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ABSTRACT
State machine replication (SMR) algorithms ensure redundancy in
critical systems and, as a result, underpin fault-tolerant distributed
databases. Good SMR protocol performance is essential for capacity
planning and meeting desired performance objectives. However,
many implementations of popular SMR algorithms, such as Mul-
tiPaxos and Raft, have issues that make their performance unpre-
dictable. This unpredictability often arises from certain “bolt-on”
additions to core protocols, such as external failure detectors and
replication log compaction. In this paper, we argue that tighter
integration of such traditionally ad-hoc mechanisms with the core
replication protocols can stabilize performance, making the so-
lutions more reliable and more accessible to accurate capacity
planning. Moreover, we show that these integrations can be non-
disruptive for the underlying consensus algorithm, resulting in
systems that preserve the simplicity and safety of traditional single-
leader consensus-based SMR. To that order, we integrate the failure
and slowdown detectors inside the SMR and achieve better perfor-
mance and faster fail-over under various network partitions and
node slowdown events. We also illustrate that tight integration of
replication log management, pruning, and snapshotting can reduce
memory and CPU usage while avoiding performance fluctuations
associated with traditional log compaction and cleanup approaches.
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1 INTRODUCTION
State machine replication (SMR) is a cornerstone of modern fault-
tolerant distributed data stores and databases [10, 11, 45, 46, 57, 58].
SMR algorithms provide strongly consistent replication by ensuring
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that every replica applies the same sequence of deterministic com-
mands to its copy of a state machine. While many SMR protocols
exist, MultiPaxos [49] and Raft [42], the two very similar proto-
cols [20, 50], remain popular among major large-scale production
systems such as Google Spanner [10], Azure Storage [6], Amazon
DynamoDB [11], CockroachDB [45], and MongoDB [58].

The popularity of MultiPaxos and Raft in production is over-
whelming despite extensive research into alternative approaches.
Many SMR solutions emerge as optimizations to existing protocols
and primarily focus on enhancing performance [8, 14, 27, 35, 36, 40,
44, 48]. Nevertheless, the relative simplicity of MultiPaxos and Raft
compared to these other solutions, along with a better understand-
ing of how these protocols behave in real systems, preserves the
status quo and continues to separate production algorithms from
their academic counterparts. Yet, it is unfair to say that Raft andMul-
tiPaxos have no issues. Consider a 2020 CloudFlare outage [23, 31],
which uncovered a liveness problem with the Raft protocol that
prevents recovery under certain specific network partitions [19].
The academic community rushed to solve the problem, proposing
solutions for Raft [23, 41] and MultiPaxos [37]. Both solutions are
rather complicated and modify and extend the core protocols.

Some sources of friction for these battle-tested protocols come
from the reliance on “ad-hoc” or “bolt-on” components for supple-
mentary yet essential tasks, ranging from failure detection to slow-
down detection to replication log management and cleanup. These
ad-hoc components may introduce performance unpredictability
and general instability into the larger system. In some cases, like
the Raft failure, such unpredictability can lead to an outright fail-
ure. In others, it can complicate capacity planning and increase the
system’s operating cost by forcing overprovisioning to absorb the
performance fluctuations. Performance unpredictability, especially
with inadequate capacity allocation, can also lead to other severe
performance problems, such as metastable failures [4, 21].

In this paper, we propose integrating these "bolt-on" compo-
nents more fully with the core consensus protocol to improve the
performance predictability of SMR systems and make them less
susceptible to catastrophic failures. To that order, we develop Holi-
Paxos, a holistic approach towards MultiPaxos protocol. HoliPaxos
incorporates the failure detectors, slowdown detectors, and replica-
tion log management into the SMR without altering the underlying
consensus protocol. Broadly, our contribution is a design paradigm
of co-integration that allows for simpler individual solutions to
combine and solve complicated problems. Specifically, our contri-
butions are as follows: 1○We integrate the Raft-style [42] failure
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detector with additional optimizations to allow SMR to tolerate
partial network partitions effectively. HoliPaxos handles network
partitions as well as the state-of-the-art [37] while being faster in
failure-free scenarios. 2○We integrate a slowdown detection mech-
anism to enable leader change when the current leader experiences
capacity degradation. HoliPaxos recovers the cluster from slow-
down events in seconds while having up to 10× the throughput
than Copilots Paxos, the current state-of-the-art slowdown tolerant
SMR [38]. Our integrated slowdown detector relies on changepoint
detection to self-diagnose a leader as potentially slow and remedy
the situation by enacting a graceful leadership change. 3○ Finally,
we integrate log management and cleanup to avoid running and
continuous costs of snapshotting. Our log cleanup forgoes peri-
odic snapshotting in favor of continuous cleanup with on-demand
snapshots for recovery. This reduced performance variance and
improved memory usage by up to 50%.

These three contributions together make HoliPaxos a muchmore
predictable protocol with fewer performance fluctuations in the
failure-free operation and better handling of obscure failure situ-
ations, like partial network partitions and slowdowns and gray-
failures [22]. Furthermore, our holistic approach is significantly
simpler, and as a result faster, than the state-of-the-art new SMR
protocols designed from the ground up to tolerate the same prob-
lems we address – Omni-Paxos [37] for partition tolerance and
Copilots Paxos [38] for slowdown tolerance. We open-sourced the
complete protocol specifications and code [29].

2 BACKGROUND & MOTIVATION
2.1 Single-Decree Paxos and MultiPaxos
Single-Decree Paxos [24, 25], a fundamental distributed consensus
algorithm, relies on a group of nodes collectively agreeing on some
non-trivial single value. It operates in two distinct phases: Prepare
and Accept. In the Prepare Phase, a node prepares to become a leader
with a unique ballot number higher than any it has encountered. If,
upon receiving promises from a majority of nodes, the prospective
leader concludes that the majority has not seen a higher ballot than
its own, then it becomes a leader. Subsequently, the leader selects
a value with the highest ballot among the received promises or a
new value if no values are found in the promises. Moving forward,
the leader advances to the Accept Phase where nodes accept the
proposed value. The consensus is reached once the leader receives
a majority of Accept Phase acknowledgments.

MultiPaxos [7, 49], a well-known practical optimization of Single-
Decree Paxos, allows a leader to propose a sequence of values in
Accept Phase, as shown in Figure 1. These values are proposed in
a log structure, sometimes called replication log, where each log
item corresponds to a command or a batch of commands. The log
executes commands in an orderly manner against a state machine
maintained by each replica, implementing a Replicated State Ma-
chine (RSM). The commands in the log exist in one of three states:
In-Progress, Committed, and Executed. In-Progress commands are
ones proposed by the leader but currently lacking themajority votes
at the leader. Once a leader collects the majority votes for a com-
mand, it changes its state to committed. Only committed commands
from the log can apply to the state machine. Once applied, they be-
come executed and may eventually be cleaned up from the log. If the
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Figure 1: Overview of the MultiPaxos Algorithm.

next operation to be executed is not committed, the state machine
stalls and waits for the commit decision before resuming execution.
An implicit or explicit Commit Phase is needed to allow the leader
to distribute the commit decision about each item to the followers.
The Prepare Phase only comes into play in the event of a leader
change due to a failure or leader placement optimizations [47, 53].

2.2 Performance Predictability
Performance predictability is an essential characteristic of dis-
tributed data-intensive systems. Systems with more predictable
performance in various adverse conditions tend to be more re-
liable and less susceptible to certain failures, such as metastable
failures [4, 21]. Often, performance predictability is more important
to operators than cost and efficiency. Consider AWS DynamoDB,
which experienced a large metastable failure early in its produc-
tion history [11]. The cache malfunction sent too much traffic to
the underlying metadata database, overloading it and preventing
caches from refilling. The ultimate fix overprovisioned the metadata
database so the system could survive a complete cache failure.

In the paper, we take a more narrow scope and discuss the perfor-
mance predictability of leader-based state machine replication algo-
rithms such as MultiPaxos, Viewstamped Replication [40] and Raft.
These protocols often lie at the core of large distributed databases
and storage solutions critical to all applications built on top, making
their performance predictability under a wide range of operating
conditions paramount to the reliability of an entire application
stack. Nevertheless, as we show next, these traditional SMR solu-
tions can still suffer performance predictability issues, often due to
the “bolt-on” components required for practical operations.

2.2.1 Failure Detectors &Non-crash Failures. The node-local failure
detector is often one of these “bolt-on” components, allowing each
node to independently detect a problem with the leader and initiate
a leader change, potentially triggering a leader-churn — a direct
outcome of FLP impossibility [13]. The simplest churn happens
when all correct nodes detect the failure and simultaneously try to
become new leaders. This condition is not too dangerous and often
leads to several rounds of leader election until one node is “lucky
enough” to fully complete the election cycle. The typical mitigation
strategy for this problem is random backoff intervals to minimize
the chance of multiple nodes running a leader election at once [42].
Other solutions may rely on probabilistic consensus to bypass FLP
and remove the destructive interference [47].

Unfortunately, ad-hoc-style failure detectorsmay not have access
to protocol and cluster information useful for recovering frommore
intricate failures, such as partial network partitions [37] or node
slowdowns [38]. Some protocols, such as Raft [42], boast tighter
integration of failure detectors. Despite this, Raft limits its pool of
potential leaders based on the candidates’ up-to-dateness. In some
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Figure 2: The Leader-Quorum-Loss partition. 1○ Nodes A, B,
C, and D disconnect from all nodes except E. E still answers
the heartbeat from Leader B. 2○ A, C, and D each run a leader
election, but lack votes to succeed. 3○ The leader B does not
have a quorum for replication, while no node can replace it.

network partition cases, such extra selectivity prevents the failure
detector from guiding the protocol to choosing the only node that
could have worked as the leader if it was sufficiently up-to-date.

Partial Network Partitions. A partial network partition is a
scenario where at least one node loses connection to some other
node, yet both remain connected by a third node [2]. This situation
poses a risk of livelocks in SMR systems, including MultiPaxos
and Raft, with a notable example being the Cloudflare outage [31].
Below, we summarize two types of network partitions described
in [37] that can cause performance problems due to the inadequacies
in ad-hoc failure detectors or additional leadership requirements.

Leader-Quorum-Loss Partition. Figure 2 shows a partial network
partition that can cause problems due to inadequate failure detec-
tors. Starting with a fully connected five-node cluster with Node B
as the leader, a partition isolates all nodes except Node E. Only Node
E retains quorum, while Node B becomes a nonfunctional leader.
Nodes A, C, and D start leader elections but fail to secure quorum.
Prior studies note that MultiPaxos fails here as Node E continues
to respond to Node B’s heartbeats and would not start the leader
election [37]. However, the root cause is the failure detector’s lack
of protocol knowledge to consider leader B nonfunctional.

Leader-Churning Partition. A specific partition can often cause lo-
cal failure detectors to trigger leader churn, degrading performance.
The churn occurs when 1○ churning nodes cannot communicate to
each other, and 2○ they can initiate leader elections. Figure 3 illus-
trates such a case in a three-node fully connected cluster, initially
led by Node A. When Nodes A and C become unreachable from
each other, C starts an election and becomes the new leader. Later,
Node A learns about C’s new leadership via Node B and triggers
another election due to missing heartbeats from C, resulting in
cyclic leadership changes—a livelock situation. More complicated
churn scenarios arise in larger clusters. However, the conditions
for churn remain the same; as such, fixing churn during partitions
requires disabling some nodes from initiating leader elections.

Leader Slowdowns. Traditional failure detectors used in SMR
often can detect only severe problems, like nodes crashing or becom-
ing disconnected. This is because these detectors rely on a simple
binary timeout mechanism – a node either fails and cannot renew
the lease or reply to a message in time or operates “sufficiently”
well to respond to leases/timeouts. An intermittent but prolonged
failure, such as excessive packet loss or resource starvation due to
a noisy neighbor syndrome, may go unnoticed by such a binary
failure detector. Such gray failures [22] remain a big problem for
cloud-scale data-intensive systems [11, 32, 33].
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Figure 3: The Leader-Churning partition. Nodes A and C
disconnect from each other. 1○ C times out and starts an
election. B becomes a follower of C. 2○A learns C’s leadership
via B and becomes a follower, but soon times out and starts
another election. 3○ A and C repeat leader elections, and no
node can maintain the leadership.
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Figure 4: Fluctuating performance due to periodic snapshots.

Typically, detection of gray failures and slowdowns requires ex-
ternal tools [28, 33] as opposed to the built-in detectors. A notable
exception is a Copilots Paxos [38] that relies on two co-leaders to
process the same request and monitor each other for signs of a slow-
down. The requirement for co-leaders substantially complicates the
SMR protocol, as both leaders work independently and, when both
are healthy, must reconcile their logs to arrive at a final order of
requests. A slowdown is a huge problem if the leader node becomes
slow, although recent research has shown that even a follower’s
slowdown may have negative performance implications [55].

2.2.2 Log Management & Performance Fluctuations. Log manage-
ment is an essential bolt-on module in practical implementations.
Applications replicate millions of log entries, and storing such large
logs is a significant challenge. Academic studies often omit log
management or propose impractical methods [1, 15, 27, 36]. In
contrast, many industrial implementations rely on compaction –
periodic snapshotting of the log and deletion of log entries captured
in a snapshot. Snapshotting plays a crucial role in failure recovery.
When a node joins the cluster or requires recovery, it can catch up
without needing the complete log from other nodes by fetching the
latest snapshot and the log of changes after the snapshot.

Periodic snapshotting requires exclusive access to the state ma-
chine (or some part of the state machine, depending on lock granu-
larity), pausing the execution to ensure the snapshot consistently
captures the current state and version. These periodic delays create
short-lived availability pauses during the compaction, resulting in
higher request latency or even timeouts. In Figure 4, we illustrate
performance fluctuations of etcd [17] as it undergoes periodic com-
pactions every 500,000 log entries. Furthermore, snapshotting re-
quires excessive disk I/O and temporarily increases memory usage,
leading to other issues such as higher garbage collection pressure.

3 HOLIPAXOS: PREDICTABLE MULTIPAXOS
To address performance predictability issues, we propose Holi-
Paxos, a holistic approach to SMR that integrates failure/slowdown
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detection and replication log management into the core MultiPaxos-
based [49] SMR. Like MultiPaxos, HoliPaxos requires a majority
quorum and operates under the crash fault tolerance assumption.
We also assume a semi-reliable network – a message from node 𝑛1
to 𝑛2 will eventually be delivered after an unspecified delay as long
as 𝑛1 is connected to 𝑛2. In this section, we focus our narrative on
changes and additions to MultiPaxos.

3.1 Integrated Failure Detector
Like traditional ad-hoc-style solutions, HoliPaxos uses independent
failure detectors at every node, allowing any node to initiate a
failover in case of a suspected leader malfunction. While the ability
for a unilateral leader change is counterproductive for maintaining
leader stability, it also avoids the explicit cross-node coordination
to decide the need for a leader change. However, our failure detec-
tor relies on other protocol information, such as ballots and past
election observations, to guide the election of a more stable node.

3.1.1 Heartbeats. The failure detector uses heartbeat messages to
assess whether the component issuing heartbeats is alive. In our
case, the leader node dispatches periodic heartbeats. The followers
monitor the arrival of heartbeats to decide whether to trigger a
leader failover, typically initiating a leader election after missing
several heartbeats. The actual timeout (i.e., the number of missed
heartbeats) slightly differs at each node to avoid nodes performing
simultaneous leader elections. Unlike the ad-hoc failure detector
implementations, e.g., FrankenPaxos [51], Omni-Paxos [37], each
HoliPaxos heartbeat includes a ballot number, indicating the fresh-
ness of the leadership, allowing each node to compare the ballot
on each heartbeat and identify the heartbeats issued by old leaders.
Crucially, the nodes normally reply to any such stale leader with
a heartbeat rejection message containing a newer leader’s ballot,
effectively forcing the old leader to step down to a follower role.

This Raft-borrowed technique rejects an old leader who lost a
connection to a quorum and cannot make progress, a situation we
described earlier in Figure 2. In this example, node B cannot stand
down as it never hears from other nodes trying for leadership, and
node E never attempts to acquire leadership, as it keeps hearing
from B. However, E knows of higher ballots from other nodes trying
to become leaders. Propagating such a higher ballot to B from E
upon a heartbeat rejection forces B to stand down, unlocking node
E to become a leader. Unlike HoliPaxos, Raft may not recover from
this partition due to the additional leadership requirements despite
having a similar failure detector. In Raft, if node E has a shorter log
than the majority of other nodes, it will fail to acquire leadership
due to rejections based on log length. HoliPaxos, however, follows
the MultiPaxos leader election, allowing E to learn and recover
missing items during the leader election.

3.1.2 Avoiding Churn. Independent, uncoordinated failure detec-
tors are prone to leader churn when compromised nodes who do
not see each other detect that as failures and initiate elections, as
described in Figure 3. The only solution to the problem, aside from
fixing the network partition, is to prevent all but one churning
nodes from running the leader election. Omni-Paxos [37] does so
using its knowledge of quorum-connected nodes and gossiping to
decide which nodes are allowed to participate fully in the election.
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C D

EB

(a) Quorum discon-
nected node churn.

A

C D

EB

(b) Quorum con-
nected nodes churn

A

C D

EB

(c) Churn between
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Figure 5: Advanced Leader-churning partitions.

Similarly, HoliPaxos needs to recognize the churn and temporarily
prevent some nodes from becoming leaders.

We mitigate the churn with simple rules based on observations
of churn in the system. Our rules rely on common nodes to which
any churning node must be connected. Some, but not necessarily all,
common nodes are the intersection between the quorums churning
nodes form. In other words, there will be at least one common
node in each quorum of a quorum-capable churning node. Common
nodes allow each such churning node to learn about new leadership
and new ballot and then trigger an election upon the timeout (since
churning nodes do not see each other and do timeout). For instance,
node B in Figure 3 is common to churning nodes A and C.

Rule 1: Pause leader elections for churning nodes. This
first rule penalizes churning nodes by prolonging their heartbeat
intervals upon detecting churn. These large heartbeat intervals stop
all churning nodes from running leader elections, allowing other
nodes to become leaders. This rule alone solves the leader churn in
themost common [10, 11] SMR size of 3 nodes ( Figure 3), where two
leaders churn and prevent a centrally located common node from
becoming a leader. To implement this rule, HoliPaxos nodes count
the number of elections they lead within a sliding time window.
For nodes that initiate an excessive number of elections within the
window, their leader heartbeat interval is multiplied by a penalty
factor, resulting in less frequent heartbeats from churning leaders.
Since other non-churning nodes still expect heartbeats at regular,
shorter intervals, they will eventually deem the leaders with high
enough heartbeat intervals as failed, initiating the election. The
penalty is dynamic and grows as nodes perform more elections
within the window. Once nodes stop initiating excessive leader
elections, they reset the counter of leader elections and heartbeat
interval, resuming normal operation.

To put this rule in Figure 3, Nodes A and C repeatedly start
elections for leadership. They increase their heartbeat intervals
by observing excessive elections initiated by themselves within a
certain timeframe. Eventually, a high heartbeat interval in A and C
causes node B, with an unchanged timeout/heartbeat interval, to
see A and C as failed and start a new election. As A and C are still
responsive, they confirm B’s leadership. Crucially, B’s heartbeats
cause A and C to stop their leadership attempts as both see an
active leader. Once the leader churn stops long enough, all nodes
reset their counters and heartbeat intervals to unpenalized values.

To solve the leader churn in larger clusters, like the second most
popular deployment option of 5 nodes, we must introduce two addi-
tional rules. In larger clusters, a network partitionmay isolate nodes
from a quorum of connections, yet still allow a leader to be elected.
If these “quorum-disconnected” nodes do not see a leader, they may
initiate new elections with higher ballots. Consequently, such ballot
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will propagate to a leader via heartbeat rejections from nodes mutu-
ally connected to a leader and the “quorum-disconnected” node, as
shown in Figure 5a. Note that the original MultiPaxos without the
heartbeat rejection is somewhat immune to this problem, at least if
the number of mutual nodes is small. An extension of this problem
(Figure 5b and Figure 5c) arises when quorum-connected nodes
churn while having multiple common nodes in their quorums.

Rule 2: Prevent quorum-disconnected nodes from leader
elections. This rule prevents nodes that cannot reach a quorum
from participating in leader election, removing them from the po-
tential churn pool. HoliPaxos achieves this by counting the unique
responses each node receives (both acks and rejections) when run-
ning the leader election (i.e., phase-1 of MultiPaxos). If a node does
not receive at least a quorum of responses, it enters a “passive”
mode. Such a node does not stop leader election attempts. However,
it runs the elections with the invalid ballot 0 (e.g., a ballot of 0 in a
system with a minimal valid ballot of 1). This ensures that the node
will receive rejections from any node it can reach, not impacting
the leader elections. At the same time, continuous attempts serve as
a check for quorum-connectedness. Once a node can communicate
with a quorum, it will resume normal elections with valid ballot
numbers. This rule avoids problems similar to Figure 5a, where node
D does not have a quorum but, if left active, will initiate elections
and cause a quorum-connected node E to step down.

Rule 3: Use common nodes to break churn. Rule 1 can break
the churn between two quorum-connected nodes when there ex-
ists just one common quorum-connected node connected to both
churners. When such a node does not exist, we need an additional
mechanism to break the churning pattern. Consider an example
in Figure 5b. There, node B churns with node C, and nodes E and
D are both connected to B and C. When we apply Rule 1 to B and
C churn, either node D or E will become a leader. However, these
nodes are not stable. For instance, if D becomes a leader, node E,
which is disconnected from D, will not receive the heartbeats and
will ultimately start the election, beginning a churning cycle be-
tween D and E. As D and E churn, they have two common nodes
in their quorums – B and C, repeating the entire process.

These common nodes can detect churn and deterministically
prevent some churning nodes from succeeding in their elections.
The simplest way to block nodes is by having the common nodes
reject them during the leader election without giving a valid ballot.
HoliPaxos nodes detect churn by remembering past leader election
attempts. After a sufficient churn history or schedule has accumu-
lated, common nodes independently reject all but the highest ID
nodes, ideally leaving only one leader candidate to succeed. Re-
jected nodes may continue attempting elections again without the
ability to out-ballot other nodes, ensuring that their leader elections
will fail and not interfere with another leader, directly or indirectly.
A rejected node can still win the election if it somehow learns of the
current ballot and increases it. This can happen when the node has
gained additional connectivity to have learned the ballot, making its
leadership attempt valid due to a new connectivity configuration.

Rule 3, running on common nodes, is mutually exclusive to Rule
1, which detects churn on churning nodes. If Rule 3 triggers, it will
stop churn, essentially stopping the accumulation of observations
for Rule 1. Similarly, triggering Rule 1 generally prevents Rule
3 from triggering, as Rule 1 stops or changes the churn pattern,

resetting any churn observations in the common nodes. However,
Rule 1 is the best option for solving leader churn in 3-node clusters.
Rule 3 (combined with Rule 2) is a more general solution suitable
for 5-node clusters, but it may not select a more centrally connected
node as a leader. As such, Rule 1 has benefits worth considering in
larger clusters. The two rules may be combined as follows – Rule 1
takes priority, allowing churning nodes to disqualify themselves and
make any common quorum-connected nodes attempt the leadership.
However, if such common nodes cannot hold on to the leader role
(due to churn, as in Figure 5b), the system will eventually make
a cycle and return to the original churning nodes. At this point,
the original churning nodes will pause their execution of Rule 1,
eventually allowing Rule 3 to take effect. This requires the time
for churn detection in Rule 1 to be substantially slower than that
for Rule 3. Pausing Rule 1 should not interfere with the ability to
avoid churn later, as Rule 3 is generally sufficient, albeit sometimes
suboptimal. However, we can still resume Rule 1 after some time.

Additionally, more than two nodes may churn concurrently, as
shown in Figure 5c. However, this does not prevent the system
from eventually settling on a stable leader. With more than two
nodes churning, their churn schedule is more random, potentially
causing common nodes to see only some nodes churning and decide
what nodes to reject based on partial information. For example,
in Figure 5c, nodes B and E can churn for some time, while node A
has a slow failure detector. This delay may result in common nodes
C and D rejecting B’s attempts, allowing E to become a leader. Then
A’s failure detector kicks in, causing a new round of churn between
A and E. However, Rule 3 will apply again, making E the leader.

3.1.3 Correctness. Our heartbeat-based integrated failure detector
only impacts when the leader election process begins and does not
change the Paxos leader election algorithm, making it inherently
safe. However, failure detection may affect liveness. Due to FLP [13],
achieving both safety and liveness in consensus with asynchronous
networks and the possibility of node failure is impossible. The
liveness may be impacted by a deadlock – inability to elect a leader.

Theorem 1 (Failure Detector Liveness): failure detector does
not disqualify all eligible nodes from becoming leaders.

Proof Sketch: Our detector avoids churn by altering the nodes’
ability to run leader elections. Sometimes, we need to stop an eligi-
ble node from attempting to become a leader. However, we should
never disqualify all eligible leaders. Rule 1 temporarily stops churn-
ing nodes from issuing heartbeats and running elections, allowing
other nodes to run the election. This rule, as described, solves the
only possible partition-induced leader churn scenario in 3-node
clusters. In large clusters, Rule 1 is superseded by Rule 3. Rule 2
removes non-quorum-connected nodes from leadership attempts;
these nodes could not have become leaders. Therefore, this rule
does not disqualify any potential leader nodes.

As it stands, Rule 3 is the only rule that may impact liveness.
Assume a Rule 3 can enter a deadlock state. This requires common
nodes to reject every churning node. Assume we have a set 𝐶 of 𝑛
common nodes: 𝐶 = {𝑐1, ..., 𝑐𝑛}. We have two broad cases for how
nodes in 𝐶 with the churning nodes:
Case 1. The entire set𝐶 is in the leader election quorum of all churn-
ing nodes, ensuring that every node in𝐶 must answer every leader
election. As a result, all nodes in 𝐶 will observe the same churning
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Figure 6: Number of in-flight operations.

schedule. Since our rule for selecting nodes is deterministic – keep
the highest ID churning node eligible, nodes in 𝐶 will all select the
same node to remain eligible. This contradicts the hypothesis that
common nodes reject every churning node.
Case 2.Only a subset of𝐶 is needed for each leader election quorum
by churning nodes. As a result, not all nodes in 𝐶 will make each
leader election quorum, and some nodes may be slower to respond
and not be a part of a quorum. However, by our networking as-
sumption, all nodes in 𝐶 will eventually receive all the messages
as long as they remain connected to the senders of these messages.
As a result, all nodes in𝐶 will eventually observe all leader election
attempts and eventually construct the same churning schedule,
making this case equivalent to Case 1 and contradicting the hy-
pothesis of rejecting all churning nodes.

Finally, Rule 2 and Rule 3 allow nodes to be requalified upon
changes in network connectivity, ensuring that the system does not
get stuck in the older configuration when the network improves.

3.2 Integrated Slowdown Detection
In addition to a failure detector, HoliPaxos incorporates a slowdown
detector to mitigate issues arising from a slow or underperforming
leader. Like the current state-of-the-art [38], we target a case with
at most one slow node – the leader (a quorummasks a slow follower
node). Unlike the current state-of-the-art, we seek not to mask the
faulty leader but instead focus on prompt leader change. At the high
level, the integrated slowdown detector aims to identify possible
leader slowdown and notify the followers to initiate a leader election
via a standard leader change protocol. Our slowdown detector relies
on self-monitoring, as a slow leader has not failed completely and
may perform some limited self-diagnostics. Note that if the leader
has failed or becomes too slow, our integrated failure detector on
the follower side will catch it and initiate the leader election.

To detect potential leader slowdowns, HoliPaxos’ leader mon-
itors its outstanding, or “in-flight” operations—the operations re-
ceived from clients but not yet applied to the state machine. The
size of this in-flight queue is a proxy for tracking the leader’s pro-
cessing latency, which typically varies depending on the workload.
These size changes are predictable, as workloads withmore requests
issued per second tend to have more outstanding operations in repli-
cation and awaiting execution. Figure 6a shows this observation as
we subject HoliPaxos SMR to varying loads.

Whenever a leader becomes overloaded, as it would happen
when a workload is too high for the leader’s capacity due to a slow-
down, the number of outstanding operations not only rises but also

begins to fluctuate greatly, as illustrated in Figure 6b. In this figure,
we gradually restrict the leader’s CPU until it can no longer handle
the workload, causing its outstanding queue to grow and fluctuate.
Our slowdown detector targets this growth and fluctuation pattern,
capturing the variance in the number of outstanding operations
over a fixed time frame to gauge fluctuation intensity.

In particular, we use the Cumulative Sum (CUSUM) change point
detection algorithm [43, 56] to detect the significant changes in
the number of outstanding requests. Our CUSUM-based detector
continuously monitors shifts in the variance of the number of out-
standing operations. Every 0.5 seconds, it records the number of
outstanding operations and calculates the variance of outstanding
operations based on the previous 7.5 seconds of observations (i.e., 15
samples). We then compute low and high CUSUM on this variance
(lines 8-10 in Algorithm 1). We use the variance of in-flight requests
instead of the actual counts of outstanding operations to ensure
that changes in workload (as in Figure 6b) do not automatically
trigger a change point. We have tuned the critical level parameter
𝜔 to a low constant value based on our observations.

When the leader operates at full capacity, the variance in out-
standing operations remains within a stable, low range, keeping the
cumulative deviation close to its mean over time. However, once
the variance shows a sustained fluctuation beyond normal levels,
this deviation accumulates and crosses a threshold, triggering a
change point. The CUSUM algorithm identifies two types of change
points: increasing or decreasing. An increasing change point flags
a potential slowdown event (lines 11-13 in Algorithm 1), while a
decreasing change point signals potential machine recovery.

We also monitor the system’s throughput to improve detection
reliability and prevent false positives due to rapid workload changes.
If the increasing change point in the number of in-flight requests
corresponds to a substantial increase in throughput, we ignore this
change point. Our evaluation confirms this simple solution avoids
the slowdown detector triggering upon rapid workload increases.

When the slowdown detector suspects its node is slow, it will
declare the node overloaded. The leader then replicates and commits
the overload declaration marker to the log to ensure this declaration
is persistent and cannot be forgotten by subsequent leaders. The
overload declaration marker contains the leader’s identity and the
time of the overload event. The followers can initiate the leader
change process upon receiving the overload declaration marker if
the last successful leader (i.e., the leader who was able to replicate
data) is the same one as specified in the marker. Like a normal
leader change, more than one follower may start the process, but a
random backoff process should reduce concurrent attempts.

Eventually, a new leader is elected, and the system either recov-
ers its performance if the problem is indeed due to a slow leader
or remains overloaded. Consequently, a new leader invalidates the
overload declaration marker, stopping further leader change at-
tempts in response to the overload event. If a leader election has
remedied the problem, the new leader can write a corresponding
overload remediation marker. This marker effectively signals that
the overload was fixed via a leader change. Afterward, the current
leader (or any subsequent leader) can issue a new overload marker
onto the log. However, a leader (or any subsequent leader) cannot
issue a new overload declaration marker until the previous one is
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Algorithm 1 Slow leader self detector
Leader’s Self Monitor Thread

1: 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 : The current evaluation window for storing recorded runtime metrics;
2: 𝑚𝑒𝑡𝑟𝑖𝑐𝑠_𝑙𝑎𝑠𝑡 : Runtime metrics from previous window;
3: 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒_𝑞𝑢𝑒𝑢𝑒 : The queue for storing variances;
4: 𝐶+ ,𝐶− : Cumulative sum of positive and negative deviations, respectively.
5: while leader do
6: 𝑚𝑒𝑡𝑟𝑖𝑠 = append(𝑚𝑒𝑡𝑟𝑖𝑐𝑠 , 𝑖𝑛𝑓 𝑙𝑖𝑔ℎ𝑡_𝑐𝑜𝑢𝑡 )
7: if full(𝑚𝑒𝑡𝑟𝑖𝑐𝑠) then
8: Calculate 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 of𝑚𝑒𝑡𝑟𝑖𝑐𝑠 and push it to 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒_𝑞𝑢𝑒𝑢𝑒 .
9: 𝑑𝑒𝑣.← 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 −𝑚𝑒𝑎𝑛_𝑜 𝑓 _𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒_𝑞𝑢𝑒𝑢𝑒 .
10: 𝐶+ ← 𝑀𝑎𝑥 (0,𝐶+ + 𝑑𝑒𝑣. − 𝜔 ) ,𝐶− ← 𝑀𝑖𝑛 (0,𝐶− + 𝑑𝑒𝑣. − 𝜔 ) .
11: if 𝐶+ > 𝑃𝑜𝑠_𝑇ℎ𝑟𝑒𝑠 & TP(𝑚𝑒𝑡𝑟𝑖𝑐𝑠) ≤ TP(𝑚𝑒𝑡𝑟𝑖𝑐𝑠_𝑙𝑎𝑠𝑡 ) then
12: 𝑖𝑠_𝑠𝑙𝑜𝑤 ← 𝑡𝑟𝑢𝑒 .
13: Reset𝐶+ ,𝐶− to 0.
14: else if 𝐶− < 𝑁𝑒𝑔_𝑇ℎ𝑟𝑒𝑠 then
15: 𝑖𝑠_𝑠𝑙𝑜𝑤 ← 𝑓 𝑎𝑙𝑠𝑒

16: Reset𝐶+ ,𝐶− to 0.
17: end if
18: if 𝑖𝑠_𝑠𝑙𝑜𝑤 == true & overload declaration has not replicated then
19: replicate the declaration to trigger a leader change.
20: end if
21: 𝑚𝑒𝑡𝑟𝑖𝑐𝑠_𝑙𝑎𝑠𝑡 =𝑚𝑒𝑡𝑟𝑖𝑐𝑠
22: 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 ← 𝑛𝑖𝑙
23: end if
24: end while

remedied or a substantial timeout is elapsed. This mechanism en-
sures that HoliPaxos avoids repeated leader changes due to overload
until the workload intensity subsides.

The resulting protocol achieves detection and failover from a
configuration with one slow node; if more than one node is slow,
the success is probabilistic and depends on whether a non-slow
follower overtakes a slow leader. We list the high-level algorithm
for the slowdown detection in Algorithm 1.

3.2.1 Correctness. Similar to the failure detector, we maintain
safety by relying on an unmodified MultiPaxos leader election
process. The liveness may be compromised if the slowdown detec-
tor continuously forces the leaders to change or churn. This can
happen in case of a general overload when a workload exceeds the
healthy capacity of nodes in the cluster. The overload declaration
marker serves to prevent the leader churn. While multiple followers
may compete for leadership, this is no different than a typical leader
election, and eventually (possibly over a few rounds), a successful
leader will emerge. When a successful leader emerges, the followers
lose the mandate to initiate a new election based on the old overload
marker, essentially ensuring that there is only one leader election
cycle (possibly with many rounds) per overload marker.

3.3 Integrated Adaptive Log Management
SMR solutions, such as HoliPaxos, use a replication log to order
commands for execution. The log also acts as a source of data for
certain recovery operations. For example, when a node has missed
a command, let’s say due to a dropped message, it can recover the
missing command from the log of another node. Log management,
however, goes beyond appending commands to the log. Without
log cleanup, the system will eventually expand all resources needed
to maintain the log (i.e., memory or storage) and crash. Traditional
log cleanup and compaction rely on periodic snapshots to truncate
logs. However, such snapshotting is not necessary in SMR.

During failure-free operation, HoliPaxos eliminates the need for
snapshotting and performs cleaning continuously while retaining
only the log entries needed for a potential recovery. To that order,
the leader periodically collects the log status from all nodes and

determines a safe log index for removal. Followers respond to the
leader’s request with their local log indexes of the latest executed
entries (i.e., the last log instance applied to the local copy of a
state machine), called Last Executed (𝐿𝐸). Since a state machine
executes sequentially, an 𝐿𝐸 index tells that a particular node has
applied all operations up to that instance and no longer needs
them locally. Upon receiving responses from all nodes, the leader
computes the global minimum of 𝐿𝐸 across all nodes, namely the
Global Last Executed (𝐺𝐿𝐸), and includes it in subsequent requests.
This enables all nodes to safely trim their logs up to this𝐺𝐿𝐸 value.
Accordingly, all nodes respond with their latest 𝐿𝐸 values, and the
leader updates 𝐺𝐿𝐸 for the next cleanup round.

For example, as shown in Figure 7, the leader calculates a 𝐺𝐿𝐸
of 101 based on the Last Executed values across nodes. When a
follower receives amessagewith𝐺𝐿𝐸 of 101, it trims all prior entries
up to and including index 101. Even if a different node becomes a
leader, it won’t need any entries before index 102.

The log cleanup up to the𝐺𝐿𝐸 ensures that all nodes have applied
each log entry to the state machine and no longer need it. This
approach lets HoliPaxos tolerate occasional issues, like missing log
entries due to message loss or transient node slowdowns. If a node
is missing a log item, the𝐺𝐿𝐸 stalls, ensuring others have that item
in their log for recovery. Unfortunately, this creates a problem with
more extended failures, as node failure will freeze 𝐺𝐿𝐸, causing
unbounded log growth. In this case, we defer to the reconfiguration
option—an extended failure must be fixed by replacing a node. As
such, HoliPaxos will reconfigure [26, 52] to exclude the failed node,
resume cleanup, and reconfigure again to add a replacement. The
reconfigurations must be announced before they happen, and these
announcements must survive any potential failures.

In contrast to the periodic snapshots approach, node recovery
or node addition in HoliPaxos will request an on-demand current
snapshot from some other node (preferably not the leader to avoid
overloading it). This snapshot is less stale than the periodic one,
requiring fewer log items to catch up, but procuring the snapshot
incurs costs during the recovery as opposed to normal operation.
An important caveat in adding a replacement node is that while
the node is recovering or building its state machine, the 𝐺𝐿𝐸 must
be frozen. This requirement is intuitive, as the recovering node is
not fully caught up and should block any cleanup that impedes
recovery. This 𝐺𝐿𝐸 freeze upon node addition is possible because
of reconfiguration announcements that are traditionally committed
into the state machine’s log. The recovering node initially has its
𝐿𝐸 set at the current cluster’s𝐺𝐿𝐸. Once that node has successfully
installed the on-demand snapshot, its 𝐿𝐸 advances to the snapshot’s
version; as the node starts to consume the log after the snapshot, it
can continue advancing its 𝐿𝐸, allowing 𝐺𝐿𝐸 to advance as well.

Another advantage of HoliPaxos log management and cleanup
is that it avoids configuring the cleanup or compaction interval.
Periodic compaction slows down the system, so doing it too often is
costly, while infrequent compaction increases the storage/memory
consumption and recovery time. HoliPaxos avoids this dilemma,
as it automatically adjusts its cleanup speed based on performance
and how stale or caught up the nodes are.

A naive alternative to waiting for all nodes to execute some log
item is waiting for a majority quorum. In a quorum trim approach,
nodes remove a log entry right after the execution since an executed
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Figure 7: Control Phase. The life cycle of a log entry has three
states in order: In-Progress, Committed, and Executed. On the
left are logs of all nodes before the leader sends a control
message with its𝑏𝑎𝑙𝑙𝑜𝑡 , 𝐿𝐸, and𝐺𝐿𝐸. On the right, logs change
(log trimming and state changes) after the control message.

command must be in at least a quorum of nodes. This approach
avoids the problem of stalled cleanup upon a single node failure
and maintains a high cleanup rate. However, it also increases the
possibility of on-demand snapshot requests for transient failures,
as the quorum trim approach removes entries too quickly, leaving
insufficient logs for any lagging followers to catch up.

3.3.1 Correctness. HoliPaxos log trim and cleanup have no impact
on correctness and safety in a steady state, as all nodes remove the
log entries only after the entire cluster has consumed the operations
from the log and applied them to the state machine. We assume
that nodes are either correct (in which case they participate in
the protocol but may transiently go offline and then catch up)
or recovering. Recovering nodes start with an empty state and
an empty log. A node that has experienced permanent failure is
removed from the cluster and replaced with a recovering node.
Furthermore, we assume that only up to a minority of nodes can
fail and consequently be replaced by recovering nodes.

Lemma 1: The state machine of a correct node always includes
the outcome of all cleaned-up log entries.

Assume a set of 𝑁𝑜𝑑𝑒𝑠 and node 𝑟 ∈ 𝑁𝑜𝑑𝑒𝑠; its state machine
maintains some state 𝑆𝑟 . As 𝑟 executes a log instance 𝑖 , its state
transitions from 𝑆𝑟𝑖−1 to 𝑆𝑟𝑖 . After the execution, the instance 𝑖 is no
longer needed locally to node 𝑟 since the outcome of 𝑖 is preserved
in 𝑆𝑟𝑖 . After executing 𝑖 , 𝑟 also advances its last executed frontier
to 𝐿𝐸𝑟 = 𝑖 . Since each replica 𝑟 maintains its last executed (𝐿𝐸𝑟 )
frontier and the cleanup chooses the minimum 𝐿𝐸 from all nodes:
𝐺𝐿𝐸 = 𝑚𝑖𝑛({𝐿𝐸0, 𝐿𝐸1, ..., 𝐿𝐸𝑛}), for 𝑛 = 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝑁𝑜𝑑𝑒𝑠), we
ensure that ∀𝑟 ∈ 𝑁𝑜𝑑𝑒𝑠 : operation 𝐺𝐿𝐸 is preserved in 𝑆𝑟𝐿𝐸𝑟 . All
instances up to𝐺𝐿𝐸 may be cleaned up, but their outcomes remain
in the state machines of all correct nodes.

Theorem 2 (correctness): The state machine of a recovering
node is eventually caught up and identical to that of the correct nodes.

Proof Sketch: Upon adding a new node 𝑧, the reconfiguration
must be announced to at least the majority of the cluster. Initially,
the new node 𝑧 has its 𝐿𝐸𝑓 = 𝐺𝐿𝐸, blocking the𝐺𝐿𝐸 advancement
upon 𝑧’s announcement to the cluster. At the same time, node 𝑧
requests an on-demand snapshot at version 𝑗 from a correct node 𝑟 .
By Lemma 1, this snapshot 𝑆𝑟 𝑗 must preserve all operations up to
𝐺𝐿𝐸: 𝑗 >= 𝐺𝐿𝐸. After node 𝑧 has installed the snapshot 𝑆𝑟 𝑗 , it can
start consuming log entries ( 𝑗, 𝑐], where 𝑐 is the most recent log
entry. Since these log entries are for instances after instance 𝑗 and
𝑗 > 𝐺𝐿𝐸, correct nodes must have these log instances available and

not cleaned up. As a result, node 𝑧 starts its recovery from a correct
snapshot that captures the log up to instance 𝑗 and is guaranteed
to have access to log instances ( 𝑗, 𝑐] to eventually recover up to the
most recent log entry and catch up with the rest of the cluster.

3.4 Integrated Control Messages
HoliPaxos relies on several control messages outside Paxos’ normal
phases to operate. The leader periodically broadcasts heartbeats
and log status updates to all followers, and these control messages
originating from the leader are frequent. Furthermore, the commit
messages a leader sends to followers to tell follower nodes to ad-
vance their state machines can also be considered control messages,
as they do not affect user-perceived performance. While having a
distinct commit message for each committed log instance seems
a straightforward option, it results in increased network traffic,
especially when the throughput is high. Following our holistic, in-
tegrated approach, HoliPaxos combines all these types of periodic
control information into a single control message from the leader.

The control message is lightweight and includes just two log
indices to indicate the cluster’s overall progress and a ballot. The
leader includes its latest executed frontier 𝐿𝐸 in the message as a
batch commit marker. Every log instance up to and including 𝐿𝐸
must have been a quorum committed for a leader to execute it, mak-
ing it safe for the followers to change the states of all log instances
up to and including 𝐿𝐸 to committed and eventually execute them
as well. The leader also includes a 𝐺𝐿𝐸 marker that indicates the
global execution progress and, as discussed in subsection 3.3, allows
safe log cleanup. Finally, the mere existence of the control message
acts as a leader’s heartbeat. The ballot number ensures that the
heartbeat comes from a legitimate leader.

Figure 7 illustrates the control phase. The leader sends an in-
tegrated control message with 𝐿𝐸 = 104 and 𝐺𝐿𝐸 = 101. Upon
receiving it, followers validate the ballot to ensure the message
is from the correct leader. Once the leader validation passes, the
followers clean up all log instances up to and including instance 101.
Followers also mark all instances up to 𝐿𝐸 (e.g., 104) as committed.
If some instances are missing before the 𝐿𝐸, such as at Follower 2,
the follower pauses the local commit process. Although all existing
entries between the gap and 𝐿𝐸 are safe to be committed (e.g., 104),
they cannot be yet applied to the state machine. Thus, we leave
these entries locally uncommitted until gaps are filled, and a future
control message with a higher 𝐿𝐸 resumes the commit process.

4 EVALUATION
To assess the performance of HoliPaxos, we implemented it in Go
as a modular and self-contained component providing interfaces to
upper application layers. We then built a distributed linearizable
in-memory Key-Value store on top. We used gRPC [16] with Proto-
buf [34] encoding for communication within the cluster. HoliPaxos
also supports reconfiguration and snapshot creation.

In our evaluation of HoliPaxos, we assess whether our integrated
components (failure and slowdown detectors, log management,
and combined control messaging) improve performance stability
and resource usage. We compare HoliPaxos against classical SMR
solutions, such as MultiPaxos and Raft, and two state-of-the-art
protocols: Omni-Paxos [37] and Copilots Paxos [38], which address
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partial network partitions and leader slowdowns, respectively. We
implemented MultiPaxos in Go, following the same design prin-
ciples and standards as HoliPaxos. For Raft, we used etcd’s Raft
library [17]. It features a CheckQuorum mechanism to handle par-
tition problems [41]. Since etcd includes many components not
related to SMR directly, for a fair comparison, we used our key-
value store with etcd’s Raft, as described in the official example
guidelines [12]. For Omni-Paxos and Copilots Paxos, we used their
respective open-source implementations (Rust for Omni-Paxos and
Go for Copilots Paxos). Omni-Paxos codebase requires a separate
networking implementation; we used the networking implementa-
tion from Rust’s version of our MultiPaxos code [30].

Omni-Paxos and Copilots Paxos are substantially more compli-
cated SMR protocols than HoliPaxos. Omni-Paxos separates Paxos’
leader into several stages and introduces a concept of quorum-
connected servers (e.g., nodes know whether they could reach a
quorum in the past) to facilitate leader election during network
partitions by ensuring that only nodes that can reach a quorum at-
tempt to become the next leaders. Omni-Paxos avoids interference
from multiple quorum-connected nodes by preventing these nodes
from continuously proposing with ever higher ballot numbers. This
approach solves many possible leader election issues due to bad
connectivity, albeit sometimes picking less than ideal nodes for a
leader. Like HoliPaxos, it falls short of a more general solution to
fixing partial connectivity with the help of message relaying [2].

Copilots Paxos deploys two leaders to handle the same com-
mands from the clients; in case one leader becomes slow, the fast
one can detect that and take over the ongoing work of a slow leader,
thereby tolerating one slow machine. Having two leaders for the
same operations requires the protocol to continuously resolve or-
dering ambiguities using an approach borrowed from EPaxos [36].

4.1 Experimental Setup
We ran all experiments on AWS m5.2xlarge virtual machines with
8 vCPUs and 32 GiB RAM located in the same subnet of a single
region. For partition experiments, we present the results in 3 and 5
nodes, depending on the partition scenario. We focus on the 3-node
cluster for all other experiments, as the larger cluster has similar
trends across various experimental settings. An additional machine
triggered partitioning, adding new nodes and disconnections. Node
disconnections were simulated using the iptables command to con-
trol packet drops to/from specific IP addresses [18].

We used a YCSB [9] benchmark with a Zipfian request distribu-
tion with key and value sizes set at 23 B and 500 B, respectively [54].
The original Copilots Paxos supports only 8-byte keys and values,
representing an unrealistic workload. We extended it to use YCSB
with arbitrary key and object sizes. Before running the experiments,
we populated the database with 1 million key-value pairs and ran
a 10-second warm-up. We tried YCSB workload A (50% reads and
50% writes), workload B (95% reads and 5% writes), and workload
C (100% reads) [5]. Given that the protocols exhibited similar per-
formance patterns, we only present results for workload A.

4.2 Throughput vs. Latency
We first examine the general performance of HoliPaxos by com-
paring it to several established protocols, including Omni-Paxos,

Figure 8: Throughput vs. Latency in different SMR.

Copilots Paxos, and Paxi [1] from academia and production sys-
tems like etcd and TiKV. The primary objective of this evaluation
is to demonstrate that HoliPaxos offers reasonable and competitive
performance that is on par with these well-established systems.
To ensure a fair comparison, we configured etcd and TiKV, which
persist every entry in their logs to disk, to use a RAM disk [3].

The results in Figure 8 show throughput and average latency
across runs with an increasing number of concurrent YCSB closed-
loop clients, until throughput shows no significant further increase.
The throughput of Copilots Paxos was severely limited on the client
side, requiring us to use the largest available AWS instance. This
limitation arises from more complicated client-side logic, as clients
must send commands, and receive and interpret replies from both
co-leaders. While etcd and TiKV exhibit similar throughput (15-
25 Kops/s), HoliPaxos achieves nearly 60 Kops/s at comparable
latency. This difference in performance is expected due to the addi-
tional features in both production systems, which may impact their
throughput. HoliPaxos also outperforms Copilots Paxos and Paxi in
maximum throughput while maintaining a similar or better average
latency. Copilots Paxos performs extremely poorly without batch-
ing, reaching only 7 Kops/s in throughput. Despite not batching
in HoliPaxos, we use batching with Copilots Paxos in the remain-
ing experiments. Adding batching support to HoliPaxos is trivial
and would substantially boost its throughput. Omni-Paxos has a
similar maximum throughput but 4-6 times higher average latency
than HoliPaxos, reflecting internal overhead due to the protocol’s
complexity. These failure-free results indicate that HoliPaxos gen-
erally outperforms the traditional and state-of-the-art protocols.
Only one HoliPaxos contribution—better log management—helps
its performance in a failure-free case. Both integrated failure and
slowdown detectors do not contribute to better performance in this
experiment nor harm it due to their lightweight nature.

4.3 Resilience Under Partial Partitions
Next, we analyze the performance under partial network partitions.
Specifically, we used network partition scenarios described in sec-
tion 3 and omitted the case of churning between three nodes due
to its similar results to other examples. We initiated a 20-second
network partition at the 80th second of a 180-second run. This dura-
tion is sufficient, as all protocols either regain availability within 20
seconds or remain unavailable indefinitely. HoliPaxos was tuned to
count leader elections initiated by itself in a 3-second window. As
the node sees 5 election attempts within the window, the heartbeat
penalty of Rule 1 starts to increment, typically making the node
churn for 1.5 seconds before its heartbeat interval is too high. Rule

2513



 0

 20

 40

 60

 80

 100

 60  80  100  120  140

N
o

rm
. 

T
h

ro
u

g
h

p
u

t 
(%

)

Elapsed Time (s)

HoliPaxos

MultiPaxos

Raft

Raft+

OmniPaxos

(a) 5 nodes cluster with leader-
quorum-loss partition.

 0

 20

 40

 60

 80

 100

 60  80  100  120  140  160

Performance
degradation 
after network
partition resolved

N
o

rm
. 

T
h

ro
u

g
h

p
u

t 
(%

)

Elapsed Time (s)

HoliPaxos

MultiPaxos

Raft

Raft+

OmniPaxos

(b) 3 nodes cluster with leader-
churning partition.

 0

 20

 40

 60

 80

 100

 60  80  100  120  140  160

Partitioned
nodes catch up

N
o

rm
. 

T
h

ro
u

g
h

p
u

t 
(%

)

Elapsed Time (s)

HoliPaxos

MultiPaxos

Raft

Raft+

OmniPaxos

(c) 5 nodes churn with quorum-
disconnected node (Figure 5a).

 0

 20

 40

 60

 80

 100

 60  80  100  120  140  160

N
o

rm
. 

T
h

ro
u

g
h

p
u

t 
(%

)

Elapsed Time (s)

HoliPaxos

MultiPaxos

Raft

Raft+

OmniPaxos

(d) 5 nodes churn with quorum-
connected nodes (Figure 5b).

Figure 9: Normalized throughput under partial network partitions. Red dashed lines indicate the partition start and end. Raft+
is etcd with Pre-Vote and CheckQuorum. The dashed box highlights the performance drop after the network resumes.

3 window for collecting churn schedule is 5 seconds, giving priority
to Rule 1. We use Omni-Paxos and two different versions of the Raft
for comparison – the original one [42], and the one with Pre-vote
and CheckQuorum features [41] to help with network partitions.
Our experiments designate the latter Raft version as Raft+. Pre-vote
requires a successful pre-election before starting the actual one,
and CheckQuorum allows the leader to step down when it does not
receive a quorum of heartbeat responses. Notably, with CheckQuo-
rum enabled, etcd prevents followers from answering any votes if
they still receive messages from the leader.

Given each implementation’s varying maximum throughput, we
normalize throughput by the protocol’s respective maximums to
emphasize the relative effect of partitions on performance. Figure 9
shows average normalized throughput over tumbling 10-second
windows. HoliPaxos has relatively small performance degradation
under these network partition cases and briefly loses up to 42% of its
capacity. Omni-Paxos and both Raft variants experience comparable
or worse degradation. MultiPaxos becomes unavailable.

Focusing on a Quorum-Loss Partition (Figure 9a), we see that
HoliPaxos’ stable node, having enough connections to form a quo-
rum, quickly becomes a new leader. In our observations, it typically
takes at least two rounds of election timeouts (one for other follow-
ers initiating the election and another for the stable node). Once
the stable leader is elected, throughput rebounds to a nominal level.
Omni-Paxos and Raft perform comparably to HoliPaxos in most
runs. When the partition emerges, the stable node updates its bal-
lot and disregards heartbeats from the old leader. Like HoliPaxos,
no other node becomes the leader, and the stable node eventually
initiates the election. However, in rare cases, Raft may become un-
available when the stable node lacks recent log entries and cannot
become a leader. With CheckQuorum enabled, Raft’s performance
variance widens significantly as a result of multiple rounds of leader
elections. As the existing leader rescinds the leadership actively due
to no quorum, the stable node may immediately start the leader elec-
tion and secure leadership within two timeouts, degrading through-
put by as little as 20%. Conversely, the stable node may spend more
time detecting the leader stepping down, causing its ballot number
to lag behind other candidates. Multiple election rounds may occur,
resulting in as much as 90% degradation. Compared to HoliPaxos,
Raft+’s unavailability depends on how soon the old leader steps
down and the stable node detects it, which varies during runtime.

Moving to the 3-node leader-churning partition (Figure 9b), Holi-
Paxos again shows greater resilience. It experiences partial un-
availability during leadership churning but immediately resumes

upon the election of a stable leader before the partition is resolved.
HoliPaxos exhibits the best performance among the four evaluated
protocols, with less than a 30% reduction in maximum throughput.

Omni-Paxos and both Raft versions perform differently in this
scenario. Due to frequent leader election attempts, Raft’s perfor-
mance degradation varies widely, from 20% to 90%. The discon-
nected follower broadcasts a higher ballot but lacks the most recent
log to become the leader. However, this higher ballot forces re-
peated elections. Unlike MultiPaxos, the stable node in Raft also
participates in repeated elections and eventually wins, restoring
availability. Raft+’s throughput remains unaffected during the parti-
tion, as the stable node ignores votes from the disconnected follower
and avoids disruption. At the same time, OmniPaxos still suffers
from degradation due to requiring at least one election. After the
partition is resolved, the disconnected follower initiates elections
with a higher ballot in both Omni-Paxos and Raft+, leading to sev-
eral rounds of elections, causing a 30%-40% performance drop. At
the same time, HoliPaxos elects a stable leader during the partition,
which persists after the partition is fixed.

As for 5-node leader churn cases in Figure 9c and Figure 9d,
all protocols experience some degradation. HoliPaxos quickly de-
tects a quorum-disconnected node and prevents it from pulling a
follower away from the new leader, allowing stability to resume
swiftly in Figure 9c. However, it has a slightly higher performance
loss with the quorum-connected nodes churning (Figure 9d), where
HoliPaxos requires more time to block churner nodes. OmniPaxos
behaves similarly to its performance in simpler 3-node configura-
tions. Raft+ avoids the elections entirely when the original leader is
one of the churners, keeping its performance degradation minimal.
Basic Raft and MultiPaxos suffer the most because they cannot
stop the leader churn. After both partitions are restored, the leader
must help previously partitioned nodes catch up, impacting the
performance of all protocols, including Raft+ and HoliPaxos.

Under all partition scenarios, Omni-Paxos and Raft are compara-
ble to HoliPaxos most of the time (except for occasional “hiccups”).
However, Omni-Paxos and Raft have more complex designs that
hurt steady-state performance.

4.4 Slowdown Detection Performance
To validate the effectiveness of HoliPaxos’s slowdown detection,
we simulated a leader slowdown by reducing the CPU resources
available to the leader’s Docker container [39]. We used the same
detector settings as outlined in subsection 3.2, detection threshold
on in-flight request variance set to 3000 (# of ops)2 and 𝜔 set to
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Figure 10: 99th percentile latency with machine slowdown or an increasing workload.

100 (# of ops)2. These values were set empirically based on the
observations for our deployment. Throughout the experiment, we
monitored the impact of slowdowns on the 99th percentile client-
side latency. We used a workload with a target throughput of 60%
of each protocol’s maximum capacity. Figure 10 shows P99 latency
over the 10-second tumbling window as the leader becomes slow.

In Figure 10a, we illustrate a significant rapid slowdown by halv-
ing the CPU capacity. MultiPaxos and Raft exhibit a sharp rise in
tail latency immediately following the slowdown. HoliPaxos ini-
tially shows the same increase but manages to limit its duration
and subsequently returns to normal latency after the slowdown
detector switches the leader to a healthy node. When we cut half of
the CPU capacity from the new leader, HoliPaxos re-elects another
leader again, restoring stable performance. MultiPaxos and Raft
only return to normal latency levels when the original leader is
fully restored. Similar to HoliPaxos, Copilots Paxos demonstrates
resilience with a single slow leader, showing a moderate latency
increase. However, this latency increase persists for the entire du-
ration of a slowdown event while HoliPaxos restores to nominal
latency. When a second leader becomes slow, Copilots Paxos ex-
pectedly fails to prevent a significant rise in tail latency.

Next, we evaluate the gradual slowdown as we decrease CPU
capacity by 6% every minute. Unlike sudden and significant slow-
downs, these marginal reductions present a more challenging de-
tection scenario. Figure 10b shows that tail latency slowly increases
across all protocols as CPU capacity falls. When the CPU alloca-
tion drops below 70%, HoliPaxos’s detector reaches its threshold
and triggers a leader election to restore performance. Although
the leadership transition incurs a temporary tail latency spike, the
protocol gains long-term stability and reduced latency. This ex-
periment highlights that our integrated self-slowdown-detection
feature effectively captures the leader’s creeping degradation. Un-
like MultiPaxos and Raft, Copilots Paxos avoids latency spikes but
still experiences a noticeable increase in tail latencywhen amachine
becomes significantly slow. However, this stable latency increase
comes at the cost of a complex protocol that requires twice the
network traffic and duplicated processing at clients as they send,
receive, and process every command twice, once for each leader.

Finally, in Figure 10c, we show that the HoliPaxos slowdown
detector does not trigger upon sudden workload increases. We per-
form a sequence of rapid workload increases, starting at 30% of
capacity and increasing it by 15% every 50 seconds. For instance,
HoliPaxos can sustain roughly 60 Kops/s, making its initial starting
workload of 18 Kops/s with a 9 Kops/s increase every 50 seconds.
Such a workload change increases the in-progress queue size we

use for slowdown detection. However, the system sees the corre-
sponding increase in served requests and dismisses the change
point event as a false positive. Once the workload reaches 75%,
queuing effects become more pronounced, causing an increase in
tail latency. If the slowdown detection was triggered, we would
have seen a bigger initial spike of up to 100 ms for leader election.

4.5 Log Management Performance
To evaluate the impact of log management on performance and
resource utilization, we look at three scenarios: the common path,
a short-lived temporary node disconnection (5 seconds), and the
addition of a new node.We trigger configuration changes (adding or
disconnecting nodes) at the 90-second mark in the figures, denoted
by vertical red lines. We use periodic snapshotting from Raft and
extend HoliPaxos to support the quorum-trim for comparison.

Figure 11 shows the throughput and memory utilization, mea-
sured for every 10-second tumbling window. Once again, we nor-
malize throughput to the respective maximums of each implemen-
tation. Figure 11a reveals a remarkably stable performance of Holi-
Paxos integrated log management (HoliPaxos Trim) and the Quo-
rum Trim for the common case without node failures or additions.
In contrast, the throughput of periodic snapshotting exhibits a
highly volatile pattern, with sharp peaks and valleys where degra-
dation reaches as much as 98%. The variability underscores the
considerable performance cost associated with snapshot-based log
compaction. Additionally, as shown in Figure 11d, our approach
has a low and stable memory usage due to the consistent pace of
trimming the log entries. Conversely, snapshotting exhibits notable
fluctuations in memory utilization. The peaks correspond to snap-
shot generation, during which a significant amount of memory is
allocated before being persisted to a disk and reclaimed.

As for the node disconnection, the snapshotting behavior is sim-
ilar to the steady operation, as shown in Figure 11b. This aligns
with our expectations since the cost of snapshotting gets amortized
throughout the runtime duration. Our log trimming mechanism is
also affected, but any degradation is transient. The memory utiliza-
tion spike arises from the suspension of log cleanup, jumping from
5% to nearly 25%, and this increase persists for over 5 seconds (the
disconnection duration), as shown in Figure 11e. This is because the
re-connected follower requires several rounds of Commit messages
to catch up on the progress and complete the batch commit before
the leader can update the 𝐺𝐿𝐸 and start log trimming.

When adding nodes, the cost of taking a snapshot of the current
state machine is visible for HoliPaxos and the Quorum Trip in
Figure 11c and Figure 11f. However, Quorum Trim takes twice the
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(b) Norm. throughput - 5s disconnection.

 0

 20

 40

 60

 80

 100

 0  30  60  90  120  150  180

N
o
rm

. 
T

h
ro

u
g
h

p
u

t 
(%

) 
 

Elapsed Time (s)

HoliPaxos Trim Snapshotting Quorum Trim

(c) Norm. throughput - add a new node.
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(d) Mem. Utilization - common path.
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(e) Mem. utilization - 5s disconnection.
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Figure 11: The impact of different log cleanup methods. (a), (b), and (c) show normalized throughput. (d), (e), and (f) show the
runtime memory utilization. The two red dashed lines in (b) and (e) refer to the disconnection for 5 seconds, and the red dashed
line in (c) and (f) stands for the event of a new node joining. Both events start at the 90th second.
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time as HoliPaxos to return to the nominal performance, as depicted
in Figure 11c. This happens because bootstrapping a node may
need more than one snapshot – when a new node restores from a
snapshot, the leader may have already moved on and cleaned up the
logs needed to catch up, requiring yet another snapshot and restore.
The periodic snapshotting approach uses existing snapshots instead.
Transmitting these existing snapshots still takes time and network
bandwidth. Furthermore, the new node requires a longer catch-
up period as it is restoring from an older state machine version
compared to HoliPaxos. This, and the continuing cost of periodic
snapshotting, results in choppier performance for a prolonged time.

4.5.1 Log Management Frequency. Next, we examine the overhead
of HoliPaxos’s logmanagement, which operates based on integrated
control messages. With each leader’s control messages, followers
commit log entries in batches and remove old log entries. We can
change the frequency of log management activities by altering the
control message interval. We try three different configurations—a
large interval of 2400ms (low frequency), a medium one of 800ms
(medium frequency), and a small one of 200ms (high frequency).
As only followers perform batch commits and log trimming (the
leader only trims the log), we present the results for followers.

Figure 12a shows the follower’s peak memory utilization and the
range of CPU utilization. Frequent log management results in lower
peak memory usage as old log entries depart often, reclaiming mem-
ory. Frequent log cleanups also result in a smaller variance in CPU
utilization. Although log management works more frequently, each
cleanup is shorter, leading to a less bursty cleanup and more pre-
dictable CPU usage. In contrast, when the log management operates
less frequently, it needs to handle more log entries at once, causing
more fluctuation in CPU usage. Figure 12b further illustrates this
overhead. The log management does not compete for resources and
mutexes with replication requests, thereby keeping latency steady
until the commit and trimming features are triggered. During the
log trimming, however, lower-frequency log management has a
larger backlog of accumulated log entries to process, impacting the
request latency and driving the tail latency higher.

5 CONCLUSION
In this paper, we presented HoliPaxos, an enhanced version of the
MultiPaxos consensus algorithm with a focus on integrated fail-
ure and slowdown detectors and efficient log management. Our
failure detection addresses the limitations of previous MultiPaxos
implementations that struggled under partial network partitions,
achieving better resilience and performance predictability. Sim-
ilarly, our self-monitoring slowdown detector allows a leader to
declare itself slow and prompts other nodes to change leadership for
better performance characteristics in slowdown cases. Our adaptive
log management approach allows for efficient log trimming while
minimizing the need for costly snapshotting, maintaining more
stable performance, and less fluctuation in memory utilization. We
further integrate all periodic metadata information into one control
message to reduce the overhead of resource utilization. Overall,
HoliPaxos offers a robust and stable solution for the real-world
deployment of MultiPaxos, providing a more predictable runtime
performance compared to traditional implementations.

ACKNOWLEDGMENTS
This project is in part sponsored by the National Science Foundation
(NSF) under awards CNS-2149443, CNS-2149389, and CNS-2440896.

2516



REFERENCES
[1] Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. 2019. Dissecting the

Performance of Strongly-Consistent Replication Protocols. In Proceedings of the
2019 International Conference on Management of Data (Amsterdam, Netherlands)
(SIGMOD ’19). Association for Computing Machinery, New York, NY, USA, 1696–
1710. https://doi.org/10.1145/3299869.3319893

[2] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, and Samer Al-Kiswany.
2020. Toward a Generic Fault Tolerance Technique for Partial Network Partition-
ing. In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 351–368. https://www.usenix.org/conference/
osdi20/presentation/alfatafta

[3] Kingston Authors. [n.d.]. What is a RAM Disk? https://www.kingston.com/en/
blog/pc-performance/what-is-ram-disk. Last accessed on 05/10/2025.

[4] Nathan Bronson, Abutalib Aghayev, Aleksey Charapko, and Timothy Zhu. 2021.
Metastable failures in distributed systems. In Proceedings of the Workshop on Hot
Topics in Operating Systems. 221–227.

[5] Sean Busbey. 2015. Core Workloads. https://github.com/brianfrankcooper/YCSB/
wiki/Core-Workloads. Last accessed on 05/10/2025.

[6] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam
McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, et al.
2011. Windows azure storage: a highly available cloud storage service with strong
consistency. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. 143–157.

[7] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos Made
Live: An Engineering Perspective. In Proceedings of the Twenty-Sixth Annual
ACM Symposium on Principles of Distributed Computing (Portland, Oregon, USA)
(PODC ’07). Association for Computing Machinery, New York, NY, USA, 398–407.
https://doi.org/10.1145/1281100.1281103

[8] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2019. Linearizable
quorum reads in Paxos. In 11th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 19).

[9] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (SoCC 2010). ACM, 143–154.
https://doi.org/10.1145/1807128.1807152

[10] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Transactions on Computer Systems (TOCS) 31, 3, Article 8 (Aug.
2013), 22 pages. https://doi.org/10.1145/2491245

[11] Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph Idziorek, Richard Krog,
Colin Lazier, Erben Mo, Akhilesh Mritunjai, Somasundaram Perianayagam, Tim
Rath, Swami Sivasubramanian, James Christopher Sorenson III, Sroaj Sosothikul,
Doug Terry, and Akshat Vig. 2022. Amazon DynamoDB: A Scalable, Predictably
Performant, and Fully Managed NoSQL Database Service. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 1037–
1048. https://www.usenix.org/conference/atc22/presentation/elhemali

[12] etcd-raft-example Authors. 2023. raftexample is an example usage of etcd’s raft
library. https://github.com/etcd-io/etcd/tree/main/contrib/raftexample. Last
accessed on 05/10/2025.

[13] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility
of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374–382.

[14] Pedro Fouto, Nuno Preguiça, and João Leitão. 2022. High Throughput Replication
with Integrated Membership Management. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). 575–592.

[15] Aishwarya Ganesan, Ramnatthan Alagappan, Anthony Rebello, Andrea CArpaci-
Dusseau, and Remzi H Arpaci-Dusseau. 2022. Exploiting Nil-external Interfaces
for Fast Replicated Storage. ACM Transactions on Storage (TOS) 18, 3 (2022),
1–35.

[16] Google. 2023. gRPC: A high performance, open source universal RPC framework.
https://grpc.io/.

[17] Red Hat. 2019. etcd. A distributed, reliable key-value store for the most crit-
ical data of a distributed system. https://coreos.com/etcd/. Last accessed on
05/10/2025.

[18] Ken Hess. 2020. Sysadmin tools: How to use iptables. https://www.redhat.com/
sysadmin/iptables. Last accessed on 05/10/2025.

[19] Heidi Howard and Ittai Abraham. 2020. Raft does not Guarantee Liveness in the
face of Network Faults. https://decentralizedthoughts.github.io/2020-12-12-raft-
liveness-full-omission/.

[20] Heidi Howard and Richard Mortier. 2020. Paxos vs Raft: Have we reached
consensus on distributed consensus?. In Proceedings of the 7th Workshop on
Principles and Practice of Consistency for Distributed Data. 1–9.

[21] Lexiang Huang, MatthewMagnusson, Abishek Bangalore Muralikrishna, Salman
Estyak, Rebecca Isaacs, Abutalib Aghayev, Timothy Zhu, and Aleksey Charapko.

2022. Metastable failures in the wild. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). 73–90.

[22] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch, Yingnong Dang,
Murali Chintalapati, and Randolph Yao. 2017. Gray Failure: The Achilles’ Heel of
Cloud-Scale Systems. In Proceedings of the 16th Workshop on Hot Topics in Operat-
ing Systems (Whistler, BC, Canada) (HotOS ’17). Association for Computing Ma-
chinery, New York, NY, USA, 150–155. https://doi.org/10.1145/3102980.3103005

[23] Chris Jensen, Heidi Howard, and Richard Mortier. 2021. Examining Raft’s be-
haviour during partial network failures. In Proceedings of the 1st Workshop on
High Availability and Observability of Cloud Systems (Online, United Kingdom)
(HAOC ’21). Association for Computing Machinery, New York, NY, USA, 11–17.
https://doi.org/10.1145/3447851.3458739

[24] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2
(may 1998), 133–169. https://doi.org/10.1145/279227.279229

[25] Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001) (December 2001),
51–58. https://www.microsoft.com/en-us/research/publication/paxos-made-
simple/

[26] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2010. Reconfiguring a state
machine. SIGACT News 41, 1 (mar 2010), 63–73. https://doi.org/10.1145/1753171.
1753191

[27] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and Dan RK Ports.
2016. Just Say NO to Paxos Overhead: Replacing Consensus with Network
Ordering. In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2016). USENIX Association, 467–483.

[28] Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He, and Guangba Yu. 2020. Swiss-
log: Robust and unified deep learning based log anomaly detection for diverse
faults. In 2020 IEEE 31st International Symposium on Software Reliability Engi-
neering (ISSRE). IEEE, 92–103.

[29] Zhiying Liang, Vahab Jabrayilov, Aleksey Charapko, and Abutalib Aghayev.
[n.d.]. HoliPaxos Implementation. https://github.com/Zhiying12/holipaxos..
Last accessed on 05/19/2025.

[30] Zhiying Liang, Vahab Jabrayilov, Aleksey Charapko, and Abutalib Aghayev. 2024.
MultiPaxos Made Complete. arXiv preprint arXiv:2405.11183 (2024).

[31] Tom Lianza and Chris Snook. 2021. A Byzantine failure in the real world.
https://blog.cloudflare.com/a-byzantine-failure-in-thereal-world/. Last accessed
on 05/10/2025.

[32] Chang Lou, Peng Huang, and Scott Smith. 2020. Understanding, detecting and
localizing partial failures in large system software. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). 559–574.

[33] Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu, Zhaosheng Zhu, Mengtian
Wang, Zongpeng Zhu, Guangtao Xue, Jiwu Shu, Minglu Li, et al. 2023. Perseus:
A {Fail-Slow} detection framework for cloud storage systems. In 21st USENIX
Conference on File and Storage Technologies (FAST 23). 49–64.

[34] Protobuf Maintainers. 2023. Protocol Buffers Documentation. https://protobuf.
dev/.

[35] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building
Efficient Replicated State Machines for WANs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation (OSDI 2008). USENIX
Association, 369–384.

[36] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2013. There is more
consensus in egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, 358–372.

[37] Harald Ng, Seif Haridi, and Paris Carbone. 2023. Omni-Paxos: Breaking the Barri-
ers of Partial Connectivity. In Proceedings of the Eighteenth European Conference
on Computer Systems. 314–330.

[38] Khiem Ngo, Siddhartha Sen, and Wyatt Lloyd. 2020. Tolerating Slowdowns
in Replicated State Machines using Copilots. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). USENIX Association,
583–598. https://www.usenix.org/conference/osdi20/presentation/ngo

[39] Authors of Docker Resource constraints. [n.d.]. Resource constraints. https:
//docs.docker.com/engine/containers/resource_constraints/. Last accessed on
05/10/2025.

[40] Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped Replication: A New
Primary Copy Method to Support Highly-Available Distributed Systems. In
Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed
Computing (Toronto, Ontario, Canada) (PODC ’88). Association for Computing
Machinery, New York, NY, USA, 8–17. https://doi.org/10.1145/62546.62549

[41] Diego Ongaro. 2014. Consensus: Bridging Theory and Practice. Ph.D. Dissertation.
Stanford, CA, USA. Advisor(s) K., Ousterhout, John and David, Mazières, and
Mendel, Rosenblum,. AAI28121474.

[42] Diego Ongaro and John Ousterhout. 2014. In search of an understandable con-
sensus algorithm. In Proceedings of the 2014 USENIX Annual Technical Conference
(USENIX ATC 2014). USENIX Association, 305–319.

[43] Ewan S Page. 1954. Continuous inspection schemes. Biometrika 41, 1/2 (1954),
100–115.

[44] Haochen Pan, Jesse Tuglu, Neo Zhou, TianshuWang, Yicheng Shen, Xiong Zheng,
Joseph Tassarotti, Lewis Tseng, and Roberto Palmieri. 2021. Rabia: Simplifying

2517

https://doi.org/10.1145/3299869.3319893
https://www.usenix.org/conference/osdi20/presentation/alfatafta
https://www.usenix.org/conference/osdi20/presentation/alfatafta
https://www.kingston.com/en/blog/pc-performance/what-is-ram-disk
https://www.kingston.com/en/blog/pc-performance/what-is-ram-disk
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2491245
https://www.usenix.org/conference/atc22/presentation/elhemali
https://github.com/etcd-io/etcd/tree/main/contrib/raftexample
https://grpc.io/
https://coreos.com/etcd/
https://www.redhat.com/sysadmin/iptables
https://www.redhat.com/sysadmin/iptables
https://decentralizedthoughts.github.io/2020-12-12-raft-liveness-full-omission/
https://decentralizedthoughts.github.io/2020-12-12-raft-liveness-full-omission/
https://doi.org/10.1145/3102980.3103005
https://doi.org/10.1145/3447851.3458739
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/1753171.1753191
https://doi.org/10.1145/1753171.1753191
https://github.com/Zhiying12/holipaxos.
https://blog.cloudflare.com/a-byzantine-failure-in-thereal-world/
https://protobuf.dev/
https://protobuf.dev/
https://www.usenix.org/conference/osdi20/presentation/ngo
https://docs.docker.com/engine/containers/resource_constraints/
https://docs.docker.com/engine/containers/resource_constraints/
https://doi.org/10.1145/62546.62549


State-Machine Replication Through Randomization. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Germany)
(SOSP ’21). Association for Computing Machinery, New York, NY, USA, 472–487.
https://doi.org/10.1145/3477132.3483582

[45] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and
Peter Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Data-
base. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2020) (Portland, OR, USA) (SIGMOD ’20). As-
sociation for Computing Machinery, New York, NY, USA, 1493–1509. https:
//doi.org/10.1145/3318464.3386134

[46] YugabyteDB Team. 2021. YugabyteDB: cloud native distributed SQL database
for mission-critical applications. https://www.yugabyte.com/yugabytedb/.

[47] Pasindu Tennage, Cristina Basescu, Lefteris Kokoris-Kogias, Ewa Syta, Philipp
Jovanovic, Vero Estrada-Galinanes, and Bryan Ford. 2023. QuePaxa: Escaping
the tyranny of timeouts in consensus. In Proceedings of the 29th Symposium on
Operating Systems Principles. 281–297.

[48] Sarah Tollman, Seo Jin Park, and John Ousterhout. 2021. {EPaxos} Revisited.
In 18th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). 613–632.

[49] Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos Made Moderately
Complex. ACM Comput. Surv. 47, 3, Article 42 (feb 2015), 36 pages. https:
//doi.org/10.1145/2673577

[50] Zhaoguo Wang, Changgeng Zhao, Shuai Mu, Haibo Chen, and Jinyang Li. 2019.
On the Parallels between Paxos and Raft, and How to Port Optimizations. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing

(Toronto ON, Canada) (PODC ’19). Association for Computing Machinery, New
York, NY, USA, 445–454. https://doi.org/10.1145/3293611.3331595

[51] Michael Whittaker. 2021. FrankenPaxos. https://github.com/mwhittaker/
frankenpaxos. Last accessed on 05/10/2025.

[52] Michael Whittaker, Neil Giridharan, Adriana Szekeres, Joseph M Hellerstein,
Heidi Howard, Faisal Nawab, and Ion Stoica. 2020. Matchmaker paxos: A recon-
figurable consensus protocol [technical report]. arXiv preprint arXiv:2007.09468
(2020).

[53] Andy Woods and Daniel Harrison. 2018. Geo-Partitioning: What Global Data
Actually Looks Like. https://www.cockroachlabs.com/blog/geo-partitioning-
one/.

[54] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis of
hundreds of in-memory cache clusters at Twitter. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). USENIX Association,
191–208. https://www.usenix.org/conference/osdi20/presentation/yang

[55] Andrew Yoo, Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin Xu. 2021. Fail-
slow fault tolerance needs programming support. In Proceedings of the Workshop
on Hot Topics in Operating Systems. 228–235.

[56] Xiaofeng Yu and Ying Cheng. 2022. A comprehensive review and compari-
son of CUSUM and change-point-analysis methods to detect test speededness.
Multivariate Behavioral Research 57, 1 (2022), 112–133.

[57] Jianjun Zheng, Qian Lin, Jiatao Xu, Cheng Wei, Chuwei Zeng, Pingan Yang, and
Yunfan Zhang. 2017. PaxosStore: high-availability storage made practical in
WeChat. Proceedings of the VLDB Endowment 10, 12 (2017), 1730–1741.

[58] Siyuan Zhou and Shuai Mu. 2021. {Fault-Tolerant} Replication with {Pull-
Based} Consensus in {MongoDB}. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). 687–703.

2518

https://doi.org/10.1145/3477132.3483582
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3318464.3386134
https://www.yugabyte.com/yugabytedb/
https://doi.org/10.1145/2673577
https://doi.org/10.1145/2673577
https://doi.org/10.1145/3293611.3331595
https://github.com/mwhittaker/frankenpaxos
https://github.com/mwhittaker/frankenpaxos
https://www.cockroachlabs.com/blog/geo-partitioning-one/
https://www.cockroachlabs.com/blog/geo-partitioning-one/
https://www.usenix.org/conference/osdi20/presentation/yang

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Single-Decree Paxos and MultiPaxos
	2.2 Performance Predictability

	3 HoliPaxos: Predictable MultiPaxos
	3.1 Integrated Failure Detector
	3.2 Integrated Slowdown Detection
	3.3 Integrated Adaptive Log Management
	3.4 Integrated Control Messages

	4 Evaluation
	4.1 Experimental Setup
	4.2 Throughput vs. Latency
	4.3 Resilience Under Partial Partitions
	4.4 Slowdown Detection Performance
	4.5 Log Management Performance

	5 Conclusion
	Acknowledgments
	References

