
Data-Agnostic Cardinality Learning from Imperfect Workloads

Peizhi Wu∗
University of Pennsylvania
pagewu@cis.upenn.edu

Rong Kang
ByteDance

kangrong.cn@bytedance.com

Tieying Zhang†
ByteDance

tieying.zhang@bytedance.com

Jianjun Chen
ByteDance

jianjun.chen@bytedance.com

Ryan Marcus
University of Pennsylvania
rcmarcus@cis.upenn.edu

Zachary G. Ives
University of Pennsylvania

zives@cis.upenn.edu

ABSTRACT

Cardinality estimation (CardEst) is a critical aspect of query opti-
mization. Traditionally, it leverages statistics built directly over the
data. However, organizational policies (e.g., regulatory compliance)
may restrict global data access. Fortunately, query-driven cardinal-
ity estimation can learn CardEst models using query workloads.
However, existing query-driven models often require access to data
or summaries for best performance, and they assume perfect train-
ing workloads with complete and balanced join templates (or join
graphs). Such assumptions rarely hold in real-world scenarios, in
which join templates are incomplete and imbalanced.

We present GRASP, a data-agnostic cardinality learning system
designed to work under these real-world constraints. GRASP’s
compositional design generalizes to unseen join templates and is
robust to join template imbalance. It also introduces a new per-
table CardEst model that handles value distribution shifts for range
predicates, and a novel learned count sketch model that captures
join correlations across base relations. Across three database in-
stances, we demonstrate that GRASP consistently outperforms ex-
isting query-driven models on imperfect workloads, both in terms
of estimation accuracy and query latency. Remarkably, GRASP
achieves performance comparable to, or even surpassing, tradi-
tional approaches built over the underlying data on the complex
CEB-IMDb-full benchmark — despite operating without any data
access and using only 10% of all possible join templates.

PVLDB Reference Format:

Peizhi Wu, Rong Kang, Tieying Zhang, Jianjun Chen, Ryan Marcus,
and Zachary G. Ives. Data-Agnostic Cardinality Learning from Imperfect
Workloads. PVLDB, 18(8): 2519 - 2532, 2025.
doi:10.14778/3742728.3742745

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/shoupzwu/GRASP.

∗Most of the work was done during Peizhi Wu’s internship at ByteDance.
†Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742745

1 INTRODUCTION

At enterprise scale and beyond, data management and access may
be compartmentalized, due to (1) organizational structure and im-
plementation (e.g., different groups adopt incompatible database
platforms or access control mechanisms), (2) limited-access agree-
ments between groups (e.g., one organization only grants access
through restricted query APIs), and/or (3) regulatory policy and
the principle of least privilege (e.g., due to HIPAA or FERPA, cer-
tain data fields may be protected). In such settings, query opti-
mization remains essential for performance, despite the fact some
data is kept private1: the organization may need to execute feder-
ated queries [22], provide a service that abstracts over alternative
DBMS platforms [20], or even develop query optimization-as-a-
service [32]. Consider our motivating use case involving two real-
world scenarios at ByteDance. First, within the organization, nu-
merous internal business units require query optimization services
to enhance performance. However, these units often handle sensi-
tive data, such as TikTok user profiles and e-commerce transactions,
which are subject to strict data privacy constraints. Consequently,
sharing this data across departments is restricted. Additionally,
ByteDance’s cloud-native services provide query services, but many
users are hesitant to allow access to their personal data.

Traditional query optimization relies on cardinality estimation
(CardEst) that leverages statistics built directly over base relations.
A potentially promising alternative is to instrument query workloads
and their cardinality results, which typically raise fewer privacy
concerns than direct data access, and are often shared more readily
by users with database vendors for optimizing query performance.
Importantly, pairs of SQL queries and their resultant cardinalities
can be collected with minimal impact on system performance. This
facilitates the feasibility of developing learned query-driven CardEst
models based primarily on query workloads, circumventing the
need for direct access to underlying data. Recent studies [44, 56] also
demonstrate that machine learning (ML)-based query-driven ap-
proaches, which learn a regression model that predicts the cardinal-
ity for an input query, have the potential to consistently outperform
traditional histogram-based methods. This is because traditional
methods make assumptions like independence and uniformity of
data distributions, whereas learning-based techniques can model
data correlations and skewness. These lessons motivate us to adopt
query-driven CardEst techniques, which do not access the underly-
ing data while enhancing estimation accuracy.

1Note that by “privacy”, we refer to constraints on what data can be seen by other
users or systems. The restrictions do not guarantee differential privacy [18].

2519

https://doi.org/10.14778/3742728.3742745
https://github.com/shoupzwu/GRASP
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742745
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Limitations of existing approaches. However, it is challenging
to apply existing ML-based query-driven CardEst methods to our
real-world settings for three main reasons.

First, most of them [16, 35] are not purely query-driven as they
still require data-derived metadata (e.g., samples and histogram
estimates) for better generalization performance.

Table 1: Problem settings for query-driven cardinality esti-

mation in the literature versus production environments.

Problem Data Coverage of Distribution of Distribution of

Setting Access Join Templates Join Templates Predicate Values

in the literature Yes Complete Balanced Static

in production No Incomplete Imbalanced Shifting

𝐴

𝐵

𝐴 ⋈︁ 𝐵

𝐴

𝐵

𝐴 ⋈︁ 𝐵

LW-NN: Separate Model for Each

𝐴

𝐵

𝐴 ⋈︁ 𝐵

One Model For All

MSCN: One Model for All

𝐴

𝐵

𝐴

𝐴 ⋈︁ 𝐵

𝐵

A

𝐵

GRASP: Compositional Model Design

Join template

CardEst model

LCS model

Figure 1: Join handling in existing query-driven methods

Second, they assume perfect training workloads in which the
join templates (i.e., join graphs that connect base tables2) are com-
plete and balanced. As demonstrated in § 2.2, these assumptions
may not hold in real-world environments. Specifically, apart from
data inaccessibility, as shown in Table 1, production workloads
are inherently imperfect, characterized by incomplete and imbal-

anced join templates. This issue is especially problematic in business
workloads, which may introduce new join templates over time
(Figure 2c). Even if join templates remain constant, for a query
from seen join templates, cost models must estimate cardinalities
for all possible subqueries — including those with join templates
not seen in the workload3 — to make accurate cost predictions.
Unfortunately, existing query-driven models suffer in these sce-
narios. Specifically, for join template incompleteness, as shown
in Figure 1, they handle joins by either encoding each join in the
query encoding individually [35] or by training separate models for
each join template [16]. However, neither approach generalizes well
to unseen join templates. While join bitmaps [44] improve their
generalizability to unseen join templates, constructing join bitmaps
requires data access. Furthermore, for join template imbalance,
the lack of consistency across join templates in existing methods
means that knowledge learned from the “majority” join templates
(with more training queries) cannot be transferred to the “minority”
join templates (with very few training queries).
2Join templates and join graphs are interchangeable throughout this paper.
3In real-world workloads, such as those collected at Bytedance, we only observe the
ultimate cardinality of each query without access to the cardinalities of its subqueries.

Third, even for the same query templates (with fixed join graph
and queried columns), production workloads often experience shifts
(Figure 2d) in value/literal distributions (aka., value distribution
shifts). However, existing query-driven approaches rely heavily on
data information (e.g., samples, histograms) to handle value distribu-
tion shifts [35, 44]. Nevertheless, without such data information (a
key constraint in this paper), these models are prone to overfitting
to the training query distribution, resulting in poor performance
when tested on queries from different distributions [44, 55].
Contributions.Motivated by these challenges, this paper makes
contributions as follows.
• We summarize real query workloads in production, leading

to a new problem setting for CardEst: data-agnostic cardinality
learning from imperfect workloads (§ 3.1).

• We develop GRASP, a truly data-agnostic CardEst system that
does not require data access and provides robust and general-
izable estimates over imperfect workloads. GRASP develops a
design innovation (D1) with two components (C1, C2):
D1. A general and compositional design that handles incom-

plete and imbalanced join templates, using the notion of
compositional generalization (§ 4).

C1. A new query-driven per-table CardEst model (ArCDF)
that is robust to changes in value distributions for range
predicates (§ 5). ArCDF is inspired by NeuroCDF, which
introduces the CDF modeling paradigm for CardEst. How-
ever, NeuroCDF, as a framework, does not specify the CDF
prediction model; and existing attempts, as discussed in [56],
may face issues with negative estimates. ArCDF mitigates
these challenges by introducing a new CDF prediction model

that utilizes a deep autoregressive model and enforces mono-
tonicity through monotonic piecewise splines.

C2. Anovel query-driven learned count sketch (LCS)model

that captures join correlations across base relations (§ 6).
Instead of prior count sketches built over the data, the LCS
model learns from queries to output low-dimensional repre-

sentations that effectively approximate the dot products of
join key distributions in the results of per-table subqueries.

• We validate that GRASP, with no data or statistics, achieves both
generalizable and robust CardEst accuracy and reduced

query latency over imperfect training workloads. Notably, on
the complex CEB-IMDb-full benchmark [43] with up to 16-way
joins,GRASP achieves comparable or even superior performance
to traditional methods with access to the data (§ 7). We use only
10% of all possible join templates.

GRASP performs well with perfect workloads. However, since we
developed it based on the challenges of real-world scenarios, we
focus on evaluating its performance under those conditions to
highlight the practical utility of GRASP.
Data updates/shifts. In production environments, we observe
that user data typically remains static throughout a week, and pro-
duction systems often accumulate a significant number of queries
weekly. For example, businesses we can access in ByteDance gen-
erates, on average, over 2 million queries per workload (each corre-
sponding to a database instance) each week. Therefore, we adopt a
pragmatic approach to manage data distribution shifts: we retrain
GRASP weekly using the queries collected during that period.

2520

2 PRELIMINARIES

This section first introduces notations and concepts, and then sum-
marizes real-world productionworkloadswe collected at ByteDance.

2.1 Definitions

Definition 2.1 (Database Instance). A database instance DB com-
prises a set of base relations/tables {𝑇𝑗 }𝑚𝑗=1, where𝑚 denotes the
number of tables in DB. Each table 𝑇𝑗 includes a set of columns or
attributes {𝐴𝑖 }𝑛𝑖=1, where 𝑛 represents the number of attributes per
table. We define the cardinality |𝑇𝑗 | of each table 𝑇𝑗 as the number
of total tuples in 𝑇𝑗 . We also define the domain of an attribute 𝐴,
denoted as dom(𝐴), as the set of all distinct values in 𝐴.

Definition 2.2 (Query). A query is a structured request to retrieve
data from a database based on specified operations and conditions.
This paper focuses on SPJ queries with inner equi-joins, follow-
ing most learned CardEst work [28, 33, 57, 58]. GRASP is capable
of handling chain joins, star joins, and self-joins, all of which we
evaluate in the paper. While GRASP can also be extended to han-
dle cyclic joins under the join key independence assumption (as
in [57]), we did not evaluate cyclic joins, as most benchmarks focus
on acyclic joins. For supported predicates, we focus on equality
(=), range (<, ≤, >, ≥), string matching (LIKE), containment (IN),
and null-checking (NULL) predicates. These supported predicates
are consistent with most existing learned CardEst work and are
included in the benchmarks we evaluate in this paper.

Other features e.g., Group-By, Distinct) also impacts query
cardinalities. While existing techniques [34] could be integrated
with GRASP to address additional features, they fall outside the
scope of this work. Moreover, these features are not prevalent in
the real-world queries we collected from ByteDance: 82% of queries
we collected fit within the scope of this paper.

Definition 2.3 (Join Template/Join Graph). A join template, also
referred to as a join graph, connects base relations through their join
keys. It consists of nodes and edges, where each node represents a
base relation and each edge represents a join operation between two
relations based on join keys. Here, a join key is defined as a pair of
attributes from two relations that are used to establish a condition
for joining tuples from those relations. This paper considers both
foreign key-primary key (FK-PK) and FK-FK equi-joins.
Definition 2.4 (Query Template). A query template is a parameter-
ized query pattern that maintains consistent or fixed join template
as well as other predicates outside of the joining conditions, varying
only in the values or literals specified within non-join predicates.
This paper does not consider nested queries, following most of
learned CardEst work [28, 33, 57, 58].
Definition 2.5 (Cardinality Estimation). Given a database instance
DB and query 𝑞 over DB, the goal of cardinality estimation is to
predict the cardinality 𝑐 (𝑞), i.e., the number of tuples that satisfy 𝑞.
Another equivalent term, selectivity, is the ratio 𝑐 (𝑞)/|𝑇 |, where |𝑇 |
is the table cardinality or the join size if 𝑞 is a join query. In query
optimization, the optimizer needs to estimate the cardinality for
each subquery of 𝑞, as each subquery can be considered a query.

Definition 2.6 (Template Coverage Ratio). Let T be the set of all
possible join templates of a schema, and Ttrain ⊂ T be the set of

templates observed during training.We defineTemplate Coverage

Ratio (TCR) as TCR =
| Ttrain |
| T | . A lower TCR indicates that more

join templates are missing from the training workload.
Definition 2.7 (Class Imbalance Ratio). Let 𝑛𝑡 be the number of
training queries for a join template 𝑡 ∈ Ttrain. We define Class Im-

balance Ratio (CIR): CIR =
max𝑡 ∈Ttrain 𝑛𝑡
min𝑡 ∈Ttrain 𝑛𝑡

. A higher CIR indicates
a greater imbalance between join templates.
Definition 2.8 (Granularity). We define Granularity as the range
size for a query 𝑞 on a specific numerical attribute 𝐴𝑖 that supports
range predicates/filters. For example, let ℓ𝑖 and 𝑟𝑖 be the lower and
upper bounds of 𝑞’s filter over 𝐴𝑖 . Then: Granularity(𝑞) = 𝑟𝑖 − ℓ𝑖 .

2.2 Analysis of Production Workloads

This section uses real workloads collected from ByteDance, a tech-
nology company operating a range of social media platforms, to
illustrate the characteristics (Figure 2) of RDBMS workloads over 30
days with more than 35,000 applications. In Figure 2a 2b, a workload
index corresponds to the query workload of an internal business.
The key features of these workloads are detailed as follows:

0 5000 10000 15000 20000
Workload Index

10−5

10−3

10−1
T
C
R

5

10

15

20

#
T
ab
le
s

(a) Join Template Incompleteness

0 5000 10000 15000 20000 25000 30000 35000
Workload Index

102

105

108

C
IR

(b) Join Template Imbalance

20240724 20240731 20240807 20240814
Date

0.16

0.18

0.20

%
N

ew
Jo

in
s

(c) Join Templates over Time

0717 0724 0731 0807 0814

Dates

Workload 1

0717 0724 0731 0807 0814

Dates

Workload 2

0.00

0.05

0.10

(d) Value Distribution Shift

Figure 2: Production Workload Analysis at ByteDance

In Figure 2a, the red line represents the TCR of join templates
during the period; the blue line represents the number of tables in-
volved in theworkload. Only∼ 0.03% of workloads’ query templates
combine all possible table combinations, implying that production
workloads seldom contain complete join templates.

Figure 2b shows the imbalance in join templates within each
workload. We use the Class Imbalance Ratio (CIR) to measure the
imbalance of join templates in a workload, defined as the ratio of
the most and least common join templates. A higher CIR suggests a
greater imbalance. In Figure 2b, ∼ 60% of the workloads have a CIR
> 10, and 20% have a CIR > 1000, indicating a significant presence
of imbalanced workloads in production environments.

As illustrated in Figure 2c, each week, each workload exhibits
∼ 18% new query templates on average that were unseen in the
previous week. This indicates that in business scenarios, the

appearance of new join templates is common.

Figure 2d uses two business workloads to illustrate weekly vari-
ations in predicate values from fixed templates. The x-axis denotes
dates, while the y-axis represents normalized value distributions of
a predicate. The left shows a systematic shift due to time-increasing
IDs focused on the latest week, whereas the right depicts irregular
shifts from random user IDs. Both figures highlight that predicate
values within the same query template can change over time.

2521

3 THE GRASP SYSTEM

In this section, we define the problem, discuss the key design choices
of GRASP, and provide an overview of the GRASP system.

3.1 Problem Overview

Problem: Data-Agnostic Cardinality Learning from Imperfect Query

Workloads (DACL).
Inputs:We are provided with a set a of SPJ queries Q = {𝑞𝑖 }𝑛𝑖=1 and
their ultimate cardinalities C = {𝑐 (𝑞𝑖)}𝑛𝑖=1 collected from a database
instanceDB, along with the database schema forDB and the table
cardinalities (i.e, numbers of total rows) {|𝑇𝑗 |}𝑚𝑗=1, where𝑚 is the
number of tables inDB. Training queries do not contain predicates
on join keys, since we observe only 2% of real-world queries in
production environments apply filters on join keys.
Constraints: 1). No Data Access: Direct access to the database
DB is prohibited. This means no samples, histograms, or direct
statistics about the data are available. 2). Incomplete Join Tem-

plates: The training queries do not cover all possible join templates,
leaving most unseen join templates untrained. We use TCR as the
measure for incompleteness, e.g., TCR = 0.3. 3). Imbalanced Join

Templates: The distribution of training queries across different
join templates is skewed, with some templates having very few
queries available for training. We use CIR as the measure for im-
balance, e.g., CIR = 100. 4). Value Distribution Shifts: The value
distributions for range predicates in incoming queries may differ
significantly from those seen during training. We focus on granu-

larity shifts, i.e., changes in the distribution of granularity defined
in Definition 2.8.
Goals: The objective is to develop a model/system that can accu-
rately predict the cardinality (or selectivity) for any incoming query
𝑞, under the following conditions:
(1) The query might involve a join template that was not seen

during training.
(2) The query may come from a join template that has very few

examples in the training set.
(3) The query may contain predicate values with distributions that

differ from the training queries.
Although our primary focus is on imperfect workloads - motivated
by real challenges in Bytedance - a desired model should also apply
to perfect workloads with complete and balanced join templates.
Since we developed GRASP primarily to address real challenges
(which are likely to arise in other enterprises as well), our evalu-
ations focus on imperfect workloads to underscore the practical
utility of our approach in real-world settings. Nonetheless, in prin-
ciple GRASP requires no modification to handle perfect workloads.

3.2 Key Design Choices

Unfortunately, to the best of our knowledge, no existing cardinality
estimation approach can effectively achieve the goals simultane-
ously under the constraints in the DACL problem. To achieve this,
we presentGRASP:Generalizable, andRobust, data-AgnoStic cardi-
nality Prediction system. Below, we provide an overview of GRASP,
detailing the desiderate (D) and our solutions.
• D1: Generalization to unseen join templates despite no

access to the underlying data.

Our Solution: GRASP achieves this goal through the notion
of compositionality. The core idea is that, instead of training a
single model to handle all join templates [35] or training sepa-
rate models for each join template [16], we only learn models
for necessary primitives. First, we learn query-driven CardEst
models only for base relations. Second, without data access, it is
challenging to model join correlations. GRASP borrows the con-
cept of count sketches in the literature [3, 48]. However, instead
of existing count sketches that are built from data, GRASP intro-
duces learned count sketch (LCS) models to learn low-dimensional

count sketches that capture join correlations across base rela-
tions, solely from queries. Put it all together,GRASP allows unseen
join templates to be addressed by composing the corresponding
primitives. For a taste of the compositional design of GRASP,
consider the simple example:

Example 3.1. Consider a scenario illustrated in Figure 1 where

base relations𝐴 and 𝐵 are joined using a key 𝑥 with a large domain

size (e.g., |dom(𝑥) | = 106). To compute the cardinality 𝑐 (𝑞𝐴⋈︁𝐵)
of the join query 𝑞𝐴⋈︁𝐵 , it is necessary to consider not only the

cardinalities 𝑐 (𝑞𝐴) and 𝑐 (𝑞𝐵) of the subqueries on base relations

𝐴 and 𝐵, but also the distribution of the join keys within these

subqueries. Let f𝑞𝐴 and f𝑞𝐵 represent the probability distributions

of the join key 𝑥 in the two subqueries 𝑞𝐴 and 𝑞𝐵 , respectively. The

cardinality of the 𝑞𝐴⋈︁𝐵 can be computed as follows,

𝑐 (𝑞𝐴⋈︁𝐵) = 𝑐 (𝑞𝐴) · 𝑐 (𝑞𝐵) · (f𝑞𝐴 · f𝑞𝐵) (1)

≈ 𝑐 (𝑞𝐴)
↑

CardEst𝐴

· 𝑐 (𝑞𝐵)
↑

CardEst𝐵

· (v𝑞𝐴
↑

LCS𝐴

· v𝑞𝐵
↑

LCS𝐵

) (2)

where f𝑞𝐴 · f𝑞𝐵⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
high-dimensional

≈ v𝑞𝐴 · v𝑞𝐵⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
low-dimensional

where 𝑐 (𝑞𝐴) and 𝑐 (𝑞𝐵) are computed by per-table CardEst models

for 𝐴 and 𝐵, respectively. v𝑞𝐴 and v𝑞𝐵 are low-dimensional (e.g.,

|v𝑞𝐴 | = |v𝑞𝐵 | = 500) count sketch computed by LCS models for

𝐴 and 𝐵. In this computation, (1) is according to the definition

of joins; (2) is based on the assumption that LCS models approxi-

mate the scalar dot product (i.e., f𝑞𝐴 · f𝑞𝐵) through their learned

count sketches for queries 𝑞𝐴 and 𝑞𝐵 , thus efficiently capturing

join correlations between 𝐴 and 𝐵.

• D2: Robustness to join template imbalance despite no ac-

cess to the underlying data.

Our Solution: GRASP naturally achieves this goal through its
compositional system design. By leveraging compositionality,
GRASP ensures that model predictions are consistent across dif-
ferent join templates. This allows knowledge learned from the
"majority" join templates to be effectively transferred to the "mi-
nority" join templates, which addresses the issue of join template
imbalance and improves prediction accuracy for underrepre-
sented join templates.

• D3: Robustness to value distribution shifts despite no ac-

cess to the underlying data.

2522

Our Solution: GRASP builds on the NeuroCDF framework
from [56], which learns models to predict cumulative distribu-
tion functions (CDFs) rather than direct query selectivities. This
approach enhances out-of-distribution generalization for range
predicates by ensuring predictions are induced from signed mea-
sures, enforcing the additivity constraint of selectivity/cardi-
nality functions. Additionally, GRASP improves on NeuroCDF
by introducing a novel CDF prediction model, ArCDF, that ad-
dresses a key limitation of the original NeuroCDF framework.

Sample Complexity. Compared to non-DNN models [9, 45, 51],
the use of DNNs in GRASP improves the prediction accuracy due
to higher model capacity [34, 56], at the cost of increasing the need
for training queries (e.g., higher sample complexity). However, the
sample complexity remains modest. For instance, in our experi-
ments, the maximum number of queries used (on CEB-IMDb-full)
is ∼ 260K, significantly lower than the 2 million queries gener-
ated weekly per workload at ByteDance. The sample complexity of
GRASP and compared models will be further evaluated in § 7.2.2.
However, the sample complexity is evaluated based on the query
type outlined in Definition 2.2, and introducing additional features
such as Group-By would increase the sample complexity, which is
a limitation of this work.

3.3 GRASP Overview

Recall that GRASP does not have direct access to DBMS data, but
it does have access to schema information and a query workload
with ultimate cardinality outcomes.

Figure 3: Workflow of GRASP.

GRASP Workflow. Combining the design choices introduced be-
fore, GRASP operates in two main stages: the building stage and
the serving stage. The workflow of GRASP is depicted in Figure 3.
In the building stage, GRASP ingests the schema of the DB instance
along with a collected query workload, which may be incomplete or
imbalanced. The goal of this stage is to train the primitive models
(i.e., the CardEst model and the LCS model for each base relation)
in GRASP using the query workload. Since all computational steps
in CardEst with GRASP (will be introduced in § 4.3) are fully dif-
ferentiable, we can use modern stochastic optimization methods,
such as backpropagation and stochastic gradient descent (SGD),
to efficiently learn the model parameters 𝜃 of all primitive mod-
els. The primitive models (both CardEst and LCS models) for each
base relation 𝑇 will be trained on queries in which 𝑇 is involved.
Specifically, training is performed by minimizing the following loss
function over the training workload (𝑁 training queries):

L =

(︂ 𝑁∑︂
𝑖=1

Error
(︁
𝑐 (𝑞𝑖), 𝑐 (𝑞𝑖)

)︁)︂
/𝑁, (3)

where Error is the error function measuring the discrepancy be-
tween the estimated cardinality 𝑐 (𝑞𝑖) from GRASP and the true
cardinality 𝑐 (𝑞). Users can specify this error function, with com-
mon choices including Square Error. i.e., SE = (𝑐 (𝑞) −𝑐 (𝑞))2, Qerror:
(max 𝑐 (𝑞)

𝑐 (𝑞) ,
𝑐 (𝑞)
𝑐 (𝑞)) or Squared Logarithmic Error, i.e., SLE = (log 𝑐 (𝑞)−

log 𝑐 (𝑞))2. Optimizing SLE is equivalent to optimizing Qerror [43]
(resulting in consistent outcomes between SLE and Qerror mea-
surements). While GRASP is compatible with any error functions,
we adopt SLE as it yields the best overall performance.

Once built, GRASP can serve as the underlying cardinality es-
timator for federated databases [22], services that abstract over
alternative DBMS platforms [20], and for query optimization-as-a-
service [32]. Note that all these applications may not have access
to the underlying data.

OptimizingGRASP. Queries from different join templates may re-
quire distinct sets of primitive models. This enables the application
of distributed training with multiple GPUs, where join templates
with non-overlapping primitive models can be trained concurrently
across multiple computing nodes. By partitioning the training tasks
based on their primitive model dependencies, we can assign each
group of non-overlapping join templates to separate workers by
using a greedy packing algorithm [10] for scheduling. Due to space
constraints, we omit the details in this paper.

To perform query optimization for a join query, we need to esti-
mate the cardinalities of all subqueries. Leveraging a GPU can accel-
erate this process through batched inference. However, even with
CPU-based inference, progressive query inference can significantly
reduce GRASP’s computational overhead, due to its compositional
design. This approach estimates subqueries in a bottom-up fashion,
starting with those containing fewer joins. By saving and reusing
results from these smaller joins, we avoid redundant computations
in estimations of larger joins, enhancing overall efficiency.

4 COMPOSITIONAL GENERALIZATION

4.1 Motivating Examples

Consider the database instance in figure 4 with three base rela-
tions {𝐴, 𝐵, 𝐷}, each of cardinality 5. They can be joined via join
keys𝐴.𝑥, 𝐵.𝑥, 𝐷.𝑥 (with no restrictions on primary or foreign keys),
which belong to a join group 𝑥 with domain: dom(𝑥) = {1, 2}. Fig-
ure 4b shows four possible join templates: 𝐴 ⋈︁ 𝐵, 𝐴 ⋈︁ 𝐷 , 𝐵 ⋈︁ 𝐷 ,
and 𝐴 ⋈︁ 𝐵 ⋈︁ 𝐷 .
Inferring cardinalities for queries over a “hidden” table. We
begin by examining the scenario where a specific table is absent
from any single-table queries within the training workload. Instead,
the workload comprises single-table queries on other tables and join
queries that involve this “hidden” table. Our objective is to explore
the feasibility of inferring cardinality estimates for the hidden table
under these conditions.

We first focus on deriving the unknown cardinalities of queries
𝑞𝐵 on relation 𝐵 by leveraging known cardinalities from queries
𝑞𝐴 on relation 𝐴 and queries 𝑞𝐴⋈︁𝐵 on join template 𝐴 ⋈︁ 𝐵. Similar
to Example 3.1, calculating the cardinality of a join query 𝑞𝐴⋈︁𝐵
needs the cardinalities of the individual subqueries 𝑞𝐴, 𝑞𝐵 on base
relations 𝐴, 𝐵, and the distributions of join keys in both. Here
we simplify the problem by assuming a small domain size for 𝑥 ,

2523

|dom(𝑥) | = 2. Specifically, assume that the join key distributions
for 𝑥 ∈ {1, 2} in 𝑞𝐴 , 𝑞𝐵 are p𝐴 = [𝑝𝐴1 , 𝑝

𝐴
2]
⊤, p𝐵 = [𝑝𝐵1 , 𝑝

𝐵
2]
⊤. Let

L = [𝑐 (𝑞𝐴), 𝑐 (𝑞𝐵)] and P = [p𝐴, p𝐵]⊤, by definition of joins, the
cardinality of the 𝑞𝐴⋈︁𝐵 is

𝑐 (𝑞𝐴⋈︁𝐵) = ∥LP∥1 = 𝑐 (𝑞𝐴)𝑝𝐴1 𝑐 (𝑞
𝐵)𝑝𝐵1⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

join key 𝑥=1

+ 𝑐 (𝑞𝐴)𝑝𝐴2 𝑐 (𝑞
𝐵)𝑝𝐵2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

join key 𝑥=2

. (4)

Eq. 4 can be easily generalized to joins (via 𝑥) with > 2 relations.
Apparently, given the join key distributions of queries from

tables 𝐴 and 𝐵 (i.e., P), we can estimate the cardinality 𝑐 (𝑞𝐵) of any
query 𝑞𝐵 using Eq. 4. However, these distributions are typically
hidden and not directly available. Therefore, in order to infer 𝑐 (𝑞𝐵),
we also need to infer these join key distributions from known
cardinalities, 𝑐 (𝑞𝐴) and 𝑐 (𝑞𝐴⋈︁𝐵). This approach is viable provided
we have a sufficient number of queries for 𝑞𝐴 and 𝑞𝐴⋈︁𝐵 .

𝐴.𝑥 𝐴.𝑎

1 1
2 2
1 3
1 4
2 5

𝐵.𝑥 𝐵.𝑏

1 2
1 2
2 3
1 4
2 4

𝐷.𝑥 𝐷.𝑑

1 4
1 5
1 5
2 6
2 7

(a) Base relations ({𝐴, 𝐵, 𝐷 })

𝐴 𝐵
𝐴.𝑥 = 𝐵.𝑥

𝐴 𝐷
𝐴.𝑥 = 𝐷.𝑥

𝐵 𝐷
𝐵.𝑥 = 𝐷.𝑥

𝐴 𝐵 𝐷
𝐴.𝑥 = 𝐵.𝑥 𝐵.𝑥 = 𝐷.𝑥

(b) All join templates

Figure 4: The database instance for motivating examples.

Table 2: Queries on table 𝐴

Query Predicate Card
𝑞𝐴1 {𝑎 ≤ 2} 2

𝑞𝐴2 {2 < 𝑎 ≤ 4} 2

𝑞𝐴3 {𝑎 > 4} 1

Table 3: Queries on table 𝐵

Query Predicate Card
𝑞𝐵1 {𝑏 ≤ 3} ?

𝑞𝐵2 {𝑏 > 4} 5 − 𝑐 (𝑞𝐵1)

Table 4: Queries on join 𝐴 ⋈︁ 𝐵

Query Predicate Card

𝑞𝐴⋈︁𝐵1 {𝑎 ≤ 2 ∧ 𝑏 ≤ 3} 3

𝑞𝐴⋈︁𝐵2 {𝑎 ≤ 2 ∧ 𝑏 > 3} 2

𝑞𝐴⋈︁𝐵3 {2 < 𝑎 ≤ 4 ∧ 𝑏 ≤ 3} 4

𝑞𝐴⋈︁𝐵4 {2 < 𝑎 ≤ 4 ∧ 𝑏 > 3} 2

𝑞𝐴⋈︁𝐵5 {𝑎 > 4 ∧ 𝑏 ≤ 3} 1

𝑞𝐴⋈︁𝐵6 {𝑎 > 4 ∧ 𝑏 > 3} 1

Example 4.1. In our query workload, we have three queries on

relation𝐴 (as listed in Table 2) and six join queries on𝐴 ⋈︁ 𝐵 (detailed

in Table 4). Each query is represented by a tuple consisting of (the

query name, predicate, and cardinality). For notation, we define 𝑝𝑇
𝑖

as the proportion of tuples in the query 𝑞𝑇
𝑖
on relation 𝑇 with join

key 𝑥 = 1; thus, the remaining proportion with 𝑥 = 2 is 1 − 𝑝𝑇
𝑖
. For

instance, 𝑝𝐴1 denotes the proportion of tuples in the query 𝑞𝐴1 on 𝐴

with join key 𝑥 = 1. Our objective is to deduce the cardinalities of
queries on the “hidden” relation 𝐵, specifically for queries 𝑞𝐵1 and 𝑞𝐵2
as outlined in Table 3. Thus, the primary unknown is 𝑐 (𝑞𝐵1)

The challenge lies in the absence of join key distributions for queries

on 𝐴 and 𝐵, which include five unknowns: 𝑝𝐴1 , 𝑝
𝐴
2 , 𝑝

𝐴
3 , 𝑝

𝐵
1 , and 𝑝

𝐵
2 .

However, the six join queries from 𝑞𝐴⋈︁𝐵1 to 𝑞𝐴⋈︁𝐵6 provide a basis to

establish six linearly dependent equations using Eq. 4. Combining

these with the three known cardinalities from queries on𝐴 (i.e., 𝑐 (𝑞𝐴1),
𝑐 (𝑞𝐴2), 𝑐 (𝑞

𝐴
3)) and employing linear algebra techniques, we can solve

these equations to determine 𝑐 (𝑞𝐵1) = 3 along with other unknowns.

Note that the approach of “decomposing large queries into smaller
queries” applies to queries of any size (e.g., queries with more than
two joins). In other words, small join templates (e.g., involving hid-
den tables) can be effectively learned from the larger join templates
they are part of.
Composing a novel join template. Now, we explore composing
queries of a novel join template that was unseen in the workload.
We use information from the query workload, as well as inferred
query cardinalities and join correlations. Before moving forward,
we note that Eq. 4 can be generalized to accommodate join templates
involving multiple tables (i.e., number of tables 𝑛𝑑 > 2) that belong
to the same join group, say 𝑥 . In this generalized case, L is a vector of
length 𝑛𝑑 , representing the cardinalities of single-table subqueries
on each base relation. Additionally, P is an 𝑛𝑑 ×𝑛𝑘 matrix, where 𝑛𝑘
is the number of distinct values of join key 𝑥 . Each row of P is the
join key distribution for the corresponding single-table subquery.

Example 4.2. Assume that apart from the queries discussed in

Example 4.1, the query workload includes an additional query on

table 𝐷 , 𝑞𝐷1 : {𝑑 ≤ 5} with 𝑐 (𝑞𝐷1) = 3; and one query on the join

template 𝐵 ⋈︁ 𝐷 , 𝑞𝐵⋈︁𝐷1 : {𝑏 ≤ 3 ∧ 𝑑 ≤ 5} with 𝑐 (𝑞𝐵⋈︁𝐷1) = 6. The
goal is now to compose queries on a larger join template 𝐴 ⋈︁ 𝐵 ⋈︁ 𝐷
that has not been observed in the query workload.

From Example 4.1, we already determined that 𝑐 (𝑞𝐵1) = 3 and

𝑝𝐵1 = 2
3 . Therefore, we can establish a equation for 𝑞𝐵⋈︁𝐷1 with only

one unknown, 𝑝𝐷1 , using Eq. 4. Solving this equation, we have 𝑝𝐷1 = 1.
Then we can derive that the cardinality of the query 𝑞𝐴⋈︁𝐵⋈︁𝐶1 : {𝑎 ≤
2 ∧ 𝑏 ≤ 3 ∧ 𝑑 ≤ 5} is 6 by using the generalized version of Eq. 4.

Details will be presented in a technical report.

4.2 The Compositional Design

From the previous examples, we draw two key takeaways. First,
smaller join templates not present in the query workload could be
inferred from larger ones. Second, by combining explicit workload
information (e.g., cardinalities of training queries) with inferred
information (e.g., cardinalities of hidden relations and join key dis-
tributions), we can reliably estimate the cardinalities of queries from
unseen join templates. Therefore, a key question arises: how can

we more effectively extract and utilize both the explicit and implicit

information from the query workload to perform accurate cardinality

estimation for as many join templates as possible? This informs the
compositional design of GRASP.
Compositionality. Compositionality as compositional generaliza-
tion, refers to the capacity for systematic generalization to new, com-
bined examples from a specific distribution, after training on a dif-
ferent distribution that introduced the necessary components/prim-

itives. This concept emphasizes the ability to understand and apply
combinations of learned primitives in novel contexts. For example,
Pavel et.al [53] trains an image classificationmodel that decomposes
concepts into parts and allows it to generalize to novel categories
with fewer examples.
Primitives.With regard to the DACL problem, we introduce two
types of primitivemodels for each base relation: 1) Per-table CardEst
models and 2) Per-table Join Key (JK) models, both receiving single-
table queries on the associated relation as inputs. Per-table CardEst
models predict the cardinality of the query, whereas JK models

2524

output the distribution of the join key in the query results (thus
capturing the correlations among different base relations via join
keys). If a base relation includes multiple join keys, the JK models
output a set of distributions, one for each join key. We formally
define their abstracts as follows.
• Per-table CardEst ModelsM𝐶𝐸 : Query→ Cardinality
• Join Key (JK) ModelsM𝐽 𝐾 : Query→ {Join Key Distribution}

GRASP builds these primitive models from queries, enabling
generalizable and consistent cardinality estimation across join tem-
plates, which is the key to achievingD1 andD2 in § 3.3. Since these
primitive models can be effectively trained on any relevant queries,
they do not require specific single-table or two-table queries.

The use of join key models,M𝐽 𝐾 , has exhibited certain limita-
tions. Consequently, we will revisit and revise the design ofM𝐽 𝐾

by replacing it with the learned count sketch models, M𝐿𝐶𝑆 , as
detailed in § 6. For the purpose of our current discussion, we will
provisionally considerM𝐽 𝐾 andM𝐿𝐶𝑆 to be interchangeable.
Model Choices forM𝐶𝐸 . Note that the compositional design of
GRASP is general, which means any query-driven model architec-
tures can be used forM𝐶𝐸 . For tables involving range predicates,
GRASP uses the ArCDF model as it is more robust to value dis-
tribution shifts for range predicates (will be introduced in § 5).
For tables involving other types of predicates (such as LIKE, IN,
and more), GRASP employs the Multi-Set Convolutional Networks
(MSCN) [35] forM𝐶𝐸 , as the MSCN encoding mechanism is flexi-
ble enough to incorporate complex operators (e.g., LIKE) [43]. For
details about the MSCN encoding, refer to [35]. We will discuss the
model choices forM𝐿𝐶𝑆 in § 6.

4.3 Cardinality Estimation with Primitives

To estimate the cardinality 𝑐 (𝑞) of a query 𝑞, we use the CardEst
models {M𝐶𝐸 } and join key models {M𝐽 𝐾 } via GRASP’s main
function: 𝑐 (𝑞) = Est(𝑞, {M𝐶𝐸 }, {M𝐽 𝐾 }).

4.3.1 Single-tableQueries. Answering queries over base rela-
tions is trivial — GRASP uses the corresponding per-table CardEst
models to estimate the cardinality results.

4.3.2 JoinQueries. Estimating join queries involves the use of
both per-table CardEst models and join key models that are related
to the join queries. First, we define an equivalence join key group as
the set of keys that are joinable according to the database schema.
For example, if𝐴.𝑥 = 𝐵.𝑥 and 𝐵.𝑥 = 𝐷.𝑥 are specified in the schema,
then 𝐴.𝑥 , 𝐵.𝑥 , and 𝐷.𝑥 are considered to belong to the same join
key group 𝑥 . The full set of join key groups and the table ordering
within each key group can be easily precomputed from the database
schema [33]. Now, we begin with an easier case of join estimation.
Case 1: One join key group. Consider a join query 𝑞 that involve
a set T of base relations. They are joined via join keys in the same
join key group. Similar to Example 4.2. GRASP employs four steps
to calculate the query cardinality 𝑐 .

(1) Calculating the cardinality estimates for single-table sub-
queries (i.e., 𝑐 (𝑞𝑇) for 𝑇 ∈ T), using associatedM𝐶𝐸 .

(2) Calculating the join key distributions (i.e., 𝑓 (𝑞𝑇) for𝑇 ∈ T)
for single-table subqueries, using associatedM𝐽 𝐾 .

(3) Calculating the frequencies of join keys in each single-table
query: ̂︄𝑓 𝑟𝑒𝑞(𝑞𝑇) = 𝑐 (𝑞𝑇) · 𝑓 (𝑞𝑇) for 𝑇 ∈ T .

(4) Multiplying the frequencies for every single query and then
summing over the result: 𝑐 =

∥︁∥︁∏︁
𝑇 ∈T̂︄𝑓 𝑟𝑒𝑞(𝑞𝑇)∥︁∥︁1.

Algorithm 1: Estimating a join query with GRASP

Input: Per-table CardEst models {M𝐶𝐸 } and JK models {M𝐽 𝐾 };
Query 𝑞 with involved tables T and join key groups G = {𝐺}.

Output: GRASP’s cardinality estimate of 𝑞: 𝑐 (𝑞).
1: # compute cardinalities for per-table subqueries
2: for 𝑇 ∈ T do

3: 𝑐 (𝑞𝑇) =M𝑇
𝐶𝐸
(𝑞𝑇) # associated CardEst model

4: # computing join estimates
5: T𝑐𝑢𝑟𝑟 ← {}, 𝑐 ← 1
6: while G is not empty do

7: 𝐺 = FindNextGroup(T𝑐𝑢𝑟𝑟 ,G)
8: key𝐺 ← join key of the group 𝐺
9: 𝑓 ← 1 |dom(key𝐺) | # Init. distrib. vector
10: for 𝑇 ∈ 𝐺.tables do
11: 𝑓 = 𝑓 ⊙M𝑇

𝐽 𝐾
(𝑞𝑇 , key𝐺) # associated JK model

12: if not 𝑇 ∈ T𝑐𝑢𝑟𝑟 then
13: 𝑐 = 𝑐 ∗ 𝑐 (𝑞𝑇)
14: add 𝑇 to T𝑐𝑢𝑟𝑟
15: 𝑐 = 𝑐 ∗ ∥ 𝑓 ∥1
16: Remove 𝐺 from G
17: return 𝑐

Case 2: Multiple join key groups. GRASP can be extended to
handle the case when the join query 𝑞 contains join keys from a set
of multiple join key groups, G = {𝐺}. The estimation procedure is
shown in Algorithm 1.

The algorithm estimates the cardinality of a 𝑞 by leveraging
both per-table CardEst modelsM𝐶𝐸 and join key modelsM𝐽 𝐾 . It
begins by calculating cardinality estimates for single-table queries
on each relation using correspondingM𝐶𝐸 (lines 1-3). Then, it re-
cursively processes groups of join keys by finding joinable groups
(the implementation of FindNextGroup is straightforward using
the database schema and can be pre-computed) that connect tables
already considered (lines 19-27). For each group, it initializes a dis-
tribution vector (lines 9) and iteratively refines it by multiplying
with the join key distribution estimate from the associated JK model
M𝐽 𝐾 (lines 10-11, whereM𝑇

𝐽 𝐾
(𝑞𝑇 , key𝐺) represents the predicted

distribution of key𝐺 in query 𝑞𝑇 by modelM𝑇
𝐽 𝐾

). The overall car-
dinality estimate is updated by multiplying with the sizes of newly
included tables and the sum of the refined distribution vector (lines
12-15). This process continues until all join key groups have been
incorporated, ultimately yielding the estimated cardinality of 𝑞.

4.3.3 Remark. Acute readers might notice that Algorithm 1 as-
sumes that join keys within a table are independent. Despite this
simplification, it works well in practice without requiring much
computation. Although GRASP could be naturally extended to ac-
count for these correlations, our tests show that this only slightly
improves accuracy while significantly increasing computational
costs. Therefore, GRASP keeps the independence assumption to
balance efficiency and accuracy for real-world use.

2525

5 BUILDING ROBUST CARDEST MODELS

Recall that in D3 of § 3.3, we outline the key goal for per-table
CardEst models: robustness to value distribution shifts for range
predicates. This section presents our solution — ArCDF.

𝑥1 𝑥2 𝑥3

ArCDF

𝜃𝑃 (𝑋1≤𝑥1) 𝜃𝑃 (𝑋2≤𝑥2 |𝑋1≤𝑥1) 𝜃𝑃 (𝑋3≤𝑥3 |≤x1:2)

𝑥

𝑃

𝑥

𝑃

𝑥

𝑃

Figure 5: The ArCDF model: Autoregressively outputs pa-

rameters 𝜃 for monotonic rational-quadratic splines.

5.1 Overview

TheNeuroCDF Framework.ArCDF builds upon theNeuroCDF
framework. The central idea of NeuroCDF [56] is to construct
query-driven neural network (NN) models that predict the un-
derlying cumulative distribution functions (CDFs) for cardinal-
ity estimation, rather than directly estimating query selectivities/-
cardinalities. Then, the selectivity of any rectangular query can
be computed as a linear combination of the CDFs evaluated at
its vertices [15]. Formally speaking, the CDF prediction model in
NeuroCDF parameterizes the underlying CDFs: 𝐹 (x) = 𝑃 (𝑋 ≤ x),
where x = [𝑥1, 𝑥2, ..., 𝑥𝑑] is a real value variable x, and 𝑑 is the
dimension (i.e., the number of attributes of the table).

Compared to the common modeling paradigm that targets query
cardinalities directly, NeuroCDF provably provides robust cardi-
nality estimates for out-of-distribution (OOD) queries. Specifically,
it ensures the additivity constraint or containment property of cardi-
nality functions: 𝑐 (𝑞1) = 𝑐 (𝑞2) + 𝑐 (𝑞3) whenever 𝑞1 = 𝑞2 ∪ 𝑞3 and
𝑞2 ∩ 𝑞3 = ∅. This property enhances GRASP’s robustness to value
distribution shifts for range predicates.

Limitation. Despite these advantages, NeuroCDF has a limitation.
As noted in [56], NeuroCDF is not compatible with Q-error or SLE
due to potential negative cardinality estimates. This issue arises
because the multilayer perceptron (MLP) model used inNeuroCDF
may fail to learn a monotonically increasing function — neces-
sary property for CDFs. This restricts the practical applicability of
NeuroCDF, as Q-error is a commonly used error metric in cardinal-
ity estimation due to their emphasis on highly selective queries [41].

Our Solution. We enhance the NeuroCDF framework by intro-
ducing an Autoregressive CDF prediction model. We refer to our
solution as ArCDF: NeuroCDF with AutoRegressive CDF mod-
eling, which is illustrated in Figure 5. The key idea of ArCDF is
to ensure that the CDF prediction model learns a monotonically
increasing function by model design, which alleviates negative car-
dinality estimates. This is achieved by: (1) employing a deep AR
model to parameterize the CDFs, and (2) enforcing the monotonicity
property along each attribute using monotonic piecewise splines.

5.2 Autoregressive CDF Modeling

ArCDF decomposes the joint CDF 𝐹 (x) = 𝑃 (𝑋 ≤ x) in an autore-
gressive manner:

𝐹 (x) =
𝑑∏︂
𝑖=1

𝑃 (𝑋𝑖 ≤ 𝑥𝑖 |𝑋𝑖−1 ≤ 𝑥𝑖−1, . . . , 𝑋1 ≤ 𝑥1), (5)

where 𝑃 (𝑋𝑖 ≤ 𝑥𝑖 |𝑋𝑖−1 ≤ 𝑥𝑖−1, . . . , 𝑋1 ≤ 𝑥1) is a conditional

CDF given the event: 𝑋𝑖−1 ≤ 𝑥𝑖−1, . . . , 𝑋1 ≤ 𝑥1. For simplicity, we
denote this as 𝑃 (𝑋𝑖 ≤ 𝑥𝑖 | ≤ x1:i−1) hereafter. This conditional
CDF depends only on the values of 𝑥1:𝑖−1. Unlike the conventional
definition of conditional CDFs that condition on exact values (i.e.,
𝑋𝑖−1 = 𝑥𝑖−1, · · · , 𝑋1 = 𝑥1), our definition conditions on inequalities,
which ensures the correctness of decomposition.

The motivation behind this autoregressive decomposition is
twofold. First, it allows us to leverage recent advances in deep
autoregressive models [21] for efficient and accurate (conditional)
CDFs estimation. Second, by decomposing the joint CDF into a
product of conditional CDFs, we can conveniently enforce the
monotonicity constraint along each dimension.
Modeling CDFs with Deep Autoregressive Models. To parame-
terize the sequence of CDFs, we employ modern deep AR models
such as MADE [21]. These models have proven to be efficient and
powerful for cardinality estimation by parameterizing joint proba-
bility density functions (PDFs) [58, 59]. To the best of our knowl-
edge, we are the first to leverage deep AR models to parameterize
joint CDFs, enabling efficient and accurate CDF modeling.

Typically, deep AR models output a categorical distribution that
represents the conditional probability distribution over the attribute
domain at each dimension. Unfortunately, in the DACL problem,
the domain values of each attribute are not available.

5.3 Parameterizing Conditional CDFs

To address this challenge, ArCDF uses deep AR models to parame-
terize piecewise spline functions along each attribute 𝑥𝑖 , representing
the conditional CDF, 𝑃 (𝑋𝑖 ≤ 𝑥𝑖 | ≤ x1:i−1). This approach offers two
main advantages: (1) it allows for a flexible trade-off computational
efficiency and model expressiveness without requiring knowledge
of the attribute domain values; and (2) ensuring monotonicity in
each conditional CDF becomes straightforward by leveraging the
rich literature in monotonic piecewise spline functions [23, 50].
Monotonic Rational-Quadratic Splines. Common choices for
monotonic piecewise spline functions include linear polynomial
splines [47], cubic splines [19], and rational-quadratic splines [50].
Among these, rational-quadratic splines offer the most expressive
modeling capability while maintaining computational efficiency, as
demonstrated in applications such as density estimation and image
generative modeling in recent ML research [14]. Therefore, ArCDF
employs rational-quadratic splines to model the conditional CDFs
for each attribute. Specifically, these splines are defined on one-
dimensional data 𝑥 and consist of 𝐾 consecutive rational-quadratic
functions, connected at 𝐾 + 1 monotonically increasing knots, de-
noted as {(𝑥𝑘 , 𝑦𝑘)}𝐾

𝑘=0. The parameters for each segment are the
outputs of the deep AR model at each dimension. Due to space con-
straints, we omit the exact mathematical expression of the rational-
quadratic function; interested readers may refer to [23].

2526

Validity of Learned Joint CDFs. ArCDF ensures the conditional
CDFs are monotonically increasing because all knots are monoton-
ically increasing and the derivatives 𝛿 are positive. However, in
principle, this does not guarantee the validity of the learned joint
CDFs. Monotonicity along each one-dimensional conditional CDF
does not ensure that the cardinality estimate of the query over the
multi-dimensional data is always valid (i.e., non-negative).

However, in our experiments, we find that ArCDF automatically

learns better CDFs, with only a small portion of “outlier” queries
yielding negative estimates (GRASP switches to square error loss
in this case). This improves on previous CDF model architectures
(e.g., MLP). We attribute this improvement to the autoregressive
decomposition combined with the enforcement of monotonic con-
ditional CDFs, allowingArCDF to effectively learn valid joint CDFs
from training queries. Although we cannot provide theoretical guar-
antees, our empirical results demonstrate that ArCDF achieves a
significantly lower Q-error than other model choices inNeuroCDF.
One could also add a penalty term to loss function to enforce the
global monotonicity, but we do not explore this in the paper.

6 CAPTURING JOIN CORRELATIONS

In this section, we outline the practical challenges associated with
using join key modelsM𝐽 𝐾 in GRASP. We then present our pro-
posed solution, which effectively mitigates these issues to ensure
robust and efficient join correlation modeling.

6.1 Challenges and the Idea

Challenges. First, in real-world datasets, join keys often possess
large domain sizes, with millions of unique values. This makes it
highly impractical to build join key prediction models defined in
§ 3.3. Second, as mentioned in the definition of the DACL problem,
both the join key domain and its size are unknown due to
no data access. This further complicates the task of constructing
models that accurately capture join correlations.
Key Idea. GRASP leverages the notion of count sketches [3, 48] to
effectively approximate join sizes while accounting for join corre-
lations. The fundamental concept behind count sketches involves
creating low-dimensional vector representations for data streams.
For instance, consider two data streams 𝑆1 and 𝑆2 where each stream
consists of tuples in the form (key, frequency), and the number of
distinct key values is denoted as |dom(𝑘𝑒𝑦) |. By constructing com-
pact vector representations v1 and v2 for 𝑆1 and 𝑆2 respectively
(where |v1 | ≪ |dom(𝑘𝑒𝑦) |), we can efficiently estimate the join
size |𝑆1 ⋈︁ 𝑆2 | by computing the scalar dot product v1 · v2.

6.2 Query-Driven Learned Count Sketches

To estimate the join size of two query results, 𝑞1 and 𝑞2, with
corresponding join key distributions f1 and f2, count sketches con-
struct low-dimensional vectors v1 and v2 such that ∥v1 · v2∥1 ≈
∥f1 · f2∥1. This approximation allows the join size to be estimated
as 𝑐 (𝑞1) · 𝑐 (𝑞2) · ∥v1 · v2∥1. The approach naturally extends to joins
involving more than two query results.

However, constructing count sketches typically requires scan-
ning the underlying data, which is not permissible in the DACL
problem. To overcome this limitation, we propose training machine
learning models to generate learned count sketches directly from

input queries. These learned count sketch (LCS) models, denoted
asM𝐿𝐶𝑆 , can seamlessly replace the join key models described in
§ 4. The training process forM𝐿𝐶𝑆 follows the same procedure as
that forM𝐽 𝐾 without accessing the underlying data. Therefore, we
will useM𝐿𝐶𝑆 to replaceM𝐽 𝐾 for each base relation, hereafter.

𝑞 Encoding Layer
Hidden Layer

Hidden Layer

Softmax v𝑘𝑒𝑦1𝑞

Softmax v𝑘𝑒𝑦2𝑞

Figure 6: The Learned Count Sketch (LCS) model.

Model Architecture. For a single-table query 𝑞, the learned count
sketch v𝑞 is a normalized vector. The LCS model (Figure 6) encodes
the query𝑞 into an embedding/vector, processes it through a hidden
layer, and outputs the learned count sketch v𝑞 (which is a 𝑛𝑙𝑐𝑠 -
dimensional normalized distribution) using a softmax activation
function, where 𝑛𝑙𝑐𝑠 is a hyperparameter. Existing query encoding
techniques (e.g., MSCN [35] and flatten encoding [17]) can serve as
the encoding layer. Again, GRASP chooses the MSCN encoding due
to its flexibility in handling complex filters. If the relation includes
multiple join keys from different groups, the LCS models output a
set of count sketches via different hidden layers, all of which share
a common encoding layer.

Example 6.1. Consider the LCS model in Figure 6 where the table

𝑇 includes two different join keys, 𝑘𝑒𝑦1 and 𝑘𝑒𝑦2. Each count sketch

is derived from the same query embedding but processed via different

hidden layers for each key. Let’s define the hidden layer size as 𝑛ℎ
(256 in our experiments). For each key, a hidden layer consists of a

weight matrix𝑊 ∈ R𝑛ℎ×𝑛𝑙𝑐𝑠 and a bias vector 𝑏 ∈ R𝑛𝑙𝑐𝑠 . Thus,
the model first produces an 𝑛ℎ-dimensional embedding 𝐸𝑞 from the

encoding layer, and applies the transformation for the count sketch as

v𝑞 = softmax(𝐸𝑞𝑊 + 𝑏). This transformation is executed separately

for each key using distinct sets of𝑊 and 𝑏.

6.3 Comparison to Join Histograms

Onemay find thatGRASP alongwith the LCSmodels share a similar
high-level idea with join histograms [31] (or FactorJoin [57] that
extends the join histograms) — learning per-table CardEst models

and join correlation models separately.
However, they are conceptually different in three key ways. First,

join histograms are built from the data, whereas LCS models are
learned exclusively from queries. Second, they rely on different

assumptions: join histograms assume that join keys within each bin
are uniformly distributed, while LCS models assume that the dot
products of join key distributions can be approximated using low-
dimensional count sketches. Third, unlike the join histograms (or
FactorJoin) framework which uses correlated join histograms and
per-table CardEst models for bin-specific cardinality estimates, we
employ a different approach due to production queries often lacking
filters on join keys. Consequently, accurate bin-specific models are
inaccessible. Instead, we utilize separate per-table CardEst models
to estimate the overall cardinality for joined tables without relying
on binning. Additionally, LCS models are used to address the corre-
lations between the results of per-table subqueries, disentangling
the estimation of per-table cardinalities and join correlations.

2527

7 EXPERIMENTAL EVALUATION

In this section, we primarily answer: despite having no access to
the data, RQ1: Can GRASP generalize to unseen join templates?
RQ2: Can GRASP maintain robustness to join template imbalance?
RQ3: Can GRASP achieve robustness to value distribution shifts
in range predicates? Moreover, we also explore RQ4: Can GRASP
lead to better query end-to-end performance?

Table 5: Statistics of data and workloads of DB instances

DB Instance CEB-IMDb-full DSB BD

Tables 21 25 7
Max # tales in joins 16 5 4

All possible join templates 3219 20 28
Template Coverage Ratio (TCR) %10 %25 %28
Class Imbalance Ratio (CIR) 108 7.4 17

7.1 Experimental Setup

Datasets and Workloads. We conducted experiments using three
DB instances: CEB-IMDb-full [43], DSB [13], an internal business
unit (query logging system) at ByteDance (BD). This system stores
information (e.g., count and running time) about each SQL template,
and allows users to issue queries for monitoring and diagnosing
slow queries. Table 5 presents the statistics of data and workloads of
these DB instances. The CEB-IMDb-full benchmark is derived from
the JOB [36] benchmark, whose data distribution is highly corre-
lated and skewed [36]. Moreover, CEB-IMDb-full provides hundreds
of queries per handcrafted base template4 with real-world interpre-
tations [43] as opposed to five in the JOB benchmark. Moreover,
CEB-IMDb-full contains various join types (e.g., star, chain, self-
joins) and complex predicates (e.g., LIKE, IN). This variety makes
it an ideal benchmark for our experiments. We primarily utilize it
to evaluate RQ1 and RQ2 (due to its complexity), and RQ4 (due
to its large number of joins). The DSB dataset is an extension of
the TPC-DS benchmark [46] with more complex data distributions.
Following [56], we populate the DSB dataset with a scale factor of
50 and use the workload generated by [56] mainly for evaluating
RQ3 because its queries are range predicate-focused (though we
also evaluate it for other RQs). For BD, we utilize real data and
queries (over a day) directly collected from the internal business.
Baselines. We are not aware of any deep learning-based query-
driven approaches that operate without data access; non-deep learn-
ing approaches [29, 45] do not require data access, but they gener-
ally show poorer empirical performance [56] and do not support
joins. Therefore, we employ two representative deep-learning-based
query-driven models, LW-NN [16] and MSCN [35], as our baselines,
modifying their query encodings to exclude data information. We
refer to the variants as LW-NNw/oData and MSCNw/oData. We im-
plemented LW-NN [17]. For MSCN, we utilized the available code
from [1]. Note that LW-NN’s encoding is not flexible to handle LIKE
predicates; in such cases, we adopt MSCN’s encoding while retain-
ing LW-NN’s approach to handling joins — using a separate model
for each join template. All query-driven models use a batch size of
128. For GRASP, the dimensions (𝑛𝑙𝑐𝑠) of the LCS models are set to
2000, 100 and 3000 for CEB-IMDb-full, DSB and BD, respectively.
4The term "base template" refers to a predefined query template that generates various
specific queries by substituting parameters within that template.

Moreover, we include two unfair approaches that require data ac-
cess for comparison: the histogram-based estimator in PostgreSQL
(PG) to demonstrate the potential of query-driven models, and
the original version of MSCN that incorporates sample bitmaps in
its query encoding (MSCNw/Data), to illustrate the superiority of
GRASP. We do not include LW-NNw/Data as MSCNw/oData gener-
ally outperforms LW-NNw/oData in all experiments.
Evaluation Metrics. For prediction accuracy (RQ1, RQ2, and
RQ3), we use Qerror. For query end-to-end performance (RQ4), we
report the query running latency/time, which includes the query
execution time and the inference time. The latter includes the total
time the model takes to estimate the cardinalities for all subqueries.
Environment. All model training was performed on a Nvidia Tesla
V100 32GB GPU (although all models consume < 10% of the GPU
memory). All query latency experiments were performed on a De-
bian 9 Linux machine. The hardware included an Intel(R) Xeon(R)
Platinum 8260 CPU @ 2.40GHz with 8 cores and a clock speed of
2.394 GHz, along with 16 GB of RAM. We utilize a modified ver-
sion [26] of PostgreSQL 13.1 for our query end-to-end performance
evaluations. During query optimization, the PostgreSQL optimizer
employs injected cardinality estimates for query planning.

7.2 Generalization to Unseen Join Templates

This subsection evaluates RQ1. To construct the training work-
loads, we first retain queries from base templates, as these typically
include the largest join templates observed in real-world workloads.
From all the subqueries of these base templates, we randomly sam-
ple 10% − 20% of the join templates, and incorporate their queries
into the training workload. For BD, we directly used real queries col-
lected as the training workload. The statistics of data and workloads
(including TCR and CIR) are shown in Table 5.

Table 6 presents the accuracy of compared approaches for seen
and unseen join templates, respectively. MSCN consistently outper-
forms LW-NN, demonstrating that MSCN’s join handling approach
provides a degree of generalizability superior to that of LW-NN.
However, despite slight improvements from sample bitmaps (which
are independently sampled per table and lack information on join
correlations), MSCNw/Data’s performance significantly deteriorates
when moving from seen to unseen join templates. Notably, it even
underperforms PG in terms of mean Q-error on unseen join tem-
plates within the CEB-IMDB-full benchmark. Note that PG is data-
driven and does not require training queries. This is why its Qerror
is worse for ‘seen’ versus ‘unseen’ queries, as the seen set contains
the largest join templates, which typically pose challenges for PG.

Importantly, we observe GRASP can achieve very consistent and

robust accuracy on both seen and unseen join templates, across the

three datasets. Moreover, it even surpasses MSCNw/Data and PG
that are built over the data. This demonstrates GRASP’s superior
generalization performance, attributed to its compositional design.

7.2.1 Ablation Study. We also perform an ablation study to vali-
date the effectiveness of the proposed learned count sketch model.
Figure 7 presents the estimation accuracy of GRASP for seen and
unseen join templates across different dimensions (𝑛𝑙𝑐𝑠) of LCS
models. The significant improvement from 𝑛𝑙𝑐𝑠 = 1 (representing
independent join assumptions) to 𝑛𝑙𝑐𝑠 = 100 confirms that LCS
models effectively capture join correlations among relations.

2528

Table 6: Accuracy (Qerror) on seen/unseen join templates, where unseen join templates account for the majority of all possible

join templates. The first two methods require data access, which is infeasible in the real-world setting of this paper.

Method
Information

Needed

DSB CEB-IMDb-full BD (real workload)

Median %95 Mean Median %95 Mean Median %95 Mean

Postgres Data 1.5/1.3 9.6/8.1 3.6/3.2 1781/6.1 1 × 106/702 4 × 105/717 276/3.1 1 × 106/184 9 × 106/4 × 104

MSCNw/Data Queries + Data 1.1/5.2 2.3/5533 2.0/5915 1.3/1.8 3.4/328 3.5/2188 1.3/32 3.2/1251 2.0/2048

LW-NNw/oData Queries 2.3/n/a 37/n/a 7.2/n/a 3.1/n/a 42/n/a 17/n/a 1.8/n/a 4.8/n/a 3.5/n/a

MSCNw/oData Queries 1.5/1.9 5.3/2 × 106 2.1/8 × 104 1.9/2.5 7.1/663 3.7/2671 1.6/75 4.0/1865 2.7/2904

GRASP Queries 1.8/1.8 8.7/15 6.7/9.5 2.0/1.7 9.4/23 5.7/41 1.5/5.5 4.2/149 3.2/320

1 100 200 500 1000 2000

Dimension of the LCS model

102

104

106

108

1010

Q
er

ro
r

(L
og

S
ca

le
)

Seen

Unseen

(a) CEB-IMDb-full

1 100 200 500 1000

Dimension of the LCS model

101

102

Q
er

ro
r

(L
og

S
ca

le
)

Seen

Unseen

(b) DSB

Figure 7: Mean Qerror with varying dimensions of the

learned count sketch model across two datasets.

0.1 0.3 0.5 0.7 0.9 1

Ratio of Training Queries

0

50

100

150

Q
-e

rr
or

MSCN w/ data

MSCN w/o data

GRASP

(a) Seen Join Templates

0.1 0.3 0.5 0.7 0.9 1

Ratio of Training Queries

102

103

Q
-e

rr
or

(L
og

S
ca

le
)

MSCN w/ data

MSCN w/o data

GRASP

(b) Unseen Join Templates

Figure 8:MeanQ-errorwith varying ratios of training queries

on CEB-IMDb-full.

200 400 800 1600

Class Imbalance Ratio

101

102

103

Q
-e
rr
or

(L
og

S
ca
le
)

MSCN w/ data

MSCN w/o data

GRASP

(a) CEB-IMDb-2

200 400 800 1600

Class Imbalance Ratio

101

Q
-e

rr
or

(L
og

S
ca

le
)

MSCN w/ data

MSCN w/o data

GRASP

(b) DSB

Figure 9: Accuracy with varying class imbalance ratios (CIR).

7.2.2 Sample Complexity. We then evaluate the sample com-
plexity of GRASP and two MSCN variants. We replicate the experi-
ments in § 7.2, varying the training query ratios. Figure 8 shows the
mean Q-errors for seen and unseen join templates at different ratios.
Notably, GRASP achieves good accuracy with only 10% (25,701) of
the original training queries for both seen and unseen join tem-
plates, suggesting its moderate sample complexity. Additionally,
GRASP consistently outperforms both MSCN variants across all
training query ratios for unseen queries.

7.3 Robustness to Join Template Imbalance

Now, we assess the robustness of the compared methods to join
template imbalances (RQ2). We employ CIR [52] (as defined in

Definition 2.7) to quantify the imbalance scale. To create imbal-
anced workloads for a specified CIR, we first sort the join templates
in descending order based on their query counts. Starting with
the largest count (𝑛𝑙), we iteratively reduce each subsequent tem-
plate’s query count by a decay factor (e.g., 1.5) until the condition
𝑛𝑙/𝑛𝑠 ≥ CIR is satisfied, where 𝑛𝑠 is the current query count. All
remaining join templates are then assigned a query count of 𝑛𝑠 . We
evaluate their performance on test workloads that contain an equal

number of queries for each join template to assess robustness to
join template imbalance. For CEB-IMDb-full, we create imbalanced
workloads by combining base templates that share the same prefix
ID (e.g., 3a, 3b) with their respective subqueries. This enables a
more fine-grained evaluation of robustness due to the extensive
variety of join templates in CEB-IMDb-full. For DSB, we directly
construct imbalanced workloads from all available join templates,
as it contains a considerably smaller number of join templates.

Figure 9 presents the accuracy of query-driven approaches, ex-
cluding LW-NN since it is consistently outperformed by MSCN.
CEB-IMDb-2 is constructed using base templates with prefix IDs
2 from CEB-IMDb-full. As we can see, on DSB, MSCNw/Data im-
proves upon MSCNw/oData and is comparable to GRASP. However,
when evaluating on CEB-IMDb-2, which features more complex
join graphs, GRASP significantly outperforms both MSCN variants.
This demonstrates that GRASP is robust to join template imbalance.

7.4 Robustness to Value Distribution Shifts

MSCNw/Data MSCNw/oData GRASP- GRASP

101

102

Q
er

ro
r

(L
og

S
ca

le
)

In-Dist

OOD

(a) Card. Shift - Mean

MSCNw/Data MSCNw/oData GRASP- GRASP
100

101

102

103

104

Q
er

ro
r

(L
og

S
ca

le
)

In-Dist

OOD

(b) Gran. Shift - Mean

Figure 10: Accuracy under value distribution shifts for DSB.

This subsection addresses RQ3 using the DSB dataset. Follow-
ing [56], we introduce granularity (Gran.) shifts, where the gran-
ularity (𝑔) of range predicates changes (from 𝑔 ≠ 0.5 to 𝑔 = 0.5).
Additionally, we evaluate cardinality (Card.) shifts, referring to
changes in query cardinalities (e.g., from small to large values).

Figure 10 presents themeanQ-errors of query-driven approaches
under both shift types. Here, GRASP− represents GRASP using
the original NeuroCDF as the CDF prediction model (i.e., GRASP
without ArCDF). We use GRASP− to evaluate the accuracy of
NeuroCDF and to determine if ArCDF improves on NeuroCDF.

2529

As shown in the figure, MSCNw/Data improves MSCN’s robust-
ness to value distribution shifts, especially for granularity shifts.
Furthermore, GRASP− consistently outperforms MSCNw/oData, in-
dicating that NeuroCDF is more robust to value distribution shifts

compared toMSCN
w/oData

.However, for granularity shifts, GRASP−
is less effective than MSCNw/Data due to latter’s additional data in-
formation. The gap can be bridged by ArCDF (used in GRASP),
which demonstrates ArCDF’s advantages over NeuroCDF.

7.5 Impact on End-to-End Performance

This subsection evaluates the benefits ofGRASP in improving query
latency performance (RQ4). We focus on the more complex CEB-
IMDb-full (with up to 16-way joins) and real queries in BD. For the
test workloads, we randomly sample four workloads from all base
templates (e.g., those with larger joins), consisting of 10 queries each
for CEB-IMDB-full and 20 queries each for BD.We also include True
Cardinalities (True-Card) as Oracle. Note that compared approaches
use the same runtime, differing only in the cardinality estimates.

IMDB 1 IMDB 2 IMDB 3 IMDB 4
Workload

0

250

500

750

1000

T
im

e
C

os
t

(s
)

75
150 122

3675 51 5887 61 3038 35

True Card

Postgres

MSCNw/Data

MSCNw/oData

GRASP

(a) CEB-IMDb-full

BD 1 BD 2 BD 3 BD 4
Workload

0

1000

2000

3000

T
im

e
C

os
t

(s
)

True Card

Postgres

MSCNw/Data

MSCNw/oData

GRASP

(b) BD

Figure 11: Overall time cost (running time).

Figure 11 presents the overall running time for both datasets.
We report the ratios of the total running time (summing all four
workloads) of the evaluated models relative to True-Card, which
serves as the baseline and is set at 100%. On CEB-IMDb-full, GRASP
incurs a running time ratio of 135%, significantly outperforming
MSCNw/oData (1044%) and MSCNw/Data (930%), while achieving
performance better than PG (176%). It is worth noting that both
PG and MSCNw/Data have access to full data statistics. These re-
sults demonstrate the strong performance of GRASP in enhancing

query optimization. On BD, GRASP achieves running time perfor-
mance comparable to True-Card, while significantly outperforming
MSCNw/Data and MSCNw/oData (126%). This suggests that query-
driven models may perform worse than simple baselines like PG when

they fail to accurately estimate the majority of subqueries.

Due to space constraints, we present the per-query performance
on CEB-IMDb-full in our online Technical Report, with a time-
out of 300 seconds. Both MSCNw/Data and MSCNw/oData time out
on some queries. We observe that MSCNw/oData exhibits signifi-
cant degradation on a large number of queries. In contrast, GRASP
achieves running times close to True-Card for the vast majority
of queries without noticeable query regression. This demonstrates
thatGRASP effectively generalizes to various join templates, despite
being trained on only 10% of all possible join templates.

7.6 Efficiency

Training Time. Training GRASP takes 198s, 4.9s, and 51s per
epoch on the IMDB-CEB-full, DSB, and BD datasets, respectively.
Moreover, GRASP converges within 50 epochs for all datasets.

Query Inference. We focus on the query inference of the largest
join (16-way join) on CEB-IMDb-full. For query optimization of
such a 16-way join query, GRASP completes the estimation of all
subqueries (including itself) in less than 0.5s using batch inference
on a GPU. On a CPU, GRASP achieves 1.6s inference time, which
is not costly compared to the query running time. Specifically, al-
though a 16-way join query involves estimating 6092 subqueries,
only 32 calls to GRASP’s primitive models (CardEst and LCS mod-
els) are needed — one call to each model for each of the 16 tables.
This step only takes 0.15s. After obtaining these model outputs,
the cardinality of each subquery is estimated using these outputs
(Algorithm 1). Here, the computations for the 6092 subqueries can
be efficiently handled through progressive query inference. For
instance, the cardinality estimate for t ⋈︁ mi is cached and subse-
quently reused in the estimation of t ⋈︁ mi ⋈︁ ci.

8 RELATEDWORK

CardEst dates back to the early days of query optimization [39, 49].
Early methods relied on data statistics, such as histograms [12, 24,
25, 42], assuming uniformity within buckets and independence
across columns. However, it often results in significant estima-
tion errors [30, 36]. Such techniques were refined to use queries
themselves to compute histograms [2, 8, 38], query expression sta-
tistics [7] and adjustments to correlated predicates [40]

Recently, CardEst has been approached as an ML problem. ML-
based CardEst methods are categorized into data-driven and query-

driven models (with a few exceptions of hybrid approaches [37, 54,
60]). Data-driven techniques [11, 27, 28, 33, 58, 59] build models of
the data distribution by scanning the underlying data.

Query-driven techniques fall into two main categories. The first
constructs a data model based on observed queries and their cardi-
nalities [2, 29, 45]. Although these methods generally do not require
data access, they often perform worse than regression-based mod-
els due to limited capacity. The second category, initiated by [4–6]
(without join support), learns a regression model from query fea-
tures to cardinality. Recent deep learning-based approaches [16, 35]
in this category support joins and demonstrate impressive empiri-
cal performance. However, they require data access for improved
generalizability and assume training workloads with complete and
balanced join templates.

9 CONCLUSIONS

We introduced a new problem setting for CardEst: data-agnostic
cardinality learning from imperfect workloads, grounded in real-
world scenarios and a detailed analysis of production workloads.
To solve this challenging problem, we developed GRASP, a truly
data-agnostic CardEst system that handles incomplete and imbal-
anced join templates through its compositional design. Additionally,
we proposed a query-driven CardEst model to address value distri-
bution shifts for range predicates, and a novel learned count sketch
model that efficiently captures join correlations across base rela-
tions. We empirically validated the generalizability and robustness
of GRASP using three database instances.

ACKNOWLEDGMENTS

Components of this work were funded by NSF grant DBI-2400135.

2530

REFERENCES

[1] MSCN code. https://github.com/andreaskipf/learnedcardinalities. Last Accessed
Date: 2025-04-05.

[2] Aboulnaga, A., and Chaudhuri, S. Self-tuning histograms: building histograms
without looking at data. In Proceedings of the 1999 ACM SIGMOD international

conference on Management of data (1999), ACM, pp. 181–192.
[3] Alon, N., Gibbons, P. B., Matias, Y., and Szegedy, M. Tracking join and self-join

sizes in limited storage. In Proceedings of the eighteenth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems (1999), pp. 10–20.
[4] Anagnostopoulos, C., and Triantafillou, P. Learning Set Cardinality in

Distance Nearest Neighbours. In 2015 IEEE International Conference on Data

Mining (Atlantic City, NJ, USA, 2015), IEEE, pp. 691–696.
[5] Anagnostopoulos, C., and Triantafillou, P. Learning to accurately COUNT

with query-driven predictive analytics. In 2015 IEEE International Conference on

Big Data (Big Data) (2015), IEEE, pp. 14–23.
[6] Anagnostopoulos, C., and Triantafillou, P. Query-Driven Learning for Pre-

dictive Analytics of Data Subspace Cardinality. ACM Transactions on Knowledge

Discovery from Data 11, 4 (2017), 1–46.
[7] Bruno, N., and Chaudhuri, S. Exploiting statistics on query expressions for

optimization. In Proceedings of the 2002 ACM SIGMOD international conference

on Management of data (2002), ACM, pp. 263–274.
[8] Bruno, N., Chaudhuri, S., and Gravano, L. STHoles: a multidimensional

workload-aware histogram. In Proceedings of the 2001 ACM SIGMOD international

conference on Management of data (2001), ACM, pp. 211–222.
[9] Chen, C. M., and Roussopoulos, N. Adaptive selectivity estimation using query

feedback. In Proceedings of the 1994 ACM SIGMOD international conference on

Management of data (1994), ACM, pp. 161–172.
[10] Coffman, E. G., Galambos, G., Martello, S., and Vigo, D. Bin packing ap-

proximation algorithms: Combinatorial analysis. Handbook of Combinatorial

Optimization: Supplement Volume A (1999), 151–207.
[11] Deeds, K. B., Suciu, D., and Balazinska, M. SafeBound: A Practical System for

Generating Cardinality Bounds. Proceedings of the ACM on Management of Data

1, 1 (2023), 1–26.
[12] Deshpande, A., Garofalakis, M., and Rastogi, R. Independence is good:

Dependency-based histogram synopses for high-dimensional data. ACMSIGMOD

Record 30, 2 (2001), 199–210.
[13] Ding, B., Chaudhuri, S., Gehrke, J., and Narasayya, V. DSB: a decision support

benchmark for workload-driven and traditional database systems. Proceedings
of the VLDB Endowment 14, 13 (2021), 3376–3388.

[14] Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G. Neural spline flows.
In Advances in Neural Information Processing Systems 32 (2019), pp. 7509–7520.

[15] Durrett, R. Probability: theory and examples, fifth edition ed. No. 49 in Cam-
bridge series in statistical and probabilistic mathematics. Cambridge University
Press, Cambridge ; New York, NY, 2019.

[16] Dutt, A., Wang, C., Narasayya, V., and Chaudhuri, S. Efficiently approximat-
ing selectivity functions using low overhead regression models. Proceedings of
the VLDB Endowment 13, 12 (2020), 2215–2228.

[17] Dutt, A., Wang, C., Nazi, A., Kandula, S., Narasayya, V., and Chaudhuri, S.
Selectivity estimation for range predicates using lightweight models. Proceedings
of the VLDB Endowment 12, 9 (2019), 1044–1057.

[18] Dwork, C. Differential privacy. In International colloquium on automata, lan-

guages, and programming (2006), Springer, pp. 1–12.
[19] Fritsch, F. N., and Carlson, R. E. Monotone Piecewise Cubic Interpolation.

SIAM Journal on Numerical Analysis 17, 2 (1980), 238–246.
[20] Gadepally, V., Chen, P., Duggan, J., Elmore, A., Haynes, B., Kepner, J., Mad-

den, S., Mattson, T., and Stonebraker, M. The bigdawg polystore system
and architecture. In 2016 IEEE High Performance Extreme Computing Conference

(HPEC) (2016), IEEE, pp. 1–6.
[21] Germain, M., Gregor, K., Murray, I., and Larochelle, H. Made: Masked

autoencoder for distribution estimation. In International Conference on Machine

Learning (2015), PMLR, pp. 881–889.
[22] Giannakouris, V. Building learned federated query optimizers. In Proceedings

of the VLDB 2022 PhD Workshop co-located with the 48th International Conference

on Very Large Databases (2022), vol. 3186 of CEUR Workshop Proceedings.
[23] Gregory, J. A., and Delbourgo, R. Piecewise Rational Quadratic Interpolation

to Monotonic Data. IMA Journal of Numerical Analysis 2, 2 (1982), 123–130.
[24] Gunopulos, D., Kollios, G., Tsotras, V. J., and Domeniconi, C. Approximating

multi-dimensional aggregate range queries over real attributes. ACM SIGMOD

Record 29, 2 (2000), 463–474.
[25] Gunopulos, D., Kollios, G., Tsotras, V. J., and Domeniconi, C. Selectivity

estimators for multidimensional range queries over real attributes. The VLDB
Journal 14, 2 (2005), 137–154.

[26] Han, Y., Wu, Z., Wu, P., Zhu, R., Yang, J., Tan, L. W., Zeng, K., Cong, G., Qin,
Y., Pfadler, A., Qian, Z., Zhou, J., Li, J., and Cui, B. Cardinality estimation
in DBMS: a comprehensive benchmark evaluation. Proceedings of the VLDB

Endowment 15, 4 (2021), 752–765.

[27] Heddes, M., Nunes, I., Givargis, T., and Nicolau, A. Convolution and Cross-
Correlation of Count Sketches Enables Fast Cardinality Estimation of Multi-Join
Queries. Proceedings of the ACM on Management of Data 2, 3 (2024), 1–26.

[28] Hilprecht, B., Schmidt, A., Kulessa, M., Molina, A., Kersting, K., and Bin-
nig, C. DeepDB: learn from data, not from queries! Proceedings of the VLDB

Endowment 13, 7 (2020), 992–1005.
[29] Hu, X., Liu, Y., Xiu, H., Agarwal, P. K., Panigrahi, D., Roy, S., and Yang, J.

Selectivity Functions of Range Queries are Learnable. In Proceedings of the 2022

ACM SIGMOD International Conference on Management of Data (2022), ACM,
pp. 959–972.

[30] Ioannidis, Y. E., and Christodoulakis, S. On the propagation of errors in
the size of join results. In Proceedings of the 1991 ACM SIGMOD International

Conference on Management of data (1991), pp. 268–277.
[31] Ioannidis, Y. E., and Christodoulakis, S. Optimal histograms for limiting

worst-case error propagation in the size of join results. ACM Transactions on

Database Systems 18, 4 (1993), 709–748.
[32] Jindal, A., and Leeka, J. Query Optimizer as a Service: An Idea Whose Time

Has Come! ACM SIGMOD Record 51, 3 (2022), 49–55.
[33] Kim, K., Lee, S., Kim, I., andHan,W.-S. ASM: Harmonizing AutoregressiveModel,

Sampling, and Multi-dimensional Statistics Merging for Cardinality Estimation.
Proceedings of the ACM on Management of Data 2, 1 (2024), 1–27.

[34] Kipf, A., Freitag, M., Vorona, D., Boncz, P., Neumann, T., and Kemper, A.
Estimating filtered group-by queries is hard: Deep learning to the rescue. In
1st International Workshop on Applied AI for Database Systems and Applications

(2019).
[35] Kipf, A., Kipf, T., Radke, B., Leis, V., Boncz, P. A., and Kemper, A. Learned

cardinalities: Estimating correlated joins with deep learning. In 9th Biennial

Conference on Innovative Data Systems Research, CIDR 2019 (2019).
[36] Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., and Neumann, T.

How good are query optimizers, really? Proceedings of the VLDB Endowment 9, 3
(2015), 204–215.

[37] Li, P., Wei, W., Zhu, R., Ding, B., Zhou, J., and Lu, H. ALECE: An Attention-
based Learned Cardinality Estimator for SPJ Queries on Dynamic Workloads.
Proceedings of the VLDB Endowment 17, 2 (2023), 197–210.

[38] Lim, L., Wang, M., and Vitter, J. S. SASH: A self-adaptive histogram set for
dynamically changing workloads. In Proceedings of 29th International Conference

on Very Large Data Bases, VLDB 2003, Berlin, Germany, September 9-12, 2003

(2003), pp. 369–380.
[39] Lynch, C. A. Selectivity estimation and query optimization in large databases

with highly skewed distribution of column values. In Proceedings of the VLDB

Endowment (1988), pp. 240–251.
[40] Markl, V., Lohman, G. M., and Raman, V. LEO: An autonomic query optimizer

for DB2. IBM Systems Journal 42, 1 (2003), 98–106.
[41] Moerkotte, G., Neumann, T., and Steidl, G. Preventing bad plans by bounding

the impact of cardinality estimation errors. Proceedings of the VLDB Endowment

2, 1 (2009), 982–993.
[42] Muralikrishna, M., and DeWitt, D. J. Equi-depth multidimensional his-

tograms. In SIGMOD (1988), pp. 28–36.
[43] Negi, P., Marcus, R., Kipf, A., Mao, H., Tatbul, N., Kraska, T., and Alizadeh,

M. Flow-loss: learning cardinality estimates that matter. Proceedings of the VLDB
Endowment 14, 11 (2021), 2019–2032.

[44] Negi, P., Wu, Z., Kipf, A., Tatbul, N., Marcus, R., Madden, S., Kraska, T., and
Alizadeh, M. Robust Query Driven Cardinality Estimation under Changing
Workloads. Proceedings of the VLDB Endowment 16, 6 (2023), 1520–1533.

[45] Park, Y., Zhong, S., and Mozafari, B. QuickSel: Quick Selectivity Learning
with Mixture Models. In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data (2020), ACM, pp. 1017–1033.
[46] Poess, M., Smith, B., Kollar, L., and Larson, P. TPC-DS, taking decision

support benchmarking to the next level. In Proceedings of the 2002 ACM SIGMOD

international conference on Management of data (2002), ACM, pp. 582–587.
[47] Rivlin, T. J. An introduction to the approximation of functions, unabridged republ.

of the 1981 dover reprint ed. Dover phoenix editions. Dover Publ, 2003.
[48] Rusu, F., and Dobra, A. Sketches for size of join estimation. ACM Transactions

on Database Systems 33, 3 (2008), 1–46.
[49] Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price,

T. G. Access path selection in a relational database management system. In
Proceedings of the 1979 ACM SIGMOD international conference on Management of

data (1979), ACM Press, p. 23.
[50] Steffen, M. A simple method for monotonic interpolation in one dimension.

Astronomy and Astrophysics, Vol. 239, NO. NOV (II), P. 443, 1990 239 (1990), 443.
[51] Stillger, M., Lohman, G. M., Markl, V., and Kandil, M. LEO - db2’s learning

optimizer. In Proceedings of the VLDB Endowment (2001), pp. 19–28.
[52] Thabtah, F., Hammoud, S., Kamalov, F., and Gonsalves, A. Data imbalance in

classification: Experimental evaluation. Information Sciences 513 (2020), 429–441.
[53] Tokmakov, P., Wang, Y.-X., and Hebert, M. Learning Compositional Represen-

tations for Few-Shot Recognition. In 2019 IEEE/CVF International Conference on

Computer Vision (ICCV) (2019), IEEE, pp. 6371–6380.
[54] Wu, P., and Cong, G. A Unified Deep Model of Learning from both Data and

2531

https://github.com/andreaskipf/learnedcardinalities

Queries for Cardinality Estimation. In Proceedings of the 2021 International

Conference on Management of Data (2021), ACM, pp. 2009–2022.
[55] Wu, P., and Ives, Z. G. Modeling Shifting Workloads for Learned Database

Systems. Proceedings of the ACM on Management of Data 2, 1 (2024), 1–27.
[56] Wu, P., Xu, H., Marcus, R., and Ives, Z. G. A Practical Theory of Generalization

in Selectivity Learning. Proceedings of the VLDB Endowment 18, 6 (2025).
[57] Wu, Z., Negi, P., Alizadeh, M., Kraska, T., and Madden, S. FactorJoin: A New

Cardinality Estimation Framework for Join Queries. Proceedings of the ACM on

Management of Data 1, 1 (2023), 1–27.

[58] Yang, Z., Kamsetty, A., Luan, S., Liang, E., Duan, Y., Chen, X., and Stoica,
I. NeuroCard: one cardinality estimator for all tables. Proceedings of the VLDB
Endowment 14, 1 (2020), 61–73.

[59] Yang, Z., Liang, E., Kamsetty, A., Wu, C., Duan, Y., Chen, X., Abbeel, P.,
Hellerstein, J. M., Krishnan, S., and Stoica, I. Deep Unsupervised Cardinality
Estimation. Proceedings of the VLDB Endowment 13, 3 (2020), 279–292.

[60] Zhang, K., Wang, H., Lu, Y., Li, Z., Shu, C., Yan, Y., and Yang, D. Duet: Ef-
ficient and Scalable Hybrid Neural Relation Understanding. In 2024 IEEE 40th

International Conference on Data Engineering (ICDE) (2024), IEEE, pp. 56–69.

2532

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Definitions
	2.2 Analysis of Production Workloads

	3 The GRASP System
	3.1 Problem Overview
	3.2 Key Design Choices
	3.3 GRASP Overview

	4 Compositional Generalization
	4.1 Motivating Examples
	4.2 The Compositional Design
	4.3 Cardinality Estimation with Primitives

	5 Building Robust CardEst Models
	5.1 Overview
	5.2 Autoregressive CDF Modeling
	5.3 Parameterizing Conditional CDFs

	6 Capturing Join Correlations
	6.1 Challenges and the Idea
	6.2 Query-Driven Learned Count Sketches
	6.3 Comparison to Join Histograms

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Generalization to Unseen Join Templates
	7.3 Robustness to Join Template Imbalance
	7.4 Robustness to Value Distribution Shifts
	7.5 Impact on End-to-End Performance
	7.6 Efficiency

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

