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ABSTRACT
Database Management Systems (DBMSs) utilize transactions to
guarantee data consistency and integrity. Incorrect implementa-
tions of transaction processing mechanisms can introduce critical
transaction bugs, which can lead to incorrect database states after
the involved transactions complete. However, we lack an effec-
tive test oracle to determine whether a DBMS produces a correct
database state for a given concurrent transaction schedule.

In this paper, we propose a general property for concurrent trans-
action schedules,write-specific serializability, in which a schedule of
concurrent transactions should produce the same database state as
a corresponding serial schedule of the same transactions. Through
our empirical study on 35 critical transaction bugs collected from
six widely-used DBMSs, we find that write-specific serializability
can be an effective test oracle to expose critical transaction bugs in
DBMSs. We further develop a simple and general transaction test-
ing approach, WriteCheck, to automatically detect write-specific
serializability violations by identifying inconsistencies in the final
database states produced by the original transaction schedule and
its corresponding serial schedule. We evaluate WriteCheck on the
latest versions of six production-grade DBMSs, and have found
22 write-specific serializability violations, 11 of which have been
confirmed as new critical transaction bugs.

PVLDB Reference Format:
Ziyu Cui, Wensheng Dou, Yu Gao, Rui Yang, Yingying Zheng, Jiansen Song,
Yuan Feng, and Jun Wei. Simple Testing Can Expose Most Critical
Transaction Bugs: Understanding and Detecting Write-Specific
Serializability Violations in Database Systems. PVLDB, 18(8): 2547 - 2560,
2025.
doi:10.14778/3742728.3742747

∗Affiliated with Key Lab of System Software at CAS, State Key Lab of Computer Science
at Institute of Software at CAS, and University of CAS, Beijing. CAS is the abbreviation
of Chinese Academy of Sciences.
†Affiliated with Nanjing Institute of Software Technology, University of CAS, Nanjing.
‡Wensheng Dou is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742747

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/tcse-iscas/WriteCheck.

1 INTRODUCTION
Database Management Systems (DBMSs) have been widely used
to efficiently store and retrieve data in many applications. Many
DBMSs, e.g., MySQL [10], PostgreSQL [12], SQLite [15], MariaDB
[9], CockroachDB [2] and TiDB [18], utilize the relational data
model [35] to organize data, and Structured Query Language (SQL)
[33] to access relational data. Specifically, DBMSs leverage read
operations (e.g., SELECT) to retrieve data, and write operations (e.g.,
INSERT, UPDATE and DELETE) to modify data.

DBMSs utilize transaction processing mechanisms to guarantee
data consistency and integrity. A transaction is an indivisible unit
of work that should be executed as a whole. An explicit transac-
tion consists of a transaction starting statement (e.g., BEGIN), some
SQL statements that retrieve and modify data, and a transaction
ending statement (e.g., COMMIT and ROLLBACK). When the autocom-
mit mode is enabled, each SQL statement that is not wrapped in
explicit transactions, i.e., autocommit statement, forms an implicit
transaction on its own. We name an autocommit statement as an
ACS transaction for easy presentation.

DBMSs ensure that transactions satisfy ACID properties [28, 36,
39, 49, 66] despite errors andmishaps [1, 19, 20, 23–25, 32]. However,
incorrect implementations of transaction processing mechanisms
in DBMSs can introduce transaction bugs (txBugs for short) that
violate the claimed ACID properties. In this paper, we mainly focus
on txBugs that lead to incorrect database states after the involved
transactions complete. To distinguish these txBugs from others, we
call them as critical txBugs1. Critical txBugs in DBMSs are difficult
to detect automatically. A key challenge is to come up with an ef-
fective test oracle, which can determine whether a DBMS produces
a correct database state for a concurrent transaction schedule.

Existing transaction verification [28, 34, 49, 66] and testing [36,
39, 45] approaches can be used to detect critical txBugs. However,
these approaches have obvious limitations. Transaction verification

1txBugs can also lead to other consequences, e.g., wrong query results and performance
degradation. Once the involved transactions complete, the database states remain
correct. These txBugs can also be highly valued by DBMS developers.
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approaches (e.g., Biswas et al. [28], Emme [34], Elle [49] and Cobra
[66]) can only work on simple 𝑘𝑒𝑦-𝑣𝑎𝑙𝑢𝑒-like data models, and
can only detect isolation bugs (a subset of txBugs) that violate an
isolation level claimed by the target DBMS. They cannot support
non-𝑘𝑒𝑦-𝑣𝑎𝑙𝑢𝑒-like data models and complex SQL features (e.g.,
sub queries and complex predicates), which are commonly used
in DBMSs. Transaction testing approaches [36, 39, 45] leverage
differential testing and sophisticated transaction oracle construction
to detect txBugs. However, these approaches can only work on
common features supported by multiple DBMSs [36], or support
limited SQL features [39, 45], or are impaired by incorrect statement
dependency inference [45] (more details in Section 6.5). Therefore,
existing approaches can miss many critical txBugs.

Write-specific serializability. DBMSs usually support multi-
ple isolation levels, e.g., Read Committed, Repeatable Read and
Serializable in MySQL. We observe that, for these isolation lev-
els, a transaction cannot overwrite a data item that has previously
been written by another in-flight transaction [1, 19, 20, 25]. There-
fore, concurrent transactions that contain write-write conflicting
operations should be blocked or aborted. This observation moti-
vates us to propose write-specific serializability (WSS for short), a
general property for write operations in concurrent transactions:
A scheduleH𝑐𝑜𝑛 of concurrent transactions should produce the same
final database state after executingH𝑐𝑜𝑛 as that produced by a cor-
responding serial scheduleH𝑠𝑒𝑟 of the same transactions. Otherwise,
a WSS violation occurs, and H𝑐𝑜𝑛 will produce an incorrect final
database state, i.e., causing a critical txBug.

WSS is different from conflict serializability [70], in which a sched-
ule of concurrent transactions should produce the same effect for
all operations (e.g., read and write) and the same database state as a
corresponding serial schedule of the same transactions. WSS only
focuses on the effect of write operations, and ignores read opera-
tions. Therefore, WSS is a weaker property than conflict serializabil-
ity. However, WSS can be applied on all isolation levels defined by
Adya [19], while conflict serializability can only be applied on the
Serializable isolation level.

Empirical study on WSS violations. To better understand WSS
violations and WSS’s capability to expose critical txBugs, we conduct
the first empirical study on 35 real-world critical txBugs, which are
collected from six widely-used DBMSs, i.e., MySQL, PostgreSQL,
SQLite, MariaDB, CockroachDB and TiDB. We thoroughly analyze
these critical txBugs, and obtain several interesting findings.
• In most (91.4%) critical txBugs, their transaction test cases violate

WSS. This indicates that WSS can be an effective test oracle to
expose critical txBugs in DBMSs.

• All studied WSS violations can be triggered by small transaction
test cases, and follow the small scope hypothesis [43]. All WSS
violations require no more than two initial tables, and no more
than five transactions. Almost all (96.0%) involved transactions
contain no more than five statements.

• Most (90.6%) WSS violations can be triggered by deterministically
executing the SQL statements in the transaction test cases in a
certain order.
WSS violation detection. Based on these findings, we further

develop WriteCheck, a simple and general transaction testing ap-
proach to detect WSS violations. We first generate a deterministic

transaction test case, which contains an initial database, a group
of transactions, and a submitted order for all the statements in the
generated transactions. We then submit the statements in the trans-
actions to the target DBMS by following the submitted order, and
obtain the concurrent transaction schedule and the final database
state. We further infer the corresponding serial schedule under WSS
for the involved transactions by analyzing the concurrent schedule,
and then obtain the database state after applying the serial sched-
ule on the same initial database. We compare the final database
states produced by the original concurrent schedule and the serial
schedule. If we find any inconsistency, we detect a WSS violation.

We implement WriteCheck based on SQLancer [14], and extend
SQLancer to detect WSS violations. WriteCheck can work for differ-
ent isolation levels [1, 19, 20, 25] and concurrency control modes
[26, 50, 57, 65, 73]. To demonstrate the effectiveness of WriteCheck,
we have evaluated it on the latest versions of the six DBMSs in our
empirical study. In total, we have detected 22 unique WSS violations,
11 of which have been confirmed as new critical txBugs. For the
29 critical txBugs reported by WriteCheck and the state-of-the-art
transaction testing approaches [36, 39, 45], WriteCheck can expose
all these txBugs, while existing approaches [36, 39, 45] can expose
at most 23 txBugs. This shows that WriteCheck can expose and
detect more critical txBugs than the state-of-the-art approaches.

Contributions.We make the following contributions.
• We are the first to propose write-specific serializability for con-

current transactions, which can expose most critical transaction
bugs that can cause concurrent transactions to produce incorrect
final database states.

• We present the first empirical study on real-world write-specific
serializability violations, and obtain some interesting findings.

• We propose a simple and general transaction testing approach
WriteCheck to detect write-specific serializability violations.

• We implement WriteCheck and apply it on six popular DBMSs,
and have detected 11 new critical transaction bugs.

2 WRITE-SPECIFIC SERIALIZABILITY
2.1 Illustrative Example
Figure 1a shows a transaction test case that triggers a real-world WSS
violation TiDB#42121, whichwe detected in TiDB at the Repeatable
Read isolation level. In this test case, transaction 𝑇1 and 𝑇2 are con-
currently executed by following the order of the arrows. TiDB’s
implementation does not block the DELETE statement 𝑠13 that con-
flicts with the REPLACE statement 𝑠232, and only deletes the row
with 𝑐1 = 1.0. Therefore, the schedule in Figure 1a leads to an incor-
rect database state after 𝑇1 and 𝑇2 complete, i.e., {2.0} in table 𝑡 . For
the correct implementation, 𝑠13 should be blocked until 𝑇2 is com-
mitted, and then deletes all rows in which 𝑐1 < 5.0. TiDB developers
have classified this violation as critical and fixed it quickly.

The serial schedule of Figure 1a is 𝑇2 → 𝑇1 (Figure 1b), and
produces a correct database state, i.e., an empty set for table 𝑡 ,
which is different from the database state in the original schedule
in Figure 1a. Thus, a WSS violation occurs.

2Since the REPLACE statement 𝑠23 updates the row with 𝑐1 = 1.0 but does not change
its value, TiDB’s implementation forgets to mark the row with 𝑐1 = 1.0 to be locked in
𝑠23 . Note that 𝑠13 does not conflict with 𝑠22 , since TiDB does not support gap lock [6].
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/*init*/ CREATE TABLE t(c1 DOUBLE PRIMARY KEY);

/*init*/ INSERT INTO t(c1) VALUES (1.0);

T1 T2

s11: BEGIN;

s21: BEGIN;

s22: INSERT INTO t(c1) VALUES (2.0);

s23: REPLACE INTO t(c1) VALUES (1.0);

s12: SELECT c1 FROM t; -- {1.0}

s13: DELETE FROM t WHERE c1 < 5.0;

/* Wrongly execute s13 without blocking */ s24: COMMIT;

s14: COMMIT;

-- Actual database state: {2.0} -- Expected database state: { }

/*init*/ CREATE TABLE t(c1 DOUBLE PRIMARY KEY);

/*init*/ INSERT INTO t(c1) VALUES (1.0);

T1 T2

s21: BEGIN;

s22: INSERT INTO t(c1) VALUES (2.0);

s23: REPLACE INTO t(c1) VALUES (1.0);

s24: COMMIT;

s11: BEGIN;

s12: SELECT c1 FROM t; -- {1.0, 2.0}

s13: DELETE FROM t WHERE c1 < 5.0;

s14: COMMIT;

-- Serial database state: { }

(a) Concurrent schedule (b) Serial schedule

Figure 1: A transaction test case triggers a write-specific serializability violation TiDB#42121 in TiDB. This violation occurs at
the Repeatable Read isolation level under the pessimistic transaction mode, and leads to an incorrect database state.

2.2 WSS Definition
Let 𝑇𝑖 = [𝑠𝑖1 , 𝑠𝑖2 , ..., 𝑠𝑖𝑚 ] (in which 𝑚 is the number for the SQL
statements in 𝑇𝑖 ) be an explicit transaction (starting with a BEGIN
statement, followed by some data query and manipulation state-
ments (i.e., DQL and DML statements), and ending with a COMMIT
or ROLLBACK statement) or an ACS transaction (containing only
one autocommit DQL / DML statement, and𝑚 = 1). We restrict
that each write operation (i.e., DML statement) within transaction
𝑇𝑖 must be independent and should not rely on the values read in
earlier read operations (i.e., DQL statements)3. A write operation
can either write explicit values (e.g., INSERT t(c1) VALUES (10)) or
utilize the values read by itself (e.g., UPDATE t SET c1 = c1 + 1).

Let T = {𝑇1,𝑇2, ...,𝑇𝑛} be the concurrent transactions, and 𝑛 be
the number of the concurrent transactions. Let 𝑝 be the number of
all statements in T , andH𝑐𝑜𝑛 = [𝑠1, 𝑠2, ..., 𝑠𝑝 ] be a schedule of the
concurrent transactions in T . We use H𝑠𝑒𝑟 = [𝑇𝑥1 ,𝑇𝑥2 , ...,𝑇𝑥𝑛 ] to
denote a serial schedule ofH𝑐𝑜𝑛 , in which, ∀𝑇𝑥𝑖 ,𝑇𝑥𝑖 ∈ T .

Definition 1. Transaction-level WSS (tx-WSS for short). A sched-
uleH𝑐𝑜𝑛 of concurrent transactions produces the same final data-
base state after executingH𝑐𝑜𝑛 as that produced by a corresponding
serial scheduleH𝑠𝑒𝑟 of the same transactions. Otherwise,H𝑐𝑜𝑛 trig-
gers a tx-WSS violation.

In a serial scheduleH𝑠𝑒𝑟 of concurrent transactions, no involved
transactions overlap. The execution of a committed transaction𝑇 in
H𝑠𝑒𝑟 should be equivalent to executing each SQL statement in𝑇 as
an ACS transaction and ignoring𝑇 ’s transaction control statements,
e.g., BEGIN and COMMIT. For an aborted transaction 𝑇 in H𝑠𝑒𝑟 , its
execution should be equivalent to ignoring all its statements.

Based on this observation, we further propose a variant of tx-WSS,
named statement-level WSS. Let H𝑠𝑡𝑚𝑡

𝑠𝑒𝑟 be the simplified serial
schedule of H𝑠𝑒𝑟 , in which we remove all the statements in the
aborted transactions and transaction control statements in the com-
mitted transactions inH𝑠𝑒𝑟 . We further schedule each statement
inH𝑠𝑡𝑚𝑡

𝑠𝑒𝑟 as an ACS transaction, i.e., an autocommit statement.
Definition 2. Statement-level WSS (stmt-WSS for short). A sched-

uleH𝑐𝑜𝑛 of concurrent transactions produces the same final data-
base state after executingH𝑐𝑜𝑛 as that produced by a corresponding
simplified serial scheduleH𝑠𝑡𝑚𝑡

𝑠𝑒𝑟 of the same transactions. Other-
wise,H𝑐𝑜𝑛 triggers a stmt-WSS violation.

3If a write operation relies on the values read in earlier read operations in its transaction
(e.g., BEGIN; SELECT@x := c1 FROM t; UPDATE t SET c2 =@x; COMMIT;), concurrent
transactions may lead to transaction concurrency problems [29, 38, 54, 56, 67, 74],
which are not caused by incorrect transaction processing mechanisms in DBMSs.

The concurrent schedule in Figure 1a produces a different data-
base state from the correct database state produced by the serial
schedule 𝑇2 → 𝑇1 in Figure 1b. Thus, the schedule in Figure 1a
triggers a tx-WSS violation. The simplified serial schedule (i.e.,
executing 𝑠22, 𝑠23, 𝑠12 and 𝑠13 as four ACS transactions) can also
produce the correct database state. Thus, the schedule in Figure 1a
also violates stmt-WSS.

Both tx-WSS and stmt-WSS are necessary for detecting WSS vi-
olations due to two reasons. (1) If a transaction involves special
transaction operations (e.g., SAVEPOINT and ROLLBACK TO in List-
ing 2), which cannot be executed outside an explicit transaction,
we must keep its transaction control statements (e.g., BEGIN and
COMMIT), and it cannot be analyzed using stmt-WSS. (2) If each trans-
action𝑇𝑖 ∈ T contains only one autocommit statement (i.e.,𝑚 = 1),
stmt-WSS is equivalent to tx-WSS. But, for an explicit transaction
containing multiple DQL / DML statements, stmt-WSS is not equiv-
alent to tx-WSS, because DBMSs may process multiple statements
in a transaction differently from how they would handle those state-
ments as separate autocommit statements. For example, in Listing 1,
executing𝑇1 as a complete transaction under tx-WSS and executing
the two DML statements (Line 4 and Line 5) as two autocommit
statements under stmt-WSS can produce different database states.

Similar to WSS, final-state serializability [70] requires that a sched-
uleH𝑐𝑜𝑛 of concurrent transactions is final-state serializable if there
exists a serial schedule of the same transactions that produces the
same final database state as H𝑐𝑜𝑛 . Both WSS and final-state seri-
alizability require that a concurrent schedule produces the same
final database state as that of certain serial schedule. However, WSS
further requires that the serial schedule should satisfy some con-
straints, e.g., following the First Commit/Rollback First Scheduled
pattern in Section 3.3. Therefore, WSS is stricter than final-state
serializability. For example, Listing 4 shows a bug-triggering con-
current schedule that satisfies final-state serializability (since the
serial schedule under final-state serializability is 𝑇2 → 𝑇1), while it
does not satisfy WSS (since the serial schedule under WSS is𝑇1 → 𝑇2).

3 EMPIRICAL STUDY ON WSS VIOLATIONS
To better understand WSS violations, we conduct an empirical study
on real-world critical txBugs and their WSS violations, and try to
answer the following three research questions:
• RQ1 (Detection capability): How effectively can WSS expose

critical txBugs?
• RQ2 (Serial patterns): To expose WSS violations, what serial

patterns can be used to infer the serial schedules under WSS?
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Table 1: Target DBMSs and Collected Critical txBugs
WSS ViolationsDBMS DB-Engines

Ranking
GitHub
Stars

Isolation
Levels

Concurrency
Control Type All

txBugs
Critical
txBugs Total tx-WSS stmt-WSS

MySQL 2 11.4K RU, RC, RR, SER Pessimistic Traditional 33 2 2 1 2
PostgreSQL 4 17.6K RC, RR, SER Pessimistic, Optimistic Traditional 6 1 1 1 1
SQLite 10 7.8K RU, SER Pessimistic Embedded 6 2 2 0 2
MariaDB 13 6.1K RU, RC, RR, SER Pessimistic Traditional 24 5 3 1 3
CockroachDB 68 30.9K SER Optimistic NewSQL 9 2 2 0 2
TiDB 73 38.5K RC, RR Pessimistic, Optimistic NewSQL 62 23 22 12 22
Total - - - - - 140 35 32 15 32

• RQ3 (Triggering conditions): How are WSS violations trig-
gered? Can WSS violations be triggered deterministically?

3.1 Study Methodology
Target DBMSs. We choose six diverse and widely-used open-
source relational DBMSs, including three traditional DBMSs (MySQL,
PostgreSQL and MariaDB), one embedded DBMS (SQLite), and two
NewSQL distributed DBMSs (CockroachDB and TiDB). Table 1
shows their DB-Engines Ranking [5] and Github stars [7]. We can
see that these DBMSs are all popular DBMSs. These DBMSs adopt
various concurrency control modes, e.g., pessimistic and optimistic
transaction modes [50, 73], and support diverse isolation levels
[1, 19, 20, 25], e.g., Read Uncommitted (RU), Read Committed (RC),
Repeatable Read (RR) and Serializable (SER) in MySQL.

Collecting critical txBugs.Our target DBMSs usually contain a
large number of issues, e.g., 17,643 issues in TiDB [17]. Investigating
these bugs is a time-consuming and daunting task. Thus, we start
our study from an existing transaction bug dataset [37]. This dataset
contains 140 txBugs collected from the above six DBMSs, which
were reported from January 2018 to December 2022. We choose this
bug dataset as the base of our study for the following two reasons.
First, this dataset covers all our target DBMSs. Second, this dataset
contains concise bug descriptions including transaction test cases,
bug manifestations, root causes, bug impacts and fixes.

We identify critical txBugs from the bug dataset [37] by checking
whether a txBug can cause concurrent transactions to produce an
incorrect database state. Table 1 shows the detailed results. We
finally collect 35 critical txBugs, and use them as our study subject.

Analyzing critical txBugs and WSS violations.We investigate
whether a critical txBug 𝑡𝑥𝑏𝑢𝑔 can be exposed by WSS by the follow-
ing steps. First, we manually analyze 𝑡𝑥𝑏𝑢𝑔’s transaction test case
to infer its expected final database state by following the submit-
ted order and execution order of the SQL statements specified by
DBMS developers. Next, we enumerate all possible serial schedules
for the transactions involved in 𝑡𝑥𝑏𝑢𝑔’s test case under tx-WSS
and stmt-WSS, respectively. If any serial schedule can produce the
expected database state, which is different from the database state
caused by 𝑡𝑥𝑏𝑢𝑔’s test case, we consider 𝑡𝑥𝑏𝑢𝑔 as a WSS violation.
Finally, we collect 32 WSS violations from the 35 critical txBugs.

Threats to validity. First, we may introduce human errors
when studying these txBugs and WSS violations. To mitigate this
threat, three authors have independently investigated all txBugs
and WSS violations, and reached a consensus for each txBug and
WSS violation. Second, the reproducibility is a commonly recognized
limitation for empirical studies. To make our study reproducible,
we have made our study results publicly available for validation.

3.2 txBug Detection Capability of WSS
Among the 35 studied critical txBugs, 32 (91.4%) txBugs cause silent
failures, e.g., not crashing DBMSs, which can easily go unnoticed by

DBMS developers. Without deep understanding of the transaction
semantics in these txBugs’ test cases, it is hard to determinewhether
their produced database states are correct.
1. /*init*/ CREATE TABLE t(c1 INT PRIMARY KEY) PARTITION BY RANGE

(c1) (PARTITION p0 VALUES LESS THAN (10), PARTITION p1

VALUES LESS THAN MAXVALUE);

2. /*init*/ INSERT INTO t(c1) VALUES (1);

3. /*𝑇1*/ BEGIN;

4. /*𝑇1*/ INSERT INTO t(c1) VALUES (10);

5. /*𝑇1*/ UPDATE t SET c1=c1+10 WHERE c1 IN (1,11);

6. /*𝑇1*/ COMMIT;

7. /*𝑇2*/ SELECT * FROM t ORDER BY c1;

-- Actual database state: {10 ,21} ✘

-- Expected database state: {10 ,11} ✔

Listing 1: A test case triggers critical txBug TiDB#19585.

We find that, in 15 (42.9%) critical txBugs, their transaction test
cases violate tx-WSS, while in 32 (91.4%) critical txBugs, their trans-
action test cases violate stmt-WSS. Note that all the studied txBugs
exposed by tx-WSS are also exposed by stmt-WSS. In 17 txBugs,
their transaction test cases violate stmt-WSS, but do not violate
tx-WSS, since these txBugs can still occur as long as their transac-
tion control statements exist. Listing 1 shows txBug TiDB#19585
exposed by only stmt-WSS, which is caused by forgetting to deal
with some corner cases for DirtyTable. In Listing 1, the initial table
𝑡 contains a row (𝑟𝑜𝑤1) with 𝑐1 = 1 (Line 1-2). 𝑇1 first inserts a
new row (𝑟𝑜𝑤2) with 𝑐1 = 10 (Line 4), and then increases 𝑟𝑜𝑤1 by
10, which satisfies 𝑐1 is 1 or 11 (Line 5). Thus, the correct database
state is {10, 11}. Executing Listing 1 by following its order produces
an incorrect database state {10, 21}. Under tx-WSS, we obtain the
database state that is the same as that of the original schedule, while
under stmt-WSS, we execute the statements at Line 4, 5, 7 as ACS
transactions one by one, and obtain {10, 11} for the database state.
1. /*init*/ CREATE TABLE t(c1 TEXT);

2. /*𝑇1 */ BEGIN;

3. /*𝑇1 */ INSERT INTO t(c1) VALUES (REPEAT('a' ,20000));

4. /*𝑇1 */ SAVEPOINT sp;

5. /*𝑇1 */ INSERT INTO t(c1) VALUES (REPEAT('a' ,20000));

6. /*𝑇1 */ ROLLBACK TO sp;

7. /*𝑇1 */ COMMIT;

-- Actual database state: A crash occurs ✘

-- Expected database state: {aaaa ...aaa} ✔

Listing 2: A test case triggers critical txBugMariaDB#14868.

In the remaining 3 txBugs, their transaction test cases do not
violate WSS. These 3 txBugs are related to special transaction op-
erations, which cannot be handled by WSS. For example, in txBug
MariaDB#14868 in Listing 2, the test case does not violate tx-WSS.
Further, we cannot apply its serial schedule for stmt-WSS, since the
test case contains SAVEPOINT and ROLLBACK TO statements, which
cannot be executed without an explicit transaction.

Finding 1: In most (91.4%) critical txBugs, their transaction test
cases violate WSS. This indicates that we can use WSS as an effective
test oracle to detect critical txBugs.
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3.3 Serial Patterns under WSS
In our empirical study, we analyze the expected database state men-
tioned by a transaction test case to infer its corresponding serial
schedule under WSS. However, for WSS violation detection, we do not
know a transaction test case’s expected database state in advance.
We are interested in what serial patterns can be used to infer the
serial schedules under WSS without leveraging the expected data-
base states of transaction test cases. In this way, we can efficiently
detect unknown WSS violations.

By using a serial pattern to infer a transaction test case’s serial
schedule under WSS, we expect to achieve the following target: For
a WSS violation 𝑤𝑠𝑠𝑣 , its transaction test case violates WSS before
𝑤𝑠𝑠𝑣 is fixed, and its transaction test case does not violate WSS after
𝑤𝑠𝑠𝑣 is fixed. For example, in Figure 1b, the serial schedule should
be𝑇2 → 𝑇1, rather than𝑇1 → 𝑇2. If we choose𝑇1 → 𝑇2 as the serial
schedule, the concurrent schedule in Figure 1a can still violate WSS
after the violation is fixed. This is not what we expect.

Through analyzing the transaction test cases in the 32 WSS viola-
tions, we observe a simple serial pattern to infer serial schedules
under WSS: First Commit/Rollback First Scheduled (FCRFS for short).
If transaction𝑇1 is committed or aborted before another transaction
𝑇2, 𝑇1 should be scheduled before 𝑇2 in the serial schedule. We find
that, by using the FCRFS serial pattern to infer serial schedules,
we can detect all the 32 WSS violations. In Section 4, we further
formally analyze the correctness of the FCRFS serial pattern.

Finding 2: By using a serial pattern of First Commit/Rollback
First Scheduled to infer serial schedules under WSS, we can detect
all our studied WSS violations without knowing their expected
database states.

3.4 Triggering Conditions
Similar to the empirical study in [37], we study the initial databases
and transactions for the 32 WSS violations. Then, we discuss whether
these WSS violations can be deterministically triggered.

Initial databases. Triggering a WSS violation usually requires
its transactions to be executed on a specific database. Generating
a database includes creating initial tables through CREATE TABLE
statements and inserting initial data through INSERT statements at
the initialization stage in the transaction test cases. Figure 2a and
Figure 2b show that all WSS violations require no more than two
initial tables, and almost all (97.0%) initial tables contain no more
than 5 rows of initial data.

We find that two thirds (71.9%) of WSS violations require specific
schema properties on the initial tables, e.g., keys, indexes and col-
umn constraints. Specifically, 22 (68.8%) WSS violations require key
constraints (e.g., primary key and unique key), 4 (12.5%) WSS vio-
lations require index settings, and 6 (18.8%) WSS violations require
column constraints (e.g., NOT NULL).

Finding 3: Almost all our studied WSS violations require small
initial databases, and two thirds (71.9%) of WSS violations require
specific schema properties.

Transactions. WSS violations are triggered by executing explicit
and ACS transactions involved in their test cases. All WSS violations
require one to three explicit transactions, and zero to four ACS
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Figure 2: Triggering conditions for WSS violations.

transactions. Figure 2c and Figure 2d show the distribution of trans-
actions for WSS violations and SQL statements in the transactions
for WSS violations, respectively. All WSS violations require no more
than 5 transactions, and almost all (96.0%) transactions contain no
more than 5 SQL statements. Note that many WSS violations involve
SQL statements with complex features, e.g, ALTER (25.0%), DELETE
(21.9%), SET (9.4%), REPLACE (6.3%) and ADMIN (6.3%).
Finding 4: Almost all our studied WSS violations can be triggered
by small transaction test cases, e.g., no more than 5 transactions
and no more than 5 SQL statements in each transaction.

Bug determinism. Transactions are executed concurrently in
DBMSs, whichmeans their executions are usually non-deterministic.
However, we surprisingly find that 29 (90.6%) WSS violations can
be triggered by deterministically executing the statements in their
transaction test cases in a certain order, e.g., Figure 1a. The remain-
ing 3 (9.4%) WSS violations cannot be triggered deterministically
due to internal non-determinism in DBMSs. Triggering these non-
deterministic WSS violations requires repeatedly executing their
SQL statements in the test cases, or additional deterministic control
on DBMSs’ internal concurrency. For example, MySQL#99174 needs
to inject a crash at a specific internal state in MySQL.

Finding 5: 90.6% of our studied WSS violations can be triggered
by deterministically executing their statements in a certain order.

4 CORRECTNESS ANALYSIS OF WSS UNDER
THE FCRFS SERIAL PATTERN

In Section 3.3, we find that by using a serial pattern of First Com-
mit/Rollback First Scheduled (FCRFS) to infer serial schedules under
WSS, we can detect all our studied WSS violations. In this section,
we further formally analyze the correctness of WSS by using the
FCRFS serial pattern.

Given a scheduleH of concurrent transactionsT = {𝑇1,𝑇2, ...,𝑇𝑛},
we define a happens-before relation ≺H as a partial order among
statements and transactions inH . We denote statement 𝑠1 happens
before 𝑠2 inH as 𝑠1 ≺H 𝑠2, and transaction 𝑇1 happens before 𝑇2
inH as 𝑇1 ≺H 𝑇2.

We useH𝑓 𝑐𝑟 𝑓 𝑠 = [𝑇𝑥1 ,𝑇𝑥2 , ...,𝑇𝑥𝑛 ] to denoteH𝑐𝑜𝑛 ’s FCRFS serial
schedule under tx-WSS. InH𝑓 𝑐𝑟 𝑓 𝑠 , ∀𝑇𝑥𝑖 ,𝑇𝑥 𝑗

∈ T , if 𝑇𝑥𝑖 .𝑒𝑛𝑑 ≺H𝑐𝑜𝑛

𝑇𝑥 𝑗
.𝑒𝑛𝑑 , then𝑇𝑥𝑖 ≺H𝑓 𝑐𝑟 𝑓 𝑠

𝑇𝑥 𝑗
. Here,𝑇𝑥𝑖 .𝑒𝑛𝑑 and𝑇𝑥 𝑗

.𝑒𝑛𝑑 refer to the
transaction ending statements in𝑇𝑥𝑖 and𝑇𝑥 𝑗

, which can be COMMIT,
ROLLBACK, or the autocommit statement in an ACS transaction.

Assumption 1. A DBMS can precisely identify conflicts [19, 20]
among write operations (e.g., INSERT, UPDATE, and DELETE) in a
transaction test case, and correctly process transactions (e.g., block
or abort transactions) according to these conflicts. For example,
statement 𝑠13 and 𝑠22 in Figure 1a should be identified as conflicts,
since the new inserted value 2.0 satisfies 𝑐1 < 5.0. Note that not all
isolation levels in some DBMSs can support this assumption. We
will discuss this more in Section 6.4.
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Figure 3: The workflow of WriteCheck.
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Figure 4: An illustrative example for proving Theorem 1.

Theorem 1. If a DBMS satisfies Assumption 1, a scheduleH𝑐𝑜𝑛

of concurrent transactions produces the same final database state
as that produced by the FCRFS serial scheduleH𝑓 𝑐𝑟 𝑓 𝑠 of the same
transactions.

Let 𝑑𝑏𝑖𝑛𝑖𝑡 be the initial database state, 𝑑𝑏 (H𝑐𝑜𝑛) be the database
state after applyingH𝑐𝑜𝑛 on𝑑𝑏𝑖𝑛𝑖𝑡 , and𝑑𝑏 (H𝑓 𝑐𝑟 𝑓 𝑠 ) be the database
state after applyingH𝑓 𝑐𝑟 𝑓 𝑠 on 𝑑𝑏𝑖𝑛𝑖𝑡 . We prove that 𝑑𝑏 (H𝑐𝑜𝑛) =
𝑑𝑏 (H𝑓 𝑐𝑟 𝑓 𝑠 ), if a DBMS satisfies Assumption 1.

Proof. (1) If there is only one transaction in H𝑐𝑜𝑛 , i.e., 𝑛 = 1,
thenH𝑐𝑜𝑛 =H𝑓 𝑐𝑟 𝑓 𝑠 and 𝑑𝑏 (H𝑐𝑜𝑛) = 𝑑𝑏 (H𝑓 𝑐𝑟 𝑓 𝑠 ).

(2) When 𝑛 > 1, for the first completed transaction 𝑇𝑥1 inH𝑐𝑜𝑛 ,
we can infer that, for each statement 𝑠𝑖 that satisfies 𝑠𝑖 ∉ 𝑇𝑥1 and
𝑠𝑖 ≺H𝑐𝑜𝑛

𝑇𝑥1 .𝑒𝑛𝑑 , 𝑠𝑖 does not conflict with 𝑇𝑥1 . Otherwise, 𝑇𝑥1 can-
not complete before 𝑠𝑖 ’s transaction completes inH𝑐𝑜𝑛 . Therefore,
inH𝑐𝑜𝑛 , we can move each statement such 𝑠𝑖 behind 𝑇𝑥1 .𝑒𝑛𝑑 , and
form a new scheduleH1

𝑐𝑜𝑛 , which can produce the same database
state as H𝑐𝑜𝑛 , i.e., 𝑑𝑏 (H1

𝑐𝑜𝑛) = 𝑑𝑏 (H𝑐𝑜𝑛). Thus, all statements in
𝑇𝑥1 are located at the head ofH1

𝑐𝑜𝑛 . We continue the above analysis
process for the remaining transactions inH1

𝑐𝑜𝑛 , and generateH2
𝑐𝑜𝑛 ,

...,H𝑛−1
𝑐𝑜𝑛 , in which 𝑑𝑏 (H𝑐𝑜𝑛) = 𝑑𝑏 (H1

𝑐𝑜𝑛) = 𝑑𝑏 (H2
𝑐𝑜𝑛) = ... =

𝑑𝑏 (H𝑛−1
𝑐𝑜𝑛 ). Based on the above analysis, 𝑑𝑏 (H𝑓 𝑐𝑟 𝑓 𝑠 ) = 𝑑𝑏 (H𝑛−1

𝑐𝑜𝑛 ).
Thus, 𝑑𝑏 (H𝑐𝑜𝑛) = 𝑑𝑏 (H𝑓 𝑐𝑟 𝑓 𝑠 ).

Figure 4 shows an example for the above proof process. Three
concurrent transactions 𝑇1, 𝑇2 and 𝑇3 generate a scheduleH𝑐𝑜𝑛 , in
which 𝑇1 .𝑒𝑛𝑑 (i.e., 𝑠5) ≺H𝑐𝑜𝑛

𝑇2 .𝑒𝑛𝑑 (i.e., 𝑠9) ≺H𝑐𝑜𝑛
𝑇3 .𝑒𝑛𝑑 (i.e., 𝑠10).

Since 𝑇1 has completed at 𝑠5, 𝑠3 and 𝑠4 should not conflict with 𝑇1.
So, we can move 𝑠3 and 𝑠4 behind 𝑠5, and form a schedule H1

𝑐𝑜𝑛 ,
which satisfies 𝑑𝑏 (H1

𝑐𝑜𝑛) = 𝑑𝑏 (H𝑐𝑜𝑛). Similarly, we can obtain a
scheduleH2

𝑐𝑜𝑛 , which satisfies 𝑑𝑏 (H1
𝑐𝑜𝑛) = 𝑑𝑏 (H2

𝑐𝑜𝑛).H2
𝑐𝑜𝑛 is the

same asH𝑓 𝑐𝑟 𝑓 𝑠 . Therefore, 𝑑𝑏 (H𝑓 𝑐𝑟 𝑓 𝑠 ) = 𝑑𝑏 (H𝑐𝑜𝑛).
We further define the simplified serial schedule under stmt-WSS

forH𝑓 𝑐𝑟 𝑓 𝑠 asH𝑠𝑡𝑚𝑡
𝑓 𝑐𝑟 𝑓 𝑠

, which removes all the aborted transactions
and transaction control statements in the committed transactions
(e.g., BEGIN and COMMIT) fromH𝑓 𝑐𝑟 𝑓 𝑠 .

Theorem 2. If a DBMS satisfies Assumption 1, a scheduleH𝑐𝑜𝑛

of concurrent transactions produces the same final database state
as that produced by the simplified serial schedule H𝑠𝑡𝑚𝑡

𝑓 𝑐𝑟 𝑓 𝑠
of the

same transactions.

Proof. Since the aborted transactions and transaction control
statements in the committed transactions do not affect the data-
base state, then 𝑑𝑏 (H𝑓 𝑐𝑟 𝑓 𝑠 ) = 𝑑𝑏 (H𝑠𝑡𝑚𝑡

𝑓 𝑐𝑟 𝑓 𝑠
). As we have proved

𝑑𝑏 (H𝑐𝑜𝑛) = 𝑑𝑏 (H𝑓 𝑐𝑟 𝑓 𝑠 ), then 𝑑𝑏 (H𝑐𝑜𝑛) = 𝑑𝑏 (H𝑠𝑡𝑚𝑡
𝑓 𝑐𝑟 𝑓 𝑠

).

5 DETECTING WSS VIOLATIONS
We propose WriteCheck, a simple and general approach for auto-
matically detecting WSS violations in DBMSs. As shown in Figure 3,
we first generate an initial database with some data ( 1○). We then
generate a group of transactions based on the generated database
( 2○), and further generate a submitted order for the statements in
the generated transactions ( 3○). Then, we submit the transaction
statements to the target DBMS by following the submitted order
( 4○). During execution, we obtain the concurrent schedule and exe-
cution results of the transactions, including the execution results of
write operations and the final database state. Based on the concur-
rent schedule, we infer the corresponding serial schedules under
tx-WSS and stmt-WSS by using the FCRFS serial pattern ( 5○). We
then apply the two serial schedules on the same initial database
to obtain the serial execution results ( 6○). Finally, we compare the
execution results between the concurrent schedule and the serial
schedules ( 7○). Any inconsistency indicates a WSS violation.

We stressfully test a target DBMS by iteratively executing the
above steps. If we do not detect a WSS violation in one iteration,
we can continue generating a new submitted order for the current
transactions ( 3○), or generating a new group of transactions based
on the current database ( 2○), or generating a new database ( 1○).

5.1 Generating Databases and SQL Statements
Many approaches have been proposed for database generation [27,
30, 40, 41, 48] and SQL statement generation [8, 16, 31, 61, 78]. We
utilize SQLancer [58–60] to generate initial databases and individual
SQL statements, and extend SQLancer to generate transactions and
transaction test cases.

Generating databases. We use CREATE TABLE statements to
create tables in a database. We randomly assign a data type and
add data constraints (e.g., PRIMARY KEY and NOT NULL) for each
column. Note that we do not generate variable data types, whose
data are randomly generated, e.g., SERIAL in CockroachDB. We fur-
ther randomly add indexes to the selected columns, and insert rows
into each table. Based on Finding 3, we generate small databases.

Generating SQL statements.Our target DBMSs support slightly
different SQL dialects. For example, PostgreSQL does not support
REPLACE, and only CockroachDB supports UPSERT. To generate
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valid SQL statements, we construct SQL statements based on the
respective SQL grammars supported by target DBMSs.

We can support various data query and manipulation statements
(i.e., DQL and DML statements), and transaction control statements,
e.g., SELECT, INSERT, REPLACE, UPSERT, UPDATE and DELETE. We
also support almost all SQL features in these DQL and DML state-
ments, e.g., complex predicates, subqueries, join and dialects in
different DBMSs. Our approach cannot support few SQL features,
i.e., non-deterministic functions (e.g., RAND() and UUID()), and
variable declaration and usage (e.g.,@𝑥 in MySQL).

5.2 Generating Transactions
We name the transactions in a transaction test case as a transac-
tion group. For each transaction 𝑡𝑥 in a transaction group, we first
randomly choose a transaction type for 𝑡𝑥 , i.e., explicit or ACS trans-
action. If 𝑡𝑥 is an explicit transaction, we utilize the approach in
Section 5.1 to randomly generate at most𝑚𝑎𝑥𝑆𝑡𝑚𝑡 SQL statements
for accessing data, append a BEGIN statement at the beginning, and
a COMMIT or ROLLBACK statement (which is randomly chosen) at
the end. If 𝑡𝑥 is an ACS transaction, we randomly generate a SQL
statement, which forms 𝑡𝑥 . We generate at most𝑚𝑎𝑥𝑇𝑥𝑛 transac-
tions in a transaction group. For effective WSS violation detection,
we require that a transaction group contains at least one explicit
transaction, and at least one transaction contains write operations.

According to Finding 4, most WSS violations can be triggered
by relatively small transaction test cases. So we set both𝑚𝑎𝑥𝑇𝑥𝑛

and𝑚𝑎𝑥𝑆𝑡𝑚𝑡 as 5 by default. For a transaction group, we further
randomly choose an isolation level and a concurrency control mode
supported by the tested DBMS.

Generating submitted orders. Finding 5 shows that most WSS
violations can be triggered deterministically by executing their
involved SQL statements in a certain order. Thus, we generate a
submitted order for the SQL statements in a transaction group.
DBMSs will process these statements in the submitted order and
execute them in a deterministic order.

To test diverse transaction scenarios as soon as possible, we
randomly generate a submitted order, rather than enumerating all
possible submitted orders for a transaction group. Specifically, we
randomly choose a transaction 𝑡𝑥 in the transaction group each
time, and append 𝑡𝑥 ’s first unchosen statement to the submitted or-
der, until all statements in the transaction group have been chosen.

5.3 Obtaining Actual Concurrent Schedules
When we submit the statements one by one to a tested DBMS by fol-
lowing a given submitted order, the DBMS may encounter various
situations, e.g., a statement is blocked, a deadlock is raised, and some
blocked statements are resumed. Thus, the actual concurrent sched-
ule of a transaction test case is usually different from the submitted
order of the statements in the involved transactions. To tackle this
problem, we design a transaction execution protocol, which can
obtain a transaction test case’s actual schedule. This protocol can
support multiple transactions and is general to different DBMSs
and concurrency control modes. DBMSs usually adopt different
transaction processing mechanisms for raised errors, deadlocks, etc.
We will further explain how to handle them in Section 5.3.2.

5.3.1 Transaction Execution Protocol. As illustrated in Algorithm 1,
we submit the statements one by one to the tested DBMS in a given

Algorithm 1: Transaction execution protocol
Input: 𝑠𝑢𝑏𝑂𝑟𝑑𝑒𝑟
Output: 𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒

1 while 𝑠𝑢𝑏𝑂𝑟𝑑𝑒𝑟 .ℎ𝑎𝑠𝑆𝑡𝑚𝑡𝑇𝑜𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ( ) do
2 for 𝑖 ← 1; 𝑖 ≤ 𝑠𝑢𝑏𝑂𝑟𝑑𝑒𝑟 .𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 + + do
3 𝑠𝑡𝑚𝑡 ← 𝑠𝑢𝑏𝑂𝑟𝑑𝑒𝑟 [𝑖 ]
4 𝑐𝑢𝑟𝑇𝑥 ← 𝑠𝑡𝑚𝑡 .𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛

5 if 𝑠𝑡𝑚𝑡 .𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 then
6 continue

7 if 𝑐𝑢𝑟𝑇𝑥.𝑎𝑏𝑜𝑟𝑡𝑒𝑑 | 𝑐𝑢𝑟𝑇𝑥.𝑏𝑙𝑜𝑐𝑘𝑒𝑑 then
8 continue

9 𝑒𝑥𝑒𝑐𝑆𝑡𝑎𝑡𝑒 ← 𝑐𝑢𝑟𝑇𝑥.𝑠𝑢𝑏𝑚𝑖𝑡 (𝑠𝑡𝑚𝑡 )
10 𝑠𝑡𝑚𝑡 .𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒

11 if 𝑠𝑡𝑚𝑡 .𝑒𝑥𝑒𝑐𝑆𝑡𝑎𝑡𝑒.𝑖𝑠𝐵𝑙𝑜𝑐𝑘𝑒𝑑 ( ) then
12 𝑐𝑢𝑟𝑇𝑥.𝑏𝑙𝑜𝑐𝑘𝑒𝑑 ← 𝑇𝑟𝑢𝑒

13 continue

14 𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒.𝑎𝑑𝑑 (𝑠𝑡𝑚𝑡 )
15 if 𝑠𝑡𝑚𝑡 .𝑒𝑥𝑒𝑐𝑆𝑡𝑎𝑡𝑒.𝑠ℎ𝑜𝑢𝑙𝑑𝐴𝑏𝑜𝑟𝑡 ( ) then
16 𝑐𝑢𝑟𝑇𝑥.𝑎𝑏𝑜𝑟𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒

17 ℎ𝑎𝑛𝑑𝑙𝑒𝐴𝑏𝑜𝑟𝑡 (𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑐𝑢𝑟𝑇𝑋 )
18 𝑟𝑆𝑡𝑚𝑡𝑠 ← 𝑔𝑒𝑡𝑅𝑒𝑠𝑢𝑚𝑒𝑑𝑆𝑡𝑚𝑡𝑠 ( )
19 foreach 𝑟𝑆𝑡𝑚𝑡 ∈ 𝑟𝑆𝑡𝑚𝑡𝑠 do
20 𝑟𝑇𝑥 ← 𝑟𝑆𝑡𝑚𝑡 .𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛

21 𝑟𝑇𝑥.𝑏𝑙𝑜𝑐𝑘𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒

22 𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒.𝑎𝑑𝑑 (𝑟𝑆𝑡𝑚𝑡 )
23 if 𝑟𝑆𝑡𝑚𝑡 .𝑒𝑥𝑒𝑐𝑆𝑡𝑎𝑡𝑒.𝑠ℎ𝑜𝑢𝑙𝑑𝐴𝑏𝑜𝑟𝑡 ( ) then
24 𝑟𝑇𝑥.𝑎𝑏𝑜𝑟𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒

25 ℎ𝑎𝑛𝑑𝑙𝑒𝐴𝑏𝑜𝑟𝑡 (𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑟𝑇𝑥 )

26 if 𝑟𝑆𝑡𝑚𝑡𝑠 ≠ ∅ then
27 break

submitted order (Line 2-3). For each statement 𝑠𝑡𝑚𝑡 , we start a
new thread to execute it independently, obtain its execution state
𝑠𝑡𝑚𝑡 .𝑒𝑥𝑒𝑐𝑆𝑡𝑎𝑡𝑒 , and mark 𝑠𝑡𝑚𝑡 as submitted (Line 9-10). If 𝑠𝑡𝑚𝑡 has
already been submitted, we avoid executing it again (Line 5-6).

If 𝑠𝑡𝑚𝑡 ’s transaction 𝑐𝑢𝑟𝑇𝑥 has been aborted or blocked, we
also skip submitting 𝑠𝑡𝑚𝑡 (Line 7-8). Based on 𝑠𝑡𝑚𝑡 ’s execution
state 𝑒𝑥𝑒𝑐𝑆𝑡𝑎𝑡𝑒 , we can decide whether 𝑐𝑢𝑟𝑇𝑥 should be blocked
or aborted. If 𝑠𝑡𝑚𝑡 does not return its execution results within
𝑚𝑎𝑥𝑊𝑎𝑖𝑡 seconds (2 seconds by default), we consider that 𝑠𝑡𝑚𝑡 is
blocked (e.g., a conflict occurs). Then wemark 𝑐𝑢𝑟𝑇𝑥 as blocked and
continue to schedule next statement in 𝑠𝑢𝑏𝑂𝑟𝑑𝑒𝑟 (Line 11-13). If
𝑠𝑡𝑚𝑡 is not blocked, we append 𝑠𝑡𝑚𝑡 to 𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 and record
𝑠𝑡𝑚𝑡 ’s execution results (i.e., whether 𝑠𝑡𝑚𝑡 succeeds or not) (Line
14). If the tested DBMS alerts to abort a transaction (e.g., a deadlock
occurs), we mark 𝑐𝑢𝑟𝑇𝑥 as aborted and abort 𝑐𝑢𝑟𝑇𝑥 (Line 15-17).

After executing 𝑠𝑡𝑚𝑡 , we check whether any blocked statements
have been resumed by the tested DBMS (Line 18). There are two sce-
narios in which a blocked statement can be resumed. First, 𝑠𝑡𝑚𝑡 is a
transaction end statement, i.e., COMMIT or ROLLBACK. Second, 𝑠𝑡𝑚𝑡 ’s
transaction 𝑐𝑢𝑟𝑇𝑥 is aborted by the tested DBMS. For a resumed
statement 𝑟𝑆𝑡𝑚𝑡 , we mark its transaction as unblocked, append
it to 𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 and record its execution results (Line 19-22).
Similarly, if 𝑟𝑆𝑡𝑚𝑡 causes the DBMS to abort its transaction 𝑟𝑇𝑥 ,
we mark 𝑟𝑇𝑥 as aborted and abort 𝑟𝑇𝑥 (Line 23-25). If any blocked
statements are resumed by the DBMS, we will scan 𝑠𝑢𝑏𝑂𝑟𝑑𝑒𝑟 from
the beginning, and execute not-submitted statements in 𝑠𝑢𝑏𝑂𝑟𝑑𝑒𝑟

sequentially (Line 26-27 and Line 1).
5.3.2 Handling Transaction Aborts in Different DBMSs. Although
Algorithm 1 is general to our target DBMSs, different DBMSs may
adopt slightly different transaction processing mechanisms to abort
transactions. If we do not adjust the abort handling for different
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DBMSs, WriteCheck would possibly report false positives. Thus,
we design specific approaches to identify whether we need to abort
a transaction (Line 15 and 23), and how to process transaction aborts
(Line 17 and 25) for different DBMSs. We elaborate them as follows.

Deadlock. When a deadlock occurs under the pessimistic trans-
action mode, MySQL, MariaDB and TiDB will report a deadlock
error in one of the involved transactions. However, SQLite does not
report a deadlock error when a deadlock occurs. We adopt a simple
strategy to detect potential deadlocks in SQLite: If a transaction
𝑡𝑥1 has been blocked and we detect that a new transaction 𝑡𝑥2 is
blocked, we conservatively consider that a deadlock occurs in 𝑡𝑥2.

When a deadlock occurs, MySQL and TiDB will automatically
abort the transaction that reports a deadlock. While for SQLite and
MariaDB, we need to submit a ROLLBACK statement to abort the
explicit transaction that reports a deadlock.

Write-write conflict. Under the optimistic transaction mode,
when committing a transaction, TiDB checks write-write conflict.
If write-write conflict occurs, TiDB aborts the transaction automati-
cally. Thus, we remove the COMMIT statement from 𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 .

Error. In PostgreSQL and CockroachDB, an error reported at a
transaction will interrupt this transaction and causes subsequent
statements in the transaction to report errors until the transaction
is aborted. In this case, we submit a ROLLBACK statement to the
DBMS to abort the transaction.

After aborting an explicit transaction, we need to add a ROLLBACK
statement into 𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 . For a failed ACS transaction, we
only mark it as aborted.

5.4 Identifying WSS Violations
Finding 2 shows that WSS violations follow the FCRFS serial pat-
tern. To infer the serial schedule under tx-WSS, we sequentially
scan the actual concurrent schedule of a transaction test case and
build a transaction list by appending transactions upon encoun-
tering a COMMIT or ROLLBACK. For ACS transactions, we append
them directly. For the serial schedule under stmt-WSS, we create
a statement list by scanning the transaction list, ignoring aborted
transactions and transaction control statements from committed
transactions, and appending the remaining statements from the
committed transactions and the committed ACS transactions.

Serial schedules for both tx-WSS and stmt-WSS are applied on
the same initial database as that in the actual schedule in Section 5.3.
During each serial schedule, we record each statement 𝑠𝑡𝑚𝑡 ’s exe-
cution result (i.e., whether 𝑠𝑡𝑚𝑡 succeeds or not). Then, we retrieve
data in each table in the database as the final database state.

To detect tx-WSS and stmt-WSS violations, we compare the final
database states in actual schedule with those in transaction-level
and statement-level serial schedules, respectively. Any inconsisten-
cies indicate WSS violations.

In DBMSs, when a write operation succeeds, it usually causes
changes to the database state. When the write operation reports
an error and fails to execute, it will not affect the database state.
Therefore, by comparingwhether the samewrite operation in actual
concurrent schedule and a serial schedule succeeds or not, we can
infer inconsistent database states and detect WSS violations.

Identifying incorrect query results of read operations at
the Serializable isolation level. Although we focus on detect-
ing WSS violations in this paper, our approach can easily identify

incorrect query results of read operations at the Serializable
isolation level. At this isolation level, the execution of concurrent
transactions should be equivalent to their execution in certain serial
schedule. The serial schedule of concurrent transactions under WSS
can be treated as their intended serial schedule. Thus, at this isola-
tion level, we compare the query results of read operations in each
transaction between the concurrent schedule and the correspond-
ing serial schedule under WSS. Any inconsistencies indicate a txBug
that causes wrong query results for the Serializable isolation
level4. Note that such txBugs may not violate WSS.

6 EVALUATION
We evaluate WriteCheck on six production-level DBMSs, and ad-
dress the following two research questions.
• RQ4: How effective is WriteCheck in detecting WSS violations

in real-world DBMSs?
• RQ5:Howdoes WriteCheck compare against existing approaches?

6.1 Experimental Methodology
Target DBMSs.We evaluate WriteCheck on the six DBMSs from
our empirical study. We test the latest versions of these DBMSs
when we start our work, i.e., MySQL 8.0.32, PostgreSQL 15.2, SQLite
3.36.0, MariaDB 10.11.2, CockroachDB 22.2.5, and TiDB 6.6.0.

Testing setup. We perform our experiment on Ubuntu-20.04
with 8 CPU cores and 32 GB of RAM. We build a Docker container
for MySQL, PostgreSQL and MariaDB, respectively, and create an
instance in it. We deploy TiDB with one TiDB instance, one TiKV
instance and one PD instance. We deploy CockroachDB with a local
cluster containing a single node. We embed SQLite in WriteCheck.

Testing methodology. We test the DBMSs for 5 rounds, and
each round takes around 24 hours. Once WriteCheck detects a
WSS violation, it generates a report, including the transaction test
case and the serial schedule under WSS. The transaction test case
contains database creation statements, transactions, the submitted
order, the concurrency control mode and the isolation level. With
this report, we can reproduce and analyze the WSS violation.

In each round, we iteratively and continuously run WriteCheck,
and collect all the WSS violations it detects. For a WSS violation
reported by WriteCheck, we manually simplify the transaction
test case by removing the statements and SQL elements that are
irrelevant to the violation, and obtain its simplest bug-triggering
transaction test case. We further identify its key bug-triggering
SQL features in the simplest bug-triggering test case. If the related
bug-triggering SQL features in the simplest test case are removed
or replaced, the corresponding bug will not be triggered.

We then apply the following strategies to identify duplicated WSS
violations. First, if two WSS violations share the same bug-triggering
features in their simplest transaction test cases, we consider them
as duplicate. Second, if executing a test case at multiple isolation
levels results in the same inconsistent database states, we consider
such WSS violations as duplicate. After removing duplicated WSS vio-
lations, we report the remaining WSS violations to DBMS developers
and wait for feedbacks from developers.

4We cannot detect txBugs due to the incorrect results of read operations for the
Serializable isolation level (i.e., Serializable Snapshot Isolation) in PostgreSQL [55],
in which, the read operations in a reading transaction𝑇1 may need to be serialized
before a write operation in another transaction𝑇2 , even though𝑇1 commits after𝑇2 .
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Table 2: WSS Violations Detected by WriteCheck
Isolation Level txBugDBMS RU RC RR SER

Total
(Unique) New (Fixed) Duplicate

False
Positive

MySQL 8 8 0 0 16 (3) 1 (0) 0 2
PostgreSQL - 6 10 10 26 (3) 0 (0) 0 3
SQLite 0 - - 0 0 (0) 0 (0) 0 0
MariaDB 10 10 1 1 22 (5) 3 (1) 0 2
CockroachDB - - - 0 0 (0) 0 (0) 0 0
TiDB - 18 19 - 37 (11) 7 (1) 2 2
Total 18 42 30 11 101 (22) 11 (2) 2 9

6.2 Overall WSS Violations
In total, WriteCheck has detected 101 WSS violations in the six
target DBMSs, as shown in Table 2. WriteCheck has not detected
any WSS violations in SQLite and CockroachDB. It is reasonable
to observe inconsistent bug detection performance across DBMSs.
DBMSs are complex and usually involve different transaction mech-
anisms and implementations. The numbers of txBugs in different
DBMSs may vary greatly. A DBMS that adopts simple transaction
mechanisms and implementations (e.g., SQLite) may contain less
txBugs, while a DBMS that adopts complex transactionmechanisms
and implementations (e.g., TiDB) may contain more txBugs.

From these 101 WSS violations, we identified 22 unique WSS vio-
lations, with 6 only detectable by stmt-WSS and 16 by both tx-WSS
and stmt-WSS. We submitted these unique WSS violations to the
relevant DBMS community and discussed them with DBMS devel-
opers. 13 WSS violations have been confirmed as critical txBugs,
among which, 11 WSS violations have been confirmed as new crit-
ical txBugs (2 txBugs have been fixed by DBMS developers), and
2 WSS violations are considered as duplicate to existing bugs. The
remaining 9 WSS violations are considered false positives, which
are caused by DBMS design choices or improper DBMS designs.

For the 13 WSS violations confirmed as critical txBugs, 4, 12, 10
and 1 WSS violations are exposed at the Read Uncommitted, Read
Committed, Repeatable Read and Serializable isolation levels,
respectively. In addition, one WSS violation is exposed under the
optimistic transaction mode in TiDB. The other 12 WSS violations
are exposed under the pessimistic transaction mode in their cor-
responding DBMSs. This shows that WriteCheck can detect WSS
violations at all isolation levels and concurrency control modes.

We further utilize WriteCheck to detect non-critical txBugs due
to read operations at the Serializable isolation level (except the
Serializable isolation level in PostgreSQL [55]), as discussed in
Section 5.4. However, we have not found such non-critical txBugs
yet. We further investigate the txBugs reported by existing ap-
proaches [36, 39, 45], and find that these approaches did not report
non-critical txBugs due to read operations at the Serializable iso-
lation level, either. We guess that non-critical txBugs rarely occur
at the Serializable isolation level in DBMSs.
WriteCheck has detected 13 critical txBugs, 11 of which have
been confirmed as new critical txBugs, and 2 critical txBugs have
been fixed by DBMS developers. This demonstrates the effectiveness
of WriteCheck.

6.3 Interesting Critical txBugs
We further explain more newly detected critical txBugs that have
not been detailed previously.

TiDB#39976. Listing 3 shows a critical txBug detected in TiDB.
This txBug can be triggered by only one transaction 𝑇1, which

first inserts a new value ‘1’ into column 𝑐1 in table 𝑡 (Line 3) and
then tries to delete the rows satisfying its WHERE condition (Line
4). However, the DELETE statement reports an error and fails to
delete value ‘1’. While in the serial schedule under stmt-WSS (i.e.,
ignoring Line 2 and 5), the DELETE statement successfully deletes
value ‘1’. Thus, this transaction test case violates stmt-WSS. This
txBug is caused by inconsistent evaluation of the WHERE condition
in the DELETE statement within and without a transaction.
1. /*init*/ CREATE TABLE t(c1 TEXT (5));

2. /*𝑇1 */ BEGIN;

3. /*𝑇1 */ REPLACE INTO t(c1) VALUES ('1');

4. /*𝑇1 */ DELETE FROM t WHERE CAST(TIDB_VERSION () AS DATE) OR c1;

-- report an error

5. /*𝑇1 */ COMMIT;

-- Actual database state: {1} ✘

-- Serial database state: { } ✔

Listing 3: A test case triggers critical txBug TiDB#39976 at the
Read Committed and Repeatable Read isolation levels.

TiDB#42486. Listing 4 shows a critical txBug detected in TiDB
at the Repeatable Read isolation level under the optimistic trans-
action mode. The test case involves two transactions 𝑇1 and 𝑇2. 𝑇1
first inserts a value 2 and commits (Line 5-6). Then 𝑇2 deletes all
values in table 𝑡 and commits (Line 7-8). 𝑇2 should be aborted due
to its conflict with𝑇1, but it successfully commits (Line 8), resulting
in a database state with value 2. In the serial schedule, i.e.,𝑇1 → 𝑇2,
the table 𝑡 would be empty, revealing this WSS violation.

1. /*init*/ CREATE TABLE t(c1 INT);

2. /*init*/ INSERT INTO t(c1) VALUES (1);

3. /*𝑇1 */ BEGIN OPTIMISTIC;

4. /*𝑇2 */ BEGIN OPTIMISTIC;

5. /*𝑇1 */ INSERT INTO t(c1) VALUES (2);

6. /*𝑇1 */ COMMIT;

7. /*𝑇2 */ DELETE FROM t;

8. /*𝑇2 */ COMMIT; -- 𝑇2 should be aborted, but committed successfully.

-- Actual database state: {2}

-- Serial database state (𝑇1 → 𝑇2): { }

Listing 4: A test case triggers critical txBug TiDB#42486 under
the optimistic transaction mode.

MariaDB#30835. Figure 5a shows a critical txBug detected in
MariaDB at the Read Uncommitted and Read Committed isolation
levels. In the transaction test case, the initial table has a column 𝑐1
with a value 1.0. 𝑇1 inserts a value 2.0 into column 𝑐1 (𝑠12). Then
𝑇2 changes the value 2.0 to 3.0 (𝑠22). We can get the final database
state, i.e., {1.0, 2.0}. While the serial schedule (𝑇1 → 𝑇2) produces
the final database state {1.0, 3.0}. Thus, we detect this txBug. This
txBug is caused by the relaxed locks for the UPDATE statement (𝑠22).

Replacing the UPDATE statement 𝑠22 with a DELETE statement, as
shown in Figure 5b, results in both concurrent and serial schedules
producing the final database state {1.0}. This occurs because the
DELETE statement is blocked until 𝑇1 commits in the concurrent
schedule, after which the value 2.0 is deleted. Note that two write
operations with the same WHERE condition are expected to have
the same transaction semantics. DBMS developers are designing
new transaction processing mechanisms to address this issue: “The
reason why the locks are being relaxed for UPDATE is the ‘semi-
consistent read’ that I originally implemented before. Implementing
it for DELETE was not considered at that time. I would expect that
the lock conflicts would be reduced, or possibly avoided altogether”.
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/*init*/ CREATE TABLE t(c1 DOUBLE);

/*init*/ INSERT INTO t(c1) VALUES (1.0);

T1 T2

s11: BEGIN;

s12: INSERT INTO t(c1) VALUES (2.0);

s21: BEGIN;

s22: UPDATE t SET c1=3.0 WHERE c1=2.0;

s13: COMMIT;

s23: COMMIT;

-- Actual Database state: {1.0, 2.0} -- Serial Database state: {1.0, 3.0}

/*init*/ CREATE TABLE t(c1 DOUBLE);

/*init*/ INSERT INTO t(c1) VALUES (1.0);

T1 T2

s11: BEGIN;

s12: INSERT INTO t(c1) VALUES (2.0);

s21: BEGIN;

s22: DELETE FROM t WHERE c1=2.0;

s13: COMMIT;

s23: COMMIT;

-- Actual Database state: {1.0}

(a) Concurrent schedule of UPDATE (b) Concurrent schedule of DELETE

Figure 5: A test case triggers critical txBug MariaDB#30835 at the Read Uncommitted and Read Committed isolation levels.

6.4 False Positive Analysis
DBMS developers consider 9 WSS violations detected by WriteCheck
as false positives. We find that these violations stem from improper
or inconsistent designs in the target DBMSs, which are permis-
sible in the target DBMSs. We investigate these permissible WSS
violations to understand their root causes and consequences.

6.4.1 Root Causes of False Positives. We find that these false pos-
itives occur, since they do not satisfy Assumption 1 in Section 4.
Specifically, DBMSs do not precisely identify conflicts among write
operations, which are caused by semi-consistent read[3, 4, 13] and
lack of gap locks[6]. In total, 5 false positives are caused by semi-
consistent read and 4 false positives are caused by lack of gap locks.

Listing 5 shows a permissible WSS violation at the Read Committed
isolation level in MySQL caused by semi-consistent read, which
leads to an inconsistent view of the database. In Listing 5, the
UPDATE statement (Line 4) in 𝑇1 reads the latest committed rows in
table 𝑡 , i.e., (1, ‘’) and (5, ‘’), and evaluates its WHERE condition on
each row. The UPDATE statement only keeps a lock for each row that
matches its condition. Thus, it only locks row (1, ‘’) and modifies it
to (5, ‘tx1’). Since 𝑇1 has not been committed, the updated row (5,
‘tx1’) by Line 4 cannot be read by the UPDATE statement at Line 6.
1. /*init*/ CREATE TABLE t(c1 INT , c2 VARCHAR (5));

2. /*init*/ INSERT INTO t(c1,c2) VALUES (1,''), (5,'');

3. /*𝑇1 */ BEGIN;

4. /*𝑇1 */ UPDATE t SET c1=5, c2='tx1' WHERE c1=1;

5. /*𝑇2 */ BEGIN;

6. /*𝑇2 */ UPDATE t SET c1=1, c2='tx2' WHERE c1=5;

7. /*𝑇1 */ COMMIT;

8. /*𝑇2 */ COMMIT;

-- Actual database state: {(5,'tx1 '), (1,'tx2 ')}

-- Serial database state(𝑇1 → 𝑇2): {(1,'tx2 '), (1,'tx2 ')}

Listing 5: A permissible WSS violation caused by semi-
consistent read at Read Committed isolation level in MySQL.

Listing 6 shows a permissible WSS violation at the Read Committed
isolation level in TiDB caused by lack of gap locks, which lock the
gaps between index records. If gap locks are used, the DELETE state-
ment prevents𝑇2 from inserting the value 5 into column 𝑐1 of table
𝑡 , as the gaps between all existing values in the range are locked.
1. /*init*/ CREATE TABLE t(c1 INT);

2. /*init*/ INSERT INTO t(c1) VALUES (3);

3. /*𝑇1 */ BEGIN;

4. /*𝑇1 */ DELETE FROM t WHERE c1 BETWEEN 1 AND 10;

5. /*𝑇2 */ BEGIN;

6. /*𝑇2 */ INSERT INTO t(c1) VALUES (5);

7. /*𝑇2 */ COMMIT;

8. /*𝑇1 */ UPDATE t SET c1=c1+1;

9. /*𝑇1 */ COMMIT;

-- Actual database state: {6}

-- Serial database state (𝑇2 → 𝑇1): { }

Listing 6: A permissible WSS violation caused by lack of gap
locks at the Read Committed isolation level in TiDB.

Gap locks are not used in some isolation levels in some DBMSs.
For example, MySQL and MariaDB do not use gap locks at the Read
Committed and Read Uncommitted isolation levels. TiDB does not
use gap locks. If gap locks are not used, a transaction test case can
violate WSS. For example, in Listing 6, the INSERT statement (Line 6)
in𝑇2 at the Read Committed isolation level in TiDB can successfully
insert the value 5, and does not conflict with the DELETE statement
at Line 4. The actual database state is {6}, which differs from the
database state produced by the serial schedule of 𝑇2 → 𝑇1.

6.4.2 Consequences Caused by Permissible WSS Violations. Al-
though these WSS violations are considered permissible by DBMS
developers, we find that these permissible WSS violations can lead
to ambiguous and conflicting transaction semantics for write oper-
ations.

Awrite operation onlymodifies partial rows that satisfy its
WHERE condition. Listing 5 shows such a permissible WSS violation
at the Read Committed isolation level in MySQL. As explained in
Section 6.4.1, in this test case, the UPDATE in 𝑇1 (Line 4) updates
the row (1, ‘’), and the UPDATE in 𝑇2 (Line 6) updates the row (5, ‘’).
After 𝑇1 and 𝑇2 complete, although the row (5, ‘tx1’) satisfies the
WHERE condition at Line 6, it is not updated by the write operation.
From DBMS users’ view, only partial rows that satisfy the WHERE
condition at Line 6 are updated. This could be confusing.

Different types of write operations in a single DBMS at the
same isolation level have inconsistent transaction behaviors.
Figure 5 shows such inconsistent transaction behaviors between
write operations UPDATE and DELETE at the Read Committed iso-
lation level in MySQL and MariaDB. MariaDB developers have
confirmed Figure 5a as a txBug. However, MySQL developers con-
sider it as a permissible WSS violation caused by semi-consistent
read. In Figure 5a, the UPDATE statement 𝑠22 is not blocked due to
semi-consistent read. However, the DELETE statement 𝑠22 in Fig-
ure 5b with the same WHERE condition is blocked, since the DELETE
statement does not use semi-consistent read. We expect that two
write operations with the same WHERE condition have the same
transaction semantics. However, this is not true for MySQL.

Different DBMSs have inconsistent transaction behaviors
for the same write operations at the same isolation levels.
For example, TiDB utilizes semi-consistent read at the Repeatable
Read isolation level, while MySQL and MariaDB do not. MySQL
and MariaDB utilize gap locks at the Repeatable Read isolation
level, while PostgreSQL and TiDB do not.

Different isolation levels in a single DBMS have inconsis-
tent transaction behaviors for write operations. For example,
MySQL utilizes semi-consistent read at the Read Uncommitted and
Read Committed, not at the Repeatable Read and Serializable
isolation levels.
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Table 3: Detection Capability Comparison on the Reported Critical txBugs
Reported Critical txBugs WriteCheck DT2 Troc TxCheckDBMS Total WriteCheck Existing Approaches T* WC EA T WC EA T WC EA T WC EA Elle Cobra Emme

MySQL 3 1 2 3 1 2 2 1 1 3 1 2 1 0 1 0 0 0
PostgreSQL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SQLite 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MariaDB 8 3 5 8 3 5 7 2 5 3 1 2 2 0 2 0 0 0
CockroachDB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TiDB 18 9 9 18 9 9 14 7 7 8 5 3 13 4 9 0 0 0
Total 29 13 16 29 13 16 23 10 13 14 7 7 16 4 12 0 0 0
* T (Total), WC (WriteCheck) and EA (Existing Approaches) denote the numbers of critical txBugs detected by the corresponding approach from total reported
txBugs (Column 2), txBugs reported by WriteCheck (Column 3) and existing approaches (Column 4), respectively.

6.4.3 Reflection. Existing works on isolation levels have clearly
defined the transaction semantics for read operations [1, 19, 20, 25].
For write operations, these isolation levels only require that DBMSs
must prohibit dirty write. However, our study shows that different
DBMSs usually have own specific transaction semantics of write
operations at different isolation levels. Sometimes, these transaction
semantics are not clearly specified by DBMSs and even conflicting.
To tackle this issue, we urgently need a clear and unified approach
to specify transaction semantics for write operations at different
isolation levels in different DBMSs.
Different DBMSs usually have their own specific transaction se-
mantics for write operations at different isolation levels, but there
is no unified approach to define these transaction semantics.

6.5 Comparison with Existing Approaches
Existing transaction verification (Elle [49], Cobra [66] and Emme
[34]) and testing approaches (DT2 [36], Troc [39] and TxCheck
[45]) can also detect critical txBugs. Since all these approaches
rely on random testing, it is challenging to compare WriteCheck
with them directly about their bug detection capability. Thus, we
investigate whether these approaches can conceptually detect the
29 critical txBugs reported by WriteCheck and existing approaches
[36, 39, 45] when the corresponding bug-triggering transaction test
cases are provided. Then, we perform an end-to-end experimental
comparison with the existing transaction testing approaches.

6.5.1 Detection Capability Comparison on Reported Critical txBugs.
We first collect all the critical txBugs reported by the transaction
testing approaches (i.e., WriteCheck, DT2 [36], Troc [39] and Tx-
Check [45]). We then check whether these txBugs can be exposed
by an approach when the corresponding test cases are provided.

Collecting critical txBugs. We investigate all the confirmed
txBug reports from DT2 [36], Troc [39] and TxCheck [45], and
collect 47 txBugs. Among them, 16 txBugs can cause incorrect
database states and are classified as critical txBugs. Finally, includ-
ing the 13 critical txBugs reported by WriteCheck, we collect 29
critical txBugs and obtain their simplest bug-triggering transaction
test cases through the simplifying approach in Section 6.1.

Analysis methodology. For each critical txBug 𝑡𝑥𝑏𝑢𝑔 in our
subject, we analyze its simplest bug-triggering transaction test
case to evaluate whether a transaction verification or testing ap-
proach 𝑎𝑝𝑝 can expose it. Specifically, if 𝑎𝑝𝑝 cannot support the
bug-triggering SQL features in 𝑡𝑥𝑏𝑢𝑔’s test case, or it can support
the bug-triggering SQL features but cannot determine that the
DBMS behaves wrongly in the test case, 𝑎𝑝𝑝 cannot detect 𝑡𝑥𝑏𝑢𝑔.

Overall comparison result. Table 3 shows the comparison
results. For the 29 critical txBugs, WriteCheck detects all of them,
while DT2, Troc and TxCheck detect 23, 14, 16 txBugs, respectively.

None of these txBugs can be detected by transaction verification
approaches. Notably, among the 13 critical txBugs detected by
WriteCheck, existing approaches can identify at most 10, while
WriteCheck also detects all 16 critical txBugs reported by these
approaches. We explain why existing approaches fail to detect some
critical txBugs as follows.

Elle [49], Cobra [66] and Emme [34] verify whether a transaction
execution history violates the claimed isolation level. They are built
on simple 𝑘𝑒𝑦-𝑣𝑎𝑙𝑢𝑒-like data models and simple operations (e.g.,
𝑟𝑒𝑎𝑑 (𝑘𝑒𝑦) and 𝑤𝑟𝑖𝑡𝑒(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)). They cannot support non-𝑘𝑒𝑦-
𝑣𝑎𝑙𝑢𝑒-like data models and complex SQL statements. They detect
isolation anomalies by inferring whether there exist cycles in the
dependency graphs based on Adya’s definition [19, 20], and cannot
detect txBugs whose dependency graphs do not contain cycles
(e.g., Listing 4). Among the 29 critical txBugs, 26 txBugs involve
non-𝑘𝑒𝑦-𝑣𝑎𝑙𝑢𝑒-like data models and complex operations, and the
remaining 3 txBugs do not involve dependency cycles.

DT2 [36] detects txBugs by differentially testing the same trans-
action test cases on multiple DBMSs. Among the 29 critical txBugs,
4 cannot be detected by DT2 due to DBMS-specific features (e.g.,
only TiDB supports the optimistic transaction mode), and 2 have
identical incorrect behaviors across all tested DBMSs. Troc [39]
decouples a pair of transactions into independent statements, and
executes them on their own database views under the guidance
of a specific isolation level. For the 29 critical txBugs, 15 txBugs
involve unsupported bug-triggering SQL features (e.g., more than
two transactions) and cannot be detected by Troc. TxCheck [45]
designs a SQL-level instrumentation to capture statement depen-
dencies, and generates semantically-equivalent test cases based
on statement dependencies. For the 29 critical txBugs, 10 txBugs
involve bug-triggering SQL features unsupported by TxCheck (e.g.,
REPLACE), and TxCheck cannot determine that the DBMS performs
wrongly for 3 txBugs.

6.5.2 End-to-End Experimental Comparison. We further perform
an end-to-end comparison with the state-of-the-art transaction test-
ing approaches, i.e., DT2 [36], Troc [39] and TxCheck [45]. We do
not directly compare WriteCheck with the transaction verification
approaches, since they detect none of the critical txBugs in our con-
ceptual comparison, indicating their ineffectiveness in detecting
WSS violations.

The existing transaction testing approaches adopt cleverly-crafted
test oracles for transaction test cases, which are usually complex and
have constraints for target DBMSs. For example, DT2 [36] utilizes
differential testing, which requires the DBMSs under test to be com-
patible. Thus, it only supports MySQL-compatible DBMSs, and can-
not test PostgreSQL, SQLite and CockroachDB. Therefore, we only
run these approaches on their supported DBMSs, i.e., MySQL, Mari-
aDB and TiDB, and do not extend them to support other DBMSs.
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Table 4: End-to-End Experimental Comparison with Existing Transaction Testing Approaches
WriteCheck DT2 Troc TxCheckDBMS Critical Non-critical False Positives Critical (*) Non-critical False Positives Critical (*) Non-critical False Positives Critical (*) Non-critical False Positives

MySQL 0 0 1 0 (0) 0 1 (1) 1 2 0 (0) 0 1
MariaDB 1 0 1 1 (1) 1 0 (0) 1 1 0 (0) 0 2
TiDB 3 0 2 1 (1) 1

24
1 (1) 0 1 1 (1) 1 1

PostgreSQL 0 0 1 - - - - - - - - -
SQLite 0 0 0 - - - - - - - - -
CockroachDB 0 0 0 - - - - - - - - -
Total 4 0 5 2 (2) 2 24 2 (2) 2 4 1 (1) 1 4
* The numbers in parentheses show critical txBugs that can be detected by WriteCheck if the corresponding transaction test cases are provided to WriteCheck.

We run WriteCheck, DT2, Troc and TxCheck on each of their sup-
ported DBMSs for 12 hours. Table 4 shows the experimental results.
We do not compare the detection results for unsupported DBMSs
of the corresponding approaches. We do not expect WriteCheck to
detect more txBugs than existing approaches, since they can detect
non-critical txBugs that WriteCheck cannot detect.

WriteCheck reports 4 critical txBugs, of which 1 and 3 are trig-
gered in MariaDB and TiDB, respectively. WriteCheck reports 5
false positives, 2 of which are caused by semi-consistent read, and
the other 3 are caused by lack of gap locks.

DT2 reports 2 critical txBugs, 2 non-critical txBugs, and 24 false
positives. The 24 false positives are caused by the incompatibility
issues between DBMSs. Troc reports 2 critical txBugs, 2 non-critical
txBugs, and 4 false positives. The 4 false positives are caused by
inconsistent lock strategies in different DBMSs. TxCheck reports
1 critical txBug, 1 non-critical txBug, and 4 false positives. The
4 false positives are caused by the wrongly captured statement
dependencies. For example, the motivating example discussed in
TxCheck is confirmed by DBMS developers as an intentional and
expected behavior, and not a txBug.

We further investigate whether WriteCheck can detect the criti-
cal txBugs reported by existing approaches by providing the bug-
triggering transaction test cases to WriteCheck, and vice versa.
Among the 4 critical txBugs detected by WriteCheck, 3 critical
txBugs cannot be detected by existing approaches, because these
approaches cannot support the involved bug-triggering SQL fea-
tures. On the contrary, all the reported 2, 2 and 1 critical txBugs by
DT2, Troc and TxCheck can be detected by WriteCheck.

Benefited from the simplicity of WriteCheck, WriteCheck can
support more features in DBMSs, and thus detect more critical
txBugs than the state-of-the-art approaches. All critical txBugs re-
ported by existing approaches can also be detected by WriteCheck.

7 DISCUSSION
False positives. We have proved that if the target DBMS satis-
fies Assumption 1 (Section 4), WriteCheck does not report false
positives. But, if the target DBMS does not satisfy Assumption
1 (e.g., TiDB cannot identify predicate-based conflicts [19, 20]),
WriteCheck can potentially report false positives. Identifying false
positives involves transaction semantics in respective DBMSs, and
we still cannot distinguish critical txBugs from false positives.

False negatives. Although WriteCheck is effective in detecting
WSS violations in many DBMSs, it can still miss some critical txBugs
due to the following four design choices. (1) WriteCheck may miss
critical txBugs that involve unsupported SQL features (e.g., non-
deterministic functions). (2) WriteCheck adopts random strategies
to explore the huge input space of transaction testing, resulting
in potential false negatives. (3) A buggy DBMS may generate an
incorrect concurrent schedule for concurrent transactions, which

may cause WriteCheck to infer an unexpected serial schedule. If
this unexpected serial schedule coincidentally produces the same
incorrect final database state as the concurrent schedule, a false
negative will occur. (4) The transaction test cases in few (8.6% in
Section 3.2) critical txBugs do not violate WSS. WriteCheck cannot
detect these critical txBugs, too.

8 RELATEDWORK
We introduce related works that we have not discussed yet.

DBMS testing. Many approaches focus on DBMS testing [16,
21, 22, 42, 44, 46, 47, 51–53, 58–64, 68, 69, 71, 72, 75–79]. SQLsmith
[16] detects crash bugs by randomly generating SQL statements in
DBMSs. Squirrel [78] tests DBMSs guided by code coverage. Rig-
ger et al. propose several approaches, e.g., PQS [60], TLP [59] and
NoREC [58], to detect logic bugs by constructing oracles for SELECT
statements. Amoeba [53] compares execution time of two seman-
tically equivalent queries to detect performance bugs. DQE [62]
executes SELECT, UPDATE and DELETE statements with the same
filter conditions, and any discrepancy indicates a logic bug. Differ-
ential testing has been effectively applied to test DBMSs [61, 72, 77].
These existing approaches cannot detect txBugs in DBMSs.

Transaction concurrency problems in DBMS-based appli-
cations. Transaction concurrency problems [29, 38, 54, 56, 67, 74]
in DBMS-based applications, e.g., a shopping application built
on MySQL [11], are caused by unintentional implementations of
DBMS-based applications rather than DBMSs. Tang et al. [67] per-
form a comprehensive study on transaction concurrency problems
caused by ad hoc transactions. Several approaches [29, 38, 54, 56, 74]
have been proposed to detect transaction concurrency problems,
e.g., Zellag et al. [74] build transaction dependency graphs to de-
tect consistency anomalies. txBugs in DBMSs are orthogonal to
transaction concurrency problems in DBMS-based applications.

9 CONCLUSION
We propose write-specific serializability, which is applicable on
all isolation levels and concurrency control modes in DBMSs. Our
study shows that write-specific serializability can be an effective
test oracle to expose critical transaction bugs that can cause con-
current transactions to produce incorrect database states. We fur-
ther present a simple and general transaction testing approach
WriteCheck to detect write-specific serializability violations, and
detect 11 new critical transaction bugs in production-level DBMSs.
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