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ABSTRACT
The efficiency of spatial queries is pivotal for the analysis of geome- / T M
try data in the fields such as computational simulation, point cloud - P! -
processing and digital engineering. Utilizing the computational i . TA
capabilities of modern hardware, such as GPUs, offers a promising B o ) K
avenue for accelerating spatial query processing. However, conven- Gglgt'rgy"gll . ®) M“';’fr':;e"s'“"al © P‘::;;‘;csess'"g

tional tree-based indexing methods are not optimized for maximal
exploitation of GPU resources.

To address this problem, we introduce BLAEQ, a multigrid in-
dex designed to maximize the potential of GPUs. BLAEQ adopts a
multigrid strategy, which represents an index tree with vectors as
layers and matrices as connectors. Although BLAEQ shares concep-
tual similarities with traditional tree-based indexes, its innovative
multigrid architecture facilitates effective parallelization on GPUs
during the query phase. To optimize GPU utilization, BLAEQ is en-
tirely constructed using BLAS (Basic Linear Algebra Subprograms),
leveraging the efficiency of hardware-tuned BLAS libraries like
CuBLAS. This design confers BLAEQ with enhanced performance
over existing spatial query methods.

Our study assesses BLAEQ’s performance against state-of-the-
art spatial query techniques using a range of both real-world and
synthetic datasets. The experimental outcomes demonstrate that
BLAEQ outperforms the benchmark approaches in terms of query
efficiency on geometry data.
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Figure 1: Demonstration of the data format of a CFD ship
model.

1 INTRODUCTION

Geometry data processing has found applications in critical do-
mains such as computational simulations [45, 49, 55], point cloud
processing [16, 19, 25, 68], and digital engineering [30, 61]. These ap-
plications often demand flexible and efficient data access strategies,
particularly in computationally intensive environments. To address
this challenge, robust indexing methods for geometry data have be-
come indispensable. To illustrate the necessity of such approaches,
we examine a specific use case in computational simulation.

1.1 CFD Example

A computational simulation uses 3-D geometry models, called
meshes or grids!, composed of small cells to simulate real-world
objects. To achieve high accuracy, these meshes are finely detailed,
often containing millions of cells. Figure 1(a) illustrates a ship model
and surrounding fluid body used in CFD (Computational Fluid
Dynamics), a common simulation application.

The simulation calculates physical parameters (e.g., velocity,
divergence) for each cell based on governing laws, assigning val-
ues that define the output data structure. Let # denote the set of
physical parameters and M the 3-D model. The result is a multi-
dimensional array of shape || x| M|, representing a single timestep.
Figure 1(b) shows an example with P = {x,y, z,v}.

For dynamic simulations (e.g., a ship accelerating through water),
a time dimension 7 is added, discretized into consistent intervals.
The data structure then comprises |7 files, each of size |P| x |[M]|,

'In computational simulation, mesh and grid are interchangeable terms.
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known as post-processing files [18]. These files capture the temporal
evolution of the simulation, as shown in Figure 1(c).

1.2 Workload Characteristics

Many analytical tasks necessitate the iterative examination of the
mesh [3, 15, 35]. As an illustrative example, we employ a specialized
analytical task known as fluid flow analysis. This task involves
visualizing the path of fluid particles, allowing analysts to study
the trajectories and assess the digital design of a ship.

During the analysis process, it is often more efficient for analysts
to concentrate on a particular area, such as the region around the
propeller, where fluid flow dynamics are particularly complex. The
process of focusing on this area is a classic spatial range query.
Specifically, if we define the post-processing file as M, then the
retrieval of data for this task can be executed through a distinct
query:

Q: SELECT v FROM M WHERE x in (x_min, x_max)
& y in (y_min, y_max) & z in (z_min, z_max).

Where (Xmin, Xmax)> (Ymins Ymax) and (Zmin, Zmax) encloses the
propeller area.

For a comprehensive analysis of the entire post-processing dataset,
analysts must perform this query iteratively for each time step.
Overall, the data access workload can be expressed as follows:

For t in T:
execute Q on M_t.

Based on the application background of the workload, we briefly
summarize their key characteristics:

e Repetitive. An analytical task often involves analyzing the
whole post-processing data. Therefore, the queries need to
be repetitively executed on all time steps.

e Geometrical. Filtering cells based on geometrical features
(x, y, z)is a widely used query predicate when analyzing
large meshes.

e Immutable. In many geometry data analysis use cases,
such as in the simulation of a ship, or creating the 3-D
model of a building, the geometry model is immutable,
leading to no future update onto the mesh.

The repetitive nature of the workload underscores the criticality
of the efficient execution of query Q. Even a slight decrease in
the efficiency of Q can be magnified by the scale of time steps 7,
resulting in a substantial decline in overall performance.

1.3 Limitations of Existing Solutions

While existing spatial query techniques can be adapted for use
in computational simulation queries, both on-CPU and on-GPU
solutions encounter significant limitations. We categorize these
limitations as follows:

On-CPU spatial query solutions, despite their versatility, are con-
strained by the computational limitations of CPUs [13]. Techniques
like the KD-Tree, R-Tree, and Octree [42] are highly effective for
smaller datasets but suffer from performance degradation as the
dataset size increases. For large-scale meshes, even SOTA (state-
of-the-art) on-CPU solutions, such as the learned index [43], fall
short, as we will demonstrate in experiments in Section 5.
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The use of GPUs to enhance spatial query performance has
gathered significant attention [42]. Nevertheless, the architectural
differences between CPUs and GPUs mean that simply porting
on-CPU algorithms to GPUs does not yield optimal performance.
Unfortunately, to the best of our knowledge, the fundamental prin-
ciple of SOTA on-GPU solutions still resembles traditional on-CPU,
tree-based indexes [24, 40, 66]. Such architecture is ill-suited for
the principle of GPU, therefore leading to the underutilization of
the GPU’s computational power.

1.4 Our Solution

We introduce BLAEQ (BLAS-based CAE Query), a novel approach
optimized for executing spatial queries on GPUs. BLAEQ is designed
to maximize GPU computational power through advantages in three
key aspects: principle, structure, and implementation.

Principle. BLAEQ replaces conventional tree-based indexing
with a multigrid architecture, ideal for parallel processing on
GPUs. A multigrid consists of multiple layers of vectors connected
via matrices, a technique widely used for solving linear equations
[46, 60, 65]. Unlike CPU-based methods that use in-memory pointer
navigation, BLAEQ converts index tree layers into vectors and their
connections into matrices. This reformulation transforms tree navi-
gation into sparse matrix-vector multiplication (SpMV) operations,
which can be efficiently parallelized across GPU processors.

Structure. BLAEQ adapts index structures to better suit GPU
architecture. Traditional CPU-optimized indexes use deep trees
with few nodes per level, efficient for pruning [39] but insufficient
for generating enough parallel tasks for GPUs. BLAEQ adopts a
broad, shallow structure, ensuring each layer provides ample tasks
for GPU processing. This design is theoretically justified in Section
3.5 and experimentally validated in Section 5.7.

Implementation. BLAEQ leverages BLAS (Basic Linear Algebra
Subprograms) [23] to harness GPU computational power effectively.
By utilizing pre-optimized BLAS libraries like CuBLAS [50], BLAEQ
simplifies implementation and maximizes performance. This ap-
proach avoids the complexities of custom GPU programming while
ensuring efficient task distribution and load balancing.

In summary, this paper makes the following contributions:

e We explore the novel application of spatial queries in com-
putational simulation analytics.

e We propose BLAEQ, a multigrid-based spatial indexing
method optimized for GPU execution.

o We demonstrate BLAEQ’s effectiveness against state-of-the-
art approaches through extensive experiments.

e To the best of our knowledge, BLAEQ is the first algorithm
to utilize multigrid for spatial indexing, offering a design
that could inspire future indexing research on emerging
hardware.

1.5 Organization

The rest of the paper is organized as follows. In Section 2, we
introduce the preliminaries of BLAEQ. The principle of BLAEQ
is covered in Section 3. Additional content on implementation of
BLAEQ is supplemented in Section 4. Experimental results are
presented in Section 5, we introduce related work in Section 6 and
conclude the paper in Section 7.



2 PRELIMINARIES

For the sake of clarity, the following conventions are used through-
out the paper to distinguish between matrices, vectors, and scalars:
Matrices are represented by bold, uppercase letters (e.g., P), vectors
by bold, lowercase letters (e.g., m), and scalars by regular lowercase
letters (e.g., x).

2.1 Problem Formulation

Given a multi-dimensional grid M with D dimensions, a spatial
query Q on M is defined as the intersection of sub-queries g(d) on
each dimensiond € D, i.e.

Q = {rlr € Ngepq(d)},

Each sub-query q(d) can be expressed as q(d) = (q,q}) where
g, and q} are the lower and upper bound of the query range in
dimension d, respectively. If a sub-query on d-th dimension is not
specified, we consider it a full-scale query gz = (—00,400). The
objective of BLAEQ is to efficiently process query Q on the multi-
dimensional grid M, ensuring optimal performance in the execution
of queries.

2.2 BLAS Functions

Due to the extensive use of BLAS functions, math libraries [9, 65]
have optimized these functions for performance using parallel com-
puting and fine-grained tuning. This optimization is crucial for
achieving high efficiency in numerical computations. Notable im-
plementations include hardware-dependent packages for Intel pro-
cessors [62], CUDA [50], FPGA [29], and supercomputers [64, 67].

The complete collection of BLAS [7] contains dozens of linear
algebra functions. This section focuses on the subset of BLAS func-
tions that are directly involved in the implementation of BLAEQ
and the corresponding operators.

Matrix multiplication. Given two matrices A with shape m x k
and B with shape k X n (a vector can be considered a matrix with
only one row/column), matrix multiplication A X B produces C
with shape m X n, where m and n represent the number of rows
and columns respectively. This operation is fundamental in linear
algebra and forms the basis for many numerical computations.

Element-wise operations. Given two matrices A and B, element-
wise operation has four types: addition (A + B), subtraction (A — B),
multiplication (A © B) and division (A @ B). These operations are
performed element by element. For instance, element-wise multi-
plication A ® B = C indicates C;; = A;; x B;;. To perform such
operations, A and B must be of identical shape. These operations are
important in various numerical computations in BLAEQ), especially
during queries.

Matrix-scalar operations. Let M be a matrix and s be a scalar,
the matrix-scalar operation involves manipulating each element
of the matrix with the scalar. The operators for matrix-scalar op-
erations are identical to those for element-wise operations, e.g.
M @ s = R, where R;; = M;j/s. These operations are relevant to
BLAEQ as they allow for scaling and transforming matrices during
prolongation.

Indicator function. Indicator function where(C(v)) evaluates a
conditional expression C on each element of a vector v, returning an
indicator vector r where r; = 1if C(v;) is true and r; = 0 otherwise.
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Figure 2: The COO, CSR, CSC storage formats of a matrix.

For instance, given a vector v = [0, 1,2], the indicator function
where(v > 1.5) would return [0, 0, 1]. This function is utilized for
the pruning mechanism.

2.3 Sparse Matrix Formats

In BLAEQ, matrices and vectors are primarily sparse, which requires
storing them using special formats. BLAEQ primarily employs three
such formats: COO (Coordinate List), CSR (Compressed Sparse
Row) and CSC (Compressed Sparse Column) [6]. Figure 2 illustrates
the COO, CSR, and CSC formats for a matrix P, which will be utilized
in subsequent sections of the paper.

The COO format, as shown in subfigure (b), is based on a clear
and straightforward principle. It utilizes three separate arrays to
record the value and positional coordinates of each nnz (non-zero)
element within a matrix. These arrays, denoted as val, row and col
respectively, store the non-zero values and their corresponding row
and column indices. The construction of this format is facilitated by
its lack of strict sequential requirements for the nnzs, allowing for
the appending of nnzs in any arbitrary order. However, the absence
of data locality inherent in the COO format can result in suboptimal
computational efficiency, an issue that we will demonstrate through
the experimental results presented in Section 5.6.

The CSR and CSC formats, depicted in subfigures (c) and (d), are
specifically designed for computational efficiency. In contrast to
the COO format, these formats impose strict sequential constraints
on the storage of non-zero elements. For instance, the CSR format
arranges a sparse matrix in row-major order and consists of three
arrays: val, row_ptr and col_ptr. The val and col_ptr arrays
contain the values of the nnzs, and col_ptr holds their column
indices.

The distinctive feature of the CSR format is the role of the
row_ptr array. Each entry row_ptr[i] indicates the starting index
in the val and col_ptr arrays for the nnzs of the i-th row. This



structure is particularly conducive to sequential access of row el-
ements. For example, to retrieve the values and column indices
of non-zero elements in the i-th row, one need only extract the
corresponding sub-arrays as follows:

values = vallrow_ptr[i]:row_ptr[i+1]1];
col_indices = col_ptr[row_ptr[il:row_ptr[i+1]1].

This efficient access pattern makes the CSR format ideal for
operations that involve row-wise traversal of the sparse matrix.

Not all matrices benefit from row-major storage. Consider the P
matrix, where the non-zero elements are more naturally organized
in a column-major fashion. In such cases, the CSC format is more
appropriate. The underlying principles of the CSC format are anal-
ogous to those of the CSR format, with a key distinction: the CSC
format arranges non-zero elements in column-major order. Storing
P matrix using the CSC format, as illustrated in Figure 2, exhibits a
more compact representation compared to the CSR format.

3 BLAEQ

The principle of BLAEQ involves matrices and vectors of various
dimensions and layers. For the sake of clarity, we summarize fre-
quently used notations in Table 1.

Table 1: Frequently used notations

Notation H Description
Pg'lﬁl Prolongation matrix from layer [ + 1 to [ on dimension d
mld The mesh of d-th dimension, [-th layer
bé The bandwidth of d-th dimension, I-th layer
9y q; The lower & upper bounds of a range query
N The scale of the finest mesh, i.e. the original mesh
D The dimensionality of the mesh
a An indicator vector
0 A specific point within a mesh
K A configurable parameter

3.1 Intuition

The theoretical principle of BLAEQ is similar to a tree-based index,
however, its design is tailored for on-GPU execution. Here, we
explain the principle of BLAEQ with a straightforward example.

Figure 3 (a) illustrates three layers of meshes, with m% being
the finest mesh, which corresponds to the original data set. For
clarity, we use subscripts to denote a specific dimension, e.g., x,
and superscripts, e.g., 0, to denote the layer. An index built on m?c
is a series of coarser meshes, which are denoted as m,l( and m,zc,
respectively. The data within each layer is structured as a vector,
as shown in subfigure (b).

To effectively and efficiently accelerate a range query, it is es-
sential to establish correspondences between mesh layers. In our

example, the points xg and x(l) corresponds to x;, while xg to xg

corresponds to x}. Consequently, a range query that excludes x}

on layer mL will also exclude the corresponding points on layer
mY, thereby speeding up the query process. This correspondence
mechanism is a cornerstone of spatial indexing.
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Conventional indexes establish correspondences between points
across layers using in-memory pointers. Such a mechanism is ill-
suited for GPU, since a navigation process incurs data transfer
between the GPU’s processors and GPU’s RAM (DRAM?). While
similar data transfer processes occur on CPUs, the distinction lies
in the GPU’s larger number of processors. Each of these processors
may initiate navigation requests, thereby amplifying the aggregate
data transmission overhead.

BLAEQ addresses this issue by replacing pointer-based naviga-
tion with computational methods. Instead of following pointers to
access data, BLAEQ uses multipliers to compute the desired values
directly. For example, instead of using a pointer to access a value

0
xg from a value xé, BLAEQ uses a multiplier i—g to compute xg

directly from xé. Generalizing the process above will produce a
prolongation matrix, denoted as P. Specifically, consider the task
of creating correspondences between m. and mL. The goal is to
create a matrix P10, such that m% can be obtained by performing
a SpMV as follows:

0

1—0
Py -

1)
With m% and m.. given, matrix PL™% can be generated, as we illus-
trate in subfigure (c). Similarly, we can generate P21,

A prolongation matrix is a sparse matrix. Consider two adjacent
layers |mk| and [ml!| (lmk!| < |mk|). The prolongation matrix
PL+1=! will inherently be a matrix of shape |mk| x |mL1|, and it
will have a sparsity pattern resulting in one nnz per row, giving it

a sparsity ratio of

Xmy=m

1
[mlT
The sparsity characteristic in a prolongation matrix is paramount,
as it allows for effective pruning via SpMV. Consider subfigure (d) as
an illustration. Imagine a scenario where a range query is conducted,
and the pruning mechanism removes the element xl1 at layer m..
Logically, this should also remove the corresponding points of
xl1 at the subsequent layer m. To enable this pruning, BLAEQ

sets the value of x% to 0, thereby creating the modified vector m,lcl.

Consequently, when prolongation occurs, the operation PL~%x m,lcl
generates a new vector m)’, where the entries corresponding to
xl1 are also set to 0s.

In the realm of sparse linear algebra, the value ‘0’ holds unique
significance. To maximize computational efficiency, 0s within sparse
matrices or vectors are neither stored nor processed. This practice
significantly enhances the performance of SpMV. Consequently,
when specific points are set to 0, BLAEQ inherently prunes these
points, preventing their involvement in subsequent calculations.
This pruning mechanism accelerates the overall query performance
of BLAEQ.

3.2 Setup

With a clear understanding of BLAEQ’s underlying principle, we
now turn to its implementation. Without loss of generality, we
specifically focus on dimension x. The algorithms can be general-
ized to other dimensions by treating each dimension individually.

3.2.1  Multigrid Construction. Similar to constructing a conven-
tional tree-shaped index, the setup phase begins by generating

2https://docs.nvidia.com/deeplearning/performance
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Figure 3: Demonstration of the principle of BLAEQ.

layers of vectors, where each point in a coarser layer corresponds
to multiple points in the finer layer. Once the correspondence be-
tween points is established, a P matrix is constructed by populating
the appropriate positions with the corresponding values.

For a mesh mi, BLAEQ partitions it into |m£€ |/K disjoint, evenly
sized bins with bandwidth:
bl — max(mgc) - min(mgc)

=
jmic|/K

where K controls the multigrid hierarchy’s structure (discussed in

I+1
x

= Centroids(ml., bL), as illustrated in Figure 3

>

Section 3.5). The centroids of these bins form the coarser mesh m

computed via mk!

for K = 2.

Each data point x!

; I+1
; maps to its coarser counterpart x i through

I+1

j= |_xf / beJ, establishing correspondence X = xf . These rela-

tionships define the prolongation matrices where Pf;fl_’l = xl! / xé“
for corresponding points.

The matrices are constructed by mapping all fine-mesh points
to their coarse counterparts and populating P values accordingly.
While a naive implementation uses for-loops, we optimize this via
BLAS operations (Algorithm 1), returning CSC format for efficient

SpMV.

Algorithm 1: BLAS-based Prolongation matrix generator

Input: Original mesh M, bandwidth bfi'
Output: Prolongation matrix PZ’IHI.

row = [0 to [M!| - 1] //array [0, 1, 2,..., [M}] = 1]
col = M}, @b |

val = M, @ ((col © bL) + bl /2)

P(li“_’l = COO(row, col, val)

return P[l;l%l to_CSC

With the prolongation matrices constructed, the multigrid index
is built. We assemble Algorithm 2 as the setup phase of BLAEQ. For
multi-dimensional data, BLAEQ iterates through all its dimensions
using a for loop.

3.3 Spatial Query

BLAEQ processes queries similarly to traditional tree-shaped in-
dices, beginning at the coarsest layer m. It prunes irrelevant ele-
ments, then performs a sparse matrix-vector multiplication (SpMV)
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Algorithm 2: BLAEQ Setup

Input: Original mesh M®, Parameter K.
Output: Multigrid G.

// Phase 1: Initialization.
Prolongation matrices
Bandwidths 8
Coarsest Meshes M
// Phase 2: Construction.
ford € D do
Current mesh mg =M’[d]
mfi = mod
Mg P18y =0
while [m! | > K do
bl _ max(mld)—min(mfj)
d Iml,|/K
mf;l = Centroids(m(lj, b{li)
Pfiﬂ_’l = Prolongation_Matrix(mfi, bil)
8d.append(b£i)
Pd.append(P(l;l_’l)
=
B Md.append(mfi)
G=PUBUM
return G

to generate the finer layer via m’ = P X m. This process iterates
until reaching the finest mesh.

Figure 4 demonstrates the principle of performing a range query
using BLAEQ. The query starts from the coarsest layer (m>) and iter-
atively prolongs the query results to the lower layers until reaching
the original layer (m°).

3.3.1 Relaxation. When executing a query on the coarser meshes
(m1 to m3), a special mechanism, relaxation, is required. Relaxation
represents extending the query range on coarser meshes, which is
crucial because a data point on a coarser mesh corresponds to a
range on the finer meshes. Therefore, to ensure accuracy, the query
range on the coarser meshes must be adjusted.

In BLAEQ, the extent of relaxation for each layer is determined
during setup. Specifically, consider a lower-layer point ogc, its band-

I+1

width b, and its corresponding point 05! on the coarser layer,



7 : Pruned data points
@ : Points eliminated by the query
@ : Points selected by the query

by
—_—

by

by

Figure 4: A demonstration of executing a range query using
the multigrid.

which is the centroid of the bin that contains ofc, This relationship
is formalized by the inequality

ot = ok| < bL /2. ®
This equation sets the upper bound for the distance between og(
and o+,

To ensure that the relaxation mechanism accurately captures
the relevant data points from the finer meshes represented by the
coarser meshes. We extend the query range by b /2 at coarser layer.
Specifically, given a range query gy, if ofc € (q%,q¥), combining

equation (2), we have
ol! € (g5 - bL/2.q% + b /2). 3)

Since a range query q is supposed to be executed on Mg, on the
(I + 1)-th layer, to ensure the accuracy of relaxation, equation (3)
should be applied to all the intermediate layers. In this case, the
relaxation range on the (I+1)-th layer should be Zg:o % (Figure 4).
Therefore, the query range with relaxation on the (I + 1)-th layer

should be
b
l+1
€ ,qx t+ — 4
(45 - Z e Z ) @
For the sake of simplicity, we denote equation (4) as
1
b;
l+1

— 5
k) o )

i=0

3.3.2  Query via SpMV. Given a coarser grid mlJrl a prolongation
matrix Pl”Hl a range query gy is executed as follows:

First, we execute gx with relaxation on m1+1 using equation (5),
which returns an indicator vector al+1 indicating which values

within mIJr1 falls within g:

l
I+1 _ I+1 b_
ay = where(my " € qx % Z 5
i=0
Then, we perform element-wise multiplication m&1” = m&! o
al+1 which preserves all data points within the relaxed query range

and eliminates the rest by setting them to 0s. This process turns

mi“’ into a sparse vector that can be stored using CSC format.
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Next, we perform SpMV

17 _ pl+1—l 1+1/
x = PX X mx 4

(6)

and generates the pruned, lower- layer mesh mx/ We repeat the
previous steps until reaching m?’. Finally, where we perform a
detailed scan to get the query result.

The process above is applicable to a single dimension. To execute

a query with predicates on multiple dimensions, we perform

— 0
r=[]re

deD

where r?i represents the query result on dimension d, and r repre-
sents the final query result.
We summarize the query process of BLAEQ in Algorithm 3.

Algorithm 3: Multigrid Query
Input: Coarsest grids M, bandwidths 8, prolongation
matrices P, range query Q.
Output: Query result R.
I1° = I //An identity vector
ford € D do
q="0a

Coarsest grid mé =

Mld]

forie [Py.size—1,..,0] do
//Tterates i in descending order
afi = where(m €Eqqt Z Bylil/2)

1’
m, —mand

Pt = 2yli]

-1/ _ pl—=l-1 1’
a =Py xm,
1 -1/

d d

=a’oad,

m

0

=m

a

R=Ugep mfi 0d°
return R

3.4 Complexity Analysis
3.4.1 Spatial Complexity. The data structure of BLAEQ is com-
posed of three parts: the coarsest grids M, prolongation matrices
# and bandwidths B. Notice that the intermediate levels m! does
not require storage since they can be computed via prolongation.
Due to the principle of BLAEQ, the scale of the coarsest grid is
no larger than K. Therefore, the spatial complexity of M will be
O(K). Let n be the scale of the original grid. BLAEQ will have loggn
layers of multigrid. Therefore, the spatial complexity of 8 will be
O(loggn). If we store the prolongation matrices using sparse matrix
formats, then the spatial complexity of P will be O(n+ ¢ + K2 +...).
For large-scale CFD meshes, we generally have n > K > loggn.
As a result, the overall spatial complexity of BLAEQ is

O(K +loggn+n+ — .) = 0(n).
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3.4.2 Time Complexity. The time complexity of the setup process
is primarily influenced by the computation of prolongation matrices.
These matrices are constructed through element-wise operations,
including multiplication and division. For a mesh with an original
number of points n, the time complexity of these element-wise
manipulations is O(n). As a result, the overall time complexity of
the setup process can be expressed as:

n n
O(n+ X + e +...) = O(n).

Nevertheless, for a multigrid architecture with a large K , the terms
with higher powers of K, e.g. £, %, become increasingly negli-
gible. Therefore, the overall time complexity of the setup process is
approximately O(n), as the dominating term is O(n).

The time complexity of query via BLAEQ is dominated by SpMVs.
The time complexity of regular matrix-vector multiplication with a
matrix of size n X n is O(n?). For SpMV, with the sparsity of matrix
be % the time complexity will be reduced to O(n). Suppose the
proportion between the requested points and the original grid is
p € [0, 1]. Theoretically, the time complexity of such a query on a
mesh with a scale of n is

p-n p-n

—_—

O(p-n+ X e

+..) = O(p - n).

3.5 Choosing K

The theoretical time complexity discussed above does not fully
account for BLAEQ’s performance under parallel execution. When
using BLAS for parallel execution, the efficiency of sparse matrix-
vector multiplication (SpMV) is heavily influenced by the shape of
the prolongation matrix, emphasizing the importance of selecting
parameter K appropriately.

A matrix multiplication r = P X m (superscripts omitted) can
be viewed as computing the linear combination of the columns
of P. Let P = [cy,¢2,...,¢n], where ¢; is a column vector, and
m = [my,my, ..., mp], where m; is a scalar. The result r is computed
as:

™

This formulation allows matrix-vector multiplication to be effi-
ciently parallelized by performing scalar multiplication on each
column concurrently and then accumulating the results, as summa-
rized in Algorithm 4. This approach leverages the inherent paral-
lelism of the operation, particularly beneficial for BLAEQ, where
prolongation matrices are stored in column-major format.

r=c1®mi+ca2®ma+---+cyp ® my.

Algorithm 4: Parallel CSC SpMV
Input: Matrix P, vector M.
Output: Result vector r.
forc; € P,m; € M do

| ri =ci ® m; // In parallel
r=yri

return r

The time complexity of Algorithm 4 can be analyzed as follows.
Let C be the number of columns in P. The complexity of distributing
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Figure 5: The principle of implementing BLAEQ in a hybrid
architecture.

columns among parallel processors is O(C). The scalar multiplica-
tion step depends on the column size |c;|, and the linear combina-
tion step also has complexity O(C). Thus, the overall complexity is
O(2C + |ci|), denoted as f = 2C + |c;|. The goal is to minimize f.

Assuming P10 has N non-zero elements, the column size can
be estimated as |c;| = N/C. Substituting this into f yields:

N
=20+ .
f=2C+5

Minimizing f leads to the conclusion
K=V2-N. ®)

Equation 8 reveals a structural feature of the multigrid archi-
tecture. Setting K = V2 - N limits the multigrid’s height to three
layers, as two coarser layers suffice to represent K? = 2 - N points,
exceeding the original N points. This wide multigrid structure, un-
like traditional deep tree indices, provides sufficient parallel tasks
to fully utilize GPU computational power. Experimental validation
is provided in Section 5.7.

3

4 IMPLMENTATION

In previous sections, we introduced the theoretical principles of
BLAEQ. However, applying BLAEQ to real-life datasets requires
overcoming implementation challenges, particularly in processing
large-scale data that often exceed GPU capabilities. To address this,
we developed variants of BLAEQ tailored for datasets of varying
scales (see figure 5), all based on Algorithms 2 and 3, with differences
primarily in data storage and allocation:

e On DRAM: Designed for smaller datasets, this variant
preloads all data onto the GPU, enabling fully on-GPU exe-
cution.

On RAM: Data are preloaded into RAM and transferred
to the GPU as needed, requiring additional data transfer
mechanisms.

On Disk: Data are stored on disk and loaded into RAM
and GPU incrementally. Using Grid Files [51], we partition
datasets into blocks and prune data at the file level using
metadata, ensuring tasks fit within GPU memory. This vari-
ant supports both single-GPU and multi-GPU execution,
simulating real-world database environments.

3The theoretical deduction is omitted due to restriction of page length.



A key data structure in these implementations is the shard,
which contains a complete set of multigrids with P matrices and
coarsest-layer meshes m, sized to fit a single GPU. Typically, |S| <
|[DRAM]| /2, where |S| is the shard size. Each shard includes meta-
data for data range identification, enabling shard-level pruning
before GPU loading. While our implementation is intuitive, further
performance tuning remains a future work, as the primary focus of
this paper is introducing multigrid for geometry data indexing.

5 EXPERIMENTS
5.1 Experimental Setup

Environment. We conduct the experiments on an Aliyun cloud
server equipped with a multi-GPU configuration. The server speci-
fications include an Intel(R) Xeon(R) Platinum 8163 CPU (2.50 GHz)
and 2*NVIDIA Tesla T4 GPUs.

Datasets. We employ data sets from three origins:

(1) Real-world CFD and FEA (Finite Element Analysis) datasets
collected from CSSRC (China Ship Scientific Research Center).
Experiments on these data sets represent the application
potential of BLAEQ on computational simulation data man-
agement. These data sets range from 103 to 102, providing
a range of experimental conditions on real-life engineering
data sets.

(2) Point cloud Datasets [14, 56]. Point cloud data is a vital
component of fields such as geospatial mapping[10], au-
tonomous vehicles[16], and gaming engines[25], etc.

(3) Synthetic Datasets. The previous two scenarios are limited
to geometrical data sets, with primarily 3-D data sets. We
use synthetic experiments to evaluate the performance of
BLAEQ on data sets of various dimensionalities and scales.

Table 2: The summary of data sets for overall evaluation. In
this experiment, all datasets are three dimensional.

Use Cases CFD FEA Point Cloud
Name  Scale Name  Scale Name Scale
Data FEA-1 8x10° CFD-1 3x10° CFD-4 1x108
sets FEA-2 1x10* CFD-2 3x10° PCL-1 1x10°
FEA-3 5x10* CFD-3 2x10” PCL-2 5x10°

In the context of geometrical spatial indexing, algorithms are
commonly evaluated based on their performance in construction,
query, and update. We specifically focus on the evaluation of the
query. Since in many geometry data applications, such as CFD post-
processing[18], smart manufacturing[47, 68], etc., the creation and
update of the 3-D model is an offline process.

Workload. Range queries have a wide range of applications, in this
paper, we enumerate three representative types of range query as
our experimental workload:

e Point-in-Range Query. A Point-in-Range Query is used
to determine whether a specific point lies within a defined
spatial or numerical range. This type of query is particularly
useful in applications such as scientific simulations, where
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verifying the presence of a data point within a specified
range is critical.

e Cross-Section Query. A Cross-Section Query is designed
to extract a two-dimensional slice or cross-section from
a three-dimensional model. This is especially valuable in
fields like CFD analysis and computer graphics, where ana-
lyzing internal structures or specific layers of a 3D model
is necessary.

e Region-of-Interest Query. A Region-of-Interest (ROI)
Query focuses on retrieving a specific subset of data from a
larger dataset, typically by isolating a particular region or
segment of a model. This is particularly beneficial in scenar-
ios where processing the entire dataset is computationally
expensive or unnecessary.

Algorithms. The experiment comprises eight competitors, repre-
senting the SOTA solutions for multi-dimensional data indexing
problems. Given the critical role of implementation in performance,
all the algorithms are evaluated using their publicly available code
or implementations provided by trusted sources.

e KD-Tree*. KD-Tree is a binary space-partitioning structure,
recursively dividing space along alternating axes, making
it efficient for querying low-dimensional spaces.

e R-Tree’® R-tree, designed for spatial databases, organizes
objects using minimum bounding rectangles in a hierar-
chical manner, balancing query performance and storage
overhead.

e Octree®. Octree partition space into eight equal regions,
enabling efficient handling of low-dimensional, volumetric
data.

e LISA’. LISA [43] is a learned index. Instead of indexing
using a tree, it constructs a machine-learning model and
predicts the query results. LISA represents the SOTA CPU-
based solutions for spatial query.

e LBVH-Tree®. LBVH-Tree [36] is a GPU-accelerated, SOTA
solution for point cloud indexing, a domain closely related
to 3-D mesh query. It builds a balanced tree structure opti-
mized for parallel execution on GPUs.

e G-PICS’®. G-PICS [40] is a representative GPU-based solu-
tion. Since a tree-based search is difficult to parallelize for
GPU, it reduces single-query consumption by executing a
batch of queries simultaneously.

e GTS'°. GTS [69] executes very similar to G-PICS. It refines
G-PICS on pruning and memory management for improved
parallel query, achieving better batch query performance.

e TileDB!!.TileDB[53] is an array database designed for effi-
cient multi-dimensional data management. While BLAEQ
and other competitors are essential components of array
databases, we implement a specialized variant of BLAEQ

*https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial KDTree html
Shttps://pypi.org/project/Rtree/.

Chttps://github.com/PointCloudLibrary/pcl

"https://github.com/pfl-cs/LISA

8https://pypi.org/project/cupy-knn/

The original code of G-PICS is inaccessible. Zhu et al. implemented G-PICS as a
baseline: https://github.com/ZJU-DAILY/GTS/tree/master/Source%20Code/GPU-Tree
WOhttps://github.com/ZJU-DAILY/GTS

https://tiledb.com/
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https://pypi.org/project/Rtree/
https://github.com/PointCloudLibrary/pcl
https://github.com/pfl-cs/LISA
https://pypi.org/project/cupy-knn/
https://github.com/ZJU-DAILY/GTS/tree/master/Source%20Code/GPU-Tree
https://github.com/ZJU-DAILY/GTS
https://tiledb.com/

that retrieves data from disk. This experiment highlights
BLAEQ’s potential for integration into database systems.

We also implement multiple variants of BLAEQ for different experi-
mental setups, including three GPU-dependent variants of BLAEQ:
BLAEQ-DRAM, BLAEQ-RAM, and BLAEQ-Disk as we introduced
in Section 4. We also introduce BLAEQ-CPU by replacing the BLAS
library using CPU-dependent MKL [62] for a fully on-GPU imple-
mentation.

Metrics. To evaluate the details of algorithms’ execution footprint,
except for regular metrics such as memory consumption and time,
we introduce NVIDIA Nsight Compute!? to provide a detailed anal-
ysis for on-GPU algorithms. Specifically, we introduce the following
metrics:

e Occupancy. Occupancy reflects the overall GPU occupancy
during executing the algorithm on GPU. A low occupancy
indicates an underutilization of the GPU.

Estimated Speedup. Estimated Speedup (ES) is a com-
prehensive, function-level factor indicating how much a
function can potentially be accelerated on GPU. A large ES
indicates that the function underutilizes the GPU.
Duration. Duration evaluates the function’s on-GPU exe-
cution time.

Memory Throughput. Memory throughput evaluates the
function-level data I/O.

5.2 On RAM & DRAM Evaluation

Since many competitors do not support reading data from disk,
to ensure fair competition, in this section, we compare the index-
ing algorithms, including Octree, LISA, GTS, etc., with BLAEQ-
CPU, BLAEQ-DRAM, and BLAEQ-RAM. Meanwhile, we compare
BLAEQ-Disk against ArrayDB in the next section.

In this section, we evaluate the overall query performance of the
variations of BLAEQ and other competitors. We do not add RAM or
DRAM constraints in the experiment, all algorithms can access all
the available resources from the platform. The experimental results
are demonstrated in Figure 6. We distinguish on-CPU and on-GPU
algorithms using different line styles: The on-CPU algorithms are
labeled using dotted lines, and on-GPU algorithms are labeled using
dash-dotted lines. The coordinates of data sets are placed based on
their scale (see Table 2).

Peak memory consumption (subfigure a)) measures the storage
requirements for indices. Since memory usage remains stable across
query types, we use the average peak memory consumption as the
metric. GPU-based algorithms generally consume more memory
than CPU-based ones due to inherent programming differences,
where GPUs trade memory for parallel processing efficiency. For
instance, BLAEQ-DRAM allocates redundant memory for parallel
SpMV operations, while BLAEQ-CPU uses sequential scans for pre-
cise memory usage. This trade-off is common in high-performance
computing [2, 17, 41].

As we examine the experimental outcome patterns, a significant
contrast emerges between algorithms designed for CPU and those
for GPU. In particular, for CPU-based algorithms such as KD-Tree
and BLAEQ-CPU, there is a marked increase in computational time

2https://developernvidia.com/nsight-compute
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as the dataset size expands. Conversely, for GPU-based algorithms,
including GTS and BLAEQ-DRAM, the increase in computational
time is notably gentler. This discrepancy is rooted in the intrinsic
difference in computational capabilities between CPUs and GPUs.
GPUs possess greater computational power but at the expense of
additional data transfer overhead between RAM and GPU. Con-
sequently, the growth curves for GPU-based algorithms exhibit a
smoother trend. However, due to this data transfer overhead, they
are outperformed by CPU-based algorithms on smaller datasets.

An interesting exception among CPU-based algorithms is LISA,
which exhibits a remarkably steady growth rate, divergent from
other CPU-based methods. This is because LISA, as a learned in-
dex, operates on a principle distinct from conventional indexing.
It leverages machine learning models to predict query outcomes
rather than employing a layer-by-layer pruning approach. This
mechanism enables LISA to handle large datasets effectively, albeit
with reduced performance on smaller datasets.

When comparing algorithm performance across query patterns,
CPU-based algorithms exhibit greater sensitivity to query result
size, while GPU-based algorithms remain less affected. CPU al-
gorithms rely heavily on pruning mechanisms, excelling in point
queries with minimal result sizes but struggling with hyperplane
queries requiring full scans. In contrast, GPU algorithms, designed
with broader, shallower structures (Section 3.5), minimize reliance
on pruning, ensuring stable performance across varying query re-
sult sizes.

In summary, for datasets exceeding N > 106, the on-GPU vari-
ants of BLAEQ exhibit superior query performance compared to
the other competitors. This observation underscores the benefits of
employing GPUs for query processing on large-scale datasets and
the effectiveness of BLAEQ-DRAM in such contexts.

5.3 Comparison with ArrayDB.

In this experiment, we compare BLAEQ-Disk against TileDB, a
representative array database. The purpose of this experiment is
to evaluate the potential of applying BLAEQ to a database system.
Notice that the multi-GPU capability of BLAEQ is also included
in this experiment. The experimental results are demonstrated in
Figure 7.

The experimental results show that BLAEQ outperforms TileDB
for datasets of moderate size (e.g., N < 10%), leveraging the superior
computational power of GPUs despite slight I/O overhead. However,
as the dataset size increases, the performance gap narrows, with
TileDB slightly surpassing BLAEQ for larger datasets (N > 10°).

This outcome stems from the fundamental differences between
TileDB and BLAEQ On-Disk. TileDB is a highly optimized database
system designed for managing extremely large-scale data. It per-
forms fine-grained file-level pruning before loading data into RAM,
minimizing I/O overhead. In contrast, BLAEQ On-Disk adopts a
more intuitive approach, where data is split into shards primarily
to avoid GPU out-of-memory (OOM) issues rather than optimizing
file-level pruning. As a result, BLAEQ On-Disk incurs significant
1/O overhead as dataset size grows, leading to performance degra-
dation.

Additionally, we observe that using multiple GPUs does not com-
pensate for the increased I/O overhead. Furthermore, for smaller
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Figure 8: The multi-query performance between G-PICS, GTS,
and BLAEQ-DRAM.

datasets that fit within a single GPU, the current shard design pre-
vents BLAEQ from effectively utilizing a multi-GPU setup. These
findings highlight the need for better tuning of BLAEQ’s On-Disk
implementation and more advanced techniques to leverage multiple
GPUs efficiently.

5.4

As G-PICS and GTS are specifically designed for batch query pro-
cessing on GPU. This section assesses the capability of processing
multiple queries against BLAEQ.

We present the evaluation of range queries on data set CFD-3 to
ensure on-GPU execution with a large enough dataset. We evaluate
both the average query time and GPU occupancy as metrics. The
experimental results are visualized in Figure 8. From the results,
we have the following observations.

The experimental results demonstrate both the advantages and
disadvantages of BLAEQ against SOTA on-GPU algorithms. BLAEQ
can already utilize GPU at a high occupancy when provided with a
limited number of queries, leading to significant performance gains
compared to the other algorithms. However, as more queries are

Multi-query Evaluation
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Figure 9: The function-level footprint analysis of BLAEQ,
with GTS as baseline.

executed concurrently, batch query methods prove to be efficient.
For example, G-PICS exhibits a steady decline in average query time,
overtaking BLAEQ-DRAM at a batch size of 10%. GTS, an optimized
variant of G-PICS, shows a near-linear reduction in average query
time with respect to batch size, overtaking BLAEQ at batch size of
102, underscoring the efficacy of batch processing.

In conclusion, both the experiments demonstrate the high GPU
utility of BLAEQ when processing single queries, and the potential
of integrating batch query capability, which should be considered
in the future work.

5.5 Detailed Evaluation

In this experiment, we conduct a function-level evaluation of BLAEQ,
using the CUDA kernel performance of GTS as a baseline to com-
pare against SOTA solutions. The experiments are performed on the

CFD-3 dataset, with results shown in Figure 5.5. Based on BLAEQ’s

design, we decompose its execution into three key phases: Filtering

(F), SpMV (M), and Intersection (I). Each phase corresponds to

one or more CUDA kernel functions, enabling us to pinpoint perfor-
mance bottlenecks and underutilization. Since BLAEQ’s multigrid

structure consists of at most three layers, we further break down

the execution footprint by layer to provide a clearer understanding

of the algorithm’s behavior.
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Figure 10: The query performance of BLAEQ with different
prolongation matrix formats.

According to the ES metric, BLAEQ exhibits high ES values at
the coarser layers and during the I phase. The high ES at coarser
layers is expected, as the vectors and matrices at these layers are
small, leading to unavoidable GPU underutilization. However, as
shown in the Duration subfigure, the duration of these phases is
negligible despite the high ES scores.

The experimental results highlight a significant bottleneck in
BLAEQ: the I (Intersection) phase. This phase requires sorted in-
put data for parallel intersections, but data in BLAEQ are sorted
differently across dimensions. This necessitates additional sorting
operations, which are inefficient on GPUs and result in substan-
tial performance overhead. As seen in subfigure (c), the I phase
consumes the majority of the execution time.

The effectiveness of SpMV is demonstrated during the SpMV
phase at Layer II, where a prolongation operation is performed from
the second layer to the finest layer. Subfigure (b) shows that the
SpMV phase involves loading a large prolongation matrix, yet the
operation is completed extremely quickly, as evidenced by subfigure
(c). This underscores the efficiency of leveraging BLAS in BLAEQ
for SpMV operations.

5.6 Matrix-Vector Multiplication

In Section 2.3, we highlight the importance of choosing the appropri-
ate storage format for the prolongation matrices, as it significantly
affects the efficiency of SpMV, which is a critical component of
BLAEQ’s query processing. This section demonstrates the experi-
mental results by storing the prolongation matrices using the three
most widely used formats: COO, CSR and CSC.

The experimental results are visualized in Figure 10. The time
consumption gap between COO-SpMV and CSR/CSC-SpMV is
substantial (by a factor of 10! on smaller data sets and 10% on
kvlcc2_large), both in time consumption and spatial efficiency.

However, if we further consider the storage efficiency, we find
that CSC is also more spatially effective than COO and CSR, where
the CSR and COO consume almost identical space, significantly
larger than CSC. Such a result is understandable, given that the
P matrices are all column-dominant. Such a phenomenon can be
observed in the exemplar matrices in Figure 2. The experimental
results indicate that CSC is indeed the optimal storage format for
P matrices of BLAEQ. This experiment highlights the importance
of understanding the underlying principles of on-GPU implemen-
tation when utilizing a BLAS package to avoid suboptimal perfor-
mance.
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5.7 Parameter Selection

The choice of K significantly influences BLAEQ’s performance.
This section evaluates query performance across different K values,
with results illustrated in Figure 11. The red dashed line represents
the theoretical recommendation for K derived from Equation (8).
Experimental results confirm that this recommendation identifies
the optimal K across all datasets, validating the effectiveness of
our approach. However, performance variations can arise due to
environmental factors, such as background processes or hardware
fluctuations. For instance, on the largest data set, query times vary
by less than 3 ms for K values between 103 and 10, highlighting
the robustness of our method in practical settings.

A sharp decline in query time occurs as K approaches the recom-
mended value, driven by the multigrid’s layer count. Small K values
result in deep multigrids with numerous layers, increasing the num-
ber of SpMV operations (time complexity O(N)). This confirms that
SpMYV, rather than pruning, is the primary performance bottleneck.
Conversely, performance degradation for large K values is grad-
ual. Once K exceeds V2 - N, the multigrid’s layer count remains
constant, but the middle layer’s size increases, raising scan costs
to O(N/K). However, GPU parallelization mitigates this impact,
leading to only minor performance degradation, as shown in Figure
11. These findings align with the theoretical model in Section 3.5
and the discussion on GPU-friendly wide multigrid structures in
Section 1.

5.8 Scalability to Dimensionality

The previous experiments depend on 3-D data sets. In this part of the
experiment, we evaluate the performance of BLAEQ-DRAM against
GTS on a synthetic data set with configurable dimensionalities, the
scale of the data set is always set to N = 10° to avoid OOM issues.

The experimental results are demonstrated in Figure 12. From
the results, we observe that the performance of BLAEQ degrades



significantly as the dimensionality of the dataset increases. This
degradation is primarily due to the need to process each dimension
individually, which introduces additional computational overhead.
Furthermore, the high time consumption of the I (Intersection)
phase, as analyzed in Section 5.5, exacerbates this issue, making
BLAEQ less efficient for high-dimensional data.

In contrast, GTS is less affected by dimensionality and even
benefits from higher-dimensional datasets. This is because higher
dimensionality increases the number of computational tasks at each
node, leading to better GPU utilization and improved performance.

These observations align with the underlying principles of BLAEQ,
where the need to query each dimension separately and the inef-
ficiencies in the I phase limit its scalability for high-dimensional

datasets. However, BLAEQ’s superior performance on low-dimensional

datasets demonstrates that it remains highly efficient and effective
for indexing and querying low-dimensional geometry data.

6 RELATED WORK

Spatial query has been widely studied in the past. Traditional spatial
query solutions are primarily based on trees. These solutions in-
clude B-tree [5], R-tree [11], KD-tree [39], Octree [63], etc. Among
these, the R-tree and Octree are often considered the most effective
solutions for indexing geometry data. Consequently, many variants
have been proposed for further improvement [1, 4, 48]. Balasub-
ramanian et al. provide a detailed survey on these variants [4].
Nevertheless, these solutions are mainly dependent on sequential
execution on a single CPU, thus limiting their overall performance,
especially on large-scale data sets.

Other closely related works include solutions beyond indexing,
such as Grid File [51] and array databases [32]. Grid Files are file-
level solutions for storing and managing multi-dimensional data,
enabling efficient pruning at the storage level. Array databases are
proposed as specialized solutions for multi-dimensional data man-
agement, as the use case of this type of data raises new challenges
that traditional database approaches find hard to conquer [12]. The
representative array databases include SciDB [58], TileDB [53], etc.

Parallel computing is a promising direction for further improving
the query efficiency of spatial queries. The MapReduce framework
[22], a widely adopted parallel computing paradigm at the time,
was a natural choice for this endeavor. Consequently, many dis-
tributed, parallel algorithms were developed, with Spatial Hadoop
[27] emerging as a notable example in this domain. Singh et al. [57]
provide a thorough survey on these solutions. Nevertheless, as a
distributed environment, MapReduce has its natural drawbacks.
It incurs heavy inter-node data transmission overhead [26] and
data balancing issues [44], which can ultimately impact the overall
performance of spatial query processing.

With the development of machine learning, learned index [38]
has become a popular solution. These indices depend on techniques
such as regression [43], neural networks [21], and reinforcement
learning[33]. Compared with a tree-based structure, a learned index
replaces the tree with a machine-learning model. The advantage
of such architecture is that the scale of the data set will no longer
dominate the scale of the index. As a result, a learned index shows
great potential for indexing large-scale data. Sun et al. [59] conduct
a comprehensive evaluation of the learned indices.
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With advancements in hardware, GPU computing has become a
cutting-edge approach for spatial indexing and query optimization.
There has been a increasing interest in utilizing GPU for enhancing
the performance of database systems[8, 52]. Algorithms like LBVH
[36], G-PICS [40], and GTS [69] exemplify GPU-based solutions
in this field. However, these methods face a significant challenge:
traditional tree-based query execution models struggle to achieve
effective parallelization on GPUs, limiting their ability to fully uti-
lize GPU computational power. While G-PICS and GTS employ
batch query processing to enhance parallelism, this approach intro-
duces storage overhead, constraining performance due to limited
GPU memory resources.

Linear algebra kernels, inherently suited for GPU computation,
have been applied in database systems, particularly in graph databases
[31, 34]. Graphs can be naturally represented as adjacency matrices,
making BLAS a natural fit. Since Kepner et al. [37] established the
theoretical foundation for converting graph operations into BLAS,
BLAS-based graph query solutions have flourished [20, 28, 54]. This
success suggests potential for extending BLAS-based approaches
to other database queries. However, to the best of our knowledge,
applying BLAS to spatial range queries on multi-dimensional data
remains an open research area, offering opportunities for innova-
tion.

7 CONCLUSION AND FUTURE WORK

This paper introduces BLAEQ, a multigrid index designed to accel-
erate spatial queries on geometric data, with a particular focus on
optimization for GPU architectures. BLAEQ utilizes matrix opera-
tions to restructure traditional indexing into a multigrid architec-
ture. Additionally, we present novel query execution strategies that
harness the power of BLAS operations, while also taking advantage
of the pruning capabilities inherent in indexing mechanisms. This
approach facilitates the integration of GPU, thereby enhancing the
overall performance.

Notwithstanding the advancements presented by BLAEQ, certain
limitations remain in its current implementation. Our future work
will prioritize the following areas for improvement:

Dimensionality Challenge. The current version of BLAEQ is
limited to low-dimensional datasets, such as geometry data, due to
performance bottlenecks with higher dimensions. Addressing this
challenge is crucial for extending BLAEQ to broader applications.

Hybrid Architecture. While On-RAM and On-Disk implemen-
tations of BLAEQ have been developed, their current design is
intuitive and leaves significant room for performance optimiza-
tion. Further research is needed to refine these implementations
for larger datasets.

Kernel Optimization. Although BLAEQ outperforms existing
solutions on geometry data, it does not fully utilize GPU computa-
tional power, as some kernel functions face underutilization issues.
Designing custom GPU kernels is a promising direction for improv-
ing performance.
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