceedings of

the 24th International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee. https://doi.org/10.1145/2736277.2741101

[20] Bin Jiang, Sijian Zhao, and Junjun Yin. 2008. Self-organized natural roads for
predicting traffic flow: a sensitivity study. Journal of Statistical Mechanics: Theory

and Experiment 2008, 07 (July 2008), P07008. https://doi.org/10.1088/1742-5468/
2008/07/p07008

[21] Ruoming Jin, Victor E. Lee, and Hui Hong. 2011. Axiomatic ranking of network
role similarity. In Proceedings of the 17th ACM SIGKDD international conference

on Knowledge discovery and data mining (KDD ’11). ACM, 922–930. https:
//doi.org/10.1145/2020408.2020561

[22] Marcus Kaiser. 2008. Mean clustering coefficients: the role of isolated nodes and
leafs on clustering measures for small-world networks. New Journal of Physics

10, 8 (Aug. 2008), 083042. https://doi.org/10.1088/1367-2630/10/8/083042
[23] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel

Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing

20, 1 (Jan. 1998), 359–392. https://doi.org/10.1137/s1064827595287997

[24] Tamara G. Kolda, Ali Pinar, Todd Plantenga, C. Seshadhri, and Christine Task.
2014. Counting Triangles in Massive Graphs with MapReduce. SIAM Journal on

Scientific Computing 36, 5 (jan 2014), S48–S77. https://doi.org/10.1137/13090729x
[25] Mihail N. Kolountzakis, Gary L. Miller, Richard Peng, and Charalampos E.

Tsourakakis. 2012. Efficient Triangle Counting in Large Graphs via Degree-
Based Vertex Partitioning. Internet Mathematics 8, 1-2 (mar 2012), 161–185.
https://doi.org/10.1080/15427951.2012.625260

[26] Konstantin Kutzkov and Rasmus Pagh. 2013. On the streaming complexity of
computing local clustering coefficients. In Proceedings of the sixth ACM inter-

national conference on Web search and data mining (WSDM 2013), Vol. 5. ACM,
677–686. https://doi.org/10.1145/2433396.2433480

[27] Silvio Lattanzi and Stefano Leonardi. 2016. Efficient computation of the Weighted
Clustering Coefficient. Internet Mathematics 12, 6 (June 2016), 381–401. https:
//doi.org/10.1080/15427951.2016.1198281

[28] Jure Leskovec, Ajit Singh, and Jon Kleinberg. 2006. Patterns of Influence in a

Recommendation Network. Springer Berlin Heidelberg, 380–389. https://doi.org/
10.1007/11731139_44

[29] Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Network Anal-
ysis and Graph-Mining Library. ACM Transactions on Intelligent Systems and

Technology 8, 1 (July 2016), 1–20. https://doi.org/10.1145/2898361
[30] Qiyan Li and Jeffrey Xu Yu. 2024. Fast Local Subgraph Counting. Proceedings of

the VLDB Endowment 17, 8 (April 2024), 1967–1980. https://doi.org/10.14778/
3659437.3659451

[31] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2015. Influential community
search in large networks. Proceedings of the VLDB Endowment 8, 5 (Jan. 2015),
509–520. https://doi.org/10.14778/2735479.2735484

[32] Yusheng Li, Yilun Shang, and Yiting Yang. 2017. Clustering coefficients of
large networks. Information Sciences 382–383 (March 2017), 350–358. https:
//doi.org/10.1016/j.ins.2016.12.027

[33] Andreas Maurer and Massimiliano Pontil. 2009. Empirical Bernstein Bounds and
Sample Variance Penalization. (July 2009). https://doi.org/10.48550/ARXIV.0907.
3740 arXiv:0907.3740 [stat.ML]

[34] Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves Audibert. 2008. Empirical
Bernstein stopping. In Proceedings of the 25th international conference on Machine

learning - ICML ’08 (ICML ’08). ACM Press, 672–679. https://doi.org/10.1145/
1390156.1390241

[35] Mark Newman. 2018. Networks. Oxford University Press. https://doi.org/10.
1093/oso/9780198805090.001.0001

[36] Xiaohui Pan, Guiqiong Xu, Bing Wang, and Tao Zhang. 2019. A Novel Community
Detection Algorithm Based on Local Similarity of Clustering Coefficient in Social
Networks. IEEE Access 7 (2019), 121586–121598. https://doi.org/10.1109/access.
2019.2937580

[37] Noujan Pashanasangi and C. Seshadhri. 2020. Efficiently Counting Vertex Orbits
of All 5-vertex Subgraphs, by EVOKE. In Proceedings of the 13th International

Conference on Web Search and Data Mining (WSDM ’20). ACM. https://doi.org/
10.1145/3336191.3371773

[38] Leonardo Pellegrina. 2023. Efficient Centrality Maximization with Rademacher
Averages. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining. ACM. https://doi.org/10.1145/3580305.3599325
[39] Leonardo Pellegrina and Fabio Vandin. 2023. SILVAN: Estimating Betweenness

Centralities with Progressive Sampling and Non-uniform Rademacher Bounds.
ACM Transactions on Knowledge Discovery from Data 18, 3 (Dec. 2023), 1–55.
https://doi.org/10.1145/3628601

[40] Mahmudur Rahman, Mansurul Alam Bhuiyan, and Mohammad Al Hasan. 2014.
Graft: An Efficient Graphlet Counting Method for Large Graph Analysis. IEEE
Transactions on Knowledge and Data Engineering 26, 10 (Oct. 2014), 2466–2478.
https://doi.org/10.1109/tkde.2013.2297929

[41] Matteo Riondato and Eli Upfal. 2018. ABRA: Approximating Betweenness
Centrality in Static and Dynamic Graphs with Rademacher Averages. ACM

Transactions on Knowledge Discovery from Data 12, 5 (July 2018), 1–38. https:
//doi.org/10.1145/3208351

[42] Matteo Riondato and Fabio Vandin. 2018. MiSoSouP: Mining Interesting Sub-
groups with Sampling and Pseudodimension. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD

’18). ACM. https://doi.org/10.1145/3219819.3219989
[43] Ryan Rossi and Nesreen Ahmed. 2015. The Network Data Repository with

Interactive Graph Analytics and Visualization. Proceedings of the AAAI Conference
on Artificial Intelligence 29, 1 (March 2015). https://doi.org/10.1609/aaai.v29i1.
9277

[44] Ryan A. Rossi, Nesreen K. Ahmed, Aldo Carranza, David Arbour, Anup Rao,
Sungchul Kim, and Eunyee Koh. 2019. Heterogeneous Network Motifs. (Jan.
2019). https://doi.org/10.48550/ARXIV.1901.10026 arXiv:1901.10026 [cs.SI]

[45] Ryan A. Rossi, Anup Rao, Tung Mai, and Nesreen K. Ahmed. 2020. Fast and
Accurate Estimation of Typed Graphlets. In Companion Proceedings of the Web

Conference 2020. ACM. https://doi.org/10.1145/3366424.3382683
[46] Ilie Sarpe and Aristides Gionis. 2025. Efficient and Adaptive Estimation of Local

Triadic Coefficients. arXiv (2025).

2573

https://doi.org/10.14778/3137628.3137651
https://doi.org/10.1109/bigdata.2016.7840651
https://doi.org/10.1002/widm.1226
https://doi.org/10.1109/hpec58863.2023.10363539
https://doi.org/10.1109/hpec58863.2023.10363539
https://doi.org/10.48550/ARXIV.2403.02997
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1145/1839490.1839494
https://doi.org/10.1145/1839490.1839494
https://doi.org/10.1109/tkde.2015.2492559
https://doi.org/10.1109/tkde.2015.2492559
https://doi.org/10.48550/ARXIV.1907.00481
https://doi.org/10.48550/ARXIV.1907.00481
https://doi.org/10.1145/3284359
https://doi.org/10.14778/3342263.3342640
https://doi.org/10.14778/3342263.3342640
https://doi.org/10.1007/978-3-540-75520-3_55
https://doi.org/10.1109/icdew.2012.47
https://doi.org/10.1109/icdew.2012.47
https://doi.org/10.1007/978-3-031-20624-5_20
https://doi.org/10.1137/15m1054389
https://doi.org/10.1109/bigdata.2017.8257976
https://doi.org/10.1007/s00778-019-00556-x
https://doi.org/10.1145/2488388.2488436
https://doi.org/10.1145/2488388.2488436
https://doi.org/10.1145/2736277.2741101
https://doi.org/10.1088/1742-5468/2008/07/p07008
https://doi.org/10.1088/1742-5468/2008/07/p07008
https://doi.org/10.1145/2020408.2020561
https://doi.org/10.1145/2020408.2020561
https://doi.org/10.1088/1367-2630/10/8/083042
https://doi.org/10.1137/s1064827595287997
https://doi.org/10.1137/13090729x
https://doi.org/10.1080/15427951.2012.625260
https://doi.org/10.1145/2433396.2433480
https://doi.org/10.1080/15427951.2016.1198281
https://doi.org/10.1080/15427951.2016.1198281
https://doi.org/10.1007/11731139_44
https://doi.org/10.1007/11731139_44
https://doi.org/10.1145/2898361
https://doi.org/10.14778/3659437.3659451
https://doi.org/10.14778/3659437.3659451
https://doi.org/10.14778/2735479.2735484
https://doi.org/10.1016/j.ins.2016.12.027
https://doi.org/10.1016/j.ins.2016.12.027
https://doi.org/10.48550/ARXIV.0907.3740
https://doi.org/10.48550/ARXIV.0907.3740
https://arxiv.org/abs/0907.3740
https://doi.org/10.1145/1390156.1390241
https://doi.org/10.1145/1390156.1390241
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1109/access.2019.2937580
https://doi.org/10.1109/access.2019.2937580
https://doi.org/10.1145/3336191.3371773
https://doi.org/10.1145/3336191.3371773
https://doi.org/10.1145/3580305.3599325
https://doi.org/10.1145/3628601
https://doi.org/10.1109/tkde.2013.2297929
https://doi.org/10.1145/3208351
https://doi.org/10.1145/3208351
https://doi.org/10.1145/3219819.3219989
https://doi.org/10.1609/aaai.v29i1.9277
https://doi.org/10.1609/aaai.v29i1.9277
https://doi.org/10.48550/ARXIV.1901.10026
https://arxiv.org/abs/1901.10026
https://doi.org/10.1145/3366424.3382683

[47] Thomas Schank and Dorothea Wagner. 2005. Approximating Clustering Coeffi-
cient and Transitivity. Journal of Graph Algorithms and Applications 9, 2 (2005),
265–275. https://doi.org/10.7155/jgaa.00108

[48] C. Seshadhri, Ali Pinar, and Tamara G. Kolda. 2014. Wedge sampling for com-
puting clustering coefficients and triangle counts on large graphs. Statistical

Analysis and Data Mining: The ASA Data Science Journal 7, 4 (may 2014), 294–307.
https://doi.org/10.1002/sam.11224

[49] Comandur Seshadhri and Srikanta Tirthapura. 2019. Scalable Subgraph Counting:
The Methods Behind The Madness. In Companion Proceedings of The 2019 World

Wide Web Conference (WWW ’19). ACM, 1317–1318. https://doi.org/10.1145/
3308560.3320092

[50] Shai Shalev-Shwartz. 2014. Understandingmachine learning. Cambrige University
Press, Cambridge. Hier auch später erschienene, unveränderte Nachdrucke.

[51] Shubhanshu Shekhar and Aaditya Ramdas. 2023. On the near-optimality of
betting confidence sets for bounded means. https://doi.org/10.48550/ARXIV.
2310.01547

[52] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. 2017. A survey
of heterogeneous information network analysis. IEEE Transactions on Knowledge

and Data Engineering 29, 1 (Jan. 2017), 17–37. https://doi.org/10.1109/tkde.2016.
2598561

[53] Kijung Shin. 2017. WRS: Waiting Room Sampling for Accurate Triangle Counting
in Real Graph Streams. In 2017 IEEE International Conference on Data Mining

(ICDM). IEEE, 1087–1092. https://doi.org/10.1109/icdm.2017.143
[54] Kijung Shin, Sejoon Oh, Jisu Kim, Bryan Hooi, and Christos Faloutsos. 2020.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams.
ACM Transactions on Knowledge Discovery from Data 14, 2 (Feb. 2020), 1–39.
https://doi.org/10.1145/3375392

[55] Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. 2017.
TRIÈST: Counting Local and Global Triangles in Fully Dynamic Streams with
Fixed Memory Size. ACM Transactions on Knowledge Discovery from Data 11, 4
(June 2017), 1–50. https://doi.org/10.1145/3059194

[56] Yizhou Sun and Jiawei Han. 2013. Mining heterogeneous information networks:
a structural analysis approach. ACM SIGKDD explorations newsletter 14, 2 (2013),
20–28.

[57] Charalampos E. Tsourakakis, U. Kang, Gary L. Miller, and Christos Faloutsos.
2009. DOULION. In Proceedings of the 15th ACM SIGKDD international conference

on Knowledge discovery and data mining. ACM. https://doi.org/10.1145/1557019.
1557111

[58] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. 2011. The
Anatomy of the Facebook Social Graph. https://doi.org/10.48550/ARXIV.1111.
4503

[59] Pinghui Wang, Junzhou Zhao, Xiangliang Zhang, Zhenguo Li, Jiefeng Cheng,
John C.S. Lui, Don Towsley, Jing Tao, and Xiaohong Guan. 2018. MOSS-5: A
Fast Method of Approximating Counts of 5-Node Graphlets in Large Graphs.
IEEE Transactions on Knowledge and Data Engineering 30, 1 (Jan. 2018), 73–86.
https://doi.org/10.1109/tkde.2017.2756836

[60] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-
world’ networks. Nature 393, 6684 (jun 1998), 440–442. https://doi.org/10.1038/
30918

[61] Ian Waudby-Smith and Aaditya Ramdas. 2023. Estimating means of bounded
random variables by betting. Journal of the Royal Statistical Society Series B:

Statistical Methodology 86, 1 (Feb. 2023), 1–27. https://doi.org/10.1093/jrsssb/
qkad009

[62] Zhihao Wu, Youfang Lin, Jing Wang, and Steve Gregory. 2016. Link predic-
tion with node clustering coefficient. Physica A: Statistical Mechanics and its

Applications 452 (June 2016), 1–8. https://doi.org/10.1016/j.physa.2016.01.038
[63] Junming Xu. 2001. Topological Structure and Analysis of Interconnection Networks.

Springer US. https://doi.org/10.1007/978-1-4757-3387-7
[64] Hao Yin, Austin R. Benson, and Jure Leskovec. 2018. Higher-order clustering in

networks. Physical Review E 97, 5 (May 2018), 052306. https://doi.org/10.1103/
physreve.97.052306

[65] Hao Yin, Austin R. Benson, and Jure Leskovec. 2019. The Local Closure Coeffi-
cient: A New Perspective On Network Clustering. In Proceedings of the Twelfth

ACM International Conference on Web Search and Data Mining (WSDM ’19). ACM.
https://doi.org/10.1145/3289600.3290991

[66] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. 2017. Local Higher-
Order Graph Clustering. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD ’17). ACM. https:
//doi.org/10.1145/3097983.3098069

[67] M. Yuan. 2024. Central limit theorem for the average closure coefficient. Acta
Mathematica Hungarica 172, 2 (March 2024), 543–569. https://doi.org/10.1007/
s10474-024-01416-z

[68] Chi Zhang, Wenkai Xiang, Xingzhi Guo, Baojian Zhou, and Deqing Yang.
2023. SubAnom: Efficient Subgraph Anomaly Detection Framework over Dy-
namic Graphs. In 2023 IEEE International Conference on Data Mining Workshops

(ICDMW). IEEE, 1178–1185. https://doi.org/10.1109/icdmw60847.2023.00154
[69] Hao Zhang, Yuanyuan Zhu, Lu Qin, Hong Cheng, and Jeffrey Xu Yu. 2017. Efficient

Local Clustering Coefficient Estimation in Massive Graphs. Springer International
Publishing, 371–386. https://doi.org/10.1007/978-3-319-55699-4_23

[70] Kangfei Zhao, Jeffrey Xu Yu, Hao Zhang, Qiyan Li, and Yu Rong. 2021. A Learned
Sketch for Subgraph Counting. In Proceedings of the 2021 International Conference

on Management of Data (SIGMOD/PODS ’21). ACM. https://doi.org/10.1145/
3448016.3457289

2574

https://doi.org/10.7155/jgaa.00108
https://doi.org/10.1002/sam.11224
https://doi.org/10.1145/3308560.3320092
https://doi.org/10.1145/3308560.3320092
https://doi.org/10.48550/ARXIV.2310.01547
https://doi.org/10.48550/ARXIV.2310.01547
https://doi.org/10.1109/tkde.2016.2598561
https://doi.org/10.1109/tkde.2016.2598561
https://doi.org/10.1109/icdm.2017.143
https://doi.org/10.1145/3375392
https://doi.org/10.1145/3059194
https://doi.org/10.1145/1557019.1557111
https://doi.org/10.1145/1557019.1557111
https://doi.org/10.48550/ARXIV.1111.4503
https://doi.org/10.48550/ARXIV.1111.4503
https://doi.org/10.1109/tkde.2017.2756836
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1093/jrsssb/qkad009
https://doi.org/10.1093/jrsssb/qkad009
https://doi.org/10.1016/j.physa.2016.01.038
https://doi.org/10.1007/978-1-4757-3387-7
https://doi.org/10.1103/physreve.97.052306
https://doi.org/10.1103/physreve.97.052306
https://doi.org/10.1145/3289600.3290991
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1007/s10474-024-01416-z
https://doi.org/10.1007/s10474-024-01416-z
https://doi.org/10.1109/icdmw60847.2023.00154
https://doi.org/10.1007/978-3-319-55699-4_23
https://doi.org/10.1145/3448016.3457289
https://doi.org/10.1145/3448016.3457289

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methods
	3.1 New estimates for local counts
	3.2 The Triad algorithm
	3.3 Analysis
	3.4 Practical optimizations
	3.5 Time and memory complexity
	3.6 Adaptive guarantees

	4 Experimental evaluation
	4.1 Setting
	4.2 Accuracy of estimates and efficiency
	4.3 Comparison with state-of-the-art
	4.4 Runtime and parameter sensitivity
	4.5 Case study—academic collaborations

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

